1 | /* |
2 | * Copyright 2011 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkAAClip.h" |
9 | |
10 | #include "include/core/SkPath.h" |
11 | #include "include/private/SkColorData.h" |
12 | #include "include/private/SkMacros.h" |
13 | #include "include/private/SkTo.h" |
14 | #include "src/core/SkBlitter.h" |
15 | #include "src/core/SkRectPriv.h" |
16 | #include "src/core/SkScan.h" |
17 | #include <atomic> |
18 | #include <utility> |
19 | |
20 | class AutoAAClipValidate { |
21 | public: |
22 | AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) { |
23 | fClip.validate(); |
24 | } |
25 | ~AutoAAClipValidate() { |
26 | fClip.validate(); |
27 | } |
28 | private: |
29 | const SkAAClip& fClip; |
30 | }; |
31 | |
32 | #ifdef SK_DEBUG |
33 | #define AUTO_AACLIP_VALIDATE(clip) AutoAAClipValidate acv(clip) |
34 | #else |
35 | #define AUTO_AACLIP_VALIDATE(clip) |
36 | #endif |
37 | |
38 | /////////////////////////////////////////////////////////////////////////////// |
39 | |
40 | #define kMaxInt32 0x7FFFFFFF |
41 | |
42 | #ifdef SK_DEBUG |
43 | static inline bool x_in_rect(int x, const SkIRect& rect) { |
44 | return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); |
45 | } |
46 | #endif |
47 | |
48 | static inline bool y_in_rect(int y, const SkIRect& rect) { |
49 | return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); |
50 | } |
51 | |
52 | /* |
53 | * Data runs are packed [count, alpha] |
54 | */ |
55 | |
56 | struct SkAAClip::YOffset { |
57 | int32_t fY; |
58 | uint32_t fOffset; |
59 | }; |
60 | |
61 | struct SkAAClip::RunHead { |
62 | std::atomic<int32_t> fRefCnt; |
63 | int32_t fRowCount; |
64 | size_t fDataSize; |
65 | |
66 | YOffset* yoffsets() { |
67 | return (YOffset*)((char*)this + sizeof(RunHead)); |
68 | } |
69 | const YOffset* yoffsets() const { |
70 | return (const YOffset*)((const char*)this + sizeof(RunHead)); |
71 | } |
72 | uint8_t* data() { |
73 | return (uint8_t*)(this->yoffsets() + fRowCount); |
74 | } |
75 | const uint8_t* data() const { |
76 | return (const uint8_t*)(this->yoffsets() + fRowCount); |
77 | } |
78 | |
79 | static RunHead* Alloc(int rowCount, size_t dataSize) { |
80 | size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize; |
81 | RunHead* head = (RunHead*)sk_malloc_throw(size); |
82 | head->fRefCnt.store(1); |
83 | head->fRowCount = rowCount; |
84 | head->fDataSize = dataSize; |
85 | return head; |
86 | } |
87 | |
88 | static int ComputeRowSizeForWidth(int width) { |
89 | // 2 bytes per segment, where each segment can store up to 255 for count |
90 | int segments = 0; |
91 | while (width > 0) { |
92 | segments += 1; |
93 | int n = std::min(width, 255); |
94 | width -= n; |
95 | } |
96 | return segments * 2; // each segment is row[0] + row[1] (n + alpha) |
97 | } |
98 | |
99 | static RunHead* AllocRect(const SkIRect& bounds) { |
100 | SkASSERT(!bounds.isEmpty()); |
101 | int width = bounds.width(); |
102 | size_t rowSize = ComputeRowSizeForWidth(width); |
103 | RunHead* head = RunHead::Alloc(1, rowSize); |
104 | YOffset* yoff = head->yoffsets(); |
105 | yoff->fY = bounds.height() - 1; |
106 | yoff->fOffset = 0; |
107 | uint8_t* row = head->data(); |
108 | while (width > 0) { |
109 | int n = std::min(width, 255); |
110 | row[0] = n; |
111 | row[1] = 0xFF; |
112 | width -= n; |
113 | row += 2; |
114 | } |
115 | return head; |
116 | } |
117 | }; |
118 | |
119 | class SkAAClip::Iter { |
120 | public: |
121 | Iter(const SkAAClip&); |
122 | |
123 | bool done() const { return fDone; } |
124 | int top() const { return fTop; } |
125 | int bottom() const { return fBottom; } |
126 | const uint8_t* data() const { return fData; } |
127 | void next(); |
128 | |
129 | private: |
130 | const YOffset* fCurrYOff; |
131 | const YOffset* fStopYOff; |
132 | const uint8_t* fData; |
133 | |
134 | int fTop, fBottom; |
135 | bool fDone; |
136 | }; |
137 | |
138 | SkAAClip::Iter::Iter(const SkAAClip& clip) { |
139 | if (clip.isEmpty()) { |
140 | fDone = true; |
141 | fTop = fBottom = clip.fBounds.fBottom; |
142 | fData = nullptr; |
143 | fCurrYOff = nullptr; |
144 | fStopYOff = nullptr; |
145 | return; |
146 | } |
147 | |
148 | const RunHead* head = clip.fRunHead; |
149 | fCurrYOff = head->yoffsets(); |
150 | fStopYOff = fCurrYOff + head->fRowCount; |
151 | fData = head->data() + fCurrYOff->fOffset; |
152 | |
153 | // setup first value |
154 | fTop = clip.fBounds.fTop; |
155 | fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1; |
156 | fDone = false; |
157 | } |
158 | |
159 | void SkAAClip::Iter::next() { |
160 | if (!fDone) { |
161 | const YOffset* prev = fCurrYOff; |
162 | const YOffset* curr = prev + 1; |
163 | SkASSERT(curr <= fStopYOff); |
164 | |
165 | fTop = fBottom; |
166 | if (curr >= fStopYOff) { |
167 | fDone = true; |
168 | fBottom = kMaxInt32; |
169 | fData = nullptr; |
170 | } else { |
171 | fBottom += curr->fY - prev->fY; |
172 | fData += curr->fOffset - prev->fOffset; |
173 | fCurrYOff = curr; |
174 | } |
175 | } |
176 | } |
177 | |
178 | #ifdef SK_DEBUG |
179 | // assert we're exactly width-wide, and then return the number of bytes used |
180 | static size_t compute_row_length(const uint8_t row[], int width) { |
181 | const uint8_t* origRow = row; |
182 | while (width > 0) { |
183 | int n = row[0]; |
184 | SkASSERT(n > 0); |
185 | SkASSERT(n <= width); |
186 | row += 2; |
187 | width -= n; |
188 | } |
189 | SkASSERT(0 == width); |
190 | return row - origRow; |
191 | } |
192 | |
193 | void SkAAClip::validate() const { |
194 | if (nullptr == fRunHead) { |
195 | SkASSERT(fBounds.isEmpty()); |
196 | return; |
197 | } |
198 | SkASSERT(!fBounds.isEmpty()); |
199 | |
200 | const RunHead* head = fRunHead; |
201 | SkASSERT(head->fRefCnt.load() > 0); |
202 | SkASSERT(head->fRowCount > 0); |
203 | |
204 | const YOffset* yoff = head->yoffsets(); |
205 | const YOffset* ystop = yoff + head->fRowCount; |
206 | const int lastY = fBounds.height() - 1; |
207 | |
208 | // Y and offset must be monotonic |
209 | int prevY = -1; |
210 | int32_t prevOffset = -1; |
211 | while (yoff < ystop) { |
212 | SkASSERT(prevY < yoff->fY); |
213 | SkASSERT(yoff->fY <= lastY); |
214 | prevY = yoff->fY; |
215 | SkASSERT(prevOffset < (int32_t)yoff->fOffset); |
216 | prevOffset = yoff->fOffset; |
217 | const uint8_t* row = head->data() + yoff->fOffset; |
218 | size_t rowLength = compute_row_length(row, fBounds.width()); |
219 | SkASSERT(yoff->fOffset + rowLength <= head->fDataSize); |
220 | yoff += 1; |
221 | } |
222 | // check the last entry; |
223 | --yoff; |
224 | SkASSERT(yoff->fY == lastY); |
225 | } |
226 | |
227 | static void dump_one_row(const uint8_t* SK_RESTRICT row, |
228 | int width, int leading_num) { |
229 | if (leading_num) { |
230 | SkDebugf( "%03d " , leading_num ); |
231 | } |
232 | while (width > 0) { |
233 | int n = row[0]; |
234 | int val = row[1]; |
235 | char out = '.'; |
236 | if (val == 0xff) { |
237 | out = '*'; |
238 | } else if (val > 0) { |
239 | out = '+'; |
240 | } |
241 | for (int i = 0 ; i < n ; i++) { |
242 | SkDebugf( "%c" , out ); |
243 | } |
244 | row += 2; |
245 | width -= n; |
246 | } |
247 | SkDebugf( "\n" ); |
248 | } |
249 | |
250 | void SkAAClip::debug(bool compress_y) const { |
251 | Iter iter(*this); |
252 | const int width = fBounds.width(); |
253 | |
254 | int y = fBounds.fTop; |
255 | while (!iter.done()) { |
256 | if (compress_y) { |
257 | dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1); |
258 | } else { |
259 | do { |
260 | dump_one_row(iter.data(), width, 0); |
261 | } while (++y < iter.bottom()); |
262 | } |
263 | iter.next(); |
264 | } |
265 | } |
266 | #endif |
267 | |
268 | /////////////////////////////////////////////////////////////////////////////// |
269 | |
270 | // Count the number of zeros on the left and right edges of the passed in |
271 | // RLE row. If 'row' is all zeros return 'width' in both variables. |
272 | static void count_left_right_zeros(const uint8_t* row, int width, |
273 | int* leftZ, int* riteZ) { |
274 | int zeros = 0; |
275 | do { |
276 | if (row[1]) { |
277 | break; |
278 | } |
279 | int n = row[0]; |
