1 | /* |
2 | * Copyright 2009 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/private/SkMacros.h" |
9 | #include "src/core/SkEdgeClipper.h" |
10 | #include "src/core/SkGeometry.h" |
11 | #include "src/core/SkLineClipper.h" |
12 | |
13 | #include <utility> |
14 | |
15 | static bool quick_reject(const SkRect& bounds, const SkRect& clip) { |
16 | return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop; |
17 | } |
18 | |
19 | static inline void clamp_le(SkScalar& value, SkScalar max) { |
20 | if (value > max) { |
21 | value = max; |
22 | } |
23 | } |
24 | |
25 | static inline void clamp_ge(SkScalar& value, SkScalar min) { |
26 | if (value < min) { |
27 | value = min; |
28 | } |
29 | } |
30 | |
31 | /* src[] must be monotonic in Y. This routine copies src into dst, and sorts |
32 | it to be increasing in Y. If it had to reverse the order of the points, |
33 | it returns true, otherwise it returns false |
34 | */ |
35 | static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) { |
36 | // we need the data to be monotonically increasing in Y |
37 | if (src[0].fY > src[count - 1].fY) { |
38 | for (int i = 0; i < count; i++) { |
39 | dst[i] = src[count - i - 1]; |
40 | } |
41 | return true; |
42 | } else { |
43 | memcpy(dst, src, count * sizeof(SkPoint)); |
44 | return false; |
45 | } |
46 | } |
47 | |
48 | bool SkEdgeClipper::clipLine(SkPoint p0, SkPoint p1, const SkRect& clip) { |
49 | fCurrPoint = fPoints; |
50 | fCurrVerb = fVerbs; |
51 | |
52 | SkPoint lines[SkLineClipper::kMaxPoints]; |
53 | const SkPoint pts[] = { p0, p1 }; |
54 | int lineCount = SkLineClipper::ClipLine(pts, clip, lines, fCanCullToTheRight); |
55 | for (int i = 0; i < lineCount; i++) { |
56 | this->appendLine(lines[i], lines[i + 1]); |
57 | } |
58 | |
59 | *fCurrVerb = SkPath::kDone_Verb; |
60 | fCurrPoint = fPoints; |
61 | fCurrVerb = fVerbs; |
62 | return SkPath::kDone_Verb != fVerbs[0]; |
63 | } |
64 | |
65 | /////////////////////////////////////////////////////////////////////////////// |
66 | |
67 | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, |
68 | SkScalar target, SkScalar* t) { |
69 | /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 |
70 | * We solve for t, using quadratic equation, hence we have to rearrange |
71 | * our cooefficents to look like At^2 + Bt + C |
72 | */ |
73 | SkScalar A = c0 - c1 - c1 + c2; |
74 | SkScalar B = 2*(c1 - c0); |
75 | SkScalar C = c0 - target; |
76 | |
77 | SkScalar roots[2]; // we only expect one, but make room for 2 for safety |
78 | int count = SkFindUnitQuadRoots(A, B, C, roots); |
79 | if (count) { |
80 | *t = roots[0]; |
81 | return true; |
82 | } |
83 | return false; |
84 | } |
85 | |
86 | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { |
87 | return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); |
88 | } |
89 | |
90 | static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) { |
91 | return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t); |
92 | } |
93 | |
94 | // Modify pts[] in place so that it is clipped in Y to the clip rect |
95 | static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) { |
96 | SkScalar t; |
97 | SkPoint tmp[5]; // for SkChopQuadAt |
98 | |
99 | // are we partially above |
100 | if (pts[0].fY < clip.fTop) { |
101 | if (chopMonoQuadAtY(pts, clip.fTop, &t)) { |
102 | // take the 2nd chopped quad |
