| 1 | /* |
| 2 | * Copyright 2008 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkShader.h" |
| 9 | #include "include/private/SkTo.h" |
| 10 | #include "src/core/SkBitmapProcState.h" |
| 11 | #include "src/core/SkUtils.h" |
| 12 | |
| 13 | /* |
| 14 | * The decal_ functions require that |
| 15 | * 1. dx > 0 |
| 16 | * 2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX |
| 17 | * |
| 18 | * In addition, we use SkFractionalInt to keep more fractional precision than |
| 19 | * just SkFixed, so we will abort the decal_ call if dx is very small, since |
| 20 | * the decal_ function just operates on SkFixed. If that were changed, we could |
| 21 | * skip the very_small test here. |
| 22 | */ |
| 23 | static inline bool can_truncate_to_fixed_for_decal(SkFixed fx, |
| 24 | SkFixed dx, |
| 25 | int count, unsigned max) { |
| 26 | SkASSERT(count > 0); |
| 27 | |
| 28 | // if decal_ kept SkFractionalInt precision, this would just be dx <= 0 |
| 29 | // I just made up the 1/256. Just don't want to perceive accumulated error |
| 30 | // if we truncate frDx and lose its low bits. |
| 31 | if (dx <= SK_Fixed1 / 256) { |
| 32 | return false; |
| 33 | } |
| 34 | |
| 35 | // Note: it seems the test should be (fx <= max && lastFx <= max); but |
| 36 | // historically it's been a strict inequality check, and changing produces |
| 37 | // unexpected diffs. Further investigation is needed. |
| 38 | |
| 39 | // We cast to unsigned so we don't have to check for negative values, which |
| 40 | // will now appear as very large positive values, and thus fail our test! |
| 41 | if ((unsigned)SkFixedFloorToInt(fx) >= max) { |
| 42 | return false; |
| 43 | } |
| 44 | |
| 45 | // Promote to 64bit (48.16) to avoid overflow. |
| 46 | const uint64_t lastFx = fx + sk_64_mul(dx, count - 1); |
| 47 | |
| 48 | return SkTFitsIn<int32_t>(lastFx) && (unsigned)SkFixedFloorToInt(SkTo<int32_t>(lastFx)) < max; |
| 49 | } |
| 50 | |
| 51 | // When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ... |
| 52 | // When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1. |
| 53 | |
| 54 | // The clamp routines may try to fall into one of these unclamped decal fast-paths. |
| 55 | // (Only clamp works in the right coordinate space to check for decal.) |
| 56 | static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) { |
| 57 | // can_truncate_to_fixed_for_decal() checked only that stepping fx+=dx count-1 |
| 58 | // times doesn't overflow fx, so we take unusual care not to step count times. |
| 59 | for (; count > 2; count -= 2) { |
| 60 | *dst++ = pack_two_shorts( (fx + 0) >> 16, |
| 61 | (fx + dx) >> 16); |
| 62 | fx += dx+dx; |
| 63 | } |
| 64 | |
| 65 | SkASSERT(count <= 2); |
| 66 | switch (count) { |
| 67 | case 2: ((uint16_t*)dst)[1] = SkToU16((fx + dx) >> 16); |
| 68 | case 1: ((uint16_t*)dst)[0] = SkToU16((fx + 0) >> 16); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | // A generic implementation for unfiltered scale+translate, templated on tiling method. |
| 73 | template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int), bool tryDecal> |
| 74 | static void nofilter_scale(const SkBitmapProcState& s, |
| 75 | uint32_t xy[], int count, int x, int y) { |
| 76 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| 77 | |
| 78 | // Write out our 32-bit y, and get our intial fx. |
| 79 | SkFractionalInt fx; |
| 80 | { |
| 81 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 82 | *xy++ = tiley(mapper.fixedY(), s.fPixmap.height() - 1); |
| 83 | fx = mapper.fractionalIntX(); |
| 84 | } |
| 85 | |
| 86 | const unsigned maxX = s.fPixmap.width() - 1; |
| 87 | if (0 == maxX) { |
| 88 | // If width == 1, all the x-values must refer to that pixel, and must be zero. |
| 89 | memset(xy, 0, count * sizeof(uint16_t)); |
| 90 | return; |
| 91 | } |
| 92 | |
