| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkAAClip.h" |
| 9 | |
| 10 | #include "include/core/SkPath.h" |
| 11 | #include "include/private/SkColorData.h" |
| 12 | #include "include/private/SkMacros.h" |
| 13 | #include "include/private/SkTo.h" |
| 14 | #include "src/core/SkBlitter.h" |
| 15 | #include "src/core/SkRectPriv.h" |
| 16 | #include "src/core/SkScan.h" |
| 17 | #include <atomic> |
| 18 | #include <utility> |
| 19 | |
| 20 | class AutoAAClipValidate { |
| 21 | public: |
| 22 | AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) { |
| 23 | fClip.validate(); |
| 24 | } |
| 25 | ~AutoAAClipValidate() { |
| 26 | fClip.validate(); |
| 27 | } |
| 28 | private: |
| 29 | const SkAAClip& fClip; |
| 30 | }; |
| 31 | |
| 32 | #ifdef SK_DEBUG |
| 33 | #define AUTO_AACLIP_VALIDATE(clip) AutoAAClipValidate acv(clip) |
| 34 | #else |
| 35 | #define AUTO_AACLIP_VALIDATE(clip) |
| 36 | #endif |
| 37 | |
| 38 | /////////////////////////////////////////////////////////////////////////////// |
| 39 | |
| 40 | #define kMaxInt32 0x7FFFFFFF |
| 41 | |
| 42 | #ifdef SK_DEBUG |
| 43 | static inline bool x_in_rect(int x, const SkIRect& rect) { |
| 44 | return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); |
| 45 | } |
| 46 | #endif |
| 47 | |
| 48 | static inline bool y_in_rect(int y, const SkIRect& rect) { |
| 49 | return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); |
| 50 | } |
| 51 | |
| 52 | /* |
| 53 | * Data runs are packed [count, alpha] |
| 54 | */ |
| 55 | |
| 56 | struct SkAAClip::YOffset { |
| 57 | int32_t fY; |
| 58 | uint32_t fOffset; |
| 59 | }; |
| 60 | |
| 61 | struct SkAAClip::RunHead { |
| 62 | std::atomic<int32_t> fRefCnt; |
| 63 | int32_t fRowCount; |
| 64 | size_t fDataSize; |
| 65 | |
| 66 | YOffset* yoffsets() { |
| 67 | return (YOffset*)((char*)this + sizeof(RunHead)); |
| 68 | } |
| 69 | const YOffset* yoffsets() const { |
| 70 | return (const YOffset*)((const char*)this + sizeof(RunHead)); |
| 71 | } |
| 72 | uint8_t* data() { |
| 73 | return (uint8_t*)(this->yoffsets() + fRowCount); |
| 74 | } |
| 75 | const uint8_t* data() const { |
| 76 | return (const uint8_t*)(this->yoffsets() + fRowCount); |
| 77 | } |
| 78 | |
| 79 | static RunHead* Alloc(int rowCount, size_t dataSize) { |
| 80 | size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize; |
| 81 | RunHead* head = (RunHead*)sk_malloc_throw(size); |
| 82 | head->fRefCnt.store(1); |
| 83 | head->fRowCount = rowCount; |
| 84 | head->fDataSize = dataSize; |
| 85 | return head; |
| 86 | } |
| 87 | |
| 88 | static int ComputeRowSizeForWidth(int width) { |
| 89 | // 2 bytes per segment, where each segment can store up to 255 for count |
| 90 | int segments = 0; |
| 91 | while (width > 0) { |
| 92 | segments += 1; |
| 93 | int n = std::min(width, 255); |
| 94 | width -= n; |
| 95 | } |
| 96 | return segments * 2; // each segment is row[0] + row[1] (n + alpha) |
| 97 | } |
| 98 | |
| 99 | static RunHead* AllocRect(const SkIRect& bounds) { |
| 100 | SkASSERT(!bounds.isEmpty()); |
| 101 | int width = bounds.width(); |
| 102 | size_t rowSize = ComputeRowSizeForWidth(width); |
| 103 | RunHead* head = RunHead::Alloc(1, rowSize); |
| 104 | YOffset* yoff = head->yoffsets(); |
| 105 | yoff->fY = bounds.height() - 1; |
| 106 | yoff->fOffset = 0; |
| 107 | uint8_t* row = head->data(); |
| 108 | while (width > 0) { |
| 109 | int n = std::min(width, 255); |
| 110 | row[0] = n; |
| 111 | row[1] = 0xFF; |
| 112 | width -= n; |
| 113 | row += 2; |
| 114 | } |
| 115 | return head; |
| 116 | } |
| 117 | }; |
| 118 | |
| 119 | class SkAAClip::Iter { |
| 120 | public: |
| 121 | Iter(const SkAAClip&); |
| 122 | |
| 123 | bool done() const { return fDone; } |
| 124 | int top() const { return fTop; } |
| 125 | int bottom() const { return fBottom; } |
| 126 | const uint8_t* data() const { return fData; } |
| 127 | void next(); |
| 128 | |
| 129 | private: |
| 130 | const YOffset* fCurrYOff; |
| 131 | const YOffset* fStopYOff; |
| 132 | const uint8_t* fData; |
| 133 | |
| 134 | int fTop, fBottom; |
| 135 | bool fDone; |
| 136 | }; |
| 137 | |
| 138 | SkAAClip::Iter::Iter(const SkAAClip& clip) { |
| 139 | if (clip.isEmpty()) { |
| 140 | fDone = true; |
| 141 | fTop = fBottom = clip.fBounds.fBottom; |
| 142 | fData = nullptr; |
| 143 | fCurrYOff = nullptr; |
| 144 | fStopYOff = nullptr; |
| 145 | return; |
| 146 | } |
| 147 | |
| 148 | const RunHead* head = clip.fRunHead; |
| 149 | fCurrYOff = head->yoffsets(); |
| 150 | fStopYOff = fCurrYOff + head->fRowCount; |
| 151 | fData = head->data() + fCurrYOff->fOffset; |
| 152 | |
| 153 | // setup first value |
| 154 | fTop = clip.fBounds.fTop; |
| 155 | fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1; |
| 156 | fDone = false; |
| 157 | } |
| 158 | |
| 159 | void SkAAClip::Iter::next() { |
| 160 | if (!fDone) { |
| 161 | const YOffset* prev = fCurrYOff; |
| 162 | const YOffset* curr = prev + 1; |
| 163 | SkASSERT(curr <= fStopYOff); |
| 164 | |
| 165 | fTop = fBottom; |
| 166 | if (curr >= fStopYOff) { |
| 167 | fDone = true; |
| 168 | fBottom = kMaxInt32; |
| 169 | fData = nullptr; |
| 170 | } else { |
| 171 | fBottom += curr->fY - prev->fY; |
| 172 | fData += curr->fOffset - prev->fOffset; |
| 173 | fCurrYOff = curr; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | #ifdef SK_DEBUG |
| 179 | // assert we're exactly width-wide, and then return the number of bytes used |
| 180 | static size_t compute_row_length(const uint8_t row[], int width) { |
| 181 | const uint8_t* origRow = row; |
| 182 | while (width > 0) { |
| 183 | int n = row[0]; |
| 184 | SkASSERT(n > 0); |
| 185 | SkASSERT(n <= width); |
| 186 | row += 2; |
| 187 | width -= n; |
| 188 | } |
| 189 | SkASSERT(0 == width); |
| 190 | return row - origRow; |
| 191 | } |
| 192 | |
| 193 | void SkAAClip::validate() const { |
| 194 | if (nullptr == fRunHead) { |
| 195 | SkASSERT(fBounds.isEmpty()); |
| 196 | return; |
| 197 | } |
| 198 | SkASSERT(!fBounds.isEmpty()); |
| 199 | |
| 200 | const RunHead* head = fRunHead; |
| 201 | SkASSERT(head->fRefCnt.load() > 0); |
| 202 | SkASSERT(head->fRowCount > 0); |
| 203 | |
| 204 | const YOffset* yoff = head->yoffsets(); |
| 205 | const YOffset* ystop = yoff + head->fRowCount; |
| 206 | const int lastY = fBounds.height() - 1; |
| 207 | |
| 208 | // Y and offset must be monotonic |
| 209 | int prevY = -1; |
| 210 | int32_t prevOffset = -1; |
| 211 | while (yoff < ystop) { |
| 212 | SkASSERT(prevY < yoff->fY); |
| 213 | SkASSERT(yoff->fY <= lastY); |
| 214 | prevY = yoff->fY; |
| 215 | SkASSERT(prevOffset < (int32_t)yoff->fOffset); |
| 216 | prevOffset = yoff->fOffset; |
| 217 | const uint8_t* row = head->data() + yoff->fOffset; |
| 218 | size_t rowLength = compute_row_length(row, fBounds.width()); |
| 219 | SkASSERT(yoff->fOffset + rowLength <= head->fDataSize); |
| 220 | yoff += 1; |
| 221 | } |
| 222 | // check the last entry; |
| 223 | --yoff; |
| 224 | SkASSERT(yoff->fY == lastY); |
| 225 | } |
| 226 | |
| 227 | static void dump_one_row(const uint8_t* SK_RESTRICT row, |
| 228 | int width, int leading_num) { |
| 229 | if (leading_num) { |
| 230 | SkDebugf( "%03d " , leading_num ); |
| 231 | } |
| 232 | while (width > 0) { |
| 233 | int n = row[0]; |
| 234 | int val = row[1]; |
| 235 | char out = '.'; |
| 236 | if (val == 0xff) { |
| 237 | out = '*'; |
| 238 | } else if (val > 0) { |
| 239 | out = '+'; |
| 240 | } |
| 241 | for (int i = 0 ; i < n ; i++) { |
| 242 | SkDebugf( "%c" , out ); |
| 243 | } |
| 244 | row += 2; |
| 245 | width -= n; |
| 246 | } |
| 247 | SkDebugf( "\n" ); |
| 248 | } |
| 249 | |
| 250 | void SkAAClip::debug(bool compress_y) const { |
| 251 | Iter iter(*this); |
| 252 | const int width = fBounds.width(); |
| 253 | |
| 254 | int y = fBounds.fTop; |
| 255 | while (!iter.done()) { |
| 256 | if (compress_y) { |
| 257 | dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1); |
| 258 | } else { |
| 259 | do { |
| 260 | dump_one_row(iter.data(), width, 0); |
| 261 | } while (++y < iter.bottom()); |
| 262 | } |
| 263 | iter.next(); |
| 264 | } |
| 265 | } |
| 266 | #endif |
| 267 | |
| 268 | /////////////////////////////////////////////////////////////////////////////// |
| 269 | |
| 270 | // Count the number of zeros on the left and right edges of the passed in |
| 271 | // RLE row. If 'row' is all zeros return 'width' in both variables. |
| 272 | static void count_left_right_zeros(const uint8_t* row, int width, |
| 273 | int* leftZ, int* riteZ) { |
| 274 | int zeros = 0; |
| 275 | do { |
| 276 | if (row[1]) { |
| 277 | break; |
| 278 | } |
| 279 | int n = row[0]; |
| 280 | SkASSERT(n > 0); |