103 | SkChopQuadAt(pts, tmp, t); |
104 | // clamp to clean up imprecise numerics in the chop |
105 | tmp[2].fY = clip.fTop; |
106 | clamp_ge(tmp[3].fY, clip.fTop); |
107 | |
108 | pts[0] = tmp[2]; |
109 | pts[1] = tmp[3]; |
110 | } else { |
111 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
112 | // so we just clamp against the top |
113 | for (int i = 0; i < 3; i++) { |
114 | if (pts[i].fY < clip.fTop) { |
115 | pts[i].fY = clip.fTop; |
116 | } |
117 | } |
118 | } |
119 | } |
120 | |
121 | // are we partially below |
122 | if (pts[2].fY > clip.fBottom) { |
123 | if (chopMonoQuadAtY(pts, clip.fBottom, &t)) { |
124 | SkChopQuadAt(pts, tmp, t); |
125 | // clamp to clean up imprecise numerics in the chop |
126 | clamp_le(tmp[1].fY, clip.fBottom); |
127 | tmp[2].fY = clip.fBottom; |
128 | |
129 | pts[1] = tmp[1]; |
130 | pts[2] = tmp[2]; |
131 | } else { |
132 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
133 | // so we just clamp against the bottom |
134 | for (int i = 0; i < 3; i++) { |
135 | if (pts[i].fY > clip.fBottom) { |
136 | pts[i].fY = clip.fBottom; |
137 | } |
138 | } |
139 | } |
140 | } |
141 | } |
142 | |
143 | // srcPts[] must be monotonic in X and Y |
144 | void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) { |
145 | SkPoint pts[3]; |
146 | bool reverse = sort_increasing_Y(pts, srcPts, 3); |
147 | |
148 | // are we completely above or below |
149 | if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { |
150 | return; |
151 | } |
152 | |
153 | // Now chop so that pts is contained within clip in Y |
154 | chop_quad_in_Y(pts, clip); |
155 | |
156 | if (pts[0].fX > pts[2].fX) { |
157 | using std::swap; |
158 | swap(pts[0], pts[2]); |
159 | reverse = !reverse; |
160 | } |
161 | SkASSERT(pts[0].fX <= pts[1].fX); |
162 | SkASSERT(pts[1].fX <= pts[2].fX); |
163 | |
164 | // Now chop in X has needed, and record the segments |
165 | |
166 | if (pts[2].fX <= clip.fLeft) { // wholly to the left |
167 | this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); |
168 | return; |
169 | } |
170 | if (pts[0].fX >= clip.fRight) { // wholly to the right |
171 | if (!this->canCullToTheRight()) { |
172 | this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); |
173 | } |
174 | return; |
175 | } |
176 | |
177 | SkScalar t; |
178 | SkPoint tmp[5]; // for SkChopQuadAt |
179 | |
180 | // are we partially to the left |
181 | if (pts[0].fX < clip.fLeft) { |
182 | if (chopMonoQuadAtX(pts, clip.fLeft, &t)) { |
183 | SkChopQuadAt(pts, tmp, t); |
184 | this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse); |
185 | // clamp to clean up imprecise numerics in the chop |
186 | tmp[2].fX = clip.fLeft; |
187 | clamp_ge(tmp[3].fX, clip.fLeft); |
188 | |
189 | pts[0] = tmp[2]; |
190 | pts[1] = tmp[3]; |
191 | } else { |
192 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
193 | // so we just clamp against the left |
194 | this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); |
195 | return; |
196 | } |
197 | } |
198 | |
199 | // are we partially to the right |
200 | if (pts[2].fX > clip.fRight) { |
201 | if (chopMonoQuadAtX(pts, clip.fRight, &t)) { |
202 | SkChopQuadAt(pts, tmp, t); |
203 | // clamp to clean up imprecise numerics in the chop |
204 | clamp_le(tmp[1].fX, clip.fRight); |
205 | tmp[2].fX = clip.fRight; |
206 | |
207 | this->appendQuad(tmp, reverse); |
