| 1 | /* |
| 2 | * Copyright 2016 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/codec/SkCodec.h" |
| 9 | #include "include/core/SkData.h" |
| 10 | #include "include/core/SkRefCnt.h" |
| 11 | #include "include/core/SkStream.h" |
| 12 | #include "include/core/SkTypes.h" |
| 13 | #include "include/private/SkColorData.h" |
| 14 | #include "include/private/SkMutex.h" |
| 15 | #include "include/private/SkTArray.h" |
| 16 | #include "include/private/SkTemplates.h" |
| 17 | #include "src/codec/SkCodecPriv.h" |
| 18 | #include "src/codec/SkJpegCodec.h" |
| 19 | #include "src/codec/SkRawCodec.h" |
| 20 | #include "src/core/SkColorSpacePriv.h" |
| 21 | #include "src/core/SkStreamPriv.h" |
| 22 | #include "src/core/SkTaskGroup.h" |
| 23 | |
| 24 | #include "dng_area_task.h" |
| 25 | #include "dng_color_space.h" |
| 26 | #include "dng_errors.h" |
| 27 | #include "dng_exceptions.h" |
| 28 | #include "dng_host.h" |
| 29 | #include "dng_info.h" |
| 30 | #include "dng_memory.h" |
| 31 | #include "dng_render.h" |
| 32 | #include "dng_stream.h" |
| 33 | |
| 34 | #include "src/piex.h" |
| 35 | |
| 36 | #include <cmath> // for std::round,floor,ceil |
| 37 | #include <limits> |
| 38 | |
| 39 | namespace { |
| 40 | |
| 41 | // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal |
| 42 | // directions. |
| 43 | dng_point num_tiles_in_area(const dng_point &areaSize, |
| 44 | const dng_point_real64 &tileSize) { |
| 45 | // FIXME: Add a ceil_div() helper in SkCodecPriv.h |
| 46 | return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v), |
| 47 | static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h)); |
| 48 | } |
| 49 | |
| 50 | int num_tasks_required(const dng_point& tilesInTask, |
| 51 | const dng_point& tilesInArea) { |
| 52 | return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) * |
| 53 | ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h); |
| 54 | } |
| 55 | |
| 56 | // Calculate the number of tiles to process per task, taking into account the maximum number of |
| 57 | // tasks. It prefers to increase horizontally for better locality of reference. |
| 58 | dng_point num_tiles_per_task(const int maxTasks, |
| 59 | const dng_point &tilesInArea) { |
| 60 | dng_point tilesInTask = {1, 1}; |
| 61 | while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) { |
| 62 | if (tilesInTask.h < tilesInArea.h) { |
| 63 | ++tilesInTask.h; |
| 64 | } else if (tilesInTask.v < tilesInArea.v) { |
| 65 | ++tilesInTask.v; |
| 66 | } else { |
| 67 | ThrowProgramError("num_tiles_per_task calculation is wrong." ); |
| 68 | } |
| 69 | } |
| 70 | return tilesInTask; |
| 71 | } |
| 72 | |
| 73 | std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area, |
| 74 | const dng_point& tileSize) { |
| 75 | std::vector<dng_rect> taskAreas; |
| 76 | const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize); |
| 77 | const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea); |
| 78 | const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v, |
| 79 | tilesPerTask.h * tileSize.h}; |
| 80 | for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) { |
| 81 | for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) { |
| 82 | dng_rect taskArea; |
| 83 | taskArea.t = area.t + v * tileSize.v; |
| 84 | taskArea.l = area.l + h * tileSize.h; |
| 85 | taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b); |
| 86 | taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r); |
| 87 | |
| 88 | taskAreas.push_back(taskArea); |
| 89 | } |
| 90 | } |
| 91 | return taskAreas; |
| 92 | } |
| 93 | |
| 94 | class SkDngHost : public dng_host { |
| 95 | public: |
| 96 | explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {} |
| 97 | |
| 98 | void PerformAreaTask(dng_area_task& task, const dng_rect& area) override { |