| 281 | SkASSERT(n <= width); |
| 282 | zeros += n; |
| 283 | row += 2; |
| 284 | width -= n; |
| 285 | } while (width > 0); |
| 286 | *leftZ = zeros; |
| 287 | |
| 288 | if (0 == width) { |
| 289 | // this line is completely empty return 'width' in both variables |
| 290 | *riteZ = *leftZ; |
| 291 | return; |
| 292 | } |
| 293 | |
| 294 | zeros = 0; |
| 295 | while (width > 0) { |
| 296 | int n = row[0]; |
| 297 | SkASSERT(n > 0); |
| 298 | if (0 == row[1]) { |
| 299 | zeros += n; |
| 300 | } else { |
| 301 | zeros = 0; |
| 302 | } |
| 303 | row += 2; |
| 304 | width -= n; |
| 305 | } |
| 306 | *riteZ = zeros; |
| 307 | } |
| 308 | |
| 309 | // modify row in place, trimming off (zeros) from the left and right sides. |
| 310 | // return the number of bytes that were completely eliminated from the left |
| 311 | static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) { |
| 312 | int trim = 0; |
| 313 | while (leftZ > 0) { |
| 314 | SkASSERT(0 == row[1]); |
| 315 | int n = row[0]; |
| 316 | SkASSERT(n > 0); |
| 317 | SkASSERT(n <= width); |
| 318 | width -= n; |
| 319 | row += 2; |
| 320 | if (n > leftZ) { |
| 321 | row[-2] = n - leftZ; |
| 322 | break; |
| 323 | } |
| 324 | trim += 2; |
| 325 | leftZ -= n; |
| 326 | SkASSERT(leftZ >= 0); |
| 327 | } |
| 328 | |
| 329 | if (riteZ) { |
| 330 | // walk row to the end, and then we'll back up to trim riteZ |
| 331 | while (width > 0) { |
| 332 | int n = row[0]; |
| 333 | SkASSERT(n <= width); |
| 334 | width -= n; |
| 335 | row += 2; |
| 336 | } |
| 337 | // now skip whole runs of zeros |
| 338 | do { |
| 339 | row -= 2; |
| 340 | SkASSERT(0 == row[1]); |
| 341 | int n = row[0]; |
| 342 | SkASSERT(n > 0); |
| 343 | if (n > riteZ) { |
| 344 | row[0] = n - riteZ; |
| 345 | break; |
| 346 | } |
| 347 | riteZ -= n; |
| 348 | SkASSERT(riteZ >= 0); |
| 349 | } while (riteZ > 0); |
| 350 | } |
| 351 | |
| 352 | return trim; |
| 353 | } |
| 354 | |
| 355 | bool SkAAClip::trimLeftRight() { |
| 356 | if (this->isEmpty()) { |
| 357 | return false; |
| 358 | } |
| 359 | |
| 360 | AUTO_AACLIP_VALIDATE(*this); |
| 361 | |
| 362 | const int width = fBounds.width(); |
| 363 | RunHead* head = fRunHead; |
| 364 | YOffset* yoff = head->yoffsets(); |
| 365 | YOffset* stop = yoff + head->fRowCount; |
| 366 | uint8_t* base = head->data(); |
| 367 | |
| 368 | // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum |
| 369 | // number of zeros on the left and right of the clip. This information |
| 370 | // can be used to shrink the bounding box. |
| 371 | int leftZeros = width; |
| 372 | int riteZeros = width; |
| 373 | while (yoff < stop) { |
| 374 | int L, R; |
| 375 | count_left_right_zeros(base + yoff->fOffset, width, &L, &R); |
| 376 | SkASSERT(L + R < width || (L == width && R == width)); |
| 377 | if (L < leftZeros) { |
| 378 | leftZeros = L; |
| 379 | } |
| 380 | if (R < riteZeros) { |
| 381 | riteZeros = R; |
| 382 | } |
| 383 | if (0 == (leftZeros | riteZeros)) { |
| 384 | // no trimming to do |
| 385 | return true; |
| 386 | } |
| 387 | yoff += 1; |
| 388 | } |
| 389 | |
| 390 | SkASSERT(leftZeros || riteZeros); |
| 391 | if (width == leftZeros) { |
| 392 | SkASSERT(width == riteZeros); |
| 393 | return this->setEmpty(); |
| 394 | } |
| 395 | |
| 396 | this->validate(); |
| 397 | |
| 398 | fBounds.fLeft += leftZeros; |
| 399 | fBounds.fRight -= riteZeros; |
| 400 | SkASSERT(!fBounds.isEmpty()); |
| 401 | |
| 402 | // For now we don't realloc the storage (for time), we just shrink in place |
| 403 | // This means we don't have to do any memmoves either, since we can just |
| 404 | // play tricks with the yoff->fOffset for each row |
| 405 | yoff = head->yoffsets(); |
| 406 | while (yoff < stop) { |
| 407 | uint8_t* row = base + yoff->fOffset; |
| 408 | SkDEBUGCODE((void)compute_row_length(row, width);) |
| 409 | yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros); |
| 410 | SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);) |
| 411 | yoff += 1; |
| 412 | } |
| 413 | return true; |
| 414 | } |
| 415 | |
| 416 | static bool row_is_all_zeros(const uint8_t* row, int width) { |
| 417 | SkASSERT(width > 0); |
| 418 | do { |
| 419 | if (row[1]) { |
| 420 | return false; |
| 421 | } |
| 422 | int n = row[0]; |
| 423 | SkASSERT(n <= width); |
| 424 | width -= n; |
| 425 | row += 2; |
| 426 | } while (width > 0); |
| 427 | SkASSERT(0 == width); |
| 428 | return true; |
| 429 | } |
| 430 | |
| 431 | bool SkAAClip::trimTopBottom() { |
| 432 | if (this->isEmpty()) { |
| 433 | return false; |
| 434 | } |
| 435 | |
| 436 | this->validate(); |
| 437 | |
| 438 | const int width = fBounds.width(); |
| 439 | RunHead* head = fRunHead; |
| 440 | YOffset* yoff = head->yoffsets(); |
| 441 | YOffset* stop = yoff + head->fRowCount; |
| 442 | const uint8_t* base = head->data(); |
| 443 | |
| 444 | // Look to trim away empty rows from the top. |
| 445 | // |
| 446 | int skip = 0; |
| 447 | while (yoff < stop) { |
| 448 | const uint8_t* data = base + yoff->fOffset; |
| 449 | if (!row_is_all_zeros(data, width)) { |
| 450 | break; |
| 451 | } |
| 452 | skip += 1; |
| 453 | yoff += 1; |
| 454 | } |
| 455 | SkASSERT(skip <= head->fRowCount); |
| 456 | if (skip == head->fRowCount) { |
| 457 | return this->setEmpty(); |
| 458 | } |
| 459 | if (skip > 0) { |
| 460 | // adjust fRowCount and fBounds.fTop, and slide all the data up |
| 461 | // as we remove [skip] number of YOffset entries |
| 462 | yoff = head->yoffsets(); |
| 463 | int dy = yoff[skip - 1].fY + 1; |
| 464 | for (int i = skip; i < head->fRowCount; ++i) { |
| 465 | SkASSERT(yoff[i].fY >= dy); |
| 466 | yoff[i].fY -= dy; |
| 467 | } |
| 468 | YOffset* dst = head->yoffsets(); |
| 469 | size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize; |
| 470 | memmove(dst, dst + skip, size - skip * sizeof(YOffset)); |
| 471 | |
| 472 | fBounds.fTop += dy; |
| 473 | SkASSERT(!fBounds.isEmpty()); |
| 474 | head->fRowCount -= skip; |
| 475 | SkASSERT(head->fRowCount > 0); |
| 476 | |
| 477 | this->validate(); |
| 478 | // need to reset this after the memmove |
| 479 | base = head->data(); |
| 480 | } |
| 481 | |
| 482 | // Look to trim away empty rows from the bottom. |
| 483 | // We know that we have at least one non-zero row, so we can just walk |
| 484 | // backwards without checking for running past the start. |
| 485 | // |
| 486 | stop = yoff = head->yoffsets() + head->fRowCount; |
| 487 | do { |
| 488 | yoff -= 1; |
| 489 | } while (row_is_all_zeros(base + yoff->fOffset, width)); |
| 490 | skip = SkToInt(stop - yoff - 1); |
| 491 | SkASSERT(skip >= 0 && skip < head->fRowCount); |
| 492 | if (skip > 0) { |
| 493 | // removing from the bottom is easier than from the top, as we don't |
| 494 | // have to adjust any of the Y values, we just have to trim the array |
| 495 | memmove(stop - skip, stop, head->fDataSize); |
| 496 | |
| 497 | fBounds.fBottom = fBounds.fTop + yoff->fY + 1; |
| 498 | SkASSERT(!fBounds.isEmpty()); |
| 499 | head->fRowCount -= skip; |
| 500 | SkASSERT(head->fRowCount > 0); |
| 501 | } |
| 502 | this->validate(); |
| 503 | |
| 504 | return true; |
| 505 | } |
| 506 | |
| 507 | // can't validate before we're done, since trimming is part of the process of |
| 508 | // making us valid after the Builder. Since we build from top to bottom, its |
| 509 | // possible our fBounds.fBottom is bigger than our last scanline of data, so |
| 510 | // we trim fBounds.fBottom back up. |
| 511 | // |
| 512 | // TODO: check for duplicates in X and Y to further compress our data |
| 513 | // |
| 514 | bool SkAAClip::trimBounds() { |
| 515 | if (this->isEmpty()) { |
| 516 | return false; |
| 517 | } |
| 518 | |
| 519 | const RunHead* head = fRunHead; |
| 520 | const YOffset* yoff = head->yoffsets(); |
| 521 | |
| 522 | SkASSERT(head->fRowCount > 0); |
| 523 | const YOffset& lastY = yoff[head->fRowCount - 1]; |
| 524 | SkASSERT(lastY.fY + 1 <= fBounds.height()); |
| 525 | fBounds.fBottom = fBounds.fTop + lastY.fY + 1; |
| 526 | SkASSERT(lastY.fY + 1 == fBounds.height()); |
| 527 | SkASSERT(!fBounds.isEmpty()); |
| 528 | |
| 529 | return this->trimTopBottom() && this->trimLeftRight(); |
| 530 | } |
| 531 | |
| 532 | /////////////////////////////////////////////////////////////////////////////// |
| 533 | |
| 534 | void SkAAClip::freeRuns() { |
| 535 | if (fRunHead) { |
| 536 | SkASSERT(fRunHead->fRefCnt.load() >= 1); |
| 537 | if (1 == fRunHead->fRefCnt--) { |
| 538 | sk_free(fRunHead); |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | SkAAClip::SkAAClip() { |
| 544 | fBounds.setEmpty(); |
| 545 | fRunHead = nullptr; |
| 546 | } |
| 547 | |
| 548 | SkAAClip::SkAAClip(const SkAAClip& src) { |