208 | this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse); |
209 | } else { |
210 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
211 | // so we just clamp against the right |
212 | this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); |
213 | } |
214 | } else { // wholly inside the clip |
215 | this->appendQuad(pts, reverse); |
216 | } |
217 | } |
218 | |
219 | bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) { |
220 | fCurrPoint = fPoints; |
221 | fCurrVerb = fVerbs; |
222 | |
223 | SkRect bounds; |
224 | bounds.setBounds(srcPts, 3); |
225 | |
226 | if (!quick_reject(bounds, clip)) { |
227 | SkPoint monoY[5]; |
228 | int countY = SkChopQuadAtYExtrema(srcPts, monoY); |
229 | for (int y = 0; y <= countY; y++) { |
230 | SkPoint monoX[5]; |
231 | int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX); |
232 | for (int x = 0; x <= countX; x++) { |
233 | this->clipMonoQuad(&monoX[x * 2], clip); |
234 | SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); |
235 | SkASSERT(fCurrPoint - fPoints <= kMaxPoints); |
236 | } |
237 | } |
238 | } |
239 | |
240 | *fCurrVerb = SkPath::kDone_Verb; |
241 | fCurrPoint = fPoints; |
242 | fCurrVerb = fVerbs; |
243 | return SkPath::kDone_Verb != fVerbs[0]; |
244 | } |
245 | |
246 | /////////////////////////////////////////////////////////////////////////////// |
247 | |
248 | static SkScalar mono_cubic_closestT(const SkScalar src[], SkScalar x) { |
249 | SkScalar t = 0.5f; |
250 | SkScalar lastT; |
251 | SkScalar bestT SK_INIT_TO_AVOID_WARNING; |
252 | SkScalar step = 0.25f; |
253 | SkScalar D = src[0]; |
254 | SkScalar A = src[6] + 3*(src[2] - src[4]) - D; |
255 | SkScalar B = 3*(src[4] - src[2] - src[2] + D); |
256 | SkScalar C = 3*(src[2] - D); |
257 | x -= D; |
258 | SkScalar closest = SK_ScalarMax; |
259 | do { |
260 | SkScalar loc = ((A * t + B) * t + C) * t; |
261 | SkScalar dist = SkScalarAbs(loc - x); |
262 | if (closest > dist) { |
263 | closest = dist; |
264 | bestT = t; |
265 | } |
266 | lastT = t; |
267 | t += loc < x ? step : -step; |
268 | step *= 0.5f; |
269 | } while (closest > 0.25f && lastT != t); |
270 | return bestT; |
271 | } |
272 | |
273 | static void chop_mono_cubic_at_y(SkPoint src[4], SkScalar y, SkPoint dst[7]) { |
274 | if (SkChopMonoCubicAtY(src, y, dst)) { |
275 | return; |
276 | } |
277 | SkChopCubicAt(src, dst, mono_cubic_closestT(&src->fY, y)); |
278 | } |
279 | |
280 | // Modify pts[] in place so that it is clipped in Y to the clip rect |
281 | static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) { |
282 | |
283 | // are we partially above |
284 | if (pts[0].fY < clip.fTop) { |
285 | SkPoint tmp[7]; |
286 | chop_mono_cubic_at_y(pts, clip.fTop, tmp); |
287 | |
288 | /* |
289 | * For a large range in the points, we can do a poor job of chopping, such that the t |
290 | * we computed resulted in the lower cubic still being partly above the clip. |
291 | * |
292 | * If just the first or first 2 Y values are above the fTop, we can just smash them |
293 | * down. If the first 3 Ys are above fTop, we can't smash all 3, as that can really |
294 | * distort the cubic. In this case, we take the first output (tmp[3..6] and treat it as |
295 | * a guess, and re-chop against fTop. Then we fall through to checking if we need to |
296 | * smash the first 1 or 2 Y values. |
297 | */ |
