1 | /* |
2 | * Copyright 2016 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/codec/SkCodec.h" |
9 | #include "include/core/SkData.h" |
10 | #include "include/core/SkRefCnt.h" |
11 | #include "include/core/SkStream.h" |
12 | #include "include/core/SkTypes.h" |
13 | #include "include/private/SkColorData.h" |
14 | #include "include/private/SkMutex.h" |
15 | #include "include/private/SkTArray.h" |
16 | #include "include/private/SkTemplates.h" |
17 | #include "src/codec/SkCodecPriv.h" |
18 | #include "src/codec/SkJpegCodec.h" |
19 | #include "src/codec/SkRawCodec.h" |
20 | #include "src/core/SkColorSpacePriv.h" |
21 | #include "src/core/SkStreamPriv.h" |
22 | #include "src/core/SkTaskGroup.h" |
23 | |
24 | #include "dng_area_task.h" |
25 | #include "dng_color_space.h" |
26 | #include "dng_errors.h" |
27 | #include "dng_exceptions.h" |
28 | #include "dng_host.h" |
29 | #include "dng_info.h" |
30 | #include "dng_memory.h" |
31 | #include "dng_render.h" |
32 | #include "dng_stream.h" |
33 | |
34 | #include "src/piex.h" |
35 | |
36 | #include <cmath> // for std::round,floor,ceil |
37 | #include <limits> |
38 | |
39 | namespace { |
40 | |
41 | // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal |
42 | // directions. |
43 | dng_point num_tiles_in_area(const dng_point &areaSize, |
44 | const dng_point_real64 &tileSize) { |
45 | // FIXME: Add a ceil_div() helper in SkCodecPriv.h |
46 | return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v), |
47 | static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h)); |
48 | } |
49 | |
50 | int num_tasks_required(const dng_point& tilesInTask, |
51 | const dng_point& tilesInArea) { |
52 | return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) * |
53 | ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h); |
54 | } |
55 | |
56 | // Calculate the number of tiles to process per task, taking into account the maximum number of |
57 | // tasks. It prefers to increase horizontally for better locality of reference. |
58 | dng_point num_tiles_per_task(const int maxTasks, |
59 | const dng_point &tilesInArea) { |
60 | dng_point tilesInTask = {1, 1}; |
61 | while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) { |
62 | if (tilesInTask.h < tilesInArea.h) { |
63 | ++tilesInTask.h; |
64 | } else if (tilesInTask.v < tilesInArea.v) { |
65 | ++tilesInTask.v; |
66 | } else { |
67 | ThrowProgramError("num_tiles_per_task calculation is wrong." ); |
68 | } |
69 | } |
70 | return tilesInTask; |
71 | } |
72 | |
73 | std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area, |
74 | const dng_point& tileSize) { |
75 | std::vector<dng_rect> taskAreas; |
76 | const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize); |
77 | const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea); |
78 | const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v, |
79 | tilesPerTask.h * tileSize.h}; |
80 | for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) { |
81 | for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) { |
82 | dng_rect taskArea; |
83 | taskArea.t = area.t + v * tileSize.v; |
84 | taskArea.l = area.l + h * tileSize.h; |
85 | taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b); |
86 | taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r); |
87 | |
88 | taskAreas.push_back(taskArea); |
89 | } |
90 | } |
91 | return taskAreas; |
92 | } |
93 | |
94 | class SkDngHost : public dng_host { |
95 | public: |
96 | explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {} |
97 | |
98 | void PerformAreaTask(dng_area_task& task, const dng_rect& area) override { |
99 | SkTaskGroup taskGroup; |
100 | |
101 | // tileSize is typically 256x256 |
102 | const dng_point tileSize(task.FindTileSize(area)); |
103 | const std::vector<dng_rect> taskAreas = compute_task_areas(this->PerformAreaTaskThreads(), |
104 | area, tileSize); |
105 | const int numTasks = static_cast<int>(taskAreas.size()); |
106 | |
107 | SkMutex mutex; |
108 | SkTArray<dng_exception> exceptions; |
109 | task.Start(numTasks, tileSize, &Allocator(), Sniffer()); |
