1 | /* |
2 | * Copyright 2008 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkMathPriv.h" |
9 | #include "src/core/SkPointPriv.h" |
10 | |
11 | /////////////////////////////////////////////////////////////////////////////// |
12 | |
13 | void SkPoint::scale(SkScalar scale, SkPoint* dst) const { |
14 | SkASSERT(dst); |
15 | dst->set(fX * scale, fY * scale); |
16 | } |
17 | |
18 | bool SkPoint::normalize() { |
19 | return this->setLength(fX, fY, SK_Scalar1); |
20 | } |
21 | |
22 | bool SkPoint::setNormalize(SkScalar x, SkScalar y) { |
23 | return this->setLength(x, y, SK_Scalar1); |
24 | } |
25 | |
26 | bool SkPoint::setLength(SkScalar length) { |
27 | return this->setLength(fX, fY, length); |
28 | } |
29 | |
30 | /* |
31 | * We have to worry about 2 tricky conditions: |
32 | * 1. underflow of mag2 (compared against nearlyzero^2) |
33 | * 2. overflow of mag2 (compared w/ isfinite) |
34 | * |
35 | * If we underflow, we return false. If we overflow, we compute again using |
36 | * doubles, which is much slower (3x in a desktop test) but will not overflow. |
37 | */ |
38 | template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length, |
39 | float* orig_length = nullptr) { |
40 | SkASSERT(!use_rsqrt || (orig_length == nullptr)); |
41 | |
42 | // our mag2 step overflowed to infinity, so use doubles instead. |
43 | // much slower, but needed when x or y are very large, other wise we |
44 | // divide by inf. and return (0,0) vector. |
45 | double xx = x; |
46 | double yy = y; |
47 | double dmag = sqrt(xx * xx + yy * yy); |
48 | double dscale = sk_ieee_double_divide(length, dmag); |
49 | x *= dscale; |
50 | y *= dscale; |
51 | // check if we're not finite, or we're zero-length |
52 | if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) { |
53 | pt->set(0, 0); |
54 | return false; |
55 | } |
56 | float mag = 0; |
57 | if (orig_length) { |
58 | mag = sk_double_to_float(dmag); |
59 | } |
60 | pt->set(x, y); |
61 | if (orig_length) { |
62 | *orig_length = mag; |
63 | } |
64 | return true; |
65 | } |
66 | |
67 | SkScalar SkPoint::Normalize(SkPoint* pt) { |
68 | float mag; |
69 | if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) { |
70 | return mag; |
71 | } |
72 | return 0; |
73 | } |
74 | |
75 | SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { |
76 | float mag2 = dx * dx + dy * dy; |
77 | if (SkScalarIsFinite(mag2)) { |
78 | return sk_float_sqrt(mag2); |
79 | } else { |
80 | double xx = dx; |
81 | double yy = dy; |
82 | return sk_double_to_float(sqrt(xx * xx + yy * yy)); |
83 | } |
84 | } |
85 | |
86 | bool SkPoint::setLength(float x, float y, float length) { |
87 | return set_point_length<false>(this, x, y, length); |
88 | } |
89 | |
90 | bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) { |
91 | return set_point_length<true>(pt, pt->fX, pt->fY, length); |
92 | } |
93 | |
94 | |
95 | /////////////////////////////////////////////////////////////////////////////// |
96 | |
97 | SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a, |
98 | const SkPoint& b, |
99 | Side* side) { |
100 | |
101 | SkVector u = b - a; |
102 | SkVector v = pt - a; |
103 | |
104 | SkScalar uLengthSqd = LengthSqd(u); |
105 | SkScalar det = u.cross(v); |
106 | if (side) { |
107 | SkASSERT(-1 == kLeft_Side && |
108 | 0 == kOn_Side && |
109 | 1 == kRight_Side); |
110 | *side = (Side) SkScalarSignAsInt(det); |
111 | } |
112 | SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); |
113 | temp *= det; |
114 | // It's possible we have a degenerate line vector, or we're so far away it looks degenerate |
115 | // In this case, return squared distance to point A. |
116 | if (!SkScalarIsFinite(temp)) { |
117 | return LengthSqd(v); |
118 | } |
119 | return temp; |
120 | } |
121 | |
122 | SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a, |
123 | const SkPoint& b) { |
124 | // See comments to distanceToLineBetweenSqd. If the projection of c onto |
125 | // u is between a and b then this returns the same result as that |
126 | // function. Otherwise, it returns the distance to the closer of a and |
127 | // b. Let the projection of v onto u be v'. There are three cases: |
128 | // 1. v' points opposite to u. c is not between a and b and is closer |
129 | // to a than b. |
130 | // 2. v' points along u and has magnitude less than y. c is between |
131 | // a and b and the distance to the segment is the same as distance |
132 | // to the line ab. |
133 | // 3. v' points along u and has greater magnitude than u. c is not |
134 | // not between a and b and is closer to b than a. |
135 | // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're |
136 | // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise |
137 | // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to |
138 | // avoid a sqrt to compute |u|. |
139 | |
140 | SkVector u = b - a; |
141 | SkVector v = pt - a; |
142 | |
143 | SkScalar uLengthSqd = LengthSqd(u); |
144 | SkScalar uDotV = SkPoint::DotProduct(u, v); |
145 | |
146 | // closest point is point A |
147 | if (uDotV <= 0) { |
148 | return LengthSqd(v); |
149 | // closest point is point B |
150 | } else if (uDotV > uLengthSqd) { |
151 | return DistanceToSqd(b, pt); |
152 | // closest point is inside segment |
153 | } else { |
154 | SkScalar det = u.cross(v); |
155 | SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); |
156 | temp *= det; |
157 | // It's possible we have a degenerate segment, or we're so far away it looks degenerate |
158 | // In this case, return squared distance to point A. |
159 | if (!SkScalarIsFinite(temp)) { |
160 | return LengthSqd(v); |
161 | } |
162 | return temp; |
163 | } |
164 | } |
165 | |