298 | if (tmp[3].fY < clip.fTop && tmp[4].fY < clip.fTop && tmp[5].fY < clip.fTop) { |
299 | SkPoint tmp2[4]; |
300 | memcpy(tmp2, &tmp[3].fX, 4 * sizeof(SkPoint)); |
301 | chop_mono_cubic_at_y(tmp2, clip.fTop, tmp); |
302 | } |
303 | |
304 | // tmp[3, 4].fY should all be to the below clip.fTop. |
305 | // Since we can't trust the numerics of the chopper, we force those conditions now |
306 | tmp[3].fY = clip.fTop; |
307 | clamp_ge(tmp[4].fY, clip.fTop); |
308 | |
309 | pts[0] = tmp[3]; |
310 | pts[1] = tmp[4]; |
311 | pts[2] = tmp[5]; |
312 | } |
313 | |
314 | // are we partially below |
315 | if (pts[3].fY > clip.fBottom) { |
316 | SkPoint tmp[7]; |
317 | chop_mono_cubic_at_y(pts, clip.fBottom, tmp); |
318 | tmp[3].fY = clip.fBottom; |
319 | clamp_le(tmp[2].fY, clip.fBottom); |
320 | |
321 | pts[1] = tmp[1]; |
322 | pts[2] = tmp[2]; |
323 | pts[3] = tmp[3]; |
324 | } |
325 | } |
326 | |
327 | static void chop_mono_cubic_at_x(SkPoint src[4], SkScalar x, SkPoint dst[7]) { |
328 | if (SkChopMonoCubicAtX(src, x, dst)) { |
329 | return; |
330 | } |
331 | SkChopCubicAt(src, dst, mono_cubic_closestT(&src->fX, x)); |
332 | } |
333 | |
334 | // srcPts[] must be monotonic in X and Y |
335 | void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) { |
336 | SkPoint pts[4]; |
337 | bool reverse = sort_increasing_Y(pts, src, 4); |
338 | |
339 | // are we completely above or below |
340 | if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { |
341 | return; |
342 | } |
343 | |
344 | // Now chop so that pts is contained within clip in Y |
345 | chop_cubic_in_Y(pts, clip); |
346 | |
347 | if (pts[0].fX > pts[3].fX) { |
348 | using std::swap; |
349 | swap(pts[0], pts[3]); |
350 | swap(pts[1], pts[2]); |
351 | reverse = !reverse; |
352 | } |
353 | |
354 | // Now chop in X has needed, and record the segments |
355 | |
356 | if (pts[3].fX <= clip.fLeft) { // wholly to the left |
357 | this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); |
358 | return; |
359 | } |
360 | if (pts[0].fX >= clip.fRight) { // wholly to the right |
361 | if (!this->canCullToTheRight()) { |
362 | this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); |
363 | } |
364 | return; |
365 | } |
366 | |
367 | // are we partially to the left |
368 | if (pts[0].fX < clip.fLeft) { |
369 | SkPoint tmp[7]; |
370 | chop_mono_cubic_at_x(pts, clip.fLeft, tmp); |
371 | this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse); |
372 | |
373 | // tmp[3, 4].fX should all be to the right of clip.fLeft. |
374 | // Since we can't trust the numerics of |
375 | // the chopper, we force those conditions now |
376 | tmp[3].fX = clip.fLeft; |
377 | clamp_ge(tmp[4].fX, clip.fLeft); |
378 | |
379 | pts[0] = tmp[3]; |
380 | pts[1] = tmp[4]; |
381 | pts[2] = tmp[5]; |
382 | } |
383 | |
384 | // are we partially to the right |
385 | if (pts[3].fX > clip.fRight) { |
386 | SkPoint tmp[7]; |
387 | chop_mono_cubic_at_x(pts, clip.fRight, tmp); |
388 | tmp[3].fX = clip.fRight; |
389 | clamp_le(tmp[2].fX, clip.fRight); |
390 | |
391 | this->appendCubic(tmp, reverse); |
392 | this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse); |
393 | } else { // wholly inside the clip |
394 | this->appendCubic(pts, reverse); |
395 | } |
396 | } |
397 | |
398 | static SkRect compute_cubic_bounds(const SkPoint pts[4]) { |
399 | SkRect r; |
400 | r.setBounds(pts, 4); |