110 | for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) { |
111 | taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] { |
112 | try { |
113 | task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer()); |
114 | } catch (dng_exception& exception) { |
115 | SkAutoMutexExclusive lock(mutex); |
116 | exceptions.push_back(exception); |
117 | } catch (...) { |
118 | SkAutoMutexExclusive lock(mutex); |
119 | exceptions.push_back(dng_exception(dng_error_unknown)); |
120 | } |
121 | }); |
122 | } |
123 | |
124 | taskGroup.wait(); |
125 | task.Finish(numTasks); |
126 | |
127 | // We only re-throw the first exception. |
128 | if (!exceptions.empty()) { |
129 | Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr); |
130 | } |
131 | } |
132 | |
133 | uint32 PerformAreaTaskThreads() override { |
134 | #ifdef SK_BUILD_FOR_ANDROID |
135 | // Only use 1 thread. DNGs with the warp effect require a lot of memory, |
136 | // and the amount of memory required scales linearly with the number of |
137 | // threads. The sample used in CTS requires over 500 MB, so even two |
138 | // threads is significantly expensive. There is no good way to tell |
139 | // whether the image has the warp effect. |
140 | return 1; |
141 | #else |
142 | return kMaxMPThreads; |
143 | #endif |
144 | } |
145 | |
146 | private: |
147 | typedef dng_host INHERITED; |
148 | }; |
149 | |
150 | // T must be unsigned type. |
151 | template <class T> |
152 | bool safe_add_to_size_t(T arg1, T arg2, size_t* result) { |
153 | SkASSERT(arg1 >= 0); |
154 | SkASSERT(arg2 >= 0); |
155 | if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) { |
156 | T sum = arg1 + arg2; |
157 | if (sum <= std::numeric_limits<size_t>::max()) { |
158 | *result = static_cast<size_t>(sum); |
159 | return true; |
160 | } |
161 | } |
162 | return false; |
163 | } |
164 | |
165 | bool is_asset_stream(const SkStream& stream) { |
166 | return stream.hasLength() && stream.hasPosition(); |
167 | } |
168 | |
169 | } // namespace |
170 | |
171 | class SkRawStream { |
172 | public: |
173 | virtual ~SkRawStream() {} |
174 | |
175 | /* |
176 | * Gets the length of the stream. Depending on the type of stream, this may require reading to |
177 | * the end of the stream. |
178 | */ |
179 | virtual uint64 getLength() = 0; |
180 | |
181 | virtual bool read(void* data, size_t offset, size_t length) = 0; |
182 | |
183 | /* |
184 | * Creates an SkMemoryStream from the offset with size. |
185 | * Note: for performance reason, this function is destructive to the SkRawStream. One should |
186 | * abandon current object after the function call. |
187 | */ |
188 | virtual std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) = 0; |
189 | }; |
190 | |
191 | class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream { |
192 | public: |
193 | ~SkRawLimitedDynamicMemoryWStream() override {} |
194 | |
195 | bool write(const void* buffer, size_t size) override { |
196 | size_t newSize; |
197 | if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) || |
198 | newSize > kMaxStreamSize) |
199 | { |
200 | SkCodecPrintf("Error: Stream size exceeds the limit.\n" ); |
201 | return false; |
202 | } |
203 | return this->INHERITED::write(buffer, size); |
204 | } |
205 | |
206 | private: |
207 | // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid |
208 | // streaming too large data chunk. We can always adjust the limit here if we need. |
209 | const size_t kMaxStreamSize = 100 * 1024 * 1024; // 100MB |
210 | |
211 | typedef SkDynamicMemoryWStream INHERITED; |
212 | }; |
213 | |
214 | // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream). |
215 | class SkRawBufferedStream : public SkRawStream { |
216 | public: |
217 | explicit SkRawBufferedStream(std::unique_ptr<SkStream> stream) |
218 | : fStream(std::move(stream)) |
219 | , fWholeStreamRead(false) |
220 | { |
221 | // Only use SkRawBufferedStream when the stream is not an asset stream. |
222 | SkASSERT(!is_asset_stream(*fStream)); |
223 | } |
224 | |
225 | ~SkRawBufferedStream() override {} |
226 | |
227 | uint64 getLength() override { |