| 99 | SkTaskGroup taskGroup; |
| 100 | |
| 101 | // tileSize is typically 256x256 |
| 102 | const dng_point tileSize(task.FindTileSize(area)); |
| 103 | const std::vector<dng_rect> taskAreas = compute_task_areas(this->PerformAreaTaskThreads(), |
| 104 | area, tileSize); |
| 105 | const int numTasks = static_cast<int>(taskAreas.size()); |
| 106 | |
| 107 | SkMutex mutex; |
| 108 | SkTArray<dng_exception> exceptions; |
| 109 | task.Start(numTasks, tileSize, &Allocator(), Sniffer()); |
| 110 | for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) { |
| 111 | taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] { |
| 112 | try { |
| 113 | task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer()); |
| 114 | } catch (dng_exception& exception) { |
| 115 | SkAutoMutexExclusive lock(mutex); |
| 116 | exceptions.push_back(exception); |
| 117 | } catch (...) { |
| 118 | SkAutoMutexExclusive lock(mutex); |
| 119 | exceptions.push_back(dng_exception(dng_error_unknown)); |
| 120 | } |
| 121 | }); |
| 122 | } |
| 123 | |
| 124 | taskGroup.wait(); |
| 125 | task.Finish(numTasks); |
| 126 | |
| 127 | // We only re-throw the first exception. |
| 128 | if (!exceptions.empty()) { |
| 129 | Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | uint32 PerformAreaTaskThreads() override { |
| 134 | #ifdef SK_BUILD_FOR_ANDROID |
| 135 | // Only use 1 thread. DNGs with the warp effect require a lot of memory, |
| 136 | // and the amount of memory required scales linearly with the number of |
| 137 | // threads. The sample used in CTS requires over 500 MB, so even two |
| 138 | // threads is significantly expensive. There is no good way to tell |
| 139 | // whether the image has the warp effect. |
| 140 | return 1; |
| 141 | #else |
| 142 | return kMaxMPThreads; |
| 143 | #endif |
| 144 | } |
| 145 | |
| 146 | private: |
| 147 | typedef dng_host INHERITED; |
| 148 | }; |
| 149 | |
| 150 | // T must be unsigned type. |
| 151 | template <class T> |
| 152 | bool safe_add_to_size_t(T arg1, T arg2, size_t* result) { |
| 153 | SkASSERT(arg1 >= 0); |
| 154 | SkASSERT(arg2 >= 0); |
| 155 | if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) { |
| 156 | T sum = arg1 + arg2; |
| 157 | if (sum <= std::numeric_limits<size_t>::max()) { |
| 158 | *result = static_cast<size_t>(sum); |
| 159 | return true; |
| 160 | } |
| 161 | } |
| 162 | return false; |
| 163 | } |
| 164 | |
| 165 | bool is_asset_stream(const SkStream& stream) { |
| 166 | return stream.hasLength() && stream.hasPosition(); |
| 167 | } |
| 168 | |
| 169 | } // namespace |
| 170 | |
| 171 | class SkRawStream { |
| 172 | public: |
| 173 | virtual ~SkRawStream() {} |
| 174 | |
| 175 | /* |
| 176 | * Gets the length of the stream. Depending on the type of stream, this may require reading to |
| 177 | * the end of the stream. |
| 178 | */ |
| 179 | virtual uint64 getLength() = 0; |
| 180 | |
| 181 | virtual bool read(void* data, size_t offset, size_t length) = 0; |
| 182 | |
| 183 | /* |
| 184 | * Creates an SkMemoryStream from the offset with size. |
| 185 | * Note: for performance reason, this function is destructive to the SkRawStream. One should |
| 186 | * abandon current object after the function call. |
| 187 | */ |
| 188 | virtual std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) = 0; |
| 189 | }; |
| 190 | |
| 191 | class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream { |
| 192 | public: |
| 193 | ~SkRawLimitedDynamicMemoryWStream() override {} |
| 194 | |
| 195 | bool write(const void* buffer, size_t size) override { |
| 196 | size_t newSize; |
| 197 | if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) || |
| 198 | newSize > kMaxStreamSize) |
| 199 | { |
| 200 | SkCodecPrintf("Error: Stream size exceeds the limit.\n" ); |