280 | SkASSERT(n > 0); |
281 | SkASSERT(n <= width); |
282 | zeros += n; |
283 | row += 2; |
284 | width -= n; |
285 | } while (width > 0); |
286 | *leftZ = zeros; |
287 | |
288 | if (0 == width) { |
289 | // this line is completely empty return 'width' in both variables |
290 | *riteZ = *leftZ; |
291 | return; |
292 | } |
293 | |
294 | zeros = 0; |
295 | while (width > 0) { |
296 | int n = row[0]; |
297 | SkASSERT(n > 0); |
298 | if (0 == row[1]) { |
299 | zeros += n; |
300 | } else { |
301 | zeros = 0; |
302 | } |
303 | row += 2; |
304 | width -= n; |
305 | } |
306 | *riteZ = zeros; |
307 | } |
308 | |
309 | // modify row in place, trimming off (zeros) from the left and right sides. |
310 | // return the number of bytes that were completely eliminated from the left |
311 | static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) { |
312 | int trim = 0; |
313 | while (leftZ > 0) { |
314 | SkASSERT(0 == row[1]); |
315 | int n = row[0]; |
316 | SkASSERT(n > 0); |
317 | SkASSERT(n <= width); |
318 | width -= n; |
319 | row += 2; |
320 | if (n > leftZ) { |
321 | row[-2] = n - leftZ; |
322 | break; |
323 | } |
324 | trim += 2; |
325 | leftZ -= n; |
326 | SkASSERT(leftZ >= 0); |
327 | } |
328 | |
329 | if (riteZ) { |
330 | // walk row to the end, and then we'll back up to trim riteZ |
331 | while (width > 0) { |
332 | int n = row[0]; |
333 | SkASSERT(n <= width); |
334 | width -= n; |
335 | row += 2; |
336 | } |
337 | // now skip whole runs of zeros |
338 | do { |
339 | row -= 2; |
340 | SkASSERT(0 == row[1]); |
341 | int n = row[0]; |
342 | SkASSERT(n > 0); |
343 | if (n > riteZ) { |
344 | row[0] = n - riteZ; |
345 | break; |
346 | } |
347 | riteZ -= n; |
348 | SkASSERT(riteZ >= 0); |
349 | } while (riteZ > 0); |
350 | } |
351 | |
352 | return trim; |
353 | } |
354 | |
355 | bool SkAAClip::trimLeftRight() { |
356 | if (this->isEmpty()) { |
357 | return false; |
358 | } |
359 | |
360 | AUTO_AACLIP_VALIDATE(*this); |
361 | |
362 | const int width = fBounds.width(); |
363 | RunHead* head = fRunHead; |
364 | YOffset* yoff = head->yoffsets(); |
365 | YOffset* stop = yoff + head->fRowCount; |
366 | uint8_t* base = head->data(); |
367 | |
368 | // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum |
369 | // number of zeros on the left and right of the clip. This information |
370 | // can be used to shrink the bounding box. |
371 | int leftZeros = width; |
372 | int riteZeros = width; |
373 | while (yoff < stop) { |
374 | int L, R; |
375 | count_left_right_zeros(base + yoff->fOffset, width, &L, &R); |
376 | SkASSERT(L + R < width || (L == width && R == width)); |
377 | if (L < leftZeros) { |
378 | leftZeros = L; |
379 | } |
380 | if (R < riteZeros) { |
381 | riteZeros = R; |
382 | } |
383 | if (0 == (leftZeros | riteZeros)) { |
384 | // no trimming to do |
385 | return true; |
386 | } |
387 | yoff += 1; |
388 | } |
389 | |
390 | SkASSERT(leftZeros || riteZeros); |
391 | if (width == leftZeros) { |
392 | SkASSERT(width == riteZeros); |
393 | return this->setEmpty(); |
394 | } |
395 | |
396 | this->validate(); |
397 | |
398 | fBounds.fLeft += leftZeros; |
399 | fBounds.fRight -= riteZeros; |
400 | SkASSERT(!fBounds.isEmpty()); |
401 | |
402 | // For now we don't realloc the storage (for time), we just shrink in place |
403 | // This means we don't have to do any memmoves either, since we can just |
404 | // play tricks with the yoff->fOffset for each row |
405 | yoff = head->yoffsets(); |
406 | while (yoff < stop) { |
407 | uint8_t* row = base + yoff->fOffset; |
408 | SkDEBUGCODE((void)compute_row_length(row, width);) |
409 | yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros); |
410 | SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);) |
411 | yoff += 1; |
412 | } |
413 | return true; |
414 | } |
415 | |
416 | static bool row_is_all_zeros(const uint8_t* row, int width) { |
417 | SkASSERT(width > 0); |
418 | do { |
419 | if (row[1]) { |
420 | return false; |
421 | } |
422 | int n = row[0]; |
423 | SkASSERT(n <= width); |
424 | width -= n; |
425 | row += 2; |
426 | } while (width > 0); |
427 | SkASSERT(0 == width); |
428 | return true; |
429 | } |
430 | |
431 | bool SkAAClip::trimTopBottom() { |
432 | if (this->isEmpty()) { |
433 | return false; |
434 | } |
435 | |
436 | this->validate(); |
437 | |
438 | const int width = fBounds.width(); |
439 | RunHead* head = fRunHead; |
440 | YOffset* yoff = head->yoffsets(); |
441 | YOffset* stop = yoff + head->fRowCount; |
442 | const uint8_t* base = head->data(); |
443 | |
444 | // Look to trim away empty rows from the top. |
445 | // |
446 | int skip = 0; |
447 | while (yoff < stop) { |
448 | const uint8_t* data = base + yoff->fOffset; |
449 | if (!row_is_all_zeros(data, width)) { |
450 | break; |
451 | } |
452 | skip += 1; |
453 | yoff += 1; |
454 | } |
455 | SkASSERT(skip <= head->fRowCount); |
456 | if (skip == head->fRowCount) { |
457 | return this->setEmpty(); |
458 | } |
459 | if (skip > 0) { |
460 | // adjust fRowCount and fBounds.fTop, and slide all the data up |
461 | // as we remove [skip] number of YOffset entries |
462 | yoff = head->yoffsets(); |
463 | int dy = yoff[skip - 1].fY + 1; |
464 | for (int i = skip; i < head->fRowCount; ++i) { |
465 | SkASSERT(yoff[i].fY >= dy); |
466 | yoff[i].fY -= dy; |
467 | } |
468 | YOffset* dst = head->yoffsets(); |
469 | size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize; |
470 | memmove(dst, dst + skip, size - skip * sizeof(YOffset)); |
471 | |
472 | fBounds.fTop += dy; |
473 | SkASSERT(!fBounds.isEmpty()); |
474 | head->fRowCount -= skip; |
475 | SkASSERT(head->fRowCount > 0); |
476 | |
477 | this->validate(); |
478 | // need to reset this after the memmove |
479 | base = head->data(); |
480 | } |
481 | |
482 | // Look to trim away empty rows from the bottom. |
483 | // We know that we have at least one non-zero row, so we can just walk |
484 | // backwards without checking for running past the start. |
485 | // |
486 | stop = yoff = head->yoffsets() + head->fRowCount; |
487 | do { |
488 | yoff -= 1; |
489 | } while (row_is_all_zeros(base + yoff->fOffset, width)); |
490 | skip = SkToInt(stop - yoff - 1); |
491 | SkASSERT(skip >= 0 && skip < head->fRowCount); |
492 | if (skip > 0) { |
493 | // removing from the bottom is easier than from the top, as we don't |
494 | // have to adjust any of the Y values, we just have to trim the array |
495 | memmove(stop - skip, stop, head->fDataSize); |
496 | |
497 | fBounds.fBottom = fBounds.fTop + yoff->fY + 1; |
498 | SkASSERT(!fBounds.isEmpty()); |
499 | head->fRowCount -= skip; |
500 | SkASSERT(head->fRowCount > 0); |
501 | } |
502 | this->validate(); |
503 | |
504 | return true; |
505 | } |
506 | |
507 | // can't validate before we're done, since trimming is part of the process of |
508 | // making us valid after the Builder. Since we build from top to bottom, its |
509 | // possible our fBounds.fBottom is bigger than our last scanline of data, so |
510 | // we trim fBounds.fBottom back up. |
511 | // |
512 | // TODO: check for duplicates in X and Y to further compress our data |
513 | // |
514 | bool SkAAClip::trimBounds() { |
515 | if (this->isEmpty()) { |
516 | return false; |
517 | } |
518 | |
519 | const RunHead* head = fRunHead; |
520 | const YOffset* yoff = head->yoffsets(); |
521 | |
522 | SkASSERT(head->fRowCount > 0); |
523 | const YOffset& lastY = yoff[head->fRowCount - 1]; |
524 | SkASSERT(lastY.fY + 1 <= fBounds.height()); |
525 | fBounds.fBottom = fBounds.fTop + lastY.fY + 1; |
526 | SkASSERT(lastY.fY + 1 == fBounds.height()); |
527 | SkASSERT(!fBounds.isEmpty()); |
528 | |
529 | return this->trimTopBottom() && this->trimLeftRight(); |
530 | } |
531 | |
532 | /////////////////////////////////////////////////////////////////////////////// |
533 | |
534 | void SkAAClip::freeRuns() { |
535 | if (fRunHead) { |
536 | SkASSERT(fRunHead->fRefCnt.load() >= 1); |
537 | if (1 == fRunHead->fRefCnt--) { |
538 | sk_free(fRunHead); |
539 | } |
540 | } |
541 | } |
542 | |
543 | SkAAClip::SkAAClip() { |
544 | fBounds.setEmpty(); |
545 | fRunHead = nullptr; |
546 | } |
547 | |