228 | if (!this->bufferMoreData(kReadToEnd)) { // read whole stream |
229 | ThrowReadFile(); |
230 | } |
231 | return fStreamBuffer.bytesWritten(); |
232 | } |
233 | |
234 | bool read(void* data, size_t offset, size_t length) override { |
235 | if (length == 0) { |
236 | return true; |
237 | } |
238 | |
239 | size_t sum; |
240 | if (!safe_add_to_size_t(offset, length, &sum)) { |
241 | return false; |
242 | } |
243 | |
244 | return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length); |
245 | } |
246 | |
247 | std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override { |
248 | sk_sp<SkData> data(SkData::MakeUninitialized(size)); |
249 | if (offset > fStreamBuffer.bytesWritten()) { |
250 | // If the offset is not buffered, read from fStream directly and skip the buffering. |
251 | const size_t skipLength = offset - fStreamBuffer.bytesWritten(); |
252 | if (fStream->skip(skipLength) != skipLength) { |
253 | return nullptr; |
254 | } |
255 | const size_t bytesRead = fStream->read(data->writable_data(), size); |
256 | if (bytesRead < size) { |
257 | data = SkData::MakeSubset(data.get(), 0, bytesRead); |
258 | } |
259 | } else { |
260 | const size_t alreadyBuffered = std::min(fStreamBuffer.bytesWritten() - offset, size); |
261 | if (alreadyBuffered > 0 && |
262 | !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) { |
263 | return nullptr; |
264 | } |
265 | |
266 | const size_t remaining = size - alreadyBuffered; |
267 | if (remaining) { |
268 | auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered; |
269 | const size_t bytesRead = fStream->read(dst, remaining); |
270 | size_t newSize; |
271 | if (bytesRead < remaining) { |
272 | if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) { |
273 | return nullptr; |
274 | } |
275 | data = SkData::MakeSubset(data.get(), 0, newSize); |
276 | } |
277 | } |
278 | } |
279 | return SkMemoryStream::Make(data); |
280 | } |
281 | |
282 | private: |
283 | // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream. |
284 | bool bufferMoreData(size_t newSize) { |
285 | if (newSize == kReadToEnd) { |
286 | if (fWholeStreamRead) { // already read-to-end. |
287 | return true; |
288 | } |
289 | |
290 | // TODO: optimize for the special case when the input is SkMemoryStream. |
291 | return SkStreamCopy(&fStreamBuffer, fStream.get()); |
292 | } |
293 | |
294 | if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize |
295 | return true; |
296 | } |
297 | if (fWholeStreamRead) { // newSize is larger than the whole stream. |
298 | return false; |
299 | } |
300 | |
301 | // Try to read at least 8192 bytes to avoid to many small reads. |
302 | const size_t kMinSizeToRead = 8192; |
303 | const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten(); |
304 | const size_t sizeToRead = std::max(kMinSizeToRead, sizeRequested); |
305 | SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead); |
306 | const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead); |
307 | if (bytesRead < sizeRequested) { |
308 | return false; |
309 | } |
310 | return fStreamBuffer.write(tempBuffer.get(), bytesRead); |
311 | } |
312 | |
313 | std::unique_ptr<SkStream> fStream; |
314 | bool fWholeStreamRead; |
315 | |
316 | // Use a size-limited stream to avoid holding too huge buffer. |
317 | SkRawLimitedDynamicMemoryWStream fStreamBuffer; |
318 | |
319 | const size_t kReadToEnd = 0; |
320 | }; |
321 | |
322 | class SkRawAssetStream : public SkRawStream { |
323 | public: |
324 | explicit SkRawAssetStream(std::unique_ptr<SkStream> stream) |
325 | : fStream(std::move(stream)) |
326 | { |
327 | // Only use SkRawAssetStream when the stream is an asset stream. |
328 | SkASSERT(is_asset_stream(*fStream)); |
329 | } |
330 | |
331 | ~SkRawAssetStream() override {} |
332 | |
333 | uint64 getLength() override { |
334 | return fStream->getLength(); |
335 | } |
336 | |
337 | |
338 | bool read(void* data, size_t offset, size_t length) override { |
339 | if (length == 0) { |
340 | return true; |
341 | } |
342 | |
343 | size_t sum; |
344 | if (!safe_add_to_size_t(offset, length, &sum)) { |