| 549 | SkDEBUGCODE(fBounds.setEmpty();) // need this for validate |
| 550 | fRunHead = nullptr; |
| 551 | *this = src; |
| 552 | } |
| 553 | |
| 554 | SkAAClip::~SkAAClip() { |
| 555 | this->freeRuns(); |
| 556 | } |
| 557 | |
| 558 | SkAAClip& SkAAClip::operator=(const SkAAClip& src) { |
| 559 | AUTO_AACLIP_VALIDATE(*this); |
| 560 | src.validate(); |
| 561 | |
| 562 | if (this != &src) { |
| 563 | this->freeRuns(); |
| 564 | fBounds = src.fBounds; |
| 565 | fRunHead = src.fRunHead; |
| 566 | if (fRunHead) { |
| 567 | fRunHead->fRefCnt++; |
| 568 | } |
| 569 | } |
| 570 | return *this; |
| 571 | } |
| 572 | |
| 573 | bool operator==(const SkAAClip& a, const SkAAClip& b) { |
| 574 | a.validate(); |
| 575 | b.validate(); |
| 576 | |
| 577 | if (&a == &b) { |
| 578 | return true; |
| 579 | } |
| 580 | if (a.fBounds != b.fBounds) { |
| 581 | return false; |
| 582 | } |
| 583 | |
| 584 | const SkAAClip::RunHead* ah = a.fRunHead; |
| 585 | const SkAAClip::RunHead* bh = b.fRunHead; |
| 586 | |
| 587 | // this catches empties and rects being equal |
| 588 | if (ah == bh) { |
| 589 | return true; |
| 590 | } |
| 591 | |
| 592 | // now we insist that both are complex (but different ptrs) |
| 593 | if (!a.fRunHead || !b.fRunHead) { |
| 594 | return false; |
| 595 | } |
| 596 | |
| 597 | return ah->fRowCount == bh->fRowCount && |
| 598 | ah->fDataSize == bh->fDataSize && |
| 599 | !memcmp(ah->data(), bh->data(), ah->fDataSize); |
| 600 | } |
| 601 | |
| 602 | void SkAAClip::swap(SkAAClip& other) { |
| 603 | AUTO_AACLIP_VALIDATE(*this); |
| 604 | other.validate(); |
| 605 | |
| 606 | using std::swap; |
| 607 | swap(fBounds, other.fBounds); |
| 608 | swap(fRunHead, other.fRunHead); |
| 609 | } |
| 610 | |
| 611 | bool SkAAClip::set(const SkAAClip& src) { |
| 612 | *this = src; |
| 613 | return !this->isEmpty(); |
| 614 | } |
| 615 | |
| 616 | bool SkAAClip::setEmpty() { |
| 617 | this->freeRuns(); |
| 618 | fBounds.setEmpty(); |
| 619 | fRunHead = nullptr; |
| 620 | return false; |
| 621 | } |
| 622 | |
| 623 | bool SkAAClip::setRect(const SkIRect& bounds) { |
| 624 | if (bounds.isEmpty()) { |
| 625 | return this->setEmpty(); |
| 626 | } |
| 627 | |
| 628 | AUTO_AACLIP_VALIDATE(*this); |
| 629 | |
| 630 | #if 0 |
| 631 | SkRect r; |
| 632 | r.set(bounds); |
| 633 | SkPath path; |
| 634 | path.addRect(r); |
| 635 | return this->setPath(path); |
| 636 | #else |
| 637 | this->freeRuns(); |
| 638 | fBounds = bounds; |
| 639 | fRunHead = RunHead::AllocRect(bounds); |
| 640 | SkASSERT(!this->isEmpty()); |
| 641 | return true; |
| 642 | #endif |
| 643 | } |
| 644 | |
| 645 | bool SkAAClip::isRect() const { |
| 646 | if (this->isEmpty()) { |
| 647 | return false; |
| 648 | } |
| 649 | |
| 650 | const RunHead* head = fRunHead; |
| 651 | if (head->fRowCount != 1) { |
| 652 | return false; |
| 653 | } |
| 654 | const YOffset* yoff = head->yoffsets(); |
| 655 | if (yoff->fY != fBounds.fBottom - 1) { |
| 656 | return false; |
| 657 | } |
| 658 | |
| 659 | const uint8_t* row = head->data() + yoff->fOffset; |
| 660 | int width = fBounds.width(); |
| 661 | do { |
| 662 | if (row[1] != 0xFF) { |
| 663 | return false; |
| 664 | } |
| 665 | int n = row[0]; |
| 666 | SkASSERT(n <= width); |
| 667 | width -= n; |
| 668 | row += 2; |
| 669 | } while (width > 0); |
| 670 | return true; |
| 671 | } |
| 672 | |
| 673 | bool SkAAClip::setRect(const SkRect& r, bool doAA) { |
| 674 | if (r.isEmpty()) { |
| 675 | return this->setEmpty(); |
| 676 | } |
| 677 | |
| 678 | AUTO_AACLIP_VALIDATE(*this); |
| 679 | |
| 680 | // TODO: special case this |
| 681 | |
| 682 | SkPath path; |
| 683 | path.addRect(r); |
| 684 | return this->setPath(path, nullptr, doAA); |
| 685 | } |
| 686 | |
| 687 | static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) { |
| 688 | SkASSERT(count >= 0); |
| 689 | while (count > 0) { |
| 690 | int n = count; |
| 691 | if (n > 255) { |
| 692 | n = 255; |
| 693 | } |
| 694 | uint8_t* data = array.append(2); |
| 695 | data[0] = n; |
| 696 | data[1] = value; |
| 697 | count -= n; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | bool SkAAClip::setRegion(const SkRegion& rgn) { |
| 702 | if (rgn.isEmpty()) { |
| 703 | return this->setEmpty(); |
| 704 | } |
| 705 | if (rgn.isRect()) { |
| 706 | return this->setRect(rgn.getBounds()); |
| 707 | } |
| 708 | |
| 709 | #if 0 |
| 710 | SkAAClip clip; |
| 711 | SkRegion::Iterator iter(rgn); |
| 712 | for (; !iter.done(); iter.next()) { |
| 713 | clip.op(iter.rect(), SkRegion::kUnion_Op); |
| 714 | } |
| 715 | this->swap(clip); |
| 716 | return !this->isEmpty(); |
| 717 | #else |
| 718 | const SkIRect& bounds = rgn.getBounds(); |
| 719 | const int offsetX = bounds.fLeft; |
| 720 | const int offsetY = bounds.fTop; |
| 721 | |
| 722 | SkTDArray<YOffset> yArray; |
| 723 | SkTDArray<uint8_t> xArray; |
| 724 | |
| 725 | yArray.setReserve(std::min(bounds.height(), 1024)); |
| 726 | xArray.setReserve(std::min(bounds.width(), 512) * 128); |
| 727 | |
| 728 | SkRegion::Iterator iter(rgn); |
| 729 | int prevRight = 0; |
| 730 | int prevBot = 0; |
| 731 | YOffset* currY = nullptr; |
| 732 | |
| 733 | for (; !iter.done(); iter.next()) { |
| 734 | const SkIRect& r = iter.rect(); |
| 735 | SkASSERT(bounds.contains(r)); |
| 736 | |
| 737 | int bot = r.fBottom - offsetY; |
| 738 | SkASSERT(bot >= prevBot); |
| 739 | if (bot > prevBot) { |
| 740 | if (currY) { |
| 741 | // flush current row |
| 742 | append_run(xArray, 0, bounds.width() - prevRight); |
| 743 | } |
| 744 | // did we introduce an empty-gap from the prev row? |
| 745 | int top = r.fTop - offsetY; |
| 746 | if (top > prevBot) { |
| 747 | currY = yArray.append(); |
| 748 | currY->fY = top - 1; |
| 749 | currY->fOffset = xArray.count(); |
| 750 | append_run(xArray, 0, bounds.width()); |
| 751 | } |
| 752 | // create a new record for this Y value |
| 753 | currY = yArray.append(); |
| 754 | currY->fY = bot - 1; |
| 755 | currY->fOffset = xArray.count(); |
| 756 | prevRight = 0; |
| 757 | prevBot = bot; |
| 758 | } |
| 759 | |
| 760 | int x = r.fLeft - offsetX; |
| 761 | append_run(xArray, 0, x - prevRight); |
| 762 | |
| 763 | int w = r.fRight - r.fLeft; |
| 764 | append_run(xArray, 0xFF, w); |
| 765 | prevRight = x + w; |
| 766 | SkASSERT(prevRight <= bounds.width()); |
| 767 | } |
| 768 | // flush last row |
| 769 | append_run(xArray, 0, bounds.width() - prevRight); |
| 770 | |
| 771 | // now pack everything into a RunHead |
| 772 | RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes()); |
| 773 | memcpy(head->yoffsets(), yArray.begin(), yArray.bytes()); |
| 774 | memcpy(head->data(), xArray.begin(), xArray.bytes()); |
| 775 | |
| 776 | this->setEmpty(); |
| 777 | fBounds = bounds; |
| 778 | fRunHead = head; |
| 779 | this->validate(); |
| 780 | return true; |
| 781 | #endif |
| 782 | } |
| 783 | |
| 784 | /////////////////////////////////////////////////////////////////////////////// |
| 785 | |
| 786 | const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const { |
| 787 | SkASSERT(fRunHead); |
| 788 | |
| 789 | if (!y_in_rect(y, fBounds)) { |
| 790 | return nullptr; |
| 791 | } |
| 792 | y -= fBounds.y(); // our yoffs values are relative to the top |
| 793 | |
| 794 | const YOffset* yoff = fRunHead->yoffsets(); |
| 795 | while (yoff->fY < y) { |
| 796 | yoff += 1; |
| 797 | SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount); |
| 798 | } |
| 799 | |
| 800 | if (lastYForRow) { |
| 801 | *lastYForRow = fBounds.y() + yoff->fY; |
| 802 | } |
| 803 | return fRunHead->data() + yoff->fOffset; |
| 804 | } |
| 805 | |
| 806 | const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const { |
| 807 | SkASSERT(x_in_rect(x, fBounds)); |
| 808 | x -= fBounds.x(); |
| 809 | |
| 810 | // first skip up to X |
| 811 | for (;;) { |
| 812 | int n = data[0]; |
| 813 | if (x < n) { |
| 814 | if (initialCount) { |
| 815 | *initialCount = n - x; |
| 816 | } |
| 817 | break; |
| 818 | } |
| 819 | data += 2; |
| 820 | x -= n; |
| 821 | } |
| 822 | return data; |
| 823 | } |
| 824 | |
| 825 | bool SkAAClip::quickContains(int left, int top, int right, int bottom) const { |
| 826 | if (this->isEmpty()) { |
| 827 | return false; |
| 828 | } |
| 829 | if (!fBounds.contains(SkIRect{left, top, right, bottom})) { |
| 830 | return false; |
| 831 | } |
| 832 | #if 0 |
| 833 | if (this->isRect()) { |
| 834 | return true; |
| 835 | } |
| 836 | #endif |
| 837 | |
| 838 | int lastY SK_INIT_TO_AVOID_WARNING; |
| 839 | const uint8_t* row = this->findRow(top, &lastY); |
| 840 | if (lastY < bottom) { |
| 841 | return false; |
| 842 | } |
| 843 | // now just need to check in X |