548 | SkAAClip::SkAAClip(const SkAAClip& src) { |
549 | SkDEBUGCODE(fBounds.setEmpty();) // need this for validate |
550 | fRunHead = nullptr; |
551 | *this = src; |
552 | } |
553 | |
554 | SkAAClip::~SkAAClip() { |
555 | this->freeRuns(); |
556 | } |
557 | |
558 | SkAAClip& SkAAClip::operator=(const SkAAClip& src) { |
559 | AUTO_AACLIP_VALIDATE(*this); |
560 | src.validate(); |
561 | |
562 | if (this != &src) { |
563 | this->freeRuns(); |
564 | fBounds = src.fBounds; |
565 | fRunHead = src.fRunHead; |
566 | if (fRunHead) { |
567 | fRunHead->fRefCnt++; |
568 | } |
569 | } |
570 | return *this; |
571 | } |
572 | |
573 | bool operator==(const SkAAClip& a, const SkAAClip& b) { |
574 | a.validate(); |
575 | b.validate(); |
576 | |
577 | if (&a == &b) { |
578 | return true; |
579 | } |
580 | if (a.fBounds != b.fBounds) { |
581 | return false; |
582 | } |
583 | |
584 | const SkAAClip::RunHead* ah = a.fRunHead; |
585 | const SkAAClip::RunHead* bh = b.fRunHead; |
586 | |
587 | // this catches empties and rects being equal |
588 | if (ah == bh) { |
589 | return true; |
590 | } |
591 | |
592 | // now we insist that both are complex (but different ptrs) |
593 | if (!a.fRunHead || !b.fRunHead) { |
594 | return false; |
595 | } |
596 | |
597 | return ah->fRowCount == bh->fRowCount && |
598 | ah->fDataSize == bh->fDataSize && |
599 | !memcmp(ah->data(), bh->data(), ah->fDataSize); |
600 | } |
601 | |
602 | void SkAAClip::swap(SkAAClip& other) { |
603 | AUTO_AACLIP_VALIDATE(*this); |
604 | other.validate(); |
605 | |
606 | using std::swap; |
607 | swap(fBounds, other.fBounds); |
608 | swap(fRunHead, other.fRunHead); |
609 | } |
610 | |
611 | bool SkAAClip::set(const SkAAClip& src) { |
612 | *this = src; |
613 | return !this->isEmpty(); |
614 | } |
615 | |
616 | bool SkAAClip::setEmpty() { |
617 | this->freeRuns(); |
618 | fBounds.setEmpty(); |
619 | fRunHead = nullptr; |
620 | return false; |
621 | } |
622 | |
623 | bool SkAAClip::setRect(const SkIRect& bounds) { |
624 | if (bounds.isEmpty()) { |
625 | return this->setEmpty(); |
626 | } |
627 | |
628 | AUTO_AACLIP_VALIDATE(*this); |
629 | |
630 | #if 0 |
631 | SkRect r; |
632 | r.set(bounds); |
633 | SkPath path; |
634 | path.addRect(r); |
635 | return this->setPath(path); |
636 | #else |
637 | this->freeRuns(); |
638 | fBounds = bounds; |
639 | fRunHead = RunHead::AllocRect(bounds); |
640 | SkASSERT(!this->isEmpty()); |
641 | return true; |
642 | #endif |
643 | } |
644 | |
645 | bool SkAAClip::isRect() const { |
646 | if (this->isEmpty()) { |
647 | return false; |
648 | } |
649 | |
650 | const RunHead* head = fRunHead; |
651 | if (head->fRowCount != 1) { |
652 | return false; |
653 | } |
654 | const YOffset* yoff = head->yoffsets(); |
655 | if (yoff->fY != fBounds.fBottom - 1) { |
656 | return false; |
657 | } |
658 | |
659 | const uint8_t* row = head->data() + yoff->fOffset; |
660 | int width = fBounds.width(); |
661 | do { |
662 | if (row[1] != 0xFF) { |
663 | return false; |
664 | } |
665 | int n = row[0]; |
666 | SkASSERT(n <= width); |
667 | width -= n; |
668 | row += 2; |
669 | } while (width > 0); |
670 | return true; |
671 | } |
672 | |
673 | bool SkAAClip::setRect(const SkRect& r, bool doAA) { |
674 | if (r.isEmpty()) { |
675 | return this->setEmpty(); |
676 | } |
677 | |
678 | AUTO_AACLIP_VALIDATE(*this); |
679 | |
680 | // TODO: special case this |
681 | |
682 | SkPath path; |
683 | path.addRect(r); |
684 | return this->setPath(path, nullptr, doAA); |
685 | } |
686 | |
687 | static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) { |
688 | SkASSERT(count >= 0); |
689 | while (count > 0) { |
690 | int n = count; |
691 | if (n > 255) { |
692 | n = 255; |
693 | } |
694 | uint8_t* data = array.append(2); |
695 | data[0] = n; |
696 | data[1] = value; |
697 | count -= n; |
698 | } |
699 | } |
700 | |
701 | bool SkAAClip::setRegion(const SkRegion& rgn) { |
702 | if (rgn.isEmpty()) { |
703 | return this->setEmpty(); |
704 | } |
705 | if (rgn.isRect()) { |
706 | return this->setRect(rgn.getBounds()); |
707 | } |
708 | |
709 | #if 0 |
710 | SkAAClip clip; |
711 | SkRegion::Iterator iter(rgn); |
712 | for (; !iter.done(); iter.next()) { |
713 | clip.op(iter.rect(), SkRegion::kUnion_Op); |
714 | } |
715 | this->swap(clip); |
716 | return !this->isEmpty(); |
717 | #else |
718 | const SkIRect& bounds = rgn.getBounds(); |
719 | const int offsetX = bounds.fLeft; |
720 | const int offsetY = bounds.fTop; |
721 | |
722 | SkTDArray<YOffset> yArray; |
723 | SkTDArray<uint8_t> xArray; |
724 | |
725 | yArray.setReserve(std::min(bounds.height(), 1024)); |
726 | xArray.setReserve(std::min(bounds.width(), 512) * 128); |
727 | |
728 | SkRegion::Iterator iter(rgn); |
729 | int prevRight = 0; |
730 | int prevBot = 0; |
731 | YOffset* currY = nullptr; |
732 | |
733 | for (; !iter.done(); iter.next()) { |
734 | const SkIRect& r = iter.rect(); |
735 | SkASSERT(bounds.contains(r)); |
736 | |
737 | int bot = r.fBottom - offsetY; |
738 | SkASSERT(bot >= prevBot); |
739 | if (bot > prevBot) { |
740 | if (currY) { |
741 | // flush current row |
742 | append_run(xArray, 0, bounds.width() - prevRight); |
743 | } |
744 | // did we introduce an empty-gap from the prev row? |
745 | int top = r.fTop - offsetY; |
746 | if (top > prevBot) { |
747 | currY = yArray.append(); |
748 | currY->fY = top - 1; |
749 | currY->fOffset = xArray.count(); |
750 | append_run(xArray, 0, bounds.width()); |
751 | } |
752 | // create a new record for this Y value |
753 | currY = yArray.append(); |
754 | currY->fY = bot - 1; |
755 | currY->fOffset = xArray.count(); |
756 | prevRight = 0; |
757 | prevBot = bot; |
758 | } |
759 | |
760 | int x = r.fLeft - offsetX; |
761 | append_run(xArray, 0, x - prevRight); |
762 | |
763 | int w = r.fRight - r.fLeft; |
764 | append_run(xArray, 0xFF, w); |
765 | prevRight = x + w; |
766 | SkASSERT(prevRight <= bounds.width()); |
767 | } |
768 | // flush last row |
769 | append_run(xArray, 0, bounds.width() - prevRight); |
770 | |
771 | // now pack everything into a RunHead |
772 | RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes()); |
773 | memcpy(head->yoffsets(), yArray.begin(), yArray.bytes()); |
774 | memcpy(head->data(), xArray.begin(), xArray.bytes()); |
775 | |
776 | this->setEmpty(); |
777 | fBounds = bounds; |
778 | fRunHead = head; |
779 | this->validate(); |
780 | return true; |
781 | #endif |
782 | } |
783 | |
784 | /////////////////////////////////////////////////////////////////////////////// |
785 | |
786 | const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const { |
787 | SkASSERT(fRunHead); |
788 | |
789 | if (!y_in_rect(y, fBounds)) { |
790 | return nullptr; |
791 | } |
792 | y -= fBounds.y(); // our yoffs values are relative to the top |
793 | |
794 | const YOffset* yoff = fRunHead->yoffsets(); |
795 | while (yoff->fY < y) { |
796 | yoff += 1; |
797 | SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount); |
798 | } |
799 | |
800 | if (lastYForRow) { |
801 | *lastYForRow = fBounds.y() + yoff->fY; |
802 | } |
803 | return fRunHead->data() + yoff->fOffset; |
804 | } |
805 | |
806 | const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const { |
807 | SkASSERT(x_in_rect(x, fBounds)); |
808 | x -= fBounds.x(); |
809 | |
810 | // first skip up to X |
811 | for (;;) { |
812 | int n = data[0]; |
813 | if (x < n) { |
814 | if (initialCount) { |
815 | *initialCount = n - x; |
816 | } |
817 | break; |
818 | } |
819 | data += 2; |
820 | x -= n; |
821 | } |
822 | return data; |
823 | } |
824 | |
825 | bool SkAAClip::quickContains(int left, int top, int right, int bottom) const { |
826 | if (this->isEmpty()) { |
827 | return false; |
828 | } |
829 | if (!fBounds.contains(SkIRect{left, top, right, bottom})) { |
830 | return false; |
831 | } |
832 | #if 0 |
833 | if (this->isRect()) { |
834 | return true; |
835 | } |
836 | #endif |
837 | |
838 | int lastY SK_INIT_TO_AVOID_WARNING; |
839 | const uint8_t* row = this->findRow(top, &lastY); |
840 | if (lastY < bottom) { |
841 | return false; |
842 | } |
843 | // now just need to check in X |
844 | int count; |