345 | return false; |
346 | } |
347 | |
348 | return fStream->seek(offset) && (fStream->read(data, length) == length); |
349 | } |
350 | |
351 | std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override { |
352 | if (fStream->getLength() < offset) { |
353 | return nullptr; |
354 | } |
355 | |
356 | size_t sum; |
357 | if (!safe_add_to_size_t(offset, size, &sum)) { |
358 | return nullptr; |
359 | } |
360 | |
361 | // This will allow read less than the requested "size", because the JPEG codec wants to |
362 | // handle also a partial JPEG file. |
363 | const size_t bytesToRead = std::min(sum, fStream->getLength()) - offset; |
364 | if (bytesToRead == 0) { |
365 | return nullptr; |
366 | } |
367 | |
368 | if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available. |
369 | sk_sp<SkData> data(SkData::MakeWithCopy( |
370 | static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead)); |
371 | fStream.reset(); |
372 | return SkMemoryStream::Make(data); |
373 | } else { |
374 | sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead)); |
375 | if (!fStream->seek(offset)) { |
376 | return nullptr; |
377 | } |
378 | const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead); |
379 | if (bytesRead < bytesToRead) { |
380 | data = SkData::MakeSubset(data.get(), 0, bytesRead); |
381 | } |
382 | return SkMemoryStream::Make(data); |
383 | } |
384 | } |
385 | private: |
386 | std::unique_ptr<SkStream> fStream; |
387 | }; |
388 | |
389 | class SkPiexStream : public ::piex::StreamInterface { |
390 | public: |
391 | // Will NOT take the ownership of the stream. |
392 | explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {} |
393 | |
394 | ~SkPiexStream() override {} |
395 | |
396 | ::piex::Error GetData(const size_t offset, const size_t length, |
397 | uint8* data) override { |
398 | return fStream->read(static_cast<void*>(data), offset, length) ? |
399 | ::piex::Error::kOk : ::piex::Error::kFail; |
400 | } |
401 | |
402 | private: |
403 | SkRawStream* fStream; |
404 | }; |
405 | |
406 | class SkDngStream : public dng_stream { |
407 | public: |
408 | // Will NOT take the ownership of the stream. |
409 | SkDngStream(SkRawStream* stream) : fStream(stream) {} |
410 | |
411 | ~SkDngStream() override {} |
412 | |
413 | uint64 DoGetLength() override { return fStream->getLength(); } |
414 | |
415 | void DoRead(void* data, uint32 count, uint64 offset) override { |
416 | size_t sum; |
417 | if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) || |
418 | !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) { |
419 | ThrowReadFile(); |
420 | } |
421 | } |
422 | |
423 | private: |
424 | SkRawStream* fStream; |
425 | }; |
426 | |
427 | class SkDngImage { |
428 | public: |
429 | /* |
430 | * Initializes the object with the information from Piex in a first attempt. This way it can |
431 | * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern |
432 | * which is essential for the demosaicing of the sensor image. |
433 | * Note: this will take the ownership of the stream. |
434 | */ |
435 | static SkDngImage* NewFromStream(SkRawStream* stream) { |
436 | std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream)); |
437 | #if defined(IS_FUZZING_WITH_LIBFUZZER) |
438 | // Libfuzzer easily runs out of memory after here. To avoid that |
439 | // We just pretend all streams are invalid. Our AFL-fuzzer |
440 | // should still exercise this code; it's more resistant to OOM. |
441 | return nullptr; |
442 | #endif |
443 | if (!dngImage->initFromPiex() && !dngImage->readDng()) { |
444 | return nullptr; |
445 | } |
446 | |
447 | return dngImage.release(); |
448 | } |
449 | |
450 | /* |
451 | * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors |
452 | * down to 80 pixels on the short edge. The rendered image will be close to the specified size, |
453 | * but there is no guarantee that any of the edges will match the requested size. E.g. |
454 | * 100% size: 4000 x 3000 |
455 | * requested size: 1600 x 1200 |
456 | * returned size could be: 2000 x 1500 |
457 | */ |
458 | dng_image* render(int width, int height) { |
