| 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/private/SkColorData.h" |
| 9 | #include "include/private/SkTemplates.h" |
| 10 | #include "src/core/SkAutoMalloc.h" |
| 11 | #include "src/core/SkDistanceFieldGen.h" |
| 12 | #include "src/core/SkMask.h" |
| 13 | #include "src/core/SkPointPriv.h" |
| 14 | |
| 15 | #include <utility> |
| 16 | |
| 17 | struct DFData { |
| 18 | float fAlpha; // alpha value of source texel |
| 19 | float fDistSq; // distance squared to nearest (so far) edge texel |
| 20 | SkPoint fDistVector; // distance vector to nearest (so far) edge texel |
| 21 | }; |
| 22 | |
| 23 | enum NeighborFlags { |
| 24 | kLeft_NeighborFlag = 0x01, |
| 25 | kRight_NeighborFlag = 0x02, |
| 26 | kTopLeft_NeighborFlag = 0x04, |
| 27 | kTop_NeighborFlag = 0x08, |
| 28 | kTopRight_NeighborFlag = 0x10, |
| 29 | kBottomLeft_NeighborFlag = 0x20, |
| 30 | kBottom_NeighborFlag = 0x40, |
| 31 | kBottomRight_NeighborFlag = 0x80, |
| 32 | kAll_NeighborFlags = 0xff, |
| 33 | |
| 34 | kNeighborFlagCount = 8 |
| 35 | }; |
| 36 | |
| 37 | // We treat an "edge" as a place where we cross from >=128 to <128, or vice versa, or |
| 38 | // where we have two non-zero pixels that are <128. |
| 39 | // 'neighborFlags' is used to limit the directions in which we test to avoid indexing |
| 40 | // outside of the image |
| 41 | static bool found_edge(const unsigned char* imagePtr, int width, int neighborFlags) { |
| 42 | // the order of these should match the neighbor flags above |
| 43 | const int kNum8ConnectedNeighbors = 8; |
| 44 | const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 }; |
| 45 | SkASSERT(kNum8ConnectedNeighbors == kNeighborFlagCount); |
| 46 | |
| 47 | // search for an edge |
| 48 | unsigned char currVal = *imagePtr; |
| 49 | unsigned char currCheck = (currVal >> 7); |
| 50 | for (int i = 0; i < kNum8ConnectedNeighbors; ++i) { |
| 51 | unsigned char neighborVal; |
| 52 | if ((1 << i) & neighborFlags) { |
| 53 | const unsigned char* checkPtr = imagePtr + offsets[i]; |
| 54 | neighborVal = *checkPtr; |
| 55 | } else { |
| 56 | neighborVal = 0; |
| 57 | } |
| 58 | unsigned char neighborCheck = (neighborVal >> 7); |
| 59 | SkASSERT(currCheck == 0 || currCheck == 1); |
| 60 | SkASSERT(neighborCheck == 0 || neighborCheck == 1); |
| 61 | // if sharp transition |
| 62 | if (currCheck != neighborCheck || |
| 63 | // or both <128 and >0 |
| 64 | (!currCheck && !neighborCheck && currVal && neighborVal)) { |
| 65 | return true; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | return false; |
| 70 | } |
| 71 | |
| 72 | static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image, |
| 73 | int dataWidth, int dataHeight, |
| 74 | int imageWidth, int imageHeight, |
| 75 | int pad) { |
| 76 | data += pad*dataWidth; |
| 77 | data += pad; |
| 78 | edges += (pad*dataWidth + pad); |
| 79 | |
| 80 | for (int j = 0; j < imageHeight; ++j) { |
| 81 | for (int i = 0; i < imageWidth; ++i) { |
| 82 | if (255 == *image) { |
| 83 | data->fAlpha = 1.0f; |
| 84 | } else { |
| 85 | data->fAlpha = (*image)*0.00392156862f; // 1/255 |
| 86 | } |
| 87 | int checkMask = kAll_NeighborFlags; |
| 88 | if (i == 0) { |
| 89 | checkMask &= ~(kLeft_NeighborFlag|kTopLeft_NeighborFlag|kBottomLeft_NeighborFlag); |
| 90 | } |
| 91 | if (i == imageWidth-1) { |
| 92 | checkMask &= ~(kRight_NeighborFlag|kTopRight_NeighborFlag|kBottomRight_NeighborFlag); |
| 93 | } |
| 94 | if (j == 0) { |
| 95 | checkMask &= ~(kTopLeft_NeighborFlag|kTop_NeighborFlag|kTopRight_NeighborFlag); |