845 | row = this->findX(row, left, &count); |
846 | #if 0 |
847 | return count >= (right - left) && 0xFF == row[1]; |
848 | #else |
849 | int rectWidth = right - left; |
850 | while (0xFF == row[1]) { |
851 | if (count >= rectWidth) { |
852 | return true; |
853 | } |
854 | rectWidth -= count; |
855 | row += 2; |
856 | count = row[0]; |
857 | } |
858 | return false; |
859 | #endif |
860 | } |
861 | |
862 | /////////////////////////////////////////////////////////////////////////////// |
863 | |
864 | class SkAAClip::Builder { |
865 | SkIRect fBounds; |
866 | struct Row { |
867 | int fY; |
868 | int fWidth; |
869 | SkTDArray<uint8_t>* fData; |
870 | }; |
871 | SkTDArray<Row> fRows; |
872 | Row* fCurrRow; |
873 | int fPrevY; |
874 | int fWidth; |
875 | int fMinY; |
876 | |
877 | public: |
878 | Builder(const SkIRect& bounds) : fBounds(bounds) { |
879 | fPrevY = -1; |
880 | fWidth = bounds.width(); |
881 | fCurrRow = nullptr; |
882 | fMinY = bounds.fTop; |
883 | } |
884 | |
885 | ~Builder() { |
886 | Row* row = fRows.begin(); |
887 | Row* stop = fRows.end(); |
888 | while (row < stop) { |
889 | delete row->fData; |
890 | row += 1; |
891 | } |
892 | } |
893 | |
894 | const SkIRect& getBounds() const { return fBounds; } |
895 | |
896 | void addRun(int x, int y, U8CPU alpha, int count) { |
897 | SkASSERT(count > 0); |
898 | SkASSERT(fBounds.contains(x, y)); |
899 | SkASSERT(fBounds.contains(x + count - 1, y)); |
900 | |
901 | x -= fBounds.left(); |
902 | y -= fBounds.top(); |
903 | |
904 | Row* row = fCurrRow; |
905 | if (y != fPrevY) { |
906 | SkASSERT(y > fPrevY); |
907 | fPrevY = y; |
908 | row = this->flushRow(true); |
909 | row->fY = y; |
910 | row->fWidth = 0; |
911 | SkASSERT(row->fData); |
912 | SkASSERT(0 == row->fData->count()); |
913 | fCurrRow = row; |
914 | } |
915 | |
916 | SkASSERT(row->fWidth <= x); |
917 | SkASSERT(row->fWidth < fBounds.width()); |
918 | |
919 | SkTDArray<uint8_t>& data = *row->fData; |
920 | |
921 | int gap = x - row->fWidth; |
922 | if (gap) { |
923 | AppendRun(data, 0, gap); |
924 | row->fWidth += gap; |
925 | SkASSERT(row->fWidth < fBounds.width()); |
926 | } |
927 | |
928 | AppendRun(data, alpha, count); |
929 | row->fWidth += count; |
930 | SkASSERT(row->fWidth <= fBounds.width()); |
931 | } |
932 | |
933 | void addColumn(int x, int y, U8CPU alpha, int height) { |
934 | SkASSERT(fBounds.contains(x, y + height - 1)); |
935 | |
936 | this->addRun(x, y, alpha, 1); |
937 | this->flushRowH(fCurrRow); |
938 | y -= fBounds.fTop; |
939 | SkASSERT(y == fCurrRow->fY); |
940 | fCurrRow->fY = y + height - 1; |
941 | } |
942 | |
943 | void addRectRun(int x, int y, int width, int height) { |
944 | SkASSERT(fBounds.contains(x + width - 1, y + height - 1)); |
945 | this->addRun(x, y, 0xFF, width); |
946 | |
947 | // we assum the rect must be all we'll see for these scanlines |
948 | // so we ensure our row goes all the way to our right |
949 | this->flushRowH(fCurrRow); |
950 | |
951 | y -= fBounds.fTop; |
952 | SkASSERT(y == fCurrRow->fY); |
953 | fCurrRow->fY = y + height - 1; |
954 | } |
955 | |
956 | void addAntiRectRun(int x, int y, int width, int height, |
957 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
958 | // According to SkBlitter.cpp, no matter whether leftAlpha is 0 or positive, |
959 | // we should always consider [x, x+1] as the left-most column and [x+1, x+1+width] |
960 | // as the rect with full alpha. |
961 | SkASSERT(fBounds.contains(x + width + (rightAlpha > 0 ? 1 : 0), |
962 | y + height - 1)); |
963 | SkASSERT(width >= 0); |
964 | |
965 | // Conceptually we're always adding 3 runs, but we should |
966 | // merge or omit them if possible. |
967 | if (leftAlpha == 0xFF) { |
968 | width++; |
969 | } else if (leftAlpha > 0) { |
970 | this->addRun(x++, y, leftAlpha, 1); |
971 | } else { |
972 | // leftAlpha is 0, ignore the left column |
973 | x++; |
974 | } |
975 | if (rightAlpha == 0xFF) { |
976 | width++; |
977 | } |
978 | if (width > 0) { |
979 | this->addRun(x, y, 0xFF, width); |
980 | } |
981 | if (rightAlpha > 0 && rightAlpha < 255) { |
982 | this->addRun(x + width, y, rightAlpha, 1); |
983 | } |
984 | |
985 | // if we never called addRun, we might not have a fCurrRow yet |
986 | if (fCurrRow) { |
987 | // we assume the rect must be all we'll see for these scanlines |
988 | // so we ensure our row goes all the way to our right |
989 | this->flushRowH(fCurrRow); |
990 | |
991 | y -= fBounds.fTop; |
992 | SkASSERT(y == fCurrRow->fY); |
993 | fCurrRow->fY = y + height - 1; |
994 | } |
995 | } |
996 | |
997 | bool finish(SkAAClip* target) { |
998 | this->flushRow(false); |
999 | |
1000 | const Row* row = fRows.begin(); |
1001 | const Row* stop = fRows.end(); |
1002 | |
1003 | size_t dataSize = 0; |
1004 | while (row < stop) { |
1005 | dataSize += row->fData->count(); |
1006 | row += 1; |
1007 | } |
1008 | |
1009 | if (0 == dataSize) { |
1010 | return target->setEmpty(); |
1011 | } |
1012 | |
1013 | SkASSERT(fMinY >= fBounds.fTop); |
1014 | SkASSERT(fMinY < fBounds.fBottom); |
1015 | int adjustY = fMinY - fBounds.fTop; |
1016 | fBounds.fTop = fMinY; |
1017 | |
1018 | RunHead* head = RunHead::Alloc(fRows.count(), dataSize); |
1019 | YOffset* yoffset = head->yoffsets(); |
1020 | uint8_t* data = head->data(); |
1021 | uint8_t* baseData = data; |
1022 | |
1023 | row = fRows.begin(); |
1024 | SkDEBUGCODE(int prevY = row->fY - 1;) |
1025 | while (row < stop) { |
1026 | SkASSERT(prevY < row->fY); // must be monotonic |
1027 | SkDEBUGCODE(prevY = row->fY); |
1028 | |
1029 | yoffset->fY = row->fY - adjustY; |
1030 | yoffset->fOffset = SkToU32(data - baseData); |
1031 | yoffset += 1; |
1032 | |
1033 | size_t n = row->fData->count(); |
1034 | memcpy(data, row->fData->begin(), n); |
1035 | #ifdef SK_DEBUG |
1036 | size_t bytesNeeded = compute_row_length(data, fBounds.width()); |
1037 | SkASSERT(bytesNeeded == n); |
1038 | #endif |
1039 | data += n; |
1040 | |
1041 | row += 1; |
1042 | } |
1043 | |
1044 | target->freeRuns(); |
1045 | target->fBounds = fBounds; |
1046 | target->fRunHead = head; |
1047 | return target->trimBounds(); |
1048 | } |
1049 | |
1050 | void dump() { |
1051 | this->validate(); |
1052 | int y; |
1053 | for (y = 0; y < fRows.count(); ++y) { |
1054 | const Row& row = fRows[y]; |
1055 | SkDebugf("Y:%3d W:%3d" , row.fY, row.fWidth); |
1056 | const SkTDArray<uint8_t>& data = *row.fData; |
1057 | int count = data.count(); |
1058 | SkASSERT(!(count & 1)); |
1059 | const uint8_t* ptr = data.begin(); |
1060 | for (int x = 0; x < count; x += 2) { |
1061 | SkDebugf(" [%3d:%02X]" , ptr[0], ptr[1]); |
1062 | ptr += 2; |
1063 | } |
1064 | SkDebugf("\n" ); |
1065 | } |
1066 | } |
1067 | |
1068 | void validate() { |
1069 | #ifdef SK_DEBUG |
1070 | int prevY = -1; |
1071 | for (int i = 0; i < fRows.count(); ++i) { |
1072 | const Row& row = fRows[i]; |
1073 | SkASSERT(prevY < row.fY); |
1074 | SkASSERT(fWidth == row.fWidth); |
1075 | int count = row.fData->count(); |
1076 | const uint8_t* ptr = row.fData->begin(); |
1077 | SkASSERT(!(count & 1)); |
1078 | int w = 0; |
1079 | for (int x = 0; x < count; x += 2) { |
1080 | int n = ptr[0]; |
1081 | SkASSERT(n > 0); |
1082 | w += n; |
1083 | SkASSERT(w <= fWidth); |
1084 | ptr += 2; |
1085 | } |
1086 | SkASSERT(w == fWidth); |
1087 | prevY = row.fY; |
1088 | } |
1089 | #endif |
1090 | } |
1091 | |
1092 | // only called by BuilderBlitter |
1093 | void setMinY(int y) { |
1094 | fMinY = y; |
1095 | } |
1096 | |
1097 | private: |
1098 | void flushRowH(Row* row) { |
1099 | // flush current row if needed |
1100 | if (row->fWidth < fWidth) { |
1101 | AppendRun(*row->fData, 0, fWidth - row->fWidth); |
1102 | row->fWidth = fWidth; |
1103 | } |
1104 | } |
1105 | |
1106 | Row* flushRow(bool readyForAnother) { |
1107 | Row* next = nullptr; |
1108 | int count = fRows.count(); |
1109 | if (count > 0) { |
1110 | this->flushRowH(&fRows[count - 1]); |
1111 | } |
1112 | if (count > 1) { |
1113 | // are our last two runs the same? |
1114 | Row* prev = &fRows[count - 2]; |
1115 | Row* curr = &fRows[count - 1]; |
1116 | SkASSERT(prev->fWidth == fWidth); |