| 844 | int count; |
| 845 | row = this->findX(row, left, &count); |
| 846 | #if 0 |
| 847 | return count >= (right - left) && 0xFF == row[1]; |
| 848 | #else |
| 849 | int rectWidth = right - left; |
| 850 | while (0xFF == row[1]) { |
| 851 | if (count >= rectWidth) { |
| 852 | return true; |
| 853 | } |
| 854 | rectWidth -= count; |
| 855 | row += 2; |
| 856 | count = row[0]; |
| 857 | } |
| 858 | return false; |
| 859 | #endif |
| 860 | } |
| 861 | |
| 862 | /////////////////////////////////////////////////////////////////////////////// |
| 863 | |
| 864 | class SkAAClip::Builder { |
| 865 | SkIRect fBounds; |
| 866 | struct Row { |
| 867 | int fY; |
| 868 | int fWidth; |
| 869 | SkTDArray<uint8_t>* fData; |
| 870 | }; |
| 871 | SkTDArray<Row> fRows; |
| 872 | Row* fCurrRow; |
| 873 | int fPrevY; |
| 874 | int fWidth; |
| 875 | int fMinY; |
| 876 | |
| 877 | public: |
| 878 | Builder(const SkIRect& bounds) : fBounds(bounds) { |
| 879 | fPrevY = -1; |
| 880 | fWidth = bounds.width(); |
| 881 | fCurrRow = nullptr; |
| 882 | fMinY = bounds.fTop; |
| 883 | } |
| 884 | |
| 885 | ~Builder() { |
| 886 | Row* row = fRows.begin(); |
| 887 | Row* stop = fRows.end(); |
| 888 | while (row < stop) { |
| 889 | delete row->fData; |
| 890 | row += 1; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | const SkIRect& getBounds() const { return fBounds; } |
| 895 | |
| 896 | void addRun(int x, int y, U8CPU alpha, int count) { |
| 897 | SkASSERT(count > 0); |
| 898 | SkASSERT(fBounds.contains(x, y)); |
| 899 | SkASSERT(fBounds.contains(x + count - 1, y)); |
| 900 | |
| 901 | x -= fBounds.left(); |
| 902 | y -= fBounds.top(); |
| 903 | |
| 904 | Row* row = fCurrRow; |
| 905 | if (y != fPrevY) { |
| 906 | SkASSERT(y > fPrevY); |
| 907 | fPrevY = y; |
| 908 | row = this->flushRow(true); |
| 909 | row->fY = y; |
| 910 | row->fWidth = 0; |
| 911 | SkASSERT(row->fData); |
| 912 | SkASSERT(0 == row->fData->count()); |
| 913 | fCurrRow = row; |
| 914 | } |
| 915 | |
| 916 | SkASSERT(row->fWidth <= x); |
| 917 | SkASSERT(row->fWidth < fBounds.width()); |
| 918 | |
| 919 | SkTDArray<uint8_t>& data = *row->fData; |
| 920 | |
| 921 | int gap = x - row->fWidth; |
| 922 | if (gap) { |
| 923 | AppendRun(data, 0, gap); |
| 924 | row->fWidth += gap; |
| 925 | SkASSERT(row->fWidth < fBounds.width()); |
| 926 | } |
| 927 | |
| 928 | AppendRun(data, alpha, count); |
| 929 | row->fWidth += count; |
| 930 | SkASSERT(row->fWidth <= fBounds.width()); |
| 931 | } |
| 932 | |
| 933 | void addColumn(int x, int y, U8CPU alpha, int height) { |
| 934 | SkASSERT(fBounds.contains(x, y + height - 1)); |
| 935 | |
| 936 | this->addRun(x, y, alpha, 1); |
| 937 | this->flushRowH(fCurrRow); |
| 938 | y -= fBounds.fTop; |
| 939 | SkASSERT(y == fCurrRow->fY); |
| 940 | fCurrRow->fY = y + height - 1; |
| 941 | } |
| 942 | |
| 943 | void addRectRun(int x, int y, int width, int height) { |
| 944 | SkASSERT(fBounds.contains(x + width - 1, y + height - 1)); |
| 945 | this->addRun(x, y, 0xFF, width); |
| 946 | |
| 947 | // we assum the rect must be all we'll see for these scanlines |
| 948 | // so we ensure our row goes all the way to our right |
| 949 | this->flushRowH(fCurrRow); |
| 950 | |
| 951 | y -= fBounds.fTop; |
| 952 | SkASSERT(y == fCurrRow->fY); |
| 953 | fCurrRow->fY = y + height - 1; |
| 954 | } |
| 955 | |
| 956 | void addAntiRectRun(int x, int y, int width, int height, |
| 957 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 958 | // According to SkBlitter.cpp, no matter whether leftAlpha is 0 or positive, |
| 959 | // we should always consider [x, x+1] as the left-most column and [x+1, x+1+width] |
| 960 | // as the rect with full alpha. |
| 961 | SkASSERT(fBounds.contains(x + width + (rightAlpha > 0 ? 1 : 0), |
| 962 | y + height - 1)); |
| 963 | SkASSERT(width >= 0); |
| 964 | |
| 965 | // Conceptually we're always adding 3 runs, but we should |
| 966 | // merge or omit them if possible. |
| 967 | if (leftAlpha == 0xFF) { |
| 968 | width++; |
| 969 | } else if (leftAlpha > 0) { |
| 970 | this->addRun(x++, y, leftAlpha, 1); |
| 971 | } else { |
| 972 | // leftAlpha is 0, ignore the left column |
| 973 | x++; |
| 974 | } |
| 975 | if (rightAlpha == 0xFF) { |
| 976 | width++; |
| 977 | } |
| 978 | if (width > 0) { |
| 979 | this->addRun(x, y, 0xFF, width); |
| 980 | } |
| 981 | if (rightAlpha > 0 && rightAlpha < 255) { |
| 982 | this->addRun(x + width, y, rightAlpha, 1); |
| 983 | } |
| 984 | |
| 985 | // if we never called addRun, we might not have a fCurrRow yet |
| 986 | if (fCurrRow) { |
| 987 | // we assume the rect must be all we'll see for these scanlines |
| 988 | // so we ensure our row goes all the way to our right |
| 989 | this->flushRowH(fCurrRow); |
| 990 | |
| 991 | y -= fBounds.fTop; |
| 992 | SkASSERT(y == fCurrRow->fY); |
| 993 | fCurrRow->fY = y + height - 1; |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | bool finish(SkAAClip* target) { |
| 998 | this->flushRow(false); |
| 999 | |
| 1000 | const Row* row = fRows.begin(); |
| 1001 | const Row* stop = fRows.end(); |
| 1002 | |
| 1003 | size_t dataSize = 0; |
| 1004 | while (row < stop) { |
| 1005 | dataSize += row->fData->count(); |
| 1006 | row += 1; |
| 1007 | } |
| 1008 | |
| 1009 | if (0 == dataSize) { |
| 1010 | return target->setEmpty(); |
| 1011 | } |
| 1012 | |
| 1013 | SkASSERT(fMinY >= fBounds.fTop); |
| 1014 | SkASSERT(fMinY < fBounds.fBottom); |
| 1015 | int adjustY = fMinY - fBounds.fTop; |
| 1016 | fBounds.fTop = fMinY; |
| 1017 | |
| 1018 | RunHead* head = RunHead::Alloc(fRows.count(), dataSize); |
| 1019 | YOffset* yoffset = head->yoffsets(); |
| 1020 | uint8_t* data = head->data(); |
| 1021 | uint8_t* baseData = data; |
| 1022 | |
| 1023 | row = fRows.begin(); |
| 1024 | SkDEBUGCODE(int prevY = row->fY - 1;) |
| 1025 | while (row < stop) { |
| 1026 | SkASSERT(prevY < row->fY); // must be monotonic |
| 1027 | SkDEBUGCODE(prevY = row->fY); |
| 1028 | |
| 1029 | yoffset->fY = row->fY - adjustY; |
| 1030 | yoffset->fOffset = SkToU32(data - baseData); |
| 1031 | yoffset += 1; |
| 1032 | |
| 1033 | size_t n = row->fData->count(); |
| 1034 | memcpy(data, row->fData->begin(), n); |
| 1035 | #ifdef SK_DEBUG |
| 1036 | size_t bytesNeeded = compute_row_length(data, fBounds.width()); |
| 1037 | SkASSERT(bytesNeeded == n); |
| 1038 | #endif |
| 1039 | data += n; |
| 1040 | |
| 1041 | row += 1; |
| 1042 | } |
| 1043 | |
| 1044 | target->freeRuns(); |
| 1045 | target->fBounds = fBounds; |
| 1046 | target->fRunHead = head; |
| 1047 | return target->trimBounds(); |
| 1048 | } |
| 1049 | |
| 1050 | void dump() { |
| 1051 | this->validate(); |
| 1052 | int y; |
| 1053 | for (y = 0; y < fRows.count(); ++y) { |
| 1054 | const Row& row = fRows[y]; |
| 1055 | SkDebugf("Y:%3d W:%3d" , row.fY, row.fWidth); |
| 1056 | const SkTDArray<uint8_t>& data = *row.fData; |
| 1057 | int count = data.count(); |
| 1058 | SkASSERT(!(count & 1)); |
| 1059 | const uint8_t* ptr = data.begin(); |
| 1060 | for (int x = 0; x < count; x += 2) { |
| 1061 | SkDebugf(" [%3d:%02X]" , ptr[0], ptr[1]); |
| 1062 | ptr += 2; |
| 1063 | } |
| 1064 | SkDebugf("\n" ); |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | void validate() { |
| 1069 | #ifdef SK_DEBUG |
| 1070 | int prevY = -1; |
| 1071 | for (int i = 0; i < fRows.count(); ++i) { |
| 1072 | const Row& row = fRows[i]; |
| 1073 | SkASSERT(prevY < row.fY); |
| 1074 | SkASSERT(fWidth == row.fWidth); |
| 1075 | int count = row.fData->count(); |
| 1076 | const uint8_t* ptr = row.fData->begin(); |
| 1077 | SkASSERT(!(count & 1)); |
| 1078 | int w = 0; |
| 1079 | for (int x = 0; x < count; x += 2) { |
| 1080 | int n = ptr[0]; |
| 1081 | SkASSERT(n > 0); |
| 1082 | w += n; |
| 1083 | SkASSERT(w <= fWidth); |
| 1084 | ptr += 2; |
| 1085 | } |
| 1086 | SkASSERT(w == fWidth); |
| 1087 | prevY = row.fY; |
| 1088 | } |
| 1089 | #endif |
| 1090 | } |
| 1091 | |
| 1092 | // only called by BuilderBlitter |
| 1093 | void setMinY(int y) { |
| 1094 | fMinY = y; |
| 1095 | } |
| 1096 | |
| 1097 | private: |
| 1098 | void flushRowH(Row* row) { |
| 1099 | // flush current row if needed |
| 1100 | if (row->fWidth < fWidth) { |
| 1101 | AppendRun(*row->fData, 0, fWidth - row->fWidth); |
| 1102 | row->fWidth = fWidth; |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | Row* flushRow(bool readyForAnother) { |
| 1107 | Row* next = nullptr; |
| 1108 | int count = fRows.count(); |
| 1109 | if (count > 0) { |
| 1110 | this->flushRowH(&fRows[count - 1]); |
| 1111 | } |
| 1112 | if (count > 1) { |
| 1113 | // are our last two runs the same? |
| 1114 | Row* prev = &fRows[count - 2]; |