| 96 | } |
| 97 | if (j == imageHeight-1) { |
| 98 | checkMask &= ~(kBottomLeft_NeighborFlag|kBottom_NeighborFlag|kBottomRight_NeighborFlag); |
| 99 | } |
| 100 | if (found_edge(image, imageWidth, checkMask)) { |
| 101 | *edges = 255; // using 255 makes for convenient debug rendering |
| 102 | } |
| 103 | ++data; |
| 104 | ++image; |
| 105 | ++edges; |
| 106 | } |
| 107 | data += 2*pad; |
| 108 | edges += 2*pad; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | // from Gustavson (2011) |
| 113 | // computes the distance to an edge given an edge normal vector and a pixel's alpha value |
| 114 | // assumes that direction has been pre-normalized |
| 115 | static float edge_distance(const SkPoint& direction, float alpha) { |
| 116 | float dx = direction.fX; |
| 117 | float dy = direction.fY; |
| 118 | float distance; |
| 119 | if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) { |
| 120 | distance = 0.5f - alpha; |
| 121 | } else { |
| 122 | // this is easier if we treat the direction as being in the first octant |
| 123 | // (other octants are symmetrical) |
| 124 | dx = SkScalarAbs(dx); |
| 125 | dy = SkScalarAbs(dy); |
| 126 | if (dx < dy) { |
| 127 | using std::swap; |
| 128 | swap(dx, dy); |
| 129 | } |
| 130 | |
| 131 | // a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge |
| 132 | // to avoid the divide, we just consider the numerator |
| 133 | float a1num = 0.5f*dy; |
| 134 | |
| 135 | // we now compute the approximate distance, depending where the alpha falls |
| 136 | // relative to the edge fractional area |
| 137 | |
| 138 | // if 0 <= alpha < a1 |
| 139 | if (alpha*dx < a1num) { |
| 140 | // TODO: find a way to do this without square roots? |
| 141 | distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha); |
| 142 | // if a1 <= alpha <= 1 - a1 |
| 143 | } else if (alpha*dx < (dx - a1num)) { |
| 144 | distance = (0.5f - alpha)*dx; |
| 145 | // if 1 - a1 < alpha <= 1 |
| 146 | } else { |
| 147 | // TODO: find a way to do this without square roots? |
| 148 | distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha)); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | return distance; |
| 153 | } |
| 154 | |
| 155 | static void init_distances(DFData* data, unsigned char* edges, int width, int height) { |
| 156 | // skip one pixel border |
| 157 | DFData* currData = data; |
| 158 | DFData* prevData = data - width; |
| 159 | DFData* nextData = data + width; |
| 160 | |
| 161 | for (int j = 0; j < height; ++j) { |
| 162 | for (int i = 0; i < width; ++i) { |
| 163 | if (*edges) { |
| 164 | // we should not be in the one-pixel outside band |
| 165 | SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1); |
| 166 | // gradient will point from low to high |
| 167 | // +y is down in this case |
| 168 | // i.e., if you're outside, gradient points towards edge |
| 169 | // if you're inside, gradient points away from edge |
| 170 | SkPoint currGrad; |
| 171 | currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha |
| 172 | + SK_ScalarSqrt2*(currData+1)->fAlpha |
| 173 | - SK_ScalarSqrt2*(currData-1)->fAlpha |
| 174 | + (nextData+1)->fAlpha - (nextData-1)->fAlpha; |
| 175 | currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha |
| 176 | + SK_ScalarSqrt2*nextData->fAlpha |
| 177 | - SK_ScalarSqrt2*prevData->fAlpha |
| 178 | + (nextData+1)->fAlpha - (prevData+1)->fAlpha; |
| 179 | SkPointPriv::SetLengthFast(&currGrad, 1.0f); |
| 180 | |
| 181 | // init squared distance to edge and distance vector |