1117 | SkASSERT(curr->fWidth == fWidth); |
1118 | if (*prev->fData == *curr->fData) { |
1119 | prev->fY = curr->fY; |
1120 | if (readyForAnother) { |
1121 | curr->fData->rewind(); |
1122 | next = curr; |
1123 | } else { |
1124 | delete curr->fData; |
1125 | fRows.removeShuffle(count - 1); |
1126 | } |
1127 | } else { |
1128 | if (readyForAnother) { |
1129 | next = fRows.append(); |
1130 | next->fData = new SkTDArray<uint8_t>; |
1131 | } |
1132 | } |
1133 | } else { |
1134 | if (readyForAnother) { |
1135 | next = fRows.append(); |
1136 | next->fData = new SkTDArray<uint8_t>; |
1137 | } |
1138 | } |
1139 | return next; |
1140 | } |
1141 | |
1142 | static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) { |
1143 | do { |
1144 | int n = count; |
1145 | if (n > 255) { |
1146 | n = 255; |
1147 | } |
1148 | uint8_t* ptr = data.append(2); |
1149 | ptr[0] = n; |
1150 | ptr[1] = alpha; |
1151 | count -= n; |
1152 | } while (count > 0); |
1153 | } |
1154 | }; |
1155 | |
1156 | class SkAAClip::BuilderBlitter : public SkBlitter { |
1157 | int fLastY; |
1158 | |
1159 | /* |
1160 | If we see a gap of 1 or more empty scanlines while building in Y-order, |
1161 | we inject an explicit empty scanline (alpha==0) |
1162 | |
1163 | See AAClipTest.cpp : test_path_with_hole() |
1164 | */ |
1165 | void checkForYGap(int y) { |
1166 | SkASSERT(y >= fLastY); |
1167 | if (fLastY > -SK_MaxS32) { |
1168 | int gap = y - fLastY; |
1169 | if (gap > 1) { |
1170 | fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft); |
1171 | } |
1172 | } |
1173 | fLastY = y; |
1174 | } |
1175 | |
1176 | public: |
1177 | |
1178 | BuilderBlitter(Builder* builder) { |
1179 | fBuilder = builder; |
1180 | fLeft = builder->getBounds().fLeft; |
1181 | fRight = builder->getBounds().fRight; |
1182 | fMinY = SK_MaxS32; |
1183 | fLastY = -SK_MaxS32; // sentinel |
1184 | } |
1185 | |
1186 | void finish() { |
1187 | if (fMinY < SK_MaxS32) { |
1188 | fBuilder->setMinY(fMinY); |
1189 | } |
1190 | } |
1191 | |
1192 | /** |
1193 | Must evaluate clips in scan-line order, so don't want to allow blitV(), |
1194 | but an AAClip can be clipped down to a single pixel wide, so we |
1195 | must support it (given AntiRect semantics: minimum width is 2). |
1196 | Instead we'll rely on the runtime asserts to guarantee Y monotonicity; |
1197 | any failure cases that misses may have minor artifacts. |
1198 | */ |
1199 | void blitV(int x, int y, int height, SkAlpha alpha) override { |
1200 | if (height == 1) { |
1201 | // We're still in scan-line order if height is 1 |
1202 | // This is useful for Analytic AA |
1203 | const SkAlpha alphas[2] = {alpha, 0}; |
1204 | const int16_t runs[2] = {1, 0}; |
1205 | this->blitAntiH(x, y, alphas, runs); |
1206 | } else { |
1207 | this->recordMinY(y); |
1208 | fBuilder->addColumn(x, y, alpha, height); |
1209 | fLastY = y + height - 1; |
1210 | } |
1211 | } |
1212 | |
1213 | void blitRect(int x, int y, int width, int height) override { |
1214 | this->recordMinY(y); |
1215 | this->checkForYGap(y); |
1216 | fBuilder->addRectRun(x, y, width, height); |
1217 | fLastY = y + height - 1; |
1218 | } |
1219 | |
1220 | virtual void blitAntiRect(int x, int y, int width, int height, |
1221 | SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
1222 | this->recordMinY(y); |
1223 | this->checkForYGap(y); |
1224 | fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha); |
1225 | fLastY = y + height - 1; |
1226 | } |
1227 | |
1228 | void blitMask(const SkMask&, const SkIRect& clip) override |
1229 | { unexpected(); } |
1230 | |
1231 | const SkPixmap* justAnOpaqueColor(uint32_t*) override { |
1232 | return nullptr; |
1233 | } |
1234 | |
1235 | void blitH(int x, int y, int width) override { |
1236 | this->recordMinY(y); |
1237 | this->checkForYGap(y); |
1238 | fBuilder->addRun(x, y, 0xFF, width); |
1239 | } |
1240 | |
1241 | virtual void blitAntiH(int x, int y, const SkAlpha alpha[], |
1242 | const int16_t runs[]) override { |
1243 | this->recordMinY(y); |
1244 | this->checkForYGap(y); |
1245 | for (;;) { |
1246 | int count = *runs; |
1247 | if (count <= 0) { |
1248 | return; |
1249 | } |
1250 | |
1251 | // The supersampler's buffer can be the width of the device, so |
1252 | // we may have to trim the run to our bounds. Previously, we assert that |
1253 | // the extra spans are always alpha==0. |
1254 | // However, the analytic AA is too sensitive to precision errors |
1255 | // so it may have extra spans with very tiny alpha because after several |
1256 | // arithmatic operations, the edge may bleed the path boundary a little bit. |
1257 | // Therefore, instead of always asserting alpha==0, we assert alpha < 0x10. |
1258 | int localX = x; |
1259 | int localCount = count; |
1260 | if (x < fLeft) { |
1261 | SkASSERT(0x10 > *alpha); |
1262 | int gap = fLeft - x; |
1263 | SkASSERT(gap <= count); |
1264 | localX += gap; |
1265 | localCount -= gap; |
1266 | } |
1267 | int right = x + count; |
1268 | if (right > fRight) { |
1269 | SkASSERT(0x10 > *alpha); |
1270 | localCount -= right - fRight; |
1271 | SkASSERT(localCount >= 0); |
1272 | } |
1273 | |
1274 | if (localCount) { |
1275 | fBuilder->addRun(localX, y, *alpha, localCount); |
1276 | } |
1277 | // Next run |
1278 | runs += count; |
1279 | alpha += count; |
1280 | x += count; |
1281 | } |
1282 | } |
1283 | |
1284 | private: |
1285 | Builder* fBuilder; |
1286 | int fLeft; // cache of builder's bounds' left edge |
1287 | int fRight; |
1288 | int fMinY; |
1289 | |
1290 | /* |
1291 | * We track this, in case the scan converter skipped some number of |
1292 | * scanlines at the (relative to the bounds it was given). This allows |
1293 | * the builder, during its finish, to trip its bounds down to the "real" |
1294 | * top. |
1295 | */ |
1296 | void recordMinY(int y) { |
1297 | if (y < fMinY) { |
1298 | fMinY = y; |
1299 | } |
1300 | } |
1301 | |
1302 | void unexpected() { |
1303 | SK_ABORT("---- did not expect to get called here" ); |
1304 | } |
1305 | }; |
1306 | |
1307 | bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) { |
1308 | AUTO_AACLIP_VALIDATE(*this); |
1309 | |
1310 | if (clip && clip->isEmpty()) { |
1311 | return this->setEmpty(); |
1312 | } |
1313 | |
1314 | SkIRect ibounds; |
1315 | path.getBounds().roundOut(&ibounds); |
1316 | |
1317 | SkRegion tmpClip; |
1318 | if (nullptr == clip) { |
1319 | tmpClip.setRect(ibounds); |
1320 | clip = &tmpClip; |
1321 | } |
1322 | |
1323 | // Since we assert that the BuilderBlitter will never blit outside the intersection |
1324 | // of clip and ibounds, we create this snugClip to be that intersection and send it |
1325 | // to the scan-converter. |
1326 | SkRegion snugClip(*clip); |
1327 | |
1328 | if (path.isInverseFillType()) { |
1329 | ibounds = clip->getBounds(); |
1330 | } else { |
1331 | if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) { |
1332 | return this->setEmpty(); |
1333 | } |
1334 | snugClip.op(ibounds, SkRegion::kIntersect_Op); |
1335 | } |
1336 | |
1337 | Builder builder(ibounds); |
1338 | BuilderBlitter blitter(&builder); |
1339 | |
1340 | if (doAA) { |
1341 | SkScan::AntiFillPath(path, snugClip, &blitter, true); |
1342 | } else { |
1343 | SkScan::FillPath(path, snugClip, &blitter); |
1344 | } |
1345 | |
1346 | blitter.finish(); |
1347 | return builder.finish(this); |
1348 | } |
1349 | |
1350 | /////////////////////////////////////////////////////////////////////////////// |
1351 | |
1352 | typedef void (*RowProc)(SkAAClip::Builder&, int bottom, |
1353 | const uint8_t* rowA, const SkIRect& rectA, |
1354 | const uint8_t* rowB, const SkIRect& rectB); |
1355 | |
1356 | typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB); |
1357 | |
1358 | static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
1359 | // Multiply |
1360 | return SkMulDiv255Round(alphaA, alphaB); |
1361 | } |
1362 | |
1363 | static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
1364 | // SrcOver |
1365 | return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB); |
1366 | } |
1367 | |
1368 | static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