459 | if (!fHost || !fInfo || !fNegative || !fDngStream) { |
460 | if (!this->readDng()) { |
461 | return nullptr; |
462 | } |
463 | } |
464 | |
465 | // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension. |
466 | const int preferredSize = std::max(width, height); |
467 | try { |
468 | // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available. |
469 | std::unique_ptr<dng_host> host(fHost.release()); |
470 | std::unique_ptr<dng_info> info(fInfo.release()); |
471 | std::unique_ptr<dng_negative> negative(fNegative.release()); |
472 | std::unique_ptr<dng_stream> dngStream(fDngStream.release()); |
473 | |
474 | host->SetPreferredSize(preferredSize); |
475 | host->ValidateSizes(); |
476 | |
477 | negative->ReadStage1Image(*host, *dngStream, *info); |
478 | |
479 | if (info->fMaskIndex != -1) { |
480 | negative->ReadTransparencyMask(*host, *dngStream, *info); |
481 | } |
482 | |
483 | negative->ValidateRawImageDigest(*host); |
484 | if (negative->IsDamaged()) { |
485 | return nullptr; |
486 | } |
487 | |
488 | const int32 kMosaicPlane = -1; |
489 | negative->BuildStage2Image(*host); |
490 | negative->BuildStage3Image(*host, kMosaicPlane); |
491 | |
492 | dng_render render(*host, *negative); |
493 | render.SetFinalSpace(dng_space_sRGB::Get()); |
494 | render.SetFinalPixelType(ttByte); |
495 | |
496 | dng_point stage3_size = negative->Stage3Image()->Size(); |
497 | render.SetMaximumSize(std::max(stage3_size.h, stage3_size.v)); |
498 | |
499 | return render.Render(); |
500 | } catch (...) { |
501 | return nullptr; |
502 | } |
503 | } |
504 | |
505 | int width() const { |
506 | return fWidth; |
507 | } |
508 | |
509 | int height() const { |
510 | return fHeight; |
511 | } |
512 | |
513 | bool isScalable() const { |
514 | return fIsScalable; |
515 | } |
516 | |
517 | bool isXtransImage() const { |
518 | return fIsXtransImage; |
519 | } |
520 | |
521 | // Quick check if the image contains a valid TIFF header as requested by DNG format. |
522 | // Does not affect ownership of stream. |
523 | static bool (SkRawStream* stream) { |
524 | const size_t = 4; |
525 | unsigned char [kHeaderSize]; |
526 | if (!stream->read(header, 0 /* offset */, kHeaderSize)) { |
527 | return false; |
528 | } |
529 | |
530 | // Check if the header is valid (endian info and magic number "42"). |
531 | bool littleEndian; |
532 | if (!is_valid_endian_marker(header, &littleEndian)) { |
533 | return false; |
534 | } |
535 | |
536 | return 0x2A == get_endian_short(header + 2, littleEndian); |
537 | } |
538 | |
539 | private: |
540 | bool init(int width, int height, const dng_point& cfaPatternSize) { |
541 | fWidth = width; |
542 | fHeight = height; |
543 | |
544 | // The DNG SDK scales only during demosaicing, so scaling is only possible when |
545 | // a mosaic info is available. |
546 | fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0; |
547 | fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false; |
548 | |
549 | return width > 0 && height > 0; |
550 | } |
551 | |
552 | bool initFromPiex() { |
553 | // Does not take the ownership of rawStream. |
554 | SkPiexStream piexStream(fStream.get()); |
555 | ::piex::PreviewImageData imageData; |
556 | if (::piex::IsRaw(&piexStream) |
557 | && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk) |
558 | { |
559 | dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]); |
560 | return this->init(static_cast<int>(imageData.full_width), |
561 | static_cast<int>(imageData.full_height), cfaPatternSize); |
562 | } |
563 | return false; |
564 | } |
565 | |
566 | bool readDng() { |
567 | try { |
568 | // Due to the limit of DNG SDK, we need to reset host and info. |
569 | fHost.reset(new SkDngHost(&fAllocator)); |
570 | fInfo.reset(new dng_info); |
571 | fDngStream.reset(new SkDngStream(fStream.get())); |
572 | |
573 | fHost->ValidateSizes(); |
574 | fInfo->Parse(*fHost, *fDngStream); |
575 | fInfo->PostParse(*fHost); |
576 | if (!fInfo->IsValidDNG()) { |
577 | return false; |
578 | } |
579 | |
580 | fNegative.reset(fHost->Make_dng_negative()); |