401 | return r; |
402 | } |
403 | |
404 | static bool too_big_for_reliable_float_math(const SkRect& r) { |
405 | // limit set as the largest float value for which we can still reliably compute things like |
406 | // - chopping at XY extrema |
407 | // - chopping at Y or X values for clipping |
408 | // |
409 | // Current value chosen just by experiment. Larger (and still succeeds) is always better. |
410 | // |
411 | const SkScalar limit = 1 << 22; |
412 | return r.fLeft < -limit || r.fTop < -limit || r.fRight > limit || r.fBottom > limit; |
413 | } |
414 | |
415 | bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) { |
416 | fCurrPoint = fPoints; |
417 | fCurrVerb = fVerbs; |
418 | |
419 | const SkRect bounds = compute_cubic_bounds(srcPts); |
420 | // check if we're clipped out vertically |
421 | if (bounds.fBottom > clip.fTop && bounds.fTop < clip.fBottom) { |
422 | if (too_big_for_reliable_float_math(bounds)) { |
423 | // can't safely clip the cubic, so we give up and draw a line (which we can safely clip) |
424 | // |
425 | // If we rewrote chopcubicat*extrema and chopmonocubic using doubles, we could very |
426 | // likely always handle the cubic safely, but (it seems) at a big loss in speed, so |
427 | // we'd only want to take that alternate impl if needed. Perhaps a TODO to try it. |
428 | // |
429 | return this->clipLine(srcPts[0], srcPts[3], clip); |
430 | } else { |
431 | SkPoint monoY[10]; |
432 | int countY = SkChopCubicAtYExtrema(srcPts, monoY); |
433 | for (int y = 0; y <= countY; y++) { |
434 | SkPoint monoX[10]; |
435 | int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX); |
436 | for (int x = 0; x <= countX; x++) { |
437 | this->clipMonoCubic(&monoX[x * 3], clip); |
438 | SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); |
439 | SkASSERT(fCurrPoint - fPoints <= kMaxPoints); |
440 | } |
441 | } |
442 | } |
443 | } |
444 | |
445 | *fCurrVerb = SkPath::kDone_Verb; |
446 | fCurrPoint = fPoints; |
447 | fCurrVerb = fVerbs; |
448 | return SkPath::kDone_Verb != fVerbs[0]; |
449 | } |
450 | |
451 | /////////////////////////////////////////////////////////////////////////////// |
452 | |
453 | void SkEdgeClipper::appendLine(SkPoint p0, SkPoint p1) { |
454 | *fCurrVerb++ = SkPath::kLine_Verb; |
455 | fCurrPoint[0] = p0; |
456 | fCurrPoint[1] = p1; |
457 | fCurrPoint += 2; |
458 | } |
459 | |
460 | void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1, bool reverse) { |
461 | *fCurrVerb++ = SkPath::kLine_Verb; |
462 | |
463 | if (reverse) { |
464 | using std::swap; |
465 | swap(y0, y1); |
466 | } |
467 | fCurrPoint[0].set(x, y0); |
468 | fCurrPoint[1].set(x, y1); |
469 | fCurrPoint += 2; |
470 | } |
471 | |
472 | void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) { |
473 | *fCurrVerb++ = SkPath::kQuad_Verb; |
474 | |
475 | if (reverse) { |
476 | fCurrPoint[0] = pts[2]; |
477 | fCurrPoint[2] = pts[0]; |
478 | } else { |
479 | fCurrPoint[0] = pts[0]; |
480 | fCurrPoint[2] = pts[2]; |
481 | } |
482 | fCurrPoint[1] = pts[1]; |
483 | fCurrPoint += 3; |
484 | } |
485 | |
486 | void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) { |
487 | *fCurrVerb++ = SkPath::kCubic_Verb; |
488 | |
489 | if (reverse) { |
490 | for (int i = 0; i < 4; i++) { |
491 | fCurrPoint[i] = pts[3 - i]; |
492 | } |
493 | } else { |
494 | memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint)); |
