| 1 | /* | 
| 2 |  * Copyright 2008 The Android Open Source Project | 
| 3 |  * | 
| 4 |  * Use of this source code is governed by a BSD-style license that can be | 
| 5 |  * found in the LICENSE file. | 
| 6 |  */ | 
| 7 |  | 
| 8 | #include "src/core/SkMathPriv.h" | 
| 9 | #include "src/core/SkPointPriv.h" | 
| 10 |  | 
| 11 | /////////////////////////////////////////////////////////////////////////////// | 
| 12 |  | 
| 13 | void SkPoint::scale(SkScalar scale, SkPoint* dst) const { | 
| 14 |     SkASSERT(dst); | 
| 15 |     dst->set(fX * scale, fY * scale); | 
| 16 | } | 
| 17 |  | 
| 18 | bool SkPoint::normalize() { | 
| 19 |     return this->setLength(fX, fY, SK_Scalar1); | 
| 20 | } | 
| 21 |  | 
| 22 | bool SkPoint::setNormalize(SkScalar x, SkScalar y) { | 
| 23 |     return this->setLength(x, y, SK_Scalar1); | 
| 24 | } | 
| 25 |  | 
| 26 | bool SkPoint::setLength(SkScalar length) { | 
| 27 |     return this->setLength(fX, fY, length); | 
| 28 | } | 
| 29 |  | 
| 30 | /* | 
| 31 |  *  We have to worry about 2 tricky conditions: | 
| 32 |  *  1. underflow of mag2 (compared against nearlyzero^2) | 
| 33 |  *  2. overflow of mag2 (compared w/ isfinite) | 
| 34 |  * | 
| 35 |  *  If we underflow, we return false. If we overflow, we compute again using | 
| 36 |  *  doubles, which is much slower (3x in a desktop test) but will not overflow. | 
| 37 |  */ | 
| 38 | template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length, | 
| 39 |                                                 float* orig_length = nullptr) { | 
| 40 |     SkASSERT(!use_rsqrt || (orig_length == nullptr)); | 
| 41 |  | 
| 42 |     // our mag2 step overflowed to infinity, so use doubles instead. | 
| 43 |     // much slower, but needed when x or y are very large, other wise we | 
| 44 |     // divide by inf. and return (0,0) vector. | 
| 45 |     double xx = x; | 
| 46 |     double yy = y; | 
| 47 |     double dmag = sqrt(xx * xx + yy * yy); | 
| 48 |     double dscale = sk_ieee_double_divide(length, dmag); | 
| 49 |     x *= dscale; | 
| 50 |     y *= dscale; | 
| 51 |     // check if we're not finite, or we're zero-length | 
| 52 |     if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) { | 
| 53 |         pt->set(0, 0); | 
| 54 |         return false; | 
| 55 |     } | 
| 56 |     float mag = 0; | 
| 57 |     if (orig_length) { | 
| 58 |         mag = sk_double_to_float(dmag); | 
| 59 |     } | 
| 60 |     pt->set(x, y); | 
| 61 |     if (orig_length) { | 
| 62 |         *orig_length = mag; | 
| 63 |     } | 
| 64 |     return true; | 
| 65 | } | 
| 66 |  | 
| 67 | SkScalar SkPoint::Normalize(SkPoint* pt) { | 
| 68 |     float mag; | 
| 69 |     if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) { | 
| 70 |         return mag; | 
| 71 |     } | 
| 72 |     return 0; | 
| 73 | } | 
| 74 |  | 
| 75 | SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { | 
| 76 |     float mag2 = dx * dx + dy * dy; | 
| 77 |     if (SkScalarIsFinite(mag2)) { | 
| 78 |         return sk_float_sqrt(mag2); | 
| 79 |     } else { | 
| 80 |         double xx = dx; | 
| 81 |         double yy = dy; | 
| 82 |         return sk_double_to_float(sqrt(xx * xx + yy * yy)); | 
| 83 |     } | 
| 84 | } | 
| 85 |  | 
| 86 | bool SkPoint::setLength(float x, float y, float length) { | 
| 87 |     return set_point_length<false>(this, x, y, length); | 
| 88 | } | 
| 89 |  | 
| 90 | bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) { | 
| 91 |     return set_point_length<true>(pt, pt->fX, pt->fY, length); | 