1369 | // SrcOut |
1370 | return SkMulDiv255Round(alphaA, 0xFF - alphaB); |
1371 | } |
1372 | |
1373 | static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) { |
1374 | // XOR |
1375 | return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB); |
1376 | } |
1377 | |
1378 | static AlphaProc find_alpha_proc(SkRegion::Op op) { |
1379 | switch (op) { |
1380 | case SkRegion::kIntersect_Op: |
1381 | return sectAlphaProc; |
1382 | case SkRegion::kDifference_Op: |
1383 | return diffAlphaProc; |
1384 | case SkRegion::kUnion_Op: |
1385 | return unionAlphaProc; |
1386 | case SkRegion::kXOR_Op: |
1387 | return xorAlphaProc; |
1388 | default: |
1389 | SkDEBUGFAIL("unexpected region op" ); |
1390 | return sectAlphaProc; |
1391 | } |
1392 | } |
1393 | |
1394 | class RowIter { |
1395 | public: |
1396 | RowIter(const uint8_t* row, const SkIRect& bounds) { |
1397 | fRow = row; |
1398 | fLeft = bounds.fLeft; |
1399 | fBoundsRight = bounds.fRight; |
1400 | if (row) { |
1401 | fRight = bounds.fLeft + row[0]; |
1402 | SkASSERT(fRight <= fBoundsRight); |
1403 | fAlpha = row[1]; |
1404 | fDone = false; |
1405 | } else { |
1406 | fDone = true; |
1407 | fRight = kMaxInt32; |
1408 | fAlpha = 0; |
1409 | } |
1410 | } |
1411 | |
1412 | bool done() const { return fDone; } |
1413 | int left() const { return fLeft; } |
1414 | int right() const { return fRight; } |
1415 | U8CPU alpha() const { return fAlpha; } |
1416 | void next() { |
1417 | if (!fDone) { |
1418 | fLeft = fRight; |
1419 | if (fRight == fBoundsRight) { |
1420 | fDone = true; |
1421 | fRight = kMaxInt32; |
1422 | fAlpha = 0; |
1423 | } else { |
1424 | fRow += 2; |
1425 | fRight += fRow[0]; |
1426 | fAlpha = fRow[1]; |
1427 | SkASSERT(fRight <= fBoundsRight); |
1428 | } |
1429 | } |
1430 | } |
1431 | |
1432 | private: |
1433 | const uint8_t* fRow; |
1434 | int fLeft; |
1435 | int fRight; |
1436 | int fBoundsRight; |
1437 | bool fDone; |
1438 | uint8_t fAlpha; |
1439 | }; |
1440 | |
1441 | static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) { |
1442 | if (rite == riteA) { |
1443 | iter.next(); |
1444 | leftA = iter.left(); |
1445 | riteA = iter.right(); |
1446 | } |
1447 | } |
1448 | |
1449 | #if 0 // UNUSED |
1450 | static bool intersect(int& min, int& max, int boundsMin, int boundsMax) { |
1451 | SkASSERT(min < max); |
1452 | SkASSERT(boundsMin < boundsMax); |
1453 | if (min >= boundsMax || max <= boundsMin) { |
1454 | return false; |
1455 | } |
1456 | if (min < boundsMin) { |
1457 | min = boundsMin; |
1458 | } |
1459 | if (max > boundsMax) { |
1460 | max = boundsMax; |
1461 | } |
1462 | return true; |
1463 | } |
1464 | #endif |
1465 | |
1466 | static void operatorX(SkAAClip::Builder& builder, int lastY, |
1467 | RowIter& iterA, RowIter& iterB, |
1468 | AlphaProc proc, const SkIRect& bounds) { |
1469 | int leftA = iterA.left(); |
1470 | int riteA = iterA.right(); |
1471 | int leftB = iterB.left(); |
1472 | int riteB = iterB.right(); |
1473 | |
1474 | int prevRite = bounds.fLeft; |
1475 | |
1476 | do { |
1477 | U8CPU alphaA = 0; |
1478 | U8CPU alphaB = 0; |
1479 | int left, rite; |
1480 | |
1481 | if (leftA < leftB) { |
1482 | left = leftA; |
1483 | alphaA = iterA.alpha(); |
1484 | if (riteA <= leftB) { |
1485 | rite = riteA; |
1486 | } else { |
1487 | rite = leftA = leftB; |
1488 | } |
1489 | } else if (leftB < leftA) { |
1490 | left = leftB; |
1491 | alphaB = iterB.alpha(); |
1492 | if (riteB <= leftA) { |
1493 | rite = riteB; |
1494 | } else { |
1495 | rite = leftB = leftA; |
1496 | } |
1497 | } else { |
1498 | left = leftA; // or leftB, since leftA == leftB |
1499 | rite = leftA = leftB = std::min(riteA, riteB); |
1500 | alphaA = iterA.alpha(); |
1501 | alphaB = iterB.alpha(); |
1502 | } |
1503 | |
1504 | if (left >= bounds.fRight) { |
1505 | break; |
1506 | } |
1507 | if (rite > bounds.fRight) { |
1508 | rite = bounds.fRight; |
1509 | } |
1510 | |
1511 | if (left >= bounds.fLeft) { |
1512 | SkASSERT(rite > left); |
1513 | builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left); |
1514 | prevRite = rite; |
1515 | } |
1516 | |
1517 | adjust_row(iterA, leftA, riteA, rite); |
1518 | adjust_row(iterB, leftB, riteB, rite); |
1519 | } while (!iterA.done() || !iterB.done()); |
1520 | |
1521 | if (prevRite < bounds.fRight) { |
1522 | builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite); |
1523 | } |
1524 | } |
1525 | |
1526 | static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) { |
1527 | if (bot == botA) { |
1528 | iter.next(); |
1529 | topA = botA; |
1530 | SkASSERT(botA == iter.top()); |
1531 | botA = iter.bottom(); |
1532 | } |
1533 | } |
1534 | |
1535 | static void operateY(SkAAClip::Builder& builder, const SkAAClip& A, |
1536 | const SkAAClip& B, SkRegion::Op op) { |
1537 | AlphaProc proc = find_alpha_proc(op); |
1538 | const SkIRect& bounds = builder.getBounds(); |
1539 | |
1540 | SkAAClip::Iter iterA(A); |
1541 | SkAAClip::Iter iterB(B); |
1542 | |
1543 | SkASSERT(!iterA.done()); |
1544 | int topA = iterA.top(); |
1545 | int botA = iterA.bottom(); |
1546 | SkASSERT(!iterB.done()); |
1547 | int topB = iterB.top(); |
1548 | int botB = iterB.bottom(); |
1549 | |
1550 | do { |
1551 | const uint8_t* rowA = nullptr; |
1552 | const uint8_t* rowB = nullptr; |
1553 | int top, bot; |
1554 | |
1555 | if (topA < topB) { |
1556 | top = topA; |
1557 | rowA = iterA.data(); |
1558 | if (botA <= topB) { |
1559 | bot = botA; |
1560 | } else { |
1561 | bot = topA = topB; |
1562 | } |
1563 | |
1564 | } else if (topB < topA) { |
1565 | top = topB; |
1566 | rowB = iterB.data(); |
1567 | if (botB <= topA) { |
1568 | bot = botB; |
1569 | } else { |
1570 | bot = topB = topA; |
1571 | } |
1572 | } else { |
1573 | top = topA; // or topB, since topA == topB |
1574 | bot = topA = topB = std::min(botA, botB); |
1575 | rowA = iterA.data(); |
1576 | rowB = iterB.data(); |
1577 | } |
1578 | |
1579 | if (top >= bounds.fBottom) { |
1580 | break; |
1581 | } |
1582 | |
1583 | if (bot > bounds.fBottom) { |
1584 | bot = bounds.fBottom; |
1585 | } |
1586 | SkASSERT(top < bot); |
1587 | |
1588 | if (!rowA && !rowB) { |
1589 | builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width()); |
1590 | } else if (top >= bounds.fTop) { |
1591 | SkASSERT(bot <= bounds.fBottom); |
1592 | RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds); |
1593 | RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds); |
1594 | operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds); |
1595 | } |
1596 | |
1597 | adjust_iter(iterA, topA, botA, bot); |
1598 | adjust_iter(iterB, topB, botB, bot); |
1599 | } while (!iterA.done() || !iterB.done()); |
1600 | } |
1601 | |
1602 | bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig, |
1603 | SkRegion::Op op) { |
1604 | AUTO_AACLIP_VALIDATE(*this); |
1605 | |
1606 | if (SkRegion::kReplace_Op == op) { |
1607 | return this->set(clipBOrig); |
1608 | } |
1609 | |
1610 | const SkAAClip* clipA = &clipAOrig; |
1611 | const SkAAClip* clipB = &clipBOrig; |
1612 | |
1613 | if (SkRegion::kReverseDifference_Op == op) { |
1614 | using std::swap; |
1615 | swap(clipA, clipB); |
1616 | op = SkRegion::kDifference_Op; |
1617 | } |
1618 | |
1619 | bool a_empty = clipA->isEmpty(); |
1620 | bool b_empty = clipB->isEmpty(); |
1621 | |
1622 | SkIRect bounds; |
1623 | switch (op) { |
1624 | case SkRegion::kDifference_Op: |
1625 | if (a_empty) { |
1626 | return this->setEmpty(); |
1627 | } |
1628 | if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) { |
1629 | return this->set(*clipA); |
1630 | } |
1631 | bounds = clipA->fBounds; |
1632 | break; |
1633 | |
1634 | case SkRegion::kIntersect_Op: |
1635 | if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds, |
1636 | clipB->fBounds)) { |
1637 | return this->setEmpty(); |
1638 | } |
1639 | break; |
1640 | |
1641 | case SkRegion::kUnion_Op: |
1642 | case SkRegion::kXOR_Op: |
1643 | if (a_empty) { |
1644 | return this->set(*clipB); |
1645 | } |
1646 | if (b_empty) { |
1647 | return this->set(*clipA); |
1648 | } |
1649 | bounds = clipA->fBounds; |
1650 | bounds.join(clipB->fBounds); |
1651 | break; |
1652 | |