495 | } |
496 | fCurrPoint += 4; |
497 | } |
498 | |
499 | SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) { |
500 | SkPath::Verb verb = *fCurrVerb; |
501 | |
502 | switch (verb) { |
503 | case SkPath::kLine_Verb: |
504 | memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint)); |
505 | fCurrPoint += 2; |
506 | fCurrVerb += 1; |
507 | break; |
508 | case SkPath::kQuad_Verb: |
509 | memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint)); |
510 | fCurrPoint += 3; |
511 | fCurrVerb += 1; |
512 | break; |
513 | case SkPath::kCubic_Verb: |
514 | memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint)); |
515 | fCurrPoint += 4; |
516 | fCurrVerb += 1; |
517 | break; |
518 | case SkPath::kDone_Verb: |
519 | break; |
520 | default: |
521 | SkDEBUGFAIL("unexpected verb in quadclippper2 iter" ); |
522 | break; |
523 | } |
524 | return verb; |
525 | } |
526 | |
527 | /////////////////////////////////////////////////////////////////////////////// |
528 | |
529 | #ifdef SK_DEBUG |
530 | static void assert_monotonic(const SkScalar coord[], int count) { |
531 | if (coord[0] > coord[(count - 1) * 2]) { |
532 | for (int i = 1; i < count; i++) { |
533 | SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]); |
534 | } |
535 | } else if (coord[0] < coord[(count - 1) * 2]) { |
536 | for (int i = 1; i < count; i++) { |
537 | SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]); |
538 | } |
539 | } else { |
540 | for (int i = 1; i < count; i++) { |
541 | SkASSERT(coord[2 * (i - 1)] == coord[i * 2]); |
542 | } |
543 | } |
544 | } |
545 | |
546 | void sk_assert_monotonic_y(const SkPoint pts[], int count) { |
547 | if (count > 1) { |
548 | assert_monotonic(&pts[0].fY, count); |
549 | } |
550 | } |
551 | |
552 | void sk_assert_monotonic_x(const SkPoint pts[], int count) { |
553 | if (count > 1) { |
554 | assert_monotonic(&pts[0].fX, count); |
555 | } |
556 | } |
557 | #endif |
558 | |
559 | #include "src/core/SkPathPriv.h" |
560 | |
561 | void SkEdgeClipper::ClipPath(const SkPath& path, const SkRect& clip, bool canCullToTheRight, |
562 | void (*consume)(SkEdgeClipper*, bool newCtr, void* ctx), void* ctx) { |
563 | SkASSERT(path.isFinite()); |
564 | |
565 | SkAutoConicToQuads quadder; |
566 | const SkScalar conicTol = SK_Scalar1 / 4; |
567 | |
568 | SkPathEdgeIter iter(path); |
569 | SkEdgeClipper clipper(canCullToTheRight); |
570 | |
571 | while (auto e = iter.next()) { |
572 | switch (e.fEdge) { |
573 | case SkPathEdgeIter::Edge::kLine: |
574 | if (clipper.clipLine(e.fPts[0], e.fPts[1], clip)) { |
575 | consume(&clipper, e.fIsNewContour, ctx); |
576 | } |
577 | break; |
578 | case SkPathEdgeIter::Edge::kQuad: |
579 | if (clipper.clipQuad(e.fPts, clip)) { |
580 | consume(&clipper, e.fIsNewContour, ctx); |
581 | } |
582 | break; |
583 | case SkPathEdgeIter::Edge::kConic: { |
584 | const SkPoint* quadPts = quadder.computeQuads(e.fPts, iter.conicWeight(), conicTol); |
585 | for (int i = 0; i < quadder.countQuads(); ++i) { |
586 | if (clipper.clipQuad(quadPts, clip)) { |
587 | consume(&clipper, e.fIsNewContour, ctx); |
588 | } |
589 | quadPts += 2; |
590 | } |
591 | } break; |
592 | case SkPathEdgeIter::Edge::kCubic: |
593 | if (clipper.clipCubic(e.fPts, clip)) { |
594 | consume(&clipper, e.fIsNewContour, ctx); |
595 | } |
596 | break; |
597 | } |
598 | } |
599 | } |
600 | |