| 1115 | Row* curr = &fRows[count - 1]; |
| 1116 | SkASSERT(prev->fWidth == fWidth); |
| 1117 | SkASSERT(curr->fWidth == fWidth); |
| 1118 | if (*prev->fData == *curr->fData) { |
| 1119 | prev->fY = curr->fY; |
| 1120 | if (readyForAnother) { |
| 1121 | curr->fData->rewind(); |
| 1122 | next = curr; |
| 1123 | } else { |
| 1124 | delete curr->fData; |
| 1125 | fRows.removeShuffle(count - 1); |
| 1126 | } |
| 1127 | } else { |
| 1128 | if (readyForAnother) { |
| 1129 | next = fRows.append(); |
| 1130 | next->fData = new SkTDArray<uint8_t>; |
| 1131 | } |
| 1132 | } |
| 1133 | } else { |
| 1134 | if (readyForAnother) { |
| 1135 | next = fRows.append(); |
| 1136 | next->fData = new SkTDArray<uint8_t>; |
| 1137 | } |
| 1138 | } |
| 1139 | return next; |
| 1140 | } |
| 1141 | |
| 1142 | static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) { |
| 1143 | do { |
| 1144 | int n = count; |
| 1145 | if (n > 255) { |
| 1146 | n = 255; |
| 1147 | } |
| 1148 | uint8_t* ptr = data.append(2); |
| 1149 | ptr[0] = n; |
| 1150 | ptr[1] = alpha; |
| 1151 | count -= n; |
| 1152 | } while (count > 0); |
| 1153 | } |
| 1154 | }; |
| 1155 | |
| 1156 | class SkAAClip::BuilderBlitter : public SkBlitter { |
| 1157 | int fLastY; |
| 1158 | |
| 1159 | /* |
| 1160 | If we see a gap of 1 or more empty scanlines while building in Y-order, |
| 1161 | we inject an explicit empty scanline (alpha==0) |
| 1162 | |
| 1163 | See AAClipTest.cpp : test_path_with_hole() |
| 1164 | */ |
| 1165 | void checkForYGap(int y) { |
| 1166 | SkASSERT(y >= fLastY); |
| 1167 | if (fLastY > -SK_MaxS32) { |
| 1168 | int gap = y - fLastY; |
| 1169 | if (gap > 1) { |
| 1170 | fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft); |
| 1171 | } |
| 1172 | } |
| 1173 | fLastY = y; |
| 1174 | } |
| 1175 | |
| 1176 | public: |
| 1177 | |
| 1178 | BuilderBlitter(Builder* builder) { |
| 1179 | fBuilder = builder; |
| 1180 | fLeft = builder->getBounds().fLeft; |
| 1181 | fRight = builder->getBounds().fRight; |
| 1182 | fMinY = SK_MaxS32; |
| 1183 | fLastY = -SK_MaxS32; // sentinel |
| 1184 | } |
| 1185 | |
| 1186 | void finish() { |
| 1187 | if (fMinY < SK_MaxS32) { |
| 1188 | fBuilder->setMinY(fMinY); |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | /** |
| 1193 | Must evaluate clips in scan-line order, so don't want to allow blitV(), |
| 1194 | but an AAClip can be clipped down to a single pixel wide, so we |
| 1195 | must support it (given AntiRect semantics: minimum width is 2). |
| 1196 | Instead we'll rely on the runtime asserts to guarantee Y monotonicity; |
| 1197 | any failure cases that misses may have minor artifacts. |
| 1198 | */ |
| 1199 | void blitV(int x, int y, int height, SkAlpha alpha) override { |
| 1200 | if (height == 1) { |
| 1201 | // We're still in scan-line order if height is 1 |
| 1202 | // This is useful for Analytic AA |
| 1203 | const SkAlpha alphas[2] = {alpha, 0}; |
| 1204 | const int16_t runs[2] = {1, 0}; |
| 1205 | this->blitAntiH(x, y, alphas, runs); |
| 1206 | } else { |
| 1207 | this->recordMinY(y); |
| 1208 | fBuilder->addColumn(x, y, alpha, height); |
| 1209 | fLastY = y + height - 1; |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | void blitRect(int x, int y, int width, int height) override { |
| 1214 | this->recordMinY(y); |
| 1215 | this->checkForYGap(y); |
| 1216 | fBuilder->addRectRun(x, y, width, height); |
| 1217 | fLastY = y + height - 1; |
| 1218 | } |
| 1219 | |
| 1220 | virtual void blitAntiRect(int x, int y, int width, int height, |
| 1221 | SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
| 1222 | this->recordMinY(y); |
| 1223 | this->checkForYGap(y); |
| 1224 | fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha); |
| 1225 | fLastY = y + height - 1; |
| 1226 | } |
| 1227 | |
| 1228 | void blitMask(const SkMask&, const SkIRect& clip) override |
| 1229 | { unexpected(); } |
| 1230 | |
| 1231 | const SkPixmap* justAnOpaqueColor(uint32_t*) override { |
| 1232 | return nullptr; |
| 1233 | } |
| 1234 | |
| 1235 | void blitH(int x, int y, int width) override { |
| 1236 | this->recordMinY(y); |
| 1237 | this->checkForYGap(y); |
| 1238 | fBuilder->addRun(x, y, 0xFF, width); |
| 1239 | } |
| 1240 | |
| 1241 | virtual void blitAntiH(int x, int y, const SkAlpha alpha[], |
| 1242 | const int16_t runs[]) override { |
| 1243 | this->recordMinY(y); |
| 1244 | this->checkForYGap(y); |
| 1245 | for (;;) { |
| 1246 | int count = *runs; |
| 1247 | if (count <= 0) { |
| 1248 | return; |
| 1249 | } |
| 1250 | |
| 1251 | // The supersampler's buffer can be the width of the device, so |
| 1252 | // we may have to trim the run to our bounds. Previously, we assert that |
| 1253 | // the extra spans are always alpha==0. |
| 1254 | // However, the analytic AA is too sensitive to precision errors |
| 1255 | // so it may have extra spans with very tiny alpha because after several |
| 1256 | // arithmatic operations, the edge may bleed the path boundary a little bit. |
| 1257 | // Therefore, instead of always asserting alpha==0, we assert alpha < 0x10. |
| 1258 | int localX = x; |
| 1259 | int localCount = count; |
| 1260 | if (x < fLeft) { |
| 1261 | SkASSERT(0x10 > *alpha); |
| 1262 | int gap = fLeft - x; |
| 1263 | SkASSERT(gap <= count); |
| 1264 | localX += gap; |
| 1265 | localCount -= gap; |
| 1266 | } |
| 1267 | int right = x + count; |
| 1268 | if (right > fRight) { |
| 1269 | SkASSERT(0x10 > *alpha); |
| 1270 | localCount -= right - fRight; |
| 1271 | SkASSERT(localCount >= 0); |
| 1272 | } |
| 1273 | |
| 1274 | if (localCount) { |
| 1275 | fBuilder->addRun(localX, y, *alpha, localCount); |
| 1276 | } |
| 1277 | // Next run |
| 1278 | runs += count; |
| 1279 | alpha += count; |
| 1280 | x += count; |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | private: |
| 1285 | Builder* fBuilder; |
| 1286 | int fLeft; // cache of builder's bounds' left edge |
| 1287 | int fRight; |
| 1288 | int fMinY; |
| 1289 | |
| 1290 | /* |
| 1291 | * We track this, in case the scan converter skipped some number of |
| 1292 | * scanlines at the (relative to the bounds it was given). This allows |
| 1293 | * the builder, during its finish, to trip its bounds down to the "real" |
| 1294 | * top. |
| 1295 | */ |
| 1296 | void recordMinY(int y) { |
| 1297 | if (y < fMinY) { |
| 1298 | fMinY = y; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | void unexpected() { |
| 1303 | SK_ABORT("---- did not expect to get called here" ); |
| 1304 | } |
| 1305 | }; |
| 1306 | |
| 1307 | bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) { |
| 1308 | AUTO_AACLIP_VALIDATE(*this); |
| 1309 | |
| 1310 | if (clip && clip->isEmpty()) { |
| 1311 | return this->setEmpty(); |
| 1312 | } |
| 1313 | |
| 1314 | SkIRect ibounds; |
| 1315 | path.getBounds().roundOut(&ibounds); |
| 1316 | |
| 1317 | SkRegion tmpClip; |
| 1318 | if (nullptr == clip) { |
| 1319 | tmpClip.setRect(ibounds); |
| 1320 | clip = &tmpClip; |
| 1321 | } |
| 1322 | |
| 1323 | // Since we assert that the BuilderBlitter will never blit outside the intersection |
| 1324 | // of clip and ibounds, we create this snugClip to be that intersection and send it |
| 1325 | // to the scan-converter. |
| 1326 | SkRegion snugClip(*clip); |
| 1327 | |
| 1328 | if (path.isInverseFillType()) { |
| 1329 | ibounds = clip->getBounds(); |
| 1330 | } else { |
| 1331 | if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) { |
| 1332 | return this->setEmpty(); |
| 1333 | } |
| 1334 | snugClip.op(ibounds, SkRegion::kIntersect_Op); |
| 1335 | } |
| 1336 | |
| 1337 | Builder builder(ibounds); |
| 1338 | BuilderBlitter blitter(&builder); |
| 1339 | |
| 1340 | if (doAA) { |
| 1341 | SkScan::AntiFillPath(path, snugClip, &blitter, true); |
| 1342 | } else { |
| 1343 | SkScan::FillPath(path, snugClip, &blitter); |
| 1344 | } |
| 1345 | |
| 1346 | blitter.finish(); |
| 1347 | return builder.finish(this); |
| 1348 | } |
| 1349 | |
| 1350 | /////////////////////////////////////////////////////////////////////////////// |
| 1351 | |
| 1352 | typedef void (*RowProc)(SkAAClip::Builder&, int bottom, |
| 1353 | const uint8_t* rowA, const SkIRect& rectA, |
| 1354 | const uint8_t* rowB, const SkIRect& rectB); |
| 1355 | |
| 1356 | typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB); |
| 1357 | |
| 1358 | static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
| 1359 | // Multiply |
| 1360 | return SkMulDiv255Round(alphaA, alphaB); |
| 1361 | } |
| 1362 | |
| 1363 | static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
| 1364 | // SrcOver |
| 1365 | return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB); |
| 1366 | } |
| 1367 | |