1653 | default: |
1654 | SkDEBUGFAIL("unknown region op" ); |
1655 | return !this->isEmpty(); |
1656 | } |
1657 | |
1658 | SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds)); |
1659 | SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds)); |
1660 | |
1661 | Builder builder(bounds); |
1662 | operateY(builder, *clipA, *clipB, op); |
1663 | |
1664 | return builder.finish(this); |
1665 | } |
1666 | |
1667 | /* |
1668 | * It can be expensive to build a local aaclip before applying the op, so |
1669 | * we first see if we can restrict the bounds of new rect to our current |
1670 | * bounds, or note that the new rect subsumes our current clip. |
1671 | */ |
1672 | |
1673 | bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) { |
1674 | SkIRect rStorage; |
1675 | const SkIRect* r = &rOrig; |
1676 | |
1677 | switch (op) { |
1678 | case SkRegion::kIntersect_Op: |
1679 | if (!rStorage.intersect(rOrig, fBounds)) { |
1680 | // no overlap, so we're empty |
1681 | return this->setEmpty(); |
1682 | } |
1683 | if (rStorage == fBounds) { |
1684 | // we were wholly inside the rect, no change |
1685 | return !this->isEmpty(); |
1686 | } |
1687 | if (this->quickContains(rStorage)) { |
1688 | // the intersection is wholly inside us, we're a rect |
1689 | return this->setRect(rStorage); |
1690 | } |
1691 | r = &rStorage; // use the intersected bounds |
1692 | break; |
1693 | case SkRegion::kDifference_Op: |
1694 | break; |
1695 | case SkRegion::kUnion_Op: |
1696 | if (rOrig.contains(fBounds)) { |
1697 | return this->setRect(rOrig); |
1698 | } |
1699 | break; |
1700 | default: |
1701 | break; |
1702 | } |
1703 | |
1704 | SkAAClip clip; |
1705 | clip.setRect(*r); |
1706 | return this->op(*this, clip, op); |
1707 | } |
1708 | |
1709 | bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) { |
1710 | SkRect rStorage, boundsStorage; |
1711 | const SkRect* r = &rOrig; |
1712 | |
1713 | boundsStorage.set(fBounds); |
1714 | switch (op) { |
1715 | case SkRegion::kIntersect_Op: |
1716 | case SkRegion::kDifference_Op: |
1717 | if (!rStorage.intersect(rOrig, boundsStorage)) { |
1718 | if (SkRegion::kIntersect_Op == op) { |
1719 | return this->setEmpty(); |
1720 | } else { // kDifference |
1721 | return !this->isEmpty(); |
1722 | } |
1723 | } |
1724 | r = &rStorage; // use the intersected bounds |
1725 | break; |
1726 | case SkRegion::kUnion_Op: |
1727 | if (rOrig.contains(boundsStorage)) { |
1728 | return this->setRect(rOrig); |
1729 | } |
1730 | break; |
1731 | default: |
1732 | break; |
1733 | } |
1734 | |
1735 | SkAAClip clip; |
1736 | clip.setRect(*r, doAA); |
1737 | return this->op(*this, clip, op); |
1738 | } |
1739 | |
1740 | bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) { |
1741 | return this->op(*this, clip, op); |
1742 | } |
1743 | |
1744 | /////////////////////////////////////////////////////////////////////////////// |
1745 | |
1746 | bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const { |
1747 | if (nullptr == dst) { |
1748 | return !this->isEmpty(); |
1749 | } |
1750 | |
1751 | if (this->isEmpty()) { |
1752 | return dst->setEmpty(); |
1753 | } |
1754 | |
1755 | if (this != dst) { |
1756 | fRunHead->fRefCnt++; |
1757 | dst->freeRuns(); |
1758 | dst->fRunHead = fRunHead; |
1759 | dst->fBounds = fBounds; |
1760 | } |
1761 | dst->fBounds.offset(dx, dy); |
1762 | return true; |
1763 | } |
1764 | |
1765 | static void expand_row_to_mask(uint8_t* SK_RESTRICT mask, |
1766 | const uint8_t* SK_RESTRICT row, |
1767 | int width) { |
1768 | while (width > 0) { |
1769 | int n = row[0]; |
1770 | SkASSERT(width >= n); |
1771 | memset(mask, row[1], n); |
1772 | mask += n; |
1773 | row += 2; |
1774 | width -= n; |
1775 | } |
1776 | SkASSERT(0 == width); |
1777 | } |
1778 | |
1779 | void SkAAClip::copyToMask(SkMask* mask) const { |
1780 | mask->fFormat = SkMask::kA8_Format; |
1781 | if (this->isEmpty()) { |
1782 | mask->fBounds.setEmpty(); |
1783 | mask->fImage = nullptr; |
1784 | mask->fRowBytes = 0; |
1785 | return; |
1786 | } |
1787 | |
1788 | mask->fBounds = fBounds; |
1789 | mask->fRowBytes = fBounds.width(); |
1790 | size_t size = mask->computeImageSize(); |
1791 | mask->fImage = SkMask::AllocImage(size); |
1792 | |
1793 | Iter iter(*this); |
1794 | uint8_t* dst = mask->fImage; |
1795 | const int width = fBounds.width(); |
1796 | |
1797 | int y = fBounds.fTop; |
1798 | while (!iter.done()) { |
1799 | do { |
1800 | expand_row_to_mask(dst, iter.data(), width); |
1801 | dst += mask->fRowBytes; |
1802 | } while (++y < iter.bottom()); |
1803 | iter.next(); |
1804 | } |
1805 | } |
1806 | |
1807 | /////////////////////////////////////////////////////////////////////////////// |
1808 | /////////////////////////////////////////////////////////////////////////////// |
1809 | |
1810 | static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width, |
1811 | int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) { |
1812 | // we don't read our initial n from data, since the caller may have had to |
1813 | // clip it, hence the initialCount parameter. |
1814 | int n = initialCount; |
1815 | for (;;) { |
1816 | if (n > width) { |
1817 | n = width; |
1818 | } |
1819 | SkASSERT(n > 0); |
1820 | runs[0] = n; |
1821 | runs += n; |
1822 | |
1823 | aa[0] = data[1]; |
1824 | aa += n; |
1825 | |
1826 | data += 2; |
1827 | width -= n; |
1828 | if (0 == width) { |
1829 | break; |
1830 | } |
1831 | // load the next count |
1832 | n = data[0]; |
1833 | } |
1834 | runs[0] = 0; // sentinel |
1835 | } |
1836 | |
1837 | SkAAClipBlitter::~SkAAClipBlitter() { |
1838 | sk_free(fScanlineScratch); |
1839 | } |
1840 | |
1841 | void SkAAClipBlitter::ensureRunsAndAA() { |
1842 | if (nullptr == fScanlineScratch) { |
1843 | // add 1 so we can store the terminating run count of 0 |
1844 | int count = fAAClipBounds.width() + 1; |
1845 | // we use this either for fRuns + fAA, or a scaline of a mask |
1846 | // which may be as deep as 32bits |
1847 | fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor)); |
1848 | fRuns = (int16_t*)fScanlineScratch; |
1849 | fAA = (SkAlpha*)(fRuns + count); |
1850 | } |
1851 | } |
1852 | |
1853 | void SkAAClipBlitter::blitH(int x, int y, int width) { |
1854 | SkASSERT(width > 0); |
1855 | SkASSERT(fAAClipBounds.contains(x, y)); |
1856 | SkASSERT(fAAClipBounds.contains(x + width - 1, y)); |
1857 | |
1858 | const uint8_t* row = fAAClip->findRow(y); |
1859 | int initialCount; |
1860 | row = fAAClip->findX(row, x, &initialCount); |
1861 | |
1862 | if (initialCount >= width) { |
1863 | SkAlpha alpha = row[1]; |
1864 | if (0 == alpha) { |
1865 | return; |
1866 | } |
1867 | if (0xFF == alpha) { |
1868 | fBlitter->blitH(x, y, width); |
1869 | return; |
1870 | } |
1871 | } |
1872 | |
1873 | this->ensureRunsAndAA(); |
1874 | expandToRuns(row, initialCount, width, fRuns, fAA); |
1875 | |
1876 | fBlitter->blitAntiH(x, y, fAA, fRuns); |
1877 | } |
1878 | |
1879 | static void merge(const uint8_t* SK_RESTRICT row, int rowN, |
1880 | const SkAlpha* SK_RESTRICT srcAA, |
1881 | const int16_t* SK_RESTRICT srcRuns, |
1882 | SkAlpha* SK_RESTRICT dstAA, |
1883 | int16_t* SK_RESTRICT dstRuns, |
1884 | int width) { |
1885 | SkDEBUGCODE(int accumulated = 0;) |
1886 | int srcN = srcRuns[0]; |
1887 | // do we need this check? |
1888 | if (0 == srcN) { |
1889 | return; |
1890 | } |
1891 | |
1892 | for (;;) { |
1893 | SkASSERT(rowN > 0); |
1894 | SkASSERT(srcN > 0); |
1895 | |
1896 | unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]); |
1897 | int minN = std::min(srcN, rowN); |
1898 | dstRuns[0] = minN; |
1899 | dstRuns += minN; |
1900 | dstAA[0] = newAlpha; |
1901 | dstAA += minN; |
1902 | |
1903 | if (0 == (srcN -= minN)) { |
1904 | srcN = srcRuns[0]; // refresh |
1905 | srcRuns += srcN; |
1906 | srcAA += srcN; |
1907 | srcN = srcRuns[0]; // reload |
1908 | if (0 == srcN) { |
1909 | break; |
1910 | } |
1911 | } |
1912 | if (0 == (rowN -= minN)) { |
1913 | row += 2; |
1914 | rowN = row[0]; // reload |
1915 | } |
1916 | |
1917 | SkDEBUGCODE(accumulated += minN;) |
1918 | SkASSERT(accumulated <= width); |
1919 | } |
1920 | dstRuns[0] = 0; |