| 201 | return false; |
| 202 | } |
| 203 | return this->INHERITED::write(buffer, size); |
| 204 | } |
| 205 | |
| 206 | private: |
| 207 | // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid |
| 208 | // streaming too large data chunk. We can always adjust the limit here if we need. |
| 209 | const size_t kMaxStreamSize = 100 * 1024 * 1024; // 100MB |
| 210 | |
| 211 | typedef SkDynamicMemoryWStream INHERITED; |
| 212 | }; |
| 213 | |
| 214 | // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream). |
| 215 | class SkRawBufferedStream : public SkRawStream { |
| 216 | public: |
| 217 | explicit SkRawBufferedStream(std::unique_ptr<SkStream> stream) |
| 218 | : fStream(std::move(stream)) |
| 219 | , fWholeStreamRead(false) |
| 220 | { |
| 221 | // Only use SkRawBufferedStream when the stream is not an asset stream. |
| 222 | SkASSERT(!is_asset_stream(*fStream)); |
| 223 | } |
| 224 | |
| 225 | ~SkRawBufferedStream() override {} |
| 226 | |
| 227 | uint64 getLength() override { |
| 228 | if (!this->bufferMoreData(kReadToEnd)) { // read whole stream |
| 229 | ThrowReadFile(); |
| 230 | } |
| 231 | return fStreamBuffer.bytesWritten(); |
| 232 | } |
| 233 | |
| 234 | bool read(void* data, size_t offset, size_t length) override { |
| 235 | if (length == 0) { |
| 236 | return true; |
| 237 | } |
| 238 | |
| 239 | size_t sum; |
| 240 | if (!safe_add_to_size_t(offset, length, &sum)) { |
| 241 | return false; |
| 242 | } |
| 243 | |
| 244 | return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length); |
| 245 | } |
| 246 | |
| 247 | std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override { |
| 248 | sk_sp<SkData> data(SkData::MakeUninitialized(size)); |
| 249 | if (offset > fStreamBuffer.bytesWritten()) { |
| 250 | // If the offset is not buffered, read from fStream directly and skip the buffering. |
| 251 | const size_t skipLength = offset - fStreamBuffer.bytesWritten(); |
| 252 | if (fStream->skip(skipLength) != skipLength) { |
| 253 | return nullptr; |
| 254 | } |
| 255 | const size_t bytesRead = fStream->read(data->writable_data(), size); |
| 256 | if (bytesRead < size) { |
| 257 | data = SkData::MakeSubset(data.get(), 0, bytesRead); |
| 258 | } |
| 259 | } else { |
| 260 | const size_t alreadyBuffered = std::min(fStreamBuffer.bytesWritten() - offset, size); |
| 261 | if (alreadyBuffered > 0 && |
| 262 | !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) { |
| 263 | return nullptr; |
| 264 | } |
| 265 | |
| 266 | const size_t remaining = size - alreadyBuffered; |
| 267 | if (remaining) { |
| 268 | auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered; |
| 269 | const size_t bytesRead = fStream->read(dst, remaining); |
| 270 | size_t newSize; |
| 271 | if (bytesRead < remaining) { |
| 272 | if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) { |
| 273 | return nullptr; |
| 274 | } |
| 275 | data = SkData::MakeSubset(data.get(), 0, newSize); |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | return SkMemoryStream::Make(data); |
| 280 | } |
| 281 | |
| 282 | private: |
| 283 | // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream. |
| 284 | bool bufferMoreData(size_t newSize) { |
| 285 | if (newSize == kReadToEnd) { |
| 286 | if (fWholeStreamRead) { // already read-to-end. |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | // TODO: optimize for the special case when the input is SkMemoryStream. |
| 291 | return SkStreamCopy(&fStreamBuffer, fStream.get()); |
| 292 | } |
| 293 | |
| 294 | if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize |
| 295 | return true; |
| 296 | } |
| 297 | if (fWholeStreamRead) { // newSize is larger than the whole stream. |
| 298 | return false; |
| 299 | } |
| 300 | |