| 93 | const SkFractionalInt dx = s.fInvSxFractionalInt; |
| 94 | |
| 95 | if (tryDecal) { |
| 96 | const SkFixed fixedFx = SkFractionalIntToFixed(fx); |
| 97 | const SkFixed fixedDx = SkFractionalIntToFixed(dx); |
| 98 | |
| 99 | if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) { |
| 100 | decal_nofilter_scale(xy, fixedFx, fixedDx, count); |
| 101 | return; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | // Remember, each x-coordinate is 16-bit. |
| 106 | for (; count >= 2; count -= 2) { |
| 107 | *xy++ = pack_two_shorts(tilex(SkFractionalIntToFixed(fx ), maxX), |
| 108 | tilex(SkFractionalIntToFixed(fx + dx), maxX)); |
| 109 | fx += dx+dx; |
| 110 | } |
| 111 | |
| 112 | auto xx = (uint16_t*)xy; |
| 113 | while (count --> 0) { |
| 114 | *xx++ = tilex(SkFractionalIntToFixed(fx), maxX); |
| 115 | fx += dx; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int)> |
| 120 | static void nofilter_affine(const SkBitmapProcState& s, |
| 121 | uint32_t xy[], int count, int x, int y) { |
| 122 | SkASSERT(!s.fInvMatrix.hasPerspective()); |
| 123 | |
| 124 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 125 | |
| 126 | SkFractionalInt fx = mapper.fractionalIntX(), |
| 127 | fy = mapper.fractionalIntY(), |
| 128 | dx = s.fInvSxFractionalInt, |
| 129 | dy = s.fInvKyFractionalInt; |
| 130 | int maxX = s.fPixmap.width () - 1, |
| 131 | maxY = s.fPixmap.height() - 1; |
| 132 | |
| 133 | while (count --> 0) { |
| 134 | *xy++ = (tiley(SkFractionalIntToFixed(fy), maxY) << 16) |
| 135 | | (tilex(SkFractionalIntToFixed(fx), maxX) ); |
| 136 | fx += dx; |
| 137 | fy += dy; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | // used when both tilex and tiley are clamp |
| 142 | // Extract the high four fractional bits from fx, the lerp parameter when filtering. |
| 143 | static unsigned (SkFixed fx, int /*max*/) { |
| 144 | // If we're already scaled up to by max like clamp/decal, |
| 145 | // just grab the high four fractional bits. |
| 146 | return (fx >> 12) & 0xf; |
| 147 | } |
| 148 | |
| 149 | //used when one of tilex and tiley is not clamp |
| 150 | static unsigned (SkFixed fx, int max) { |
| 151 | // In repeat or mirror fx is in [0,1], so scale up by max first. |
| 152 | // TODO: remove the +1 here and the -1 at the call sites... |
| 153 | return extract_low_bits_clamp_clamp((fx & 0xffff) * (max+1), max); |
| 154 | } |
| 155 | |
| 156 | template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int)> |
| 157 | static uint32_t pack(SkFixed f, unsigned max, SkFixed one) { |
| 158 | uint32_t packed = tile(f, max); // low coordinate in high bits |
| 159 | packed = (packed << 4) | extract_low_bits(f, max); // (lerp weight _is_ coord fractional part) |
| 160 | packed = (packed << 14) | tile((f + one), max); // high coordinate in low bits |
| 161 | return packed; |
| 162 | } |
| 163 | |
| 164 | template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int), bool tryDecal> |
| 165 | static void filter_scale(const SkBitmapProcState& s, |
| 166 | uint32_t xy[], int count, int x, int y) { |
| 167 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| 168 | |
| 169 | const unsigned maxX = s.fPixmap.width() - 1; |
| 170 | const SkFractionalInt dx = s.fInvSxFractionalInt; |
| 171 | SkFractionalInt fx; |
| 172 | { |
| 173 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 174 | const unsigned maxY = s.fPixmap.height() - 1; |
| 175 | // compute our two Y values up front |
| 176 | *xy++ = pack<tiley, extract_low_bits>(mapper.fixedY(), maxY, s.fFilterOneY); |
| 177 | // now initialize fx |
| 178 | fx = mapper.fractionalIntX(); |
| 179 | } |
| 180 | |
| 181 | // For historical reasons we check both ends are < maxX rather than <= maxX. |
| 182 | // TODO: try changing this? See also can_truncate_to_fixed_for_decal(). |
| 183 | if (tryDecal && |
| 184 | (unsigned)SkFractionalIntToInt(fx ) < maxX && |