1921 | } |
1922 | |
1923 | void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], |
1924 | const int16_t runs[]) { |
1925 | |
1926 | const uint8_t* row = fAAClip->findRow(y); |
1927 | int initialCount; |
1928 | row = fAAClip->findX(row, x, &initialCount); |
1929 | |
1930 | this->ensureRunsAndAA(); |
1931 | |
1932 | merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width()); |
1933 | fBlitter->blitAntiH(x, y, fAA, fRuns); |
1934 | } |
1935 | |
1936 | void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
1937 | if (fAAClip->quickContains(x, y, x + 1, y + height)) { |
1938 | fBlitter->blitV(x, y, height, alpha); |
1939 | return; |
1940 | } |
1941 | |
1942 | for (;;) { |
1943 | int lastY SK_INIT_TO_AVOID_WARNING; |
1944 | const uint8_t* row = fAAClip->findRow(y, &lastY); |
1945 | int dy = lastY - y + 1; |
1946 | if (dy > height) { |
1947 | dy = height; |
1948 | } |
1949 | height -= dy; |
1950 | |
1951 | row = fAAClip->findX(row, x); |
1952 | SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]); |
1953 | if (newAlpha) { |
1954 | fBlitter->blitV(x, y, dy, newAlpha); |
1955 | } |
1956 | SkASSERT(height >= 0); |
1957 | if (height <= 0) { |
1958 | break; |
1959 | } |
1960 | y = lastY + 1; |
1961 | } |
1962 | } |
1963 | |
1964 | void SkAAClipBlitter::blitRect(int x, int y, int width, int height) { |
1965 | if (fAAClip->quickContains(x, y, x + width, y + height)) { |
1966 | fBlitter->blitRect(x, y, width, height); |
1967 | return; |
1968 | } |
1969 | |
1970 | while (--height >= 0) { |
1971 | this->blitH(x, y, width); |
1972 | y += 1; |
1973 | } |
1974 | } |
1975 | |
1976 | typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row, |
1977 | int initialRowCount, void* dst); |
1978 | |
1979 | static void small_memcpy(void* dst, const void* src, size_t n) { |
1980 | memcpy(dst, src, n); |
1981 | } |
1982 | |
1983 | static void small_bzero(void* dst, size_t n) { |
1984 | sk_bzero(dst, n); |
1985 | } |
1986 | |
1987 | static inline uint8_t mergeOne(uint8_t value, unsigned alpha) { |
1988 | return SkMulDiv255Round(value, alpha); |
1989 | } |
1990 | |
1991 | static inline uint16_t mergeOne(uint16_t value, unsigned alpha) { |
1992 | unsigned r = SkGetPackedR16(value); |
1993 | unsigned g = SkGetPackedG16(value); |
1994 | unsigned b = SkGetPackedB16(value); |
1995 | return SkPackRGB16(SkMulDiv255Round(r, alpha), |
1996 | SkMulDiv255Round(g, alpha), |
1997 | SkMulDiv255Round(b, alpha)); |
1998 | } |
1999 | |
2000 | template <typename T> |
2001 | void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) { |
2002 | const T* SK_RESTRICT src = static_cast<const T*>(inSrc); |
2003 | T* SK_RESTRICT dst = static_cast<T*>(inDst); |
2004 | for (;;) { |
2005 | SkASSERT(rowN > 0); |
2006 | SkASSERT(srcN > 0); |
2007 | |
2008 | int n = std::min(rowN, srcN); |
2009 | unsigned rowA = row[1]; |
2010 | if (0xFF == rowA) { |
2011 | small_memcpy(dst, src, n * sizeof(T)); |
2012 | } else if (0 == rowA) { |
2013 | small_bzero(dst, n * sizeof(T)); |
2014 | } else { |
2015 | for (int i = 0; i < n; ++i) { |
2016 | dst[i] = mergeOne(src[i], rowA); |
2017 | } |
2018 | } |
2019 | |
2020 | if (0 == (srcN -= n)) { |
2021 | break; |
2022 | } |
2023 | |
2024 | src += n; |
2025 | dst += n; |
2026 | |
2027 | SkASSERT(rowN == n); |
2028 | row += 2; |
2029 | rowN = row[0]; |
2030 | } |
2031 | } |
2032 | |
2033 | static MergeAAProc find_merge_aa_proc(SkMask::Format format) { |
2034 | switch (format) { |
2035 | case SkMask::kBW_Format: |
2036 | SkDEBUGFAIL("unsupported" ); |
2037 | return nullptr; |
2038 | case SkMask::kA8_Format: |
2039 | case SkMask::k3D_Format: |
2040 | return mergeT<uint8_t> ; |
2041 | case SkMask::kLCD16_Format: |
2042 | return mergeT<uint16_t>; |
2043 | default: |
2044 | SkDEBUGFAIL("unsupported" ); |
2045 | return nullptr; |
2046 | } |
2047 | } |
2048 | |
2049 | static U8CPU bit2byte(int bitInAByte) { |
2050 | SkASSERT(bitInAByte <= 0xFF); |
2051 | // negation turns any non-zero into 0xFFFFFF??, so we just shift down |
2052 | // some value >= 8 to get a full FF value |
2053 | return -bitInAByte >> 8; |
2054 | } |
2055 | |
2056 | static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) { |
2057 | SkASSERT(SkMask::kBW_Format == srcMask.fFormat); |
2058 | SkASSERT(SkMask::kA8_Format == dstMask->fFormat); |
2059 | |
2060 | const int width = srcMask.fBounds.width(); |
2061 | const int height = srcMask.fBounds.height(); |
2062 | |
2063 | const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage; |
2064 | const size_t srcRB = srcMask.fRowBytes; |
2065 | uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage; |
2066 | const size_t dstRB = dstMask->fRowBytes; |
2067 | |
2068 | const int wholeBytes = width >> 3; |
2069 | const int leftOverBits = width & 7; |
2070 | |
2071 | for (int y = 0; y < height; ++y) { |
2072 | uint8_t* SK_RESTRICT d = dst; |
2073 | for (int i = 0; i < wholeBytes; ++i) { |
2074 | int srcByte = src[i]; |
2075 | d[0] = bit2byte(srcByte & (1 << 7)); |
2076 | d[1] = bit2byte(srcByte & (1 << 6)); |
2077 | d[2] = bit2byte(srcByte & (1 << 5)); |
2078 | d[3] = bit2byte(srcByte & (1 << 4)); |
2079 | d[4] = bit2byte(srcByte & (1 << 3)); |
2080 | d[5] = bit2byte(srcByte & (1 << 2)); |
2081 | d[6] = bit2byte(srcByte & (1 << 1)); |
2082 | d[7] = bit2byte(srcByte & (1 << 0)); |
2083 | d += 8; |
2084 | } |
2085 | if (leftOverBits) { |
2086 | int srcByte = src[wholeBytes]; |
2087 | for (int x = 0; x < leftOverBits; ++x) { |
2088 | *d++ = bit2byte(srcByte & 0x80); |
2089 | srcByte <<= 1; |
2090 | } |
2091 | } |
2092 | src += srcRB; |
2093 | dst += dstRB; |
2094 | } |
2095 | } |
2096 | |
2097 | void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) { |
2098 | SkASSERT(fAAClip->getBounds().contains(clip)); |
2099 | |
2100 | if (fAAClip->quickContains(clip)) { |
2101 | fBlitter->blitMask(origMask, clip); |
2102 | return; |
2103 | } |
2104 | |
2105 | const SkMask* mask = &origMask; |
2106 | |
2107 | // if we're BW, we need to upscale to A8 (ugh) |
2108 | SkMask grayMask; |
2109 | if (SkMask::kBW_Format == origMask.fFormat) { |
2110 | grayMask.fFormat = SkMask::kA8_Format; |
2111 | grayMask.fBounds = origMask.fBounds; |
2112 | grayMask.fRowBytes = origMask.fBounds.width(); |
2113 | size_t size = grayMask.computeImageSize(); |
2114 | grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size, |
2115 | SkAutoMalloc::kReuse_OnShrink); |
2116 | |
2117 | upscaleBW2A8(&grayMask, origMask); |
2118 | mask = &grayMask; |
2119 | } |
2120 | |
2121 | this->ensureRunsAndAA(); |
2122 | |
2123 | // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D |
2124 | // data into a temp block to support it better (ugh) |
2125 | |
2126 | const void* src = mask->getAddr(clip.fLeft, clip.fTop); |
2127 | const size_t srcRB = mask->fRowBytes; |
2128 | const int width = clip.width(); |
2129 | MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat); |
2130 | |
2131 | SkMask rowMask; |
2132 | rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat; |
2133 | rowMask.fBounds.fLeft = clip.fLeft; |
2134 | rowMask.fBounds.fRight = clip.fRight; |
2135 | rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1 |
2136 | rowMask.fImage = (uint8_t*)fScanlineScratch; |
2137 | |
2138 | int y = clip.fTop; |
2139 | const int stopY = y + clip.height(); |
2140 | |
2141 | do { |
2142 | int localStopY SK_INIT_TO_AVOID_WARNING; |
2143 | const uint8_t* row = fAAClip->findRow(y, &localStopY); |
2144 | // findRow returns last Y, not stop, so we add 1 |
2145 | localStopY = std::min(localStopY + 1, stopY); |
2146 | |
2147 | int initialCount; |
2148 | row = fAAClip->findX(row, clip.fLeft, &initialCount); |
2149 | do { |
2150 | mergeProc(src, width, row, initialCount, rowMask.fImage); |
2151 | rowMask.fBounds.fTop = y; |
2152 | rowMask.fBounds.fBottom = y + 1; |
2153 | fBlitter->blitMask(rowMask, rowMask.fBounds); |
2154 | src = (const void*)((const char*)src + srcRB); |
2155 | } while (++y < localStopY); |
2156 | } while (y < stopY); |
2157 | } |
2158 | |
2159 | const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) { |
2160 | return nullptr; |
2161 | } |
2162 | |