| 1368 | static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
| 1369 | // SrcOut |
| 1370 | return SkMulDiv255Round(alphaA, 0xFF - alphaB); |
| 1371 | } |
| 1372 | |
| 1373 | static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
| 1374 | // XOR |
| 1375 | return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB); |
| 1376 | } |
| 1377 | |
| 1378 | static AlphaProc find_alpha_proc(SkRegion::Op op) { |
| 1379 | switch (op) { |
| 1380 | case SkRegion::kIntersect_Op: |
| 1381 | return sectAlphaProc; |
| 1382 | case SkRegion::kDifference_Op: |
| 1383 | return diffAlphaProc; |
| 1384 | case SkRegion::kUnion_Op: |
| 1385 | return unionAlphaProc; |
| 1386 | case SkRegion::kXOR_Op: |
| 1387 | return xorAlphaProc; |
| 1388 | default: |
| 1389 | SkDEBUGFAIL("unexpected region op" ); |
| 1390 | return sectAlphaProc; |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | class RowIter { |
| 1395 | public: |
| 1396 | RowIter(const uint8_t* row, const SkIRect& bounds) { |
| 1397 | fRow = row; |
| 1398 | fLeft = bounds.fLeft; |
| 1399 | fBoundsRight = bounds.fRight; |
| 1400 | if (row) { |
| 1401 | fRight = bounds.fLeft + row[0]; |
| 1402 | SkASSERT(fRight <= fBoundsRight); |
| 1403 | fAlpha = row[1]; |
| 1404 | fDone = false; |
| 1405 | } else { |
| 1406 | fDone = true; |
| 1407 | fRight = kMaxInt32; |
| 1408 | fAlpha = 0; |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | bool done() const { return fDone; } |
| 1413 | int left() const { return fLeft; } |
| 1414 | int right() const { return fRight; } |
| 1415 | U8CPU alpha() const { return fAlpha; } |
| 1416 | void next() { |
| 1417 | if (!fDone) { |
| 1418 | fLeft = fRight; |
| 1419 | if (fRight == fBoundsRight) { |
| 1420 | fDone = true; |
| 1421 | fRight = kMaxInt32; |
| 1422 | fAlpha = 0; |
| 1423 | } else { |
| 1424 | fRow += 2; |
| 1425 | fRight += fRow[0]; |
| 1426 | fAlpha = fRow[1]; |
| 1427 | SkASSERT(fRight <= fBoundsRight); |
| 1428 | } |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | private: |
| 1433 | const uint8_t* fRow; |
| 1434 | int fLeft; |
| 1435 | int fRight; |
| 1436 | int fBoundsRight; |
| 1437 | bool fDone; |
| 1438 | uint8_t fAlpha; |
| 1439 | }; |
| 1440 | |
| 1441 | static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) { |
| 1442 | if (rite == riteA) { |
| 1443 | iter.next(); |
| 1444 | leftA = iter.left(); |
| 1445 | riteA = iter.right(); |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | #if 0 // UNUSED |
| 1450 | static bool intersect(int& min, int& max, int boundsMin, int boundsMax) { |
| 1451 | SkASSERT(min < max); |
| 1452 | SkASSERT(boundsMin < boundsMax); |
| 1453 | if (min >= boundsMax || max <= boundsMin) { |
| 1454 | return false; |
| 1455 | } |
| 1456 | if (min < boundsMin) { |
| 1457 | min = boundsMin; |
| 1458 | } |
| 1459 | if (max > boundsMax) { |
| 1460 | max = boundsMax; |
| 1461 | } |
| 1462 | return true; |
| 1463 | } |
| 1464 | #endif |
| 1465 | |
| 1466 | static void operatorX(SkAAClip::Builder& builder, int lastY, |
| 1467 | RowIter& iterA, RowIter& iterB, |
| 1468 | AlphaProc proc, const SkIRect& bounds) { |
| 1469 | int leftA = iterA.left(); |
| 1470 | int riteA = iterA.right(); |
| 1471 | int leftB = iterB.left(); |
| 1472 | int riteB = iterB.right(); |
| 1473 | |
| 1474 | int prevRite = bounds.fLeft; |
| 1475 | |
| 1476 | do { |
| 1477 | U8CPU alphaA = 0; |
| 1478 | U8CPU alphaB = 0; |
| 1479 | int left, rite; |
| 1480 | |
| 1481 | if (leftA < leftB) { |
| 1482 | left = leftA; |
| 1483 | alphaA = iterA.alpha(); |
| 1484 | if (riteA <= leftB) { |
| 1485 | rite = riteA; |
| 1486 | } else { |
| 1487 | rite = leftA = leftB; |
| 1488 | } |
| 1489 | } else if (leftB < leftA) { |
| 1490 | left = leftB; |
| 1491 | alphaB = iterB.alpha(); |
| 1492 | if (riteB <= leftA) { |
| 1493 | rite = riteB; |
| 1494 | } else { |
| 1495 | rite = leftB = leftA; |
| 1496 | } |
| 1497 | } else { |
| 1498 | left = leftA; // or leftB, since leftA == leftB |
| 1499 | rite = leftA = leftB = std::min(riteA, riteB); |
| 1500 | alphaA = iterA.alpha(); |
| 1501 | alphaB = iterB.alpha(); |
| 1502 | } |
| 1503 | |
| 1504 | if (left >= bounds.fRight) { |
| 1505 | break; |
| 1506 | } |
| 1507 | if (rite > bounds.fRight) { |
| 1508 | rite = bounds.fRight; |
| 1509 | } |
| 1510 | |
| 1511 | if (left >= bounds.fLeft) { |
| 1512 | SkASSERT(rite > left); |
| 1513 | builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left); |
| 1514 | prevRite = rite; |
| 1515 | } |
| 1516 | |
| 1517 | adjust_row(iterA, leftA, riteA, rite); |
| 1518 | adjust_row(iterB, leftB, riteB, rite); |
| 1519 | } while (!iterA.done() || !iterB.done()); |
| 1520 | |
| 1521 | if (prevRite < bounds.fRight) { |
| 1522 | builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite); |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) { |
| 1527 | if (bot == botA) { |
| 1528 | iter.next(); |
| 1529 | topA = botA; |
| 1530 | SkASSERT(botA == iter.top()); |
| 1531 | botA = iter.bottom(); |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | static void operateY(SkAAClip::Builder& builder, const SkAAClip& A, |
| 1536 | const SkAAClip& B, SkRegion::Op op) { |
| 1537 | AlphaProc proc = find_alpha_proc(op); |
| 1538 | const SkIRect& bounds = builder.getBounds(); |
| 1539 | |
| 1540 | SkAAClip::Iter iterA(A); |
| 1541 | SkAAClip::Iter iterB(B); |
| 1542 | |
| 1543 | SkASSERT(!iterA.done()); |
| 1544 | int topA = iterA.top(); |
| 1545 | int botA = iterA.bottom(); |
| 1546 | SkASSERT(!iterB.done()); |
| 1547 | int topB = iterB.top(); |
| 1548 | int botB = iterB.bottom(); |
| 1549 | |
| 1550 | do { |
| 1551 | const uint8_t* rowA = nullptr; |
| 1552 | const uint8_t* rowB = nullptr; |
| 1553 | int top, bot; |
| 1554 | |
| 1555 | if (topA < topB) { |
| 1556 | top = topA; |
| 1557 | rowA = iterA.data(); |
| 1558 | if (botA <= topB) { |
| 1559 | bot = botA; |
| 1560 | } else { |
| 1561 | bot = topA = topB; |
| 1562 | } |
| 1563 | |
| 1564 | } else if (topB < topA) { |
| 1565 | top = topB; |
| 1566 | rowB = iterB.data(); |
| 1567 | if (botB <= topA) { |
| 1568 | bot = botB; |
| 1569 | } else { |
| 1570 | bot = topB = topA; |
| 1571 | } |
| 1572 | } else { |
| 1573 | top = topA; // or topB, since topA == topB |
| 1574 | bot = topA = topB = std::min(botA, botB); |
| 1575 | rowA = iterA.data(); |
| 1576 | rowB = iterB.data(); |
| 1577 | } |
| 1578 | |
| 1579 | if (top >= bounds.fBottom) { |
| 1580 | break; |
| 1581 | } |
| 1582 | |
| 1583 | if (bot > bounds.fBottom) { |
| 1584 | bot = bounds.fBottom; |
| 1585 | } |
| 1586 | SkASSERT(top < bot); |
| 1587 | |
| 1588 | if (!rowA && !rowB) { |
| 1589 | builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width()); |
| 1590 | } else if (top >= bounds.fTop) { |
| 1591 | SkASSERT(bot <= bounds.fBottom); |
| 1592 | RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds); |
| 1593 | RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds); |
| 1594 | operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds); |
| 1595 | } |
| 1596 | |
| 1597 | adjust_iter(iterA, topA, botA, bot); |
| 1598 | adjust_iter(iterB, topB, botB, bot); |
| 1599 | } while (!iterA.done() || !iterB.done()); |
| 1600 | } |
| 1601 | |
| 1602 | bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig, |
| 1603 | SkRegion::Op op) { |
| 1604 | AUTO_AACLIP_VALIDATE(*this); |
| 1605 | |
| 1606 | if (SkRegion::kReplace_Op == op) { |
| 1607 | return this->set(clipBOrig); |
| 1608 | } |
| 1609 | |
| 1610 | const SkAAClip* clipA = &clipAOrig; |
| 1611 | const SkAAClip* clipB = &clipBOrig; |
| 1612 | |
| 1613 | if (SkRegion::kReverseDifference_Op == op) { |
| 1614 | using std::swap; |
| 1615 | swap(clipA, clipB); |
| 1616 | op = SkRegion::kDifference_Op; |
| 1617 | } |
| 1618 | |
| 1619 | bool a_empty = clipA->isEmpty(); |
| 1620 | bool b_empty = clipB->isEmpty(); |
| 1621 | |
| 1622 | SkIRect bounds; |
| 1623 | switch (op) { |
| 1624 | case SkRegion::kDifference_Op: |
| 1625 | if (a_empty) { |
| 1626 | return this->setEmpty(); |
| 1627 | } |
| 1628 | if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) { |
| 1629 | return this->set(*clipA); |
| 1630 | } |
| 1631 | bounds = clipA->fBounds; |
| 1632 | break; |
| 1633 | |
| 1634 | case SkRegion::kIntersect_Op: |
| 1635 | if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds, |
| 1636 | clipB->fBounds)) { |
| 1637 | return this->setEmpty(); |
| 1638 | } |
| 1639 | break; |
| 1640 | |
| 1641 | case SkRegion::kUnion_Op: |
| 1642 | case SkRegion::kXOR_Op: |
| 1643 | if (a_empty) { |
| 1644 | return this->set(*clipB); |
| 1645 | } |
| 1646 | if (b_empty) { |
| 1647 | return this->set(*clipA); |
| 1648 | } |
| 1649 | bounds = clipA->fBounds; |