| 185 | (unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) { |
| 186 | while (count --> 0) { |
| 187 | SkFixed fixedFx = SkFractionalIntToFixed(fx); |
| 188 | SkASSERT((fixedFx >> (16 + 14)) == 0); |
| 189 | *xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1); |
| 190 | fx += dx; |
| 191 | } |
| 192 | return; |
| 193 | } |
| 194 | |
| 195 | while (count --> 0) { |
| 196 | *xy++ = pack<tilex, extract_low_bits>(SkFractionalIntToFixed(fx), maxX, s.fFilterOneX); |
| 197 | fx += dx; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int)> |
| 202 | static void filter_affine(const SkBitmapProcState& s, |
| 203 | uint32_t xy[], int count, int x, int y) { |
| 204 | SkASSERT(!s.fInvMatrix.hasPerspective()); |
| 205 | |
| 206 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 207 | |
| 208 | SkFixed oneX = s.fFilterOneX, |
| 209 | oneY = s.fFilterOneY; |
| 210 | |
| 211 | SkFractionalInt fx = mapper.fractionalIntX(), |
| 212 | fy = mapper.fractionalIntY(), |
| 213 | dx = s.fInvSxFractionalInt, |
| 214 | dy = s.fInvKyFractionalInt; |
| 215 | unsigned maxX = s.fPixmap.width () - 1, |
| 216 | maxY = s.fPixmap.height() - 1; |
| 217 | while (count --> 0) { |
| 218 | *xy++ = pack<tiley, extract_low_bits>(SkFractionalIntToFixed(fy), maxY, oneY); |
| 219 | *xy++ = pack<tilex, extract_low_bits>(SkFractionalIntToFixed(fx), maxX, oneX); |
| 220 | |
| 221 | fy += dy; |
| 222 | fx += dx; |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | // Helper to ensure that when we shift down, we do it w/o sign-extension |
| 227 | // so the caller doesn't have to manually mask off the top 16 bits. |
| 228 | static inline unsigned SK_USHIFT16(unsigned x) { |
| 229 | return x >> 16; |
| 230 | } |
| 231 | |
| 232 | static unsigned repeat(SkFixed fx, int max) { |
| 233 | SkASSERT(max < 65535); |
| 234 | return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1)); |
| 235 | } |
| 236 | static unsigned mirror(SkFixed fx, int max) { |
| 237 | SkASSERT(max < 65535); |
| 238 | // s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval |
| 239 | SkFixed s = SkLeftShift(fx, 15) >> 31; |
| 240 | |
| 241 | // This should be exactly the same as repeat(fx ^ s, max) from here on. |
| 242 | return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) ); |
| 243 | } |
| 244 | |
| 245 | static unsigned clamp(SkFixed fx, int max) { |
| 246 | return SkTPin(fx >> 16, 0, max); |
| 247 | } |
| 248 | |
| 249 | static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = { |
| 250 | nofilter_scale <clamp, clamp, true>, filter_scale <clamp, clamp, extract_low_bits_clamp_clamp, true>, |
| 251 | nofilter_affine<clamp, clamp>, filter_affine<clamp, clamp, extract_low_bits_clamp_clamp>, |
| 252 | }; |
| 253 | static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = { |
| 254 | nofilter_scale <repeat, repeat, false>, filter_scale <repeat, repeat, extract_low_bits_general, false>, |
| 255 | nofilter_affine<repeat, repeat>, filter_affine<repeat, repeat, extract_low_bits_general> |
| 256 | }; |
| 257 | static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = { |
| 258 | nofilter_scale <mirror, mirror, false>, filter_scale <mirror, mirror, extract_low_bits_general, false>, |
| 259 | nofilter_affine<mirror, mirror>, filter_affine<mirror, mirror, extract_low_bits_general>, |
| 260 | }; |
| 261 | |
| 262 | |
| 263 | /////////////////////////////////////////////////////////////////////////////// |
| 264 | // This next chunk has some specializations for unfiltered translate-only matrices. |
| 265 | |
| 266 | static inline U16CPU int_clamp(int x, int n) { |
| 267 | if (x < 0) { x = 0; } |
| 268 | if (x >= n) { x = n - 1; } |
| 269 | return x; |
| 270 | } |
| 271 | |
| 272 | /* returns 0...(n-1) given any x (positive or negative). |
| 273 | |
| 274 | As an example, if n (which is always positive) is 5... |