581 | fNegative->Parse(*fHost, *fDngStream, *fInfo); |
582 | fNegative->PostParse(*fHost, *fDngStream, *fInfo); |
583 | fNegative->SynchronizeMetadata(); |
584 | |
585 | dng_point cfaPatternSize(0, 0); |
586 | if (fNegative->GetMosaicInfo() != nullptr) { |
587 | cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize; |
588 | } |
589 | return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()), |
590 | static_cast<int>(fNegative->DefaultCropSizeV().As_real64()), |
591 | cfaPatternSize); |
592 | } catch (...) { |
593 | return false; |
594 | } |
595 | } |
596 | |
597 | SkDngImage(SkRawStream* stream) |
598 | : fStream(stream) |
599 | {} |
600 | |
601 | dng_memory_allocator fAllocator; |
602 | std::unique_ptr<SkRawStream> fStream; |
603 | std::unique_ptr<dng_host> fHost; |
604 | std::unique_ptr<dng_info> fInfo; |
605 | std::unique_ptr<dng_negative> fNegative; |
606 | std::unique_ptr<dng_stream> fDngStream; |
607 | |
608 | int fWidth; |
609 | int fHeight; |
610 | bool fIsScalable; |
611 | bool fIsXtransImage; |
612 | }; |
613 | |
614 | /* |
615 | * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a |
616 | * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases, |
617 | * fallback to create SkRawCodec for DNG images. |
618 | */ |
619 | std::unique_ptr<SkCodec> SkRawCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
620 | Result* result) { |
621 | std::unique_ptr<SkRawStream> rawStream; |
622 | if (is_asset_stream(*stream)) { |
623 | rawStream.reset(new SkRawAssetStream(std::move(stream))); |
624 | } else { |
625 | rawStream.reset(new SkRawBufferedStream(std::move(stream))); |
626 | } |
627 | |
628 | // Does not take the ownership of rawStream. |
629 | SkPiexStream piexStream(rawStream.get()); |
630 | ::piex::PreviewImageData imageData; |
631 | if (::piex::IsRaw(&piexStream)) { |
632 | ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData); |
633 | if (error == ::piex::Error::kFail) { |
634 | *result = kInvalidInput; |
635 | return nullptr; |
636 | } |
637 | |
638 | std::unique_ptr<SkEncodedInfo::ICCProfile> profile; |
639 | if (imageData.color_space == ::piex::PreviewImageData::kAdobeRgb) { |
640 | skcms_ICCProfile skcmsProfile; |
641 | skcms_Init(&skcmsProfile); |
642 | skcms_SetTransferFunction(&skcmsProfile, &SkNamedTransferFn::k2Dot2); |
643 | skcms_SetXYZD50(&skcmsProfile, &SkNamedGamut::kAdobeRGB); |
644 | profile = SkEncodedInfo::ICCProfile::Make(skcmsProfile); |
645 | } |
646 | |
647 | // Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only |
648 | // handle the JPEG compressed preview image here. |
649 | if (error == ::piex::Error::kOk && imageData.preview.length > 0 && |
650 | imageData.preview.format == ::piex::Image::kJpegCompressed) |
651 | { |
652 | // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this |
653 | // function call. |
654 | // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream. |
655 | auto memoryStream = rawStream->transferBuffer(imageData.preview.offset, |
656 | imageData.preview.length); |
657 | if (!memoryStream) { |
658 | *result = kInvalidInput; |
659 | return nullptr; |
660 | } |
661 | return SkJpegCodec::MakeFromStream(std::move(memoryStream), result, |
662 | std::move(profile)); |
663 | } |
664 | } |
665 | |
666 | if (!SkDngImage::IsTiffHeaderValid(rawStream.get())) { |
667 | *result = kUnimplemented; |
668 | return nullptr; |
669 | } |
670 | |
671 | // Takes the ownership of the rawStream. |
672 | std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release())); |
673 | if (!dngImage) { |
674 | *result = kInvalidInput; |
675 | return nullptr; |
676 | } |
677 | |
678 | *result = kSuccess; |
679 | return std::unique_ptr<SkCodec>(new SkRawCodec(dngImage.release())); |
680 | } |
681 | |
682 | SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, |
683 | size_t dstRowBytes, const Options& options, |
684 | int* rowsDecoded) { |
685 | const int width = dstInfo.width(); |
686 | const int height = dstInfo.height(); |
687 | std::unique_ptr<dng_image> image(fDngImage->render(width, height)); |
688 | if (!image) { |
689 | return kInvalidInput; |