| 182 | float dist = edge_distance(currGrad, currData->fAlpha); |
| 183 | currGrad.scale(dist, &currData->fDistVector); |
| 184 | currData->fDistSq = dist*dist; |
| 185 | } else { |
| 186 | // init distance to "far away" |
| 187 | currData->fDistSq = 2000000.f; |
| 188 | currData->fDistVector.fX = 1000.f; |
| 189 | currData->fDistVector.fY = 1000.f; |
| 190 | } |
| 191 | ++currData; |
| 192 | ++prevData; |
| 193 | ++nextData; |
| 194 | ++edges; |
| 195 | } |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | // Danielsson's 8SSEDT |
| 200 | |
| 201 | // first stage forward pass |
| 202 | // (forward in Y, forward in X) |
| 203 | static void F1(DFData* curr, int width) { |
| 204 | // upper left |
| 205 | DFData* check = curr - width-1; |
| 206 | SkPoint distVec = check->fDistVector; |
| 207 | float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f); |
| 208 | if (distSq < curr->fDistSq) { |
| 209 | distVec.fX -= 1.0f; |
| 210 | distVec.fY -= 1.0f; |
| 211 | curr->fDistSq = distSq; |
| 212 | curr->fDistVector = distVec; |
| 213 | } |
| 214 | |
| 215 | // up |
| 216 | check = curr - width; |
| 217 | distVec = check->fDistVector; |
| 218 | distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f; |
| 219 | if (distSq < curr->fDistSq) { |
| 220 | distVec.fY -= 1.0f; |
| 221 | curr->fDistSq = distSq; |
| 222 | curr->fDistVector = distVec; |
| 223 | } |
| 224 | |
| 225 | // upper right |
| 226 | check = curr - width+1; |
| 227 | distVec = check->fDistVector; |
| 228 | distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f); |
| 229 | if (distSq < curr->fDistSq) { |
| 230 | distVec.fX += 1.0f; |
| 231 | distVec.fY -= 1.0f; |
| 232 | curr->fDistSq = distSq; |
| 233 | curr->fDistVector = distVec; |
| 234 | } |
| 235 | |
| 236 | // left |
| 237 | check = curr - 1; |
| 238 | distVec = check->fDistVector; |
| 239 | distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; |
| 240 | if (distSq < curr->fDistSq) { |
| 241 | distVec.fX -= 1.0f; |
| 242 | curr->fDistSq = distSq; |
| 243 | curr->fDistVector = distVec; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | // second stage forward pass |
| 248 | // (forward in Y, backward in X) |
| 249 | static void F2(DFData* curr, int width) { |
| 250 | // right |
| 251 | DFData* check = curr + 1; |
| 252 | SkPoint distVec = check->fDistVector; |
| 253 | float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; |
| 254 | if (distSq < curr->fDistSq) { |
| 255 | distVec.fX += 1.0f; |
| 256 | curr->fDistSq = distSq; |
| 257 | curr->fDistVector = distVec; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | // first stage backward pass |
| 262 | // (backward in Y, forward in X) |
| 263 | static void B1(DFData* curr, int width) { |
| 264 | // left |
| 265 | DFData* check = curr - 1; |
| 266 | SkPoint distVec = check->fDistVector; |
| 267 | float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; |
| 268 | if (distSq < curr->fDistSq) { |
| 269 | distVec.fX -= 1.0f; |
| 270 | curr->fDistSq = distSq; |
| 271 | curr->fDistVector = distVec; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | // second stage backward pass |
| 276 | // (backward in Y, backwards in X) |
| 277 | static void B2(DFData* curr, int width) { |
| 278 | // right |
| 279 | DFData* check = curr + 1; |
| 280 | SkPoint distVec = check->fDistVector; |
| 281 | float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; |
| 282 | if (distSq < curr->fDistSq) { |
| 283 | distVec.fX += 1.0f; |
| 284 | curr->fDistSq = distSq; |
| 285 | curr->fDistVector = distVec; |