| 301 | // Try to read at least 8192 bytes to avoid to many small reads. |
| 302 | const size_t kMinSizeToRead = 8192; |
| 303 | const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten(); |
| 304 | const size_t sizeToRead = std::max(kMinSizeToRead, sizeRequested); |
| 305 | SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead); |
| 306 | const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead); |
| 307 | if (bytesRead < sizeRequested) { |
| 308 | return false; |
| 309 | } |
| 310 | return fStreamBuffer.write(tempBuffer.get(), bytesRead); |
| 311 | } |
| 312 | |
| 313 | std::unique_ptr<SkStream> fStream; |
| 314 | bool fWholeStreamRead; |
| 315 | |
| 316 | // Use a size-limited stream to avoid holding too huge buffer. |
| 317 | SkRawLimitedDynamicMemoryWStream fStreamBuffer; |
| 318 | |
| 319 | const size_t kReadToEnd = 0; |
| 320 | }; |
| 321 | |
| 322 | class SkRawAssetStream : public SkRawStream { |
| 323 | public: |
| 324 | explicit SkRawAssetStream(std::unique_ptr<SkStream> stream) |
| 325 | : fStream(std::move(stream)) |
| 326 | { |
| 327 | // Only use SkRawAssetStream when the stream is an asset stream. |
| 328 | SkASSERT(is_asset_stream(*fStream)); |
| 329 | } |
| 330 | |
| 331 | ~SkRawAssetStream() override {} |
| 332 | |
| 333 | uint64 getLength() override { |
| 334 | return fStream->getLength(); |
| 335 | } |
| 336 | |
| 337 | |
| 338 | bool read(void* data, size_t offset, size_t length) override { |
| 339 | if (length == 0) { |
| 340 | return true; |
| 341 | } |
| 342 | |
| 343 | size_t sum; |
| 344 | if (!safe_add_to_size_t(offset, length, &sum)) { |
| 345 | return false; |
| 346 | } |
| 347 | |
| 348 | return fStream->seek(offset) && (fStream->read(data, length) == length); |
| 349 | } |
| 350 | |
| 351 | std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override { |
| 352 | if (fStream->getLength() < offset) { |
| 353 | return nullptr; |
| 354 | } |
| 355 | |
| 356 | size_t sum; |
| 357 | if (!safe_add_to_size_t(offset, size, &sum)) { |
| 358 | return nullptr; |
| 359 | } |
| 360 | |
| 361 | // This will allow read less than the requested "size", because the JPEG codec wants to |
| 362 | // handle also a partial JPEG file. |
| 363 | const size_t bytesToRead = std::min(sum, fStream->getLength()) - offset; |
| 364 | if (bytesToRead == 0) { |
| 365 | return nullptr; |
| 366 | } |
| 367 | |
| 368 | if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available. |
| 369 | sk_sp<SkData> data(SkData::MakeWithCopy( |
| 370 | static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead)); |
| 371 | fStream.reset(); |
| 372 | return SkMemoryStream::Make(data); |
| 373 | } else { |
| 374 | sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead)); |
| 375 | if (!fStream->seek(offset)) { |
| 376 | return nullptr; |
| 377 | } |
| 378 | const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead); |
| 379 | if (bytesRead < bytesToRead) { |
| 380 | data = SkData::MakeSubset(data.get(), 0, bytesRead); |
| 381 | } |
| 382 | return SkMemoryStream::Make(data); |
| 383 | } |
| 384 | } |
| 385 | private: |
| 386 | std::unique_ptr<SkStream> fStream; |
| 387 | }; |
| 388 | |
| 389 | class SkPiexStream : public ::piex::StreamInterface { |
| 390 | public: |
| 391 | // Will NOT take the ownership of the stream. |
| 392 | explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {} |
| 393 | |
| 394 | ~SkPiexStream() override {} |
| 395 | |
| 396 | ::piex::Error GetData(const size_t offset, const size_t length, |
| 397 | uint8* data) override { |
| 398 | return fStream->read(static_cast<void*>(data), offset, length) ? |
| 399 | ::piex::Error::kOk : ::piex::Error::kFail; |
| 400 | } |
| 401 | |
| 402 | private: |
| 403 | SkRawStream* fStream; |
| 404 | }; |
| 405 | |