| 275 | |
| 276 | x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 |
| 277 | returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 |
| 278 | */ |
| 279 | static inline int sk_int_mod(int x, int n) { |
| 280 | SkASSERT(n > 0); |
| 281 | if ((unsigned)x >= (unsigned)n) { |
| 282 | if (x < 0) { |
| 283 | x = n + ~(~x % n); |
| 284 | } else { |
| 285 | x = x % n; |
| 286 | } |
| 287 | } |
| 288 | return x; |
| 289 | } |
| 290 | |
| 291 | static inline U16CPU int_repeat(int x, int n) { |
| 292 | return sk_int_mod(x, n); |
| 293 | } |
| 294 | |
| 295 | static inline U16CPU int_mirror(int x, int n) { |
| 296 | x = sk_int_mod(x, 2 * n); |
| 297 | if (x >= n) { |
| 298 | x = n + ~(x - n); |
| 299 | } |
| 300 | return x; |
| 301 | } |
| 302 | |
| 303 | static void fill_sequential(uint16_t xptr[], int pos, int count) { |
| 304 | while (count --> 0) { |
| 305 | *xptr++ = pos++; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | static void fill_backwards(uint16_t xptr[], int pos, int count) { |
| 310 | while (count --> 0) { |
| 311 | SkASSERT(pos >= 0); |
| 312 | *xptr++ = pos--; |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | template< U16CPU (tiley)(int x, int n) > |
| 317 | static void clampx_nofilter_trans(const SkBitmapProcState& s, |
| 318 | uint32_t xy[], int count, int x, int y) { |
| 319 | SkASSERT(s.fInvMatrix.isTranslate()); |
| 320 | |
| 321 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 322 | *xy++ = tiley(mapper.intY(), s.fPixmap.height()); |
| 323 | int xpos = mapper.intX(); |
| 324 | |
| 325 | const int width = s.fPixmap.width(); |
| 326 | if (1 == width) { |
| 327 | // all of the following X values must be 0 |
| 328 | memset(xy, 0, count * sizeof(uint16_t)); |
| 329 | return; |
| 330 | } |
| 331 | |
| 332 | uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); |
| 333 | int n; |
| 334 | |
| 335 | // fill before 0 as needed |
| 336 | if (xpos < 0) { |
| 337 | n = -xpos; |
| 338 | if (n > count) { |
| 339 | n = count; |
| 340 | } |
| 341 | memset(xptr, 0, n * sizeof(uint16_t)); |
| 342 | count -= n; |
| 343 | if (0 == count) { |
| 344 | return; |
| 345 | } |
| 346 | xptr += n; |
| 347 | xpos = 0; |
| 348 | } |
| 349 | |
| 350 | // fill in 0..width-1 if needed |
| 351 | if (xpos < width) { |
| 352 | n = width - xpos; |
| 353 | if (n > count) { |
| 354 | n = count; |
| 355 | } |
| 356 | fill_sequential(xptr, xpos, n); |
| 357 | count -= n; |
| 358 | if (0 == count) { |
| 359 | return; |
| 360 | } |
| 361 | xptr += n; |
| 362 | } |
| 363 | |
| 364 | // fill the remaining with the max value |
| 365 | sk_memset16(xptr, width - 1, count); |
| 366 | } |
| 367 | |
| 368 | template< U16CPU (tiley)(int x, int n) > |
| 369 | static void repeatx_nofilter_trans(const SkBitmapProcState& s, |
| 370 | uint32_t xy[], int count, int x, int y) { |
| 371 | SkASSERT(s.fInvMatrix.isTranslate()); |
| 372 | |
| 373 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 374 | *xy++ = tiley(mapper.intY(), s.fPixmap.height()); |
| 375 | int xpos = mapper.intX(); |
| 376 | |
| 377 | const int width = s.fPixmap.width(); |
| 378 | if (1 == width) { |
| 379 | // all of the following X values must be 0 |
| 380 | memset(xy, 0, count * sizeof(uint16_t)); |
| 381 | return; |
| 382 | } |
| 383 | |
| 384 | uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); |
| 385 | int start = sk_int_mod(xpos, width); |
| 386 | int n = width - start; |
| 387 | if (n > count) { |
| 388 | n = count; |
| 389 | } |
| 390 | fill_sequential(xptr, start, n); |
| 391 | xptr += n; |
| 392 | count -= n; |
| 393 | |
| 394 | while (count >= width) { |
| 395 | fill_sequential(xptr, 0, width); |
| 396 | xptr += width; |
| 397 | count -= width; |
| 398 | } |
| 399 | |
| 400 | if (count > 0) { |
| 401 | fill_sequential(xptr, 0, count); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | template< U16CPU (tiley)(int x, int n) > |