690 | } |
691 | |
692 | // Because the DNG SDK can not guarantee to render to requested size, we allow a small |
693 | // difference. Only the overlapping region will be converted. |
694 | const float maxDiffRatio = 1.03f; |
695 | const dng_point& imageSize = image->Size(); |
696 | if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width || |
697 | imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) { |
698 | return SkCodec::kInvalidScale; |
699 | } |
700 | |
701 | void* dstRow = dst; |
702 | SkAutoTMalloc<uint8_t> srcRow(width * 3); |
703 | |
704 | dng_pixel_buffer buffer; |
705 | buffer.fData = &srcRow[0]; |
706 | buffer.fPlane = 0; |
707 | buffer.fPlanes = 3; |
708 | buffer.fColStep = buffer.fPlanes; |
709 | buffer.fPlaneStep = 1; |
710 | buffer.fPixelType = ttByte; |
711 | buffer.fPixelSize = sizeof(uint8_t); |
712 | buffer.fRowStep = width * 3; |
713 | |
714 | constexpr auto srcFormat = skcms_PixelFormat_RGB_888; |
715 | skcms_PixelFormat dstFormat; |
716 | if (!sk_select_xform_format(dstInfo.colorType(), false, &dstFormat)) { |
717 | return kInvalidConversion; |
718 | } |
719 | |
720 | const skcms_ICCProfile* const srcProfile = this->getEncodedInfo().profile(); |
721 | skcms_ICCProfile dstProfileStorage; |
722 | const skcms_ICCProfile* dstProfile = nullptr; |
723 | if (auto cs = dstInfo.colorSpace()) { |
724 | cs->toProfile(&dstProfileStorage); |
725 | dstProfile = &dstProfileStorage; |
726 | } |
727 | |
728 | for (int i = 0; i < height; ++i) { |
729 | buffer.fArea = dng_rect(i, 0, i + 1, width); |
730 | |
731 | try { |
732 | image->Get(buffer, dng_image::edge_zero); |
733 | } catch (...) { |
734 | *rowsDecoded = i; |
735 | return kIncompleteInput; |
736 | } |
737 | |
738 | if (!skcms_Transform(&srcRow[0], srcFormat, skcms_AlphaFormat_Unpremul, srcProfile, |
739 | dstRow, dstFormat, skcms_AlphaFormat_Unpremul, dstProfile, |
740 | dstInfo.width())) { |
741 | SkDebugf("failed to transform\n" ); |
742 | *rowsDecoded = i; |
743 | return kInternalError; |
744 | } |
745 | |
746 | dstRow = SkTAddOffset<void>(dstRow, dstRowBytes); |
747 | } |
748 | return kSuccess; |
749 | } |
750 | |
751 | SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const { |
752 | SkASSERT(desiredScale <= 1.f); |
753 | |
754 | const SkISize dim = this->dimensions(); |
755 | SkASSERT(dim.fWidth != 0 && dim.fHeight != 0); |
756 | |
757 | if (!fDngImage->isScalable()) { |
758 | return dim; |
759 | } |
760 | |
761 | // Limits the minimum size to be 80 on the short edge. |
762 | const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight)); |
763 | if (desiredScale < 80.f / shortEdge) { |
764 | desiredScale = 80.f / shortEdge; |
765 | } |
766 | |
767 | // For Xtrans images, the integer-factor scaling does not support the half-size scaling case |
768 | // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead. |
769 | if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) { |
770 | desiredScale = 1.f / 3.f; |
771 | } |
772 | |
773 | // Round to integer-factors. |
774 | const float finalScale = std::floor(1.f/ desiredScale); |
775 | return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)), |
776 | static_cast<int32_t>(std::floor(dim.fHeight / finalScale))); |
777 | } |
778 | |
779 | bool SkRawCodec::onDimensionsSupported(const SkISize& dim) { |
780 | const SkISize fullDim = this->dimensions(); |
781 | const float fullShortEdge = static_cast<float>(std::min(fullDim.fWidth, fullDim.fHeight)); |
782 | const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight)); |
783 | |
784 | SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge)); |
785 | SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge)); |
786 | return sizeFloor == dim || sizeCeil == dim; |
787 | } |
788 | |
789 | SkRawCodec::~SkRawCodec() {} |
790 | |
791 | SkRawCodec::SkRawCodec(SkDngImage* dngImage) |
792 | : INHERITED(SkEncodedInfo::Make(dngImage->width(), dngImage->height(), |
793 | SkEncodedInfo::kRGB_Color, |
794 | SkEncodedInfo::kOpaque_Alpha, 8), |
795 | skcms_PixelFormat_RGBA_8888, nullptr) |
796 | , fDngImage(dngImage) {} |
797 | |