| 406 | class SkDngStream : public dng_stream { |
| 407 | public: |
| 408 | // Will NOT take the ownership of the stream. |
| 409 | SkDngStream(SkRawStream* stream) : fStream(stream) {} |
| 410 | |
| 411 | ~SkDngStream() override {} |
| 412 | |
| 413 | uint64 DoGetLength() override { return fStream->getLength(); } |
| 414 | |
| 415 | void DoRead(void* data, uint32 count, uint64 offset) override { |
| 416 | size_t sum; |
| 417 | if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) || |
| 418 | !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) { |
| 419 | ThrowReadFile(); |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | private: |
| 424 | SkRawStream* fStream; |
| 425 | }; |
| 426 | |
| 427 | class SkDngImage { |
| 428 | public: |
| 429 | /* |
| 430 | * Initializes the object with the information from Piex in a first attempt. This way it can |
| 431 | * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern |
| 432 | * which is essential for the demosaicing of the sensor image. |
| 433 | * Note: this will take the ownership of the stream. |
| 434 | */ |
| 435 | static SkDngImage* NewFromStream(SkRawStream* stream) { |
| 436 | std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream)); |
| 437 | #if defined(IS_FUZZING_WITH_LIBFUZZER) |
| 438 | // Libfuzzer easily runs out of memory after here. To avoid that |
| 439 | // We just pretend all streams are invalid. Our AFL-fuzzer |
| 440 | // should still exercise this code; it's more resistant to OOM. |
| 441 | return nullptr; |
| 442 | #endif |
| 443 | if (!dngImage->initFromPiex() && !dngImage->readDng()) { |
| 444 | return nullptr; |
| 445 | } |
| 446 | |
| 447 | return dngImage.release(); |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors |
| 452 | * down to 80 pixels on the short edge. The rendered image will be close to the specified size, |
| 453 | * but there is no guarantee that any of the edges will match the requested size. E.g. |
| 454 | * 100% size: 4000 x 3000 |
| 455 | * requested size: 1600 x 1200 |
| 456 | * returned size could be: 2000 x 1500 |
| 457 | */ |
| 458 | dng_image* render(int width, int height) { |
| 459 | if (!fHost || !fInfo || !fNegative || !fDngStream) { |
| 460 | if (!this->readDng()) { |
| 461 | return nullptr; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension. |
| 466 | const int preferredSize = std::max(width, height); |
| 467 | try { |
| 468 | // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available. |
| 469 | std::unique_ptr<dng_host> host(fHost.release()); |
| 470 | std::unique_ptr<dng_info> info(fInfo.release()); |
| 471 | std::unique_ptr<dng_negative> negative(fNegative.release()); |
| 472 | std::unique_ptr<dng_stream> dngStream(fDngStream.release()); |
| 473 | |
| 474 | host->SetPreferredSize(preferredSize); |
| 475 | host->ValidateSizes(); |
| 476 | |
| 477 | negative->ReadStage1Image(*host, *dngStream, *info); |
| 478 | |
| 479 | if (info->fMaskIndex != -1) { |
| 480 | negative->ReadTransparencyMask(*host, *dngStream, *info); |
| 481 | } |
| 482 | |
| 483 | negative->ValidateRawImageDigest(*host); |
| 484 | if (negative->IsDamaged()) { |
| 485 | return nullptr; |
| 486 | } |
| 487 | |
| 488 | const int32 kMosaicPlane = -1; |
| 489 | negative->BuildStage2Image(*host); |
| 490 | negative->BuildStage3Image(*host, kMosaicPlane); |
| 491 | |
| 492 | dng_render render(*host, *negative); |
| 493 | render.SetFinalSpace(dng_space_sRGB::Get()); |
| 494 | render.SetFinalPixelType(ttByte); |
| 495 | |
| 496 | dng_point stage3_size = negative->Stage3Image()->Size(); |
| 497 | render.SetMaximumSize(std::max(stage3_size.h, stage3_size.v)); |
| 498 | |
| 499 | return render.Render(); |
| 500 | } catch (...) { |
| 501 | return nullptr; |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | int width() const { |