| 1650 | bounds.join(clipB->fBounds); |
| 1651 | break; |
| 1652 | |
| 1653 | default: |
| 1654 | SkDEBUGFAIL("unknown region op" ); |
| 1655 | return !this->isEmpty(); |
| 1656 | } |
| 1657 | |
| 1658 | SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds)); |
| 1659 | SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds)); |
| 1660 | |
| 1661 | Builder builder(bounds); |
| 1662 | operateY(builder, *clipA, *clipB, op); |
| 1663 | |
| 1664 | return builder.finish(this); |
| 1665 | } |
| 1666 | |
| 1667 | /* |
| 1668 | * It can be expensive to build a local aaclip before applying the op, so |
| 1669 | * we first see if we can restrict the bounds of new rect to our current |
| 1670 | * bounds, or note that the new rect subsumes our current clip. |
| 1671 | */ |
| 1672 | |
| 1673 | bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) { |
| 1674 | SkIRect rStorage; |
| 1675 | const SkIRect* r = &rOrig; |
| 1676 | |
| 1677 | switch (op) { |
| 1678 | case SkRegion::kIntersect_Op: |
| 1679 | if (!rStorage.intersect(rOrig, fBounds)) { |
| 1680 | // no overlap, so we're empty |
| 1681 | return this->setEmpty(); |
| 1682 | } |
| 1683 | if (rStorage == fBounds) { |
| 1684 | // we were wholly inside the rect, no change |
| 1685 | return !this->isEmpty(); |
| 1686 | } |
| 1687 | if (this->quickContains(rStorage)) { |
| 1688 | // the intersection is wholly inside us, we're a rect |
| 1689 | return this->setRect(rStorage); |
| 1690 | } |
| 1691 | r = &rStorage; // use the intersected bounds |
| 1692 | break; |
| 1693 | case SkRegion::kDifference_Op: |
| 1694 | break; |
| 1695 | case SkRegion::kUnion_Op: |
| 1696 | if (rOrig.contains(fBounds)) { |
| 1697 | return this->setRect(rOrig); |
| 1698 | } |
| 1699 | break; |
| 1700 | default: |
| 1701 | break; |
| 1702 | } |
| 1703 | |
| 1704 | SkAAClip clip; |
| 1705 | clip.setRect(*r); |
| 1706 | return this->op(*this, clip, op); |
| 1707 | } |
| 1708 | |
| 1709 | bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) { |
| 1710 | SkRect rStorage, boundsStorage; |
| 1711 | const SkRect* r = &rOrig; |
| 1712 | |
| 1713 | boundsStorage.set(fBounds); |
| 1714 | switch (op) { |
| 1715 | case SkRegion::kIntersect_Op: |
| 1716 | case SkRegion::kDifference_Op: |
| 1717 | if (!rStorage.intersect(rOrig, boundsStorage)) { |
| 1718 | if (SkRegion::kIntersect_Op == op) { |
| 1719 | return this->setEmpty(); |
| 1720 | } else { // kDifference |
| 1721 | return !this->isEmpty(); |
| 1722 | } |
| 1723 | } |
| 1724 | r = &rStorage; // use the intersected bounds |
| 1725 | break; |
| 1726 | case SkRegion::kUnion_Op: |
| 1727 | if (rOrig.contains(boundsStorage)) { |
| 1728 | return this->setRect(rOrig); |
| 1729 | } |
| 1730 | break; |
| 1731 | default: |
| 1732 | break; |
| 1733 | } |
| 1734 | |
| 1735 | SkAAClip clip; |
| 1736 | clip.setRect(*r, doAA); |
| 1737 | return this->op(*this, clip, op); |
| 1738 | } |
| 1739 | |
| 1740 | bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) { |
| 1741 | return this->op(*this, clip, op); |
| 1742 | } |
| 1743 | |
| 1744 | /////////////////////////////////////////////////////////////////////////////// |
| 1745 | |
| 1746 | bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const { |
| 1747 | if (nullptr == dst) { |
| 1748 | return !this->isEmpty(); |
| 1749 | } |
| 1750 | |
| 1751 | if (this->isEmpty()) { |
| 1752 | return dst->setEmpty(); |
| 1753 | } |
| 1754 | |
| 1755 | if (this != dst) { |
| 1756 | fRunHead->fRefCnt++; |
| 1757 | dst->freeRuns(); |
| 1758 | dst->fRunHead = fRunHead; |
| 1759 | dst->fBounds = fBounds; |
| 1760 | } |
| 1761 | dst->fBounds.offset(dx, dy); |
| 1762 | return true; |
| 1763 | } |
| 1764 | |
| 1765 | static void expand_row_to_mask(uint8_t* SK_RESTRICT mask, |
| 1766 | const uint8_t* SK_RESTRICT row, |
| 1767 | int width) { |
| 1768 | while (width > 0) { |
| 1769 | int n = row[0]; |
| 1770 | SkASSERT(width >= n); |
| 1771 | memset(mask, row[1], n); |
| 1772 | mask += n; |
| 1773 | row += 2; |
| 1774 | width -= n; |
| 1775 | } |
| 1776 | SkASSERT(0 == width); |
| 1777 | } |
| 1778 | |
| 1779 | void SkAAClip::copyToMask(SkMask* mask) const { |
| 1780 | mask->fFormat = SkMask::kA8_Format; |
| 1781 | if (this->isEmpty()) { |
| 1782 | mask->fBounds.setEmpty(); |
| 1783 | mask->fImage = nullptr; |
| 1784 | mask->fRowBytes = 0; |
| 1785 | return; |
| 1786 | } |
| 1787 | |
| 1788 | mask->fBounds = fBounds; |
| 1789 | mask->fRowBytes = fBounds.width(); |
| 1790 | size_t size = mask->computeImageSize(); |
| 1791 | mask->fImage = SkMask::AllocImage(size); |
| 1792 | |
| 1793 | Iter iter(*this); |
| 1794 | uint8_t* dst = mask->fImage; |
| 1795 | const int width = fBounds.width(); |
| 1796 | |
| 1797 | int y = fBounds.fTop; |
| 1798 | while (!iter.done()) { |
| 1799 | do { |
| 1800 | expand_row_to_mask(dst, iter.data(), width); |
| 1801 | dst += mask->fRowBytes; |
| 1802 | } while (++y < iter.bottom()); |
| 1803 | iter.next(); |
| 1804 | } |
| 1805 | } |
| 1806 | |
| 1807 | /////////////////////////////////////////////////////////////////////////////// |
| 1808 | /////////////////////////////////////////////////////////////////////////////// |
| 1809 | |
| 1810 | static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width, |
| 1811 | int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) { |
| 1812 | // we don't read our initial n from data, since the caller may have had to |
| 1813 | // clip it, hence the initialCount parameter. |
| 1814 | int n = initialCount; |
| 1815 | for (;;) { |
| 1816 | if (n > width) { |
| 1817 | n = width; |
| 1818 | } |
| 1819 | SkASSERT(n > 0); |
| 1820 | runs[0] = n; |
| 1821 | runs += n; |
| 1822 | |
| 1823 | aa[0] = data[1]; |
| 1824 | aa += n; |
| 1825 | |
| 1826 | data += 2; |
| 1827 | width -= n; |
| 1828 | if (0 == width) { |
| 1829 | break; |
| 1830 | } |
| 1831 | // load the next count |
| 1832 | n = data[0]; |
| 1833 | } |
| 1834 | runs[0] = 0; // sentinel |
| 1835 | } |
| 1836 | |
| 1837 | SkAAClipBlitter::~SkAAClipBlitter() { |
| 1838 | sk_free(fScanlineScratch); |
| 1839 | } |
| 1840 | |
| 1841 | void SkAAClipBlitter::ensureRunsAndAA() { |
| 1842 | if (nullptr == fScanlineScratch) { |
| 1843 | // add 1 so we can store the terminating run count of 0 |
| 1844 | int count = fAAClipBounds.width() + 1; |
| 1845 | // we use this either for fRuns + fAA, or a scaline of a mask |
| 1846 | // which may be as deep as 32bits |
| 1847 | fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor)); |
| 1848 | fRuns = (int16_t*)fScanlineScratch; |
| 1849 | fAA = (SkAlpha*)(fRuns + count); |
| 1850 | } |
| 1851 | } |
| 1852 | |
| 1853 | void SkAAClipBlitter::blitH(int x, int y, int width) { |
| 1854 | SkASSERT(width > 0); |
| 1855 | SkASSERT(fAAClipBounds.contains(x, y)); |
| 1856 | SkASSERT(fAAClipBounds.contains(x + width - 1, y)); |
| 1857 | |
| 1858 | const uint8_t* row = fAAClip->findRow(y); |
| 1859 | int initialCount; |
| 1860 | row = fAAClip->findX(row, x, &initialCount); |
| 1861 | |
| 1862 | if (initialCount >= width) { |
| 1863 | SkAlpha alpha = row[1]; |
| 1864 | if (0 == alpha) { |
| 1865 | return; |
| 1866 | } |
| 1867 | if (0xFF == alpha) { |
| 1868 | fBlitter->blitH(x, y, width); |
| 1869 | return; |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | this->ensureRunsAndAA(); |
| 1874 | expandToRuns(row, initialCount, width, fRuns, fAA); |
| 1875 | |
| 1876 | fBlitter->blitAntiH(x, y, fAA, fRuns); |
| 1877 | } |
| 1878 | |
| 1879 | static void merge(const uint8_t* SK_RESTRICT row, int rowN, |
| 1880 | const SkAlpha* SK_RESTRICT srcAA, |
| 1881 | const int16_t* SK_RESTRICT srcRuns, |
| 1882 | SkAlpha* SK_RESTRICT dstAA, |
| 1883 | int16_t* SK_RESTRICT dstRuns, |
| 1884 | int width) { |
| 1885 | SkDEBUGCODE(int accumulated = 0;) |
| 1886 | int srcN = srcRuns[0]; |
| 1887 | // do we need this check? |
| 1888 | if (0 == srcN) { |
| 1889 | return; |
| 1890 | } |
| 1891 | |
| 1892 | for (;;) { |
| 1893 | SkASSERT(rowN > 0); |
| 1894 | SkASSERT(srcN > 0); |
| 1895 | |
| 1896 | unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]); |
| 1897 | int minN = std::min(srcN, rowN); |
| 1898 | dstRuns[0] = minN; |
| 1899 | dstRuns += minN; |
| 1900 | dstAA[0] = newAlpha; |
| 1901 | dstAA += minN; |
| 1902 | |
| 1903 | if (0 == (srcN -= minN)) { |
| 1904 | srcN = srcRuns[0]; // refresh |
| 1905 | srcRuns += srcN; |
| 1906 | srcAA += srcN; |
| 1907 | srcN = srcRuns[0]; // reload |
| 1908 | if (0 == srcN) { |
| 1909 | break; |
| 1910 | } |
| 1911 | } |
| 1912 | if (0 == (rowN -= minN)) { |
| 1913 | row += 2; |
| 1914 | rowN = row[0]; // reload |
| 1915 | } |
| 1916 | |
| 1917 | SkDEBUGCODE(accumulated += minN;) |