| 406 | static void mirrorx_nofilter_trans(const SkBitmapProcState& s, |
| 407 | uint32_t xy[], int count, int x, int y) { |
| 408 | SkASSERT(s.fInvMatrix.isTranslate()); |
| 409 | |
| 410 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 411 | *xy++ = tiley(mapper.intY(), s.fPixmap.height()); |
| 412 | int xpos = mapper.intX(); |
| 413 | |
| 414 | const int width = s.fPixmap.width(); |
| 415 | if (1 == width) { |
| 416 | // all of the following X values must be 0 |
| 417 | memset(xy, 0, count * sizeof(uint16_t)); |
| 418 | return; |
| 419 | } |
| 420 | |
| 421 | uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); |
| 422 | // need to know our start, and our initial phase (forward or backward) |
| 423 | bool forward; |
| 424 | int n; |
| 425 | int start = sk_int_mod(xpos, 2 * width); |
| 426 | if (start >= width) { |
| 427 | start = width + ~(start - width); |
| 428 | forward = false; |
| 429 | n = start + 1; // [start .. 0] |
| 430 | } else { |
| 431 | forward = true; |
| 432 | n = width - start; // [start .. width) |
| 433 | } |
| 434 | if (n > count) { |
| 435 | n = count; |
| 436 | } |
| 437 | if (forward) { |
| 438 | fill_sequential(xptr, start, n); |
| 439 | } else { |
| 440 | fill_backwards(xptr, start, n); |
| 441 | } |
| 442 | forward = !forward; |
| 443 | xptr += n; |
| 444 | count -= n; |
| 445 | |
| 446 | while (count >= width) { |
| 447 | if (forward) { |
| 448 | fill_sequential(xptr, 0, width); |
| 449 | } else { |
| 450 | fill_backwards(xptr, width - 1, width); |
| 451 | } |
| 452 | forward = !forward; |
| 453 | xptr += width; |
| 454 | count -= width; |
| 455 | } |
| 456 | |
| 457 | if (count > 0) { |
| 458 | if (forward) { |
| 459 | fill_sequential(xptr, 0, count); |
| 460 | } else { |
| 461 | fill_backwards(xptr, width - 1, count); |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | |
| 467 | /////////////////////////////////////////////////////////////////////////////// |
| 468 | // The main entry point to the file, choosing between everything above. |
| 469 | |
| 470 | SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) { |
| 471 | SkASSERT(!fInvMatrix.hasPerspective()); |
| 472 | SkASSERT(fTileModeX != SkTileMode::kDecal); |
| 473 | |
| 474 | if( fTileModeX == fTileModeY ) { |
| 475 | // Check for our special case translate methods when there is no scale/affine/perspective. |
| 476 | if (translate_only_matrix && kNone_SkFilterQuality == fFilterQuality) { |
| 477 | switch (fTileModeX) { |
| 478 | default: SkASSERT(false); |
| 479 | case SkTileMode::kClamp: return clampx_nofilter_trans<int_clamp>; |
| 480 | case SkTileMode::kRepeat: return repeatx_nofilter_trans<int_repeat>; |
| 481 | case SkTileMode::kMirror: return mirrorx_nofilter_trans<int_mirror>; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | // The arrays are all [ nofilter, filter ]. |
| 486 | int index = fFilterQuality > kNone_SkFilterQuality ? 1 : 0; |
| 487 | if (!fInvMatrix.isScaleTranslate()) { |
| 488 | index |= 2; |
| 489 | } |
| 490 | |
| 491 | if (fTileModeX == SkTileMode::kClamp) { |
| 492 | // clamp gets special version of filterOne, working in non-normalized space (allowing decal) |
| 493 | fFilterOneX = SK_Fixed1; |
| 494 | fFilterOneY = SK_Fixed1; |
| 495 | return ClampX_ClampY_Procs[index]; |
| 496 | } |
| 497 | |
| 498 | // all remaining procs use this form for filterOne, putting them into normalized space. |
| 499 | fFilterOneX = SK_Fixed1 / fPixmap.width(); |
| 500 | fFilterOneY = SK_Fixed1 / fPixmap.height(); |
| 501 | |
| 502 | if (fTileModeX == SkTileMode::kRepeat) { |
| 503 | return RepeatX_RepeatY_Procs[index]; |
| 504 | } |
| 505 | |
| 506 | return MirrorX_MirrorY_Procs[index]; |
| 507 | } |
| 508 | |
| 509 | SkASSERT(fTileModeX == fTileModeY); |
| 510 | return nullptr; |
| 511 | } |
| 512 | |