| 286 | } |
| 287 | |
| 288 | // bottom left |
| 289 | check = curr + width-1; |
| 290 | distVec = check->fDistVector; |
| 291 | distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f); |
| 292 | if (distSq < curr->fDistSq) { |
| 293 | distVec.fX -= 1.0f; |
| 294 | distVec.fY += 1.0f; |
| 295 | curr->fDistSq = distSq; |
| 296 | curr->fDistVector = distVec; |
| 297 | } |
| 298 | |
| 299 | // bottom |
| 300 | check = curr + width; |
| 301 | distVec = check->fDistVector; |
| 302 | distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f; |
| 303 | if (distSq < curr->fDistSq) { |
| 304 | distVec.fY += 1.0f; |
| 305 | curr->fDistSq = distSq; |
| 306 | curr->fDistVector = distVec; |
| 307 | } |
| 308 | |
| 309 | // bottom right |
| 310 | check = curr + width+1; |
| 311 | distVec = check->fDistVector; |
| 312 | distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f); |
| 313 | if (distSq < curr->fDistSq) { |
| 314 | distVec.fX += 1.0f; |
| 315 | distVec.fY += 1.0f; |
| 316 | curr->fDistSq = distSq; |
| 317 | curr->fDistVector = distVec; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | // enable this to output edge data rather than the distance field |
| 322 | #define DUMP_EDGE 0 |
| 323 | |
| 324 | #if !DUMP_EDGE |
| 325 | template <int distanceMagnitude> |
| 326 | static unsigned char pack_distance_field_val(float dist) { |
| 327 | // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
| 328 | // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
| 329 | // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
| 330 | dist = SkTPin<float>(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
| 331 | |
| 332 | // Scale into the positive range for unsigned distance. |
| 333 | dist += distanceMagnitude; |
| 334 | |
| 335 | // Scale into unsigned char range. |
| 336 | // Round to place negative and positive values as equally as possible around 128 |
| 337 | // (which represents zero). |
| 338 | return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); |
| 339 | } |
| 340 | #endif |
| 341 | |
| 342 | // assumes a padded 8-bit image and distance field |
| 343 | // width and height are the original width and height of the image |
| 344 | static bool generate_distance_field_from_image(unsigned char* distanceField, |
| 345 | const unsigned char* copyPtr, |
| 346 | int width, int height) { |
| 347 | SkASSERT(distanceField); |
| 348 | SkASSERT(copyPtr); |
| 349 | |
| 350 | // we expand our temp data by one more on each side to simplify |
| 351 | // the scanning code -- will always be treated as infinitely far away |
| 352 | int pad = SK_DistanceFieldPad + 1; |
| 353 | |
| 354 | // set params for distance field data |
| 355 | int dataWidth = width + 2*pad; |
| 356 | int dataHeight = height + 2*pad; |
| 357 | |
| 358 | // create zeroed temp DFData+edge storage |
| 359 | SkAutoFree storage(sk_calloc_throw(dataWidth*dataHeight*(sizeof(DFData) + 1))); |
| 360 | DFData* dataPtr = (DFData*)storage.get(); |
| 361 | unsigned char* edgePtr = (unsigned char*)storage.get() + dataWidth*dataHeight*sizeof(DFData); |
| 362 | |
| 363 | // copy glyph into distance field storage |
| 364 | init_glyph_data(dataPtr, edgePtr, copyPtr, |
| 365 | dataWidth, dataHeight, |
| 366 | width+2, height+2, SK_DistanceFieldPad); |
| 367 | |
| 368 | // create initial distance data, particularly at edges |
| 369 | init_distances(dataPtr, edgePtr, dataWidth, dataHeight); |
| 370 | |
| 371 | // now perform Euclidean distance transform to propagate distances |
| 372 | |