| 1918 | SkASSERT(accumulated <= width); |
| 1919 | } |
| 1920 | dstRuns[0] = 0; |
| 1921 | } |
| 1922 | |
| 1923 | void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], |
| 1924 | const int16_t runs[]) { |
| 1925 | |
| 1926 | const uint8_t* row = fAAClip->findRow(y); |
| 1927 | int initialCount; |
| 1928 | row = fAAClip->findX(row, x, &initialCount); |
| 1929 | |
| 1930 | this->ensureRunsAndAA(); |
| 1931 | |
| 1932 | merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width()); |
| 1933 | fBlitter->blitAntiH(x, y, fAA, fRuns); |
| 1934 | } |
| 1935 | |
| 1936 | void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 1937 | if (fAAClip->quickContains(x, y, x + 1, y + height)) { |
| 1938 | fBlitter->blitV(x, y, height, alpha); |
| 1939 | return; |
| 1940 | } |
| 1941 | |
| 1942 | for (;;) { |
| 1943 | int lastY SK_INIT_TO_AVOID_WARNING; |
| 1944 | const uint8_t* row = fAAClip->findRow(y, &lastY); |
| 1945 | int dy = lastY - y + 1; |
| 1946 | if (dy > height) { |
| 1947 | dy = height; |
| 1948 | } |
| 1949 | height -= dy; |
| 1950 | |
| 1951 | row = fAAClip->findX(row, x); |
| 1952 | SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]); |
| 1953 | if (newAlpha) { |
| 1954 | fBlitter->blitV(x, y, dy, newAlpha); |
| 1955 | } |
| 1956 | SkASSERT(height >= 0); |
| 1957 | if (height <= 0) { |
| 1958 | break; |
| 1959 | } |
| 1960 | y = lastY + 1; |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | void SkAAClipBlitter::blitRect(int x, int y, int width, int height) { |
| 1965 | if (fAAClip->quickContains(x, y, x + width, y + height)) { |
| 1966 | fBlitter->blitRect(x, y, width, height); |
| 1967 | return; |
| 1968 | } |
| 1969 | |
| 1970 | while (--height >= 0) { |
| 1971 | this->blitH(x, y, width); |
| 1972 | y += 1; |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row, |
| 1977 | int initialRowCount, void* dst); |
| 1978 | |
| 1979 | static void small_memcpy(void* dst, const void* src, size_t n) { |
| 1980 | memcpy(dst, src, n); |
| 1981 | } |
| 1982 | |
| 1983 | static void small_bzero(void* dst, size_t n) { |
| 1984 | sk_bzero(dst, n); |
| 1985 | } |
| 1986 | |
| 1987 | static inline uint8_t mergeOne(uint8_t value, unsigned alpha) { |
| 1988 | return SkMulDiv255Round(value, alpha); |
| 1989 | } |
| 1990 | |
| 1991 | static inline uint16_t mergeOne(uint16_t value, unsigned alpha) { |
| 1992 | unsigned r = SkGetPackedR16(value); |
| 1993 | unsigned g = SkGetPackedG16(value); |
| 1994 | unsigned b = SkGetPackedB16(value); |
| 1995 | return SkPackRGB16(SkMulDiv255Round(r, alpha), |
| 1996 | SkMulDiv255Round(g, alpha), |
| 1997 | SkMulDiv255Round(b, alpha)); |
| 1998 | } |
| 1999 | |
| 2000 | template <typename T> |
| 2001 | void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) { |
| 2002 | const T* SK_RESTRICT src = static_cast<const T*>(inSrc); |
| 2003 | T* SK_RESTRICT dst = static_cast<T*>(inDst); |
| 2004 | for (;;) { |
| 2005 | SkASSERT(rowN > 0); |
| 2006 | SkASSERT(srcN > 0); |
| 2007 | |
| 2008 | int n = std::min(rowN, srcN); |
| 2009 | unsigned rowA = row[1]; |
| 2010 | if (0xFF == rowA) { |
| 2011 | small_memcpy(dst, src, n * sizeof(T)); |
| 2012 | } else if (0 == rowA) { |
| 2013 | small_bzero(dst, n * sizeof(T)); |
| 2014 | } else { |
| 2015 | for (int i = 0; i < n; ++i) { |
| 2016 | dst[i] = mergeOne(src[i], rowA); |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | if (0 == (srcN -= n)) { |
| 2021 | break; |
| 2022 | } |
| 2023 | |
| 2024 | src += n; |
| 2025 | dst += n; |
| 2026 | |
| 2027 | SkASSERT(rowN == n); |
| 2028 | row += 2; |
| 2029 | rowN = row[0]; |
| 2030 | } |
| 2031 | } |
| 2032 | |
| 2033 | static MergeAAProc find_merge_aa_proc(SkMask::Format format) { |
| 2034 | switch (format) { |
| 2035 | case SkMask::kBW_Format: |
| 2036 | SkDEBUGFAIL("unsupported" ); |
| 2037 | return nullptr; |
| 2038 | case SkMask::kA8_Format: |
| 2039 | case SkMask::k3D_Format: |
| 2040 | return mergeT<uint8_t> ; |
| 2041 | case SkMask::kLCD16_Format: |
| 2042 | return mergeT<uint16_t>; |
| 2043 | default: |
| 2044 | SkDEBUGFAIL("unsupported" ); |
| 2045 | return nullptr; |
| 2046 | } |
| 2047 | } |
| 2048 | |
| 2049 | static U8CPU bit2byte(int bitInAByte) { |
| 2050 | SkASSERT(bitInAByte <= 0xFF); |
| 2051 | // negation turns any non-zero into 0xFFFFFF??, so we just shift down |
| 2052 | // some value >= 8 to get a full FF value |
| 2053 | return -bitInAByte >> 8; |
| 2054 | } |
| 2055 | |
| 2056 | static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) { |
| 2057 | SkASSERT(SkMask::kBW_Format == srcMask.fFormat); |
| 2058 | SkASSERT(SkMask::kA8_Format == dstMask->fFormat); |
| 2059 | |
| 2060 | const int width = srcMask.fBounds.width(); |
| 2061 | const int height = srcMask.fBounds.height(); |
| 2062 | |
| 2063 | const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage; |
| 2064 | const size_t srcRB = srcMask.fRowBytes; |
| 2065 | uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage; |
| 2066 | const size_t dstRB = dstMask->fRowBytes; |
| 2067 | |
| 2068 | const int wholeBytes = width >> 3; |
| 2069 | const int leftOverBits = width & 7; |
| 2070 | |
| 2071 | for (int y = 0; y < height; ++y) { |
| 2072 | uint8_t* SK_RESTRICT d = dst; |
| 2073 | for (int i = 0; i < wholeBytes; ++i) { |
| 2074 | int srcByte = src[i]; |
| 2075 | d[0] = bit2byte(srcByte & (1 << 7)); |
| 2076 | d[1] = bit2byte(srcByte & (1 << 6)); |
| 2077 | d[2] = bit2byte(srcByte & (1 << 5)); |
| 2078 | d[3] = bit2byte(srcByte & (1 << 4)); |
| 2079 | d[4] = bit2byte(srcByte & (1 << 3)); |
| 2080 | d[5] = bit2byte(srcByte & (1 << 2)); |
| 2081 | d[6] = bit2byte(srcByte & (1 << 1)); |
| 2082 | d[7] = bit2byte(srcByte & (1 << 0)); |
| 2083 | d += 8; |
| 2084 | } |
| 2085 | if (leftOverBits) { |
| 2086 | int srcByte = src[wholeBytes]; |
| 2087 | for (int x = 0; x < leftOverBits; ++x) { |
| 2088 | *d++ = bit2byte(srcByte & 0x80); |
| 2089 | srcByte <<= 1; |
| 2090 | } |
| 2091 | } |
| 2092 | src += srcRB; |
| 2093 | dst += dstRB; |
| 2094 | } |
| 2095 | } |
| 2096 | |
| 2097 | void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) { |
| 2098 | SkASSERT(fAAClip->getBounds().contains(clip)); |
| 2099 | |
| 2100 | if (fAAClip->quickContains(clip)) { |
| 2101 | fBlitter->blitMask(origMask, clip); |
| 2102 | return; |
| 2103 | } |
| 2104 | |
| 2105 | const SkMask* mask = &origMask; |
| 2106 | |
| 2107 | // if we're BW, we need to upscale to A8 (ugh) |
| 2108 | SkMask grayMask; |
| 2109 | if (SkMask::kBW_Format == origMask.fFormat) { |
| 2110 | grayMask.fFormat = SkMask::kA8_Format; |
| 2111 | grayMask.fBounds = origMask.fBounds; |
| 2112 | grayMask.fRowBytes = origMask.fBounds.width(); |
| 2113 | size_t size = grayMask.computeImageSize(); |
| 2114 | grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size, |
| 2115 | SkAutoMalloc::kReuse_OnShrink); |
| 2116 | |
| 2117 | upscaleBW2A8(&grayMask, origMask); |
| 2118 | mask = &grayMask; |
| 2119 | } |
| 2120 | |
| 2121 | this->ensureRunsAndAA(); |
| 2122 | |
| 2123 | // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D |
| 2124 | // data into a temp block to support it better (ugh) |
| 2125 | |
| 2126 | const void* src = mask->getAddr(clip.fLeft, clip.fTop); |
| 2127 | const size_t srcRB = mask->fRowBytes; |
| 2128 | const int width = clip.width(); |
| 2129 | MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat); |
| 2130 | |
| 2131 | SkMask rowMask; |
| 2132 | rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat; |
| 2133 | rowMask.fBounds.fLeft = clip.fLeft; |
| 2134 | rowMask.fBounds.fRight = clip.fRight; |
| 2135 | rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1 |
| 2136 | rowMask.fImage = (uint8_t*)fScanlineScratch; |
| 2137 | |
| 2138 | int y = clip.fTop; |
| 2139 | const int stopY = y + clip.height(); |
| 2140 | |
| 2141 | do { |
| 2142 | int localStopY SK_INIT_TO_AVOID_WARNING; |
| 2143 | const uint8_t* row = fAAClip->findRow(y, &localStopY); |
| 2144 | // findRow returns last Y, not stop, so we add 1 |
| 2145 | localStopY = std::min(localStopY + 1, stopY); |
| 2146 | |
| 2147 | int initialCount; |
| 2148 | row = fAAClip->findX(row, clip.fLeft, &initialCount); |
| 2149 | do { |
| 2150 | mergeProc(src, width, row, initialCount, rowMask.fImage); |
| 2151 | rowMask.fBounds.fTop = y; |
| 2152 | rowMask.fBounds.fBottom = y + 1; |
| 2153 | fBlitter->blitMask(rowMask, rowMask.fBounds); |
| 2154 | src = (const void*)((const char*)src + srcRB); |
| 2155 | } while (++y < localStopY); |
| 2156 | } while (y < stopY); |
| 2157 | } |
| 2158 | |
| 2159 | const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) { |
| 2160 | return nullptr; |
| 2161 | } |
| 2162 | |