| 506 | return fWidth; |
| 507 | } |
| 508 | |
| 509 | int height() const { |
| 510 | return fHeight; |
| 511 | } |
| 512 | |
| 513 | bool isScalable() const { |
| 514 | return fIsScalable; |
| 515 | } |
| 516 | |
| 517 | bool isXtransImage() const { |
| 518 | return fIsXtransImage; |
| 519 | } |
| 520 | |
| 521 | // Quick check if the image contains a valid TIFF header as requested by DNG format. |
| 522 | // Does not affect ownership of stream. |
| 523 | static bool (SkRawStream* stream) { |
| 524 | const size_t = 4; |
| 525 | unsigned char [kHeaderSize]; |
| 526 | if (!stream->read(header, 0 /* offset */, kHeaderSize)) { |
| 527 | return false; |
| 528 | } |
| 529 | |
| 530 | // Check if the header is valid (endian info and magic number "42"). |
| 531 | bool littleEndian; |
| 532 | if (!is_valid_endian_marker(header, &littleEndian)) { |
| 533 | return false; |
| 534 | } |
| 535 | |
| 536 | return 0x2A == get_endian_short(header + 2, littleEndian); |
| 537 | } |
| 538 | |
| 539 | private: |
| 540 | bool init(int width, int height, const dng_point& cfaPatternSize) { |
| 541 | fWidth = width; |
| 542 | fHeight = height; |
| 543 | |
| 544 | // The DNG SDK scales only during demosaicing, so scaling is only possible when |
| 545 | // a mosaic info is available. |
| 546 | fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0; |
| 547 | fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false; |
| 548 | |
| 549 | return width > 0 && height > 0; |
| 550 | } |
| 551 | |
| 552 | bool initFromPiex() { |
| 553 | // Does not take the ownership of rawStream. |
| 554 | SkPiexStream piexStream(fStream.get()); |
| 555 | ::piex::PreviewImageData imageData; |
| 556 | if (::piex::IsRaw(&piexStream) |
| 557 | && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk) |
| 558 | { |
| 559 | dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]); |
| 560 | return this->init(static_cast<int>(imageData.full_width), |
| 561 | static_cast<int>(imageData.full_height), cfaPatternSize); |
| 562 | } |
| 563 | return false; |
| 564 | } |
| 565 | |
| 566 | bool readDng() { |
| 567 | try { |
| 568 | // Due to the limit of DNG SDK, we need to reset host and info. |
| 569 | fHost.reset(new SkDngHost(&fAllocator)); |
| 570 | fInfo.reset(new dng_info); |
| 571 | fDngStream.reset(new SkDngStream(fStream.get())); |
| 572 | |
| 573 | fHost->ValidateSizes(); |
| 574 | fInfo->Parse(*fHost, *fDngStream); |
| 575 | fInfo->PostParse(*fHost); |
| 576 | if (!fInfo->IsValidDNG()) { |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | fNegative.reset(fHost->Make_dng_negative()); |
| 581 | fNegative->Parse(*fHost, *fDngStream, *fInfo); |
| 582 | fNegative->PostParse(*fHost, *fDngStream, *fInfo); |
| 583 | fNegative->SynchronizeMetadata(); |
| 584 | |
| 585 | dng_point cfaPatternSize(0, 0); |
| 586 | if (fNegative->GetMosaicInfo() != nullptr) { |
| 587 | cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize; |
| 588 | } |
| 589 | return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()), |
| 590 | static_cast<int>(fNegative->DefaultCropSizeV().As_real64()), |
| 591 | cfaPatternSize); |
| 592 | } catch (...) { |
| 593 | return false; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | SkDngImage(SkRawStream* stream) |
| 598 | : fStream(stream) |
| 599 | {} |
| 600 | |
| 601 | dng_memory_allocator fAllocator; |
| 602 | std::unique_ptr<SkRawStream> fStream; |
| 603 | std::unique_ptr<dng_host> fHost; |
| 604 | std::unique_ptr<dng_info> fInfo; |
| 605 | std::unique_ptr<dng_negative> fNegative; |
| 606 | std::unique_ptr<dng_stream> fDngStream; |
| 607 | |
| 608 | int fWidth; |
| 609 | int fHeight; |
| 610 | bool fIsScalable; |
| 611 | bool fIsXtransImage; |
| 612 | }; |