| 373 | // forwards in y |
| 374 | DFData* currData = dataPtr+dataWidth+1; // skip outer buffer |
| 375 | unsigned char* currEdge = edgePtr+dataWidth+1; |
| 376 | for (int j = 1; j < dataHeight-1; ++j) { |
| 377 | // forwards in x |
| 378 | for (int i = 1; i < dataWidth-1; ++i) { |
| 379 | // don't need to calculate distance for edge pixels |
| 380 | if (!*currEdge) { |
| 381 | F1(currData, dataWidth); |
| 382 | } |
| 383 | ++currData; |
| 384 | ++currEdge; |
| 385 | } |
| 386 | |
| 387 | // backwards in x |
| 388 | --currData; // reset to end |
| 389 | --currEdge; |
| 390 | for (int i = 1; i < dataWidth-1; ++i) { |
| 391 | // don't need to calculate distance for edge pixels |
| 392 | if (!*currEdge) { |
| 393 | F2(currData, dataWidth); |
| 394 | } |
| 395 | --currData; |
| 396 | --currEdge; |
| 397 | } |
| 398 | |
| 399 | currData += dataWidth+1; |
| 400 | currEdge += dataWidth+1; |
| 401 | } |
| 402 | |
| 403 | // backwards in y |
| 404 | currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer |
| 405 | currEdge = edgePtr+dataWidth*(dataHeight-2) - 1; |
| 406 | for (int j = 1; j < dataHeight-1; ++j) { |
| 407 | // forwards in x |
| 408 | for (int i = 1; i < dataWidth-1; ++i) { |
| 409 | // don't need to calculate distance for edge pixels |
| 410 | if (!*currEdge) { |
| 411 | B1(currData, dataWidth); |
| 412 | } |
| 413 | ++currData; |
| 414 | ++currEdge; |
| 415 | } |
| 416 | |
| 417 | // backwards in x |
| 418 | --currData; // reset to end |
| 419 | --currEdge; |
| 420 | for (int i = 1; i < dataWidth-1; ++i) { |
| 421 | // don't need to calculate distance for edge pixels |
| 422 | if (!*currEdge) { |
| 423 | B2(currData, dataWidth); |
| 424 | } |
| 425 | --currData; |
| 426 | --currEdge; |
| 427 | } |
| 428 | |
| 429 | currData -= dataWidth-1; |
| 430 | currEdge -= dataWidth-1; |
| 431 | } |
| 432 | |
| 433 | // copy results to final distance field data |
| 434 | currData = dataPtr + dataWidth+1; |
| 435 | currEdge = edgePtr + dataWidth+1; |
| 436 | unsigned char *dfPtr = distanceField; |
| 437 | for (int j = 1; j < dataHeight-1; ++j) { |
| 438 | for (int i = 1; i < dataWidth-1; ++i) { |
| 439 | #if DUMP_EDGE |
| 440 | float alpha = currData->fAlpha; |
| 441 | float edge = 0.0f; |
| 442 | if (*currEdge) { |
| 443 | edge = 0.25f; |
| 444 | } |
| 445 | // blend with original image |
| 446 | float result = alpha + (1.0f-alpha)*edge; |
| 447 | unsigned char val = sk_float_round2int(255*result); |
| 448 | *dfPtr++ = val; |
| 449 | #else |
| 450 | float dist; |
| 451 | if (currData->fAlpha > 0.5f) { |
| 452 | dist = -SkScalarSqrt(currData->fDistSq); |
| 453 | } else { |
| 454 | dist = SkScalarSqrt(currData->fDistSq); |
| 455 | } |
| 456 | *dfPtr++ = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
| 457 | #endif |
| 458 | ++currData; |
| 459 | ++currEdge; |
| 460 | } |
| 461 | currData += 2; |
| 462 | currEdge += 2; |
| 463 | } |
| 464 | |
| 465 | return true; |
| 466 | } |
| 467 | |
| 468 | // assumes an 8-bit image and distance field |
| 469 | bool SkGenerateDistanceFieldFromA8Image(unsigned char* distanceField, |
| 470 | const unsigned char* image, |
| 471 | int width, int height, size_t rowBytes) { |
| 472 | SkASSERT(distanceField); |
| 473 | SkASSERT(image); |
| 474 | |
| 475 | // create temp data |
| 476 | SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char)); |
| 477 | unsigned char* copyPtr = (unsigned char*) copyStorage.get(); |
| 478 | |
| 479 | // we copy our source image into a padded copy to ensure we catch edge transitions |