| 92 | } | 
| 93 |  | 
| 94 |  | 
| 95 | /////////////////////////////////////////////////////////////////////////////// | 
| 96 |  | 
| 97 | SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a, | 
| 98 |                                                const SkPoint& b, | 
| 99 |                                                Side* side) { | 
| 100 |  | 
| 101 |     SkVector u = b - a; | 
| 102 |     SkVector v = pt - a; | 
| 103 |  | 
| 104 |     SkScalar uLengthSqd = LengthSqd(u); | 
| 105 |     SkScalar det = u.cross(v); | 
| 106 |     if (side) { | 
| 107 |         SkASSERT(-1 == kLeft_Side && | 
| 108 |                   0 == kOn_Side && | 
| 109 |                   1 == kRight_Side); | 
| 110 |         *side = (Side) SkScalarSignAsInt(det); | 
| 111 |     } | 
| 112 |     SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); | 
| 113 |     temp *= det; | 
| 114 |     // It's possible we have a degenerate line vector, or we're so far away it looks degenerate | 
| 115 |     // In this case, return squared distance to point A. | 
| 116 |     if (!SkScalarIsFinite(temp)) { | 
| 117 |         return LengthSqd(v); | 
| 118 |     } | 
| 119 |     return temp; | 
| 120 | } | 
| 121 |  | 
| 122 | SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a, | 
| 123 |                                                       const SkPoint& b) { | 
| 124 |     // See comments to distanceToLineBetweenSqd. If the projection of c onto | 
| 125 |     // u is between a and b then this returns the same result as that | 
| 126 |     // function. Otherwise, it returns the distance to the closer of a and | 
| 127 |     // b. Let the projection of v onto u be v'.  There are three cases: | 
| 128 |     //    1. v' points opposite to u. c is not between a and b and is closer | 
| 129 |     //       to a than b. | 
| 130 |     //    2. v' points along u and has magnitude less than y. c is between | 
| 131 |     //       a and b and the distance to the segment is the same as distance | 
| 132 |     //       to the line ab. | 
| 133 |     //    3. v' points along u and has greater magnitude than u. c is not | 
| 134 |     //       not between a and b and is closer to b than a. | 
| 135 |     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're | 
| 136 |     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise | 
| 137 |     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to | 
| 138 |     // avoid a sqrt to compute |u|. | 
| 139 |  | 
| 140 |     SkVector u = b - a; | 
| 141 |     SkVector v = pt - a; | 
| 142 |  | 
| 143 |     SkScalar uLengthSqd = LengthSqd(u); | 
| 144 |     SkScalar uDotV = SkPoint::DotProduct(u, v); | 
| 145 |  | 
| 146 |     // closest point is point A | 
| 147 |     if (uDotV <= 0) { | 
| 148 |         return LengthSqd(v); | 
| 149 |     // closest point is point B | 
| 150 |     } else if (uDotV > uLengthSqd) { | 
| 151 |         return DistanceToSqd(b, pt); | 
| 152 |     // closest point is inside segment | 
| 153 |     } else { | 
| 154 |         SkScalar det = u.cross(v); | 
| 155 |         SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); | 
| 156 |         temp *= det; | 
| 157 |         // It's possible we have a degenerate segment, or we're so far away it looks degenerate | 
| 158 |         // In this case, return squared distance to point A. | 
| 159 |         if (!SkScalarIsFinite(temp)) { | 
| 160 |             return LengthSqd(v); | 
| 161 |         } | 
| 162 |         return temp; | 
| 163 |     } | 
| 164 | } | 
| 165 |  |