| 613 | |
| 614 | /* |
| 615 | * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a |
| 616 | * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases, |
| 617 | * fallback to create SkRawCodec for DNG images. |
| 618 | */ |
| 619 | std::unique_ptr<SkCodec> SkRawCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
| 620 | Result* result) { |
| 621 | std::unique_ptr<SkRawStream> rawStream; |
| 622 | if (is_asset_stream(*stream)) { |
| 623 | rawStream.reset(new SkRawAssetStream(std::move(stream))); |
| 624 | } else { |
| 625 | rawStream.reset(new SkRawBufferedStream(std::move(stream))); |
| 626 | } |
| 627 | |
| 628 | // Does not take the ownership of rawStream. |
| 629 | SkPiexStream piexStream(rawStream.get()); |
| 630 | ::piex::PreviewImageData imageData; |
| 631 | if (::piex::IsRaw(&piexStream)) { |
| 632 | ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData); |
| 633 | if (error == ::piex::Error::kFail) { |
| 634 | *result = kInvalidInput; |
| 635 | return nullptr; |
| 636 | } |
| 637 | |
| 638 | std::unique_ptr<SkEncodedInfo::ICCProfile> profile; |
| 639 | if (imageData.color_space == ::piex::PreviewImageData::kAdobeRgb) { |
| 640 | skcms_ICCProfile skcmsProfile; |
| 641 | skcms_Init(&skcmsProfile); |
| 642 | skcms_SetTransferFunction(&skcmsProfile, &SkNamedTransferFn::k2Dot2); |
| 643 | skcms_SetXYZD50(&skcmsProfile, &SkNamedGamut::kAdobeRGB); |
| 644 | profile = SkEncodedInfo::ICCProfile::Make(skcmsProfile); |
| 645 | } |
| 646 | |
| 647 | // Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only |
| 648 | // handle the JPEG compressed preview image here. |
| 649 | if (error == ::piex::Error::kOk && imageData.preview.length > 0 && |
| 650 | imageData.preview.format == ::piex::Image::kJpegCompressed) |
| 651 | { |
| 652 | // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this |
| 653 | // function call. |
| 654 | // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream. |
| 655 | auto memoryStream = rawStream->transferBuffer(imageData.preview.offset, |
| 656 | imageData.preview.length); |
| 657 | if (!memoryStream) { |
| 658 | *result = kInvalidInput; |
| 659 | return nullptr; |
| 660 | } |
| 661 | return SkJpegCodec::MakeFromStream(std::move(memoryStream), result, |
| 662 | std::move(profile)); |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | if (!SkDngImage::IsTiffHeaderValid(rawStream.get())) { |
| 667 | *result = kUnimplemented; |
| 668 | return nullptr; |
| 669 | } |
| 670 | |
| 671 | // Takes the ownership of the rawStream. |
| 672 | std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release())); |
| 673 | if (!dngImage) { |
| 674 | *result = kInvalidInput; |
| 675 | return nullptr; |
| 676 | } |
| 677 | |
| 678 | *result = kSuccess; |
| 679 | return std::unique_ptr<SkCodec>(new SkRawCodec(dngImage.release())); |
| 680 | } |
| 681 | |
| 682 | SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, |
| 683 | size_t dstRowBytes, const Options& options, |
| 684 | int* rowsDecoded) { |
| 685 | const int width = dstInfo.width(); |
| 686 | const int height = dstInfo.height(); |
| 687 | std::unique_ptr<dng_image> image(fDngImage->render(width, height)); |
| 688 | if (!image) { |
| 689 | return kInvalidInput; |
| 690 | } |
| 691 | |
| 692 | // Because the DNG SDK can not guarantee to render to requested size, we allow a small |
| 693 | // difference. Only the overlapping region will be converted. |
| 694 | const float maxDiffRatio = 1.03f; |
| 695 | const dng_point& imageSize = image->Size(); |
| 696 | if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width || |
| 697 | imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) { |
| 698 | return SkCodec::kInvalidScale; |
| 699 | } |
| 700 | |
| 701 | void* dstRow = dst; |