| 480 | // around the outside |
| 481 | const unsigned char* currSrcScanLine = image; |
| 482 | sk_bzero(copyPtr, (width+2)*sizeof(char)); |
| 483 | unsigned char* currDestPtr = copyPtr + width + 2; |
| 484 | for (int i = 0; i < height; ++i) { |
| 485 | *currDestPtr++ = 0; |
| 486 | memcpy(currDestPtr, currSrcScanLine, width); |
| 487 | currSrcScanLine += rowBytes; |
| 488 | currDestPtr += width; |
| 489 | *currDestPtr++ = 0; |
| 490 | } |
| 491 | sk_bzero(currDestPtr, (width+2)*sizeof(char)); |
| 492 | |
| 493 | return generate_distance_field_from_image(distanceField, copyPtr, width, height); |
| 494 | } |
| 495 | |
| 496 | // assumes a 16-bit lcd mask and 8-bit distance field |
| 497 | bool SkGenerateDistanceFieldFromLCD16Mask(unsigned char* distanceField, |
| 498 | const unsigned char* image, |
| 499 | int w, int h, size_t rowBytes) { |
| 500 | SkASSERT(distanceField); |
| 501 | SkASSERT(image); |
| 502 | |
| 503 | // create temp data |
| 504 | SkAutoSMalloc<1024> copyStorage((w+2)*(h+2)*sizeof(char)); |
| 505 | unsigned char* copyPtr = (unsigned char*) copyStorage.get(); |
| 506 | |
| 507 | // we copy our source image into a padded copy to ensure we catch edge transitions |
| 508 | // around the outside |
| 509 | const uint16_t* start = reinterpret_cast<const uint16_t*>(image); |
| 510 | auto currSrcScanline = SkMask::AlphaIter<SkMask::kLCD16_Format>(start); |
| 511 | auto endSrcScanline = SkMask::AlphaIter<SkMask::kLCD16_Format>(start + w); |
| 512 | sk_bzero(copyPtr, (w+2)*sizeof(char)); |
| 513 | unsigned char* currDestPtr = copyPtr + w + 2; |
| 514 | for (int i = 0; i < h; ++i, currSrcScanline >>= rowBytes, endSrcScanline >>= rowBytes) { |
| 515 | *currDestPtr++ = 0; |
| 516 | for (auto src = currSrcScanline; src < endSrcScanline; ++src) { |
| 517 | *currDestPtr++ = *src; |
| 518 | } |
| 519 | *currDestPtr++ = 0; |
| 520 | } |
| 521 | sk_bzero(currDestPtr, (w+2)*sizeof(char)); |
| 522 | |
| 523 | return generate_distance_field_from_image(distanceField, copyPtr, w, h); |
| 524 | } |
| 525 | |
| 526 | // assumes a 1-bit image and 8-bit distance field |
| 527 | bool SkGenerateDistanceFieldFromBWImage(unsigned char* distanceField, |
| 528 | const unsigned char* image, |
| 529 | int width, int height, size_t rowBytes) { |
| 530 | SkASSERT(distanceField); |
| 531 | SkASSERT(image); |
| 532 | |
| 533 | // create temp data |
| 534 | SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char)); |
| 535 | unsigned char* copyPtr = (unsigned char*) copyStorage.get(); |
| 536 | |
| 537 | // we copy our source image into a padded copy to ensure we catch edge transitions |
| 538 | // around the outside |
| 539 | const unsigned char* currSrcScanLine = image; |
| 540 | sk_bzero(copyPtr, (width+2)*sizeof(char)); |
| 541 | unsigned char* currDestPtr = copyPtr + width + 2; |
| 542 | for (int i = 0; i < height; ++i) { |
| 543 | *currDestPtr++ = 0; |
| 544 | |
| 545 | |
| 546 | int rowWritesLeft = width; |
| 547 | const unsigned char *maskPtr = currSrcScanLine; |
| 548 | while (rowWritesLeft > 0) { |
| 549 | unsigned mask = *maskPtr++; |
| 550 | for (int i = 7; i >= 0 && rowWritesLeft; --i, --rowWritesLeft) { |
| 551 | *currDestPtr++ = (mask & (1 << i)) ? 0xff : 0; |
| 552 | } |
| 553 | } |
| 554 | currSrcScanLine += rowBytes; |
| 555 | |
| 556 | |
| 557 | *currDestPtr++ = 0; |
| 558 | } |
| 559 | sk_bzero(currDestPtr, (width+2)*sizeof(char)); |
| 560 | |
| 561 | return generate_distance_field_from_image(distanceField, copyPtr, width, height); |
| 562 | } |
| 563 | |