| 702 | SkAutoTMalloc<uint8_t> srcRow(width * 3); |
| 703 | |
| 704 | dng_pixel_buffer buffer; |
| 705 | buffer.fData = &srcRow[0]; |
| 706 | buffer.fPlane = 0; |
| 707 | buffer.fPlanes = 3; |
| 708 | buffer.fColStep = buffer.fPlanes; |
| 709 | buffer.fPlaneStep = 1; |
| 710 | buffer.fPixelType = ttByte; |
| 711 | buffer.fPixelSize = sizeof(uint8_t); |
| 712 | buffer.fRowStep = width * 3; |
| 713 | |
| 714 | constexpr auto srcFormat = skcms_PixelFormat_RGB_888; |
| 715 | skcms_PixelFormat dstFormat; |
| 716 | if (!sk_select_xform_format(dstInfo.colorType(), false, &dstFormat)) { |
| 717 | return kInvalidConversion; |
| 718 | } |
| 719 | |
| 720 | const skcms_ICCProfile* const srcProfile = this->getEncodedInfo().profile(); |
| 721 | skcms_ICCProfile dstProfileStorage; |
| 722 | const skcms_ICCProfile* dstProfile = nullptr; |
| 723 | if (auto cs = dstInfo.colorSpace()) { |
| 724 | cs->toProfile(&dstProfileStorage); |
| 725 | dstProfile = &dstProfileStorage; |
| 726 | } |
| 727 | |
| 728 | for (int i = 0; i < height; ++i) { |
| 729 | buffer.fArea = dng_rect(i, 0, i + 1, width); |
| 730 | |
| 731 | try { |
| 732 | image->Get(buffer, dng_image::edge_zero); |
| 733 | } catch (...) { |
| 734 | *rowsDecoded = i; |
| 735 | return kIncompleteInput; |
| 736 | } |
| 737 | |
| 738 | if (!skcms_Transform(&srcRow[0], srcFormat, skcms_AlphaFormat_Unpremul, srcProfile, |
| 739 | dstRow, dstFormat, skcms_AlphaFormat_Unpremul, dstProfile, |
| 740 | dstInfo.width())) { |
| 741 | SkDebugf("failed to transform\n" ); |
| 742 | *rowsDecoded = i; |
| 743 | return kInternalError; |
| 744 | } |
| 745 | |
| 746 | dstRow = SkTAddOffset<void>(dstRow, dstRowBytes); |
| 747 | } |
| 748 | return kSuccess; |
| 749 | } |
| 750 | |
| 751 | SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const { |
| 752 | SkASSERT(desiredScale <= 1.f); |
| 753 | |
| 754 | const SkISize dim = this->dimensions(); |
| 755 | SkASSERT(dim.fWidth != 0 && dim.fHeight != 0); |
| 756 | |
| 757 | if (!fDngImage->isScalable()) { |
| 758 | return dim; |
| 759 | } |
| 760 | |
| 761 | // Limits the minimum size to be 80 on the short edge. |
| 762 | const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight)); |
| 763 | if (desiredScale < 80.f / shortEdge) { |
| 764 | desiredScale = 80.f / shortEdge; |
| 765 | } |
| 766 | |
| 767 | // For Xtrans images, the integer-factor scaling does not support the half-size scaling case |
| 768 | // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead. |
| 769 | if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) { |
| 770 | desiredScale = 1.f / 3.f; |
| 771 | } |
| 772 | |
| 773 | // Round to integer-factors. |
| 774 | const float finalScale = std::floor(1.f/ desiredScale); |
| 775 | return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)), |
| 776 | static_cast<int32_t>(std::floor(dim.fHeight / finalScale))); |
| 777 | } |
| 778 | |
| 779 | bool SkRawCodec::onDimensionsSupported(const SkISize& dim) { |
| 780 | const SkISize fullDim = this->dimensions(); |
| 781 | const float fullShortEdge = static_cast<float>(std::min(fullDim.fWidth, fullDim.fHeight)); |
| 782 | const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight)); |
| 783 | |
| 784 | SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge)); |
| 785 | SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge)); |
| 786 | return sizeFloor == dim || sizeCeil == dim; |
| 787 | } |
| 788 | |
| 789 | SkRawCodec::~SkRawCodec() {} |
| 790 | |
| 791 | SkRawCodec::SkRawCodec(SkDngImage* dngImage) |
| 792 | : INHERITED(SkEncodedInfo::Make(dngImage->width(), dngImage->height(), |
| 793 | SkEncodedInfo::kRGB_Color, |
| 794 | SkEncodedInfo::kOpaque_Alpha, 8), |
| 795 | skcms_PixelFormat_RGBA_8888, nullptr) |
| 796 | , fDngImage(dngImage) {} |
| 797 | |