| 1 | /* | 
|---|
| 2 | * Copyright 2008 The Android Open Source Project | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "src/core/SkMathPriv.h" | 
|---|
| 9 | #include "src/core/SkPointPriv.h" | 
|---|
| 10 |  | 
|---|
| 11 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 12 |  | 
|---|
| 13 | void SkPoint::scale(SkScalar scale, SkPoint* dst) const { | 
|---|
| 14 | SkASSERT(dst); | 
|---|
| 15 | dst->set(fX * scale, fY * scale); | 
|---|
| 16 | } | 
|---|
| 17 |  | 
|---|
| 18 | bool SkPoint::normalize() { | 
|---|
| 19 | return this->setLength(fX, fY, SK_Scalar1); | 
|---|
| 20 | } | 
|---|
| 21 |  | 
|---|
| 22 | bool SkPoint::setNormalize(SkScalar x, SkScalar y) { | 
|---|
| 23 | return this->setLength(x, y, SK_Scalar1); | 
|---|
| 24 | } | 
|---|
| 25 |  | 
|---|
| 26 | bool SkPoint::setLength(SkScalar length) { | 
|---|
| 27 | return this->setLength(fX, fY, length); | 
|---|
| 28 | } | 
|---|
| 29 |  | 
|---|
| 30 | /* | 
|---|
| 31 | *  We have to worry about 2 tricky conditions: | 
|---|
| 32 | *  1. underflow of mag2 (compared against nearlyzero^2) | 
|---|
| 33 | *  2. overflow of mag2 (compared w/ isfinite) | 
|---|
| 34 | * | 
|---|
| 35 | *  If we underflow, we return false. If we overflow, we compute again using | 
|---|
| 36 | *  doubles, which is much slower (3x in a desktop test) but will not overflow. | 
|---|
| 37 | */ | 
|---|
| 38 | template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length, | 
|---|
| 39 | float* orig_length = nullptr) { | 
|---|
| 40 | SkASSERT(!use_rsqrt || (orig_length == nullptr)); | 
|---|
| 41 |  | 
|---|
| 42 | // our mag2 step overflowed to infinity, so use doubles instead. | 
|---|
| 43 | // much slower, but needed when x or y are very large, other wise we | 
|---|
| 44 | // divide by inf. and return (0,0) vector. | 
|---|
| 45 | double xx = x; | 
|---|
| 46 | double yy = y; | 
|---|
| 47 | double dmag = sqrt(xx * xx + yy * yy); | 
|---|
| 48 | double dscale = sk_ieee_double_divide(length, dmag); | 
|---|
| 49 | x *= dscale; | 
|---|
| 50 | y *= dscale; | 
|---|
| 51 | // check if we're not finite, or we're zero-length | 
|---|
| 52 | if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) { | 
|---|
| 53 | pt->set(0, 0); | 
|---|
| 54 | return false; | 
|---|
| 55 | } | 
|---|
| 56 | float mag = 0; | 
|---|
| 57 | if (orig_length) { | 
|---|
| 58 | mag = sk_double_to_float(dmag); | 
|---|
| 59 | } | 
|---|
| 60 | pt->set(x, y); | 
|---|
| 61 | if (orig_length) { | 
|---|
| 62 | *orig_length = mag; | 
|---|
| 63 | } | 
|---|
| 64 | return true; | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | SkScalar SkPoint::Normalize(SkPoint* pt) { | 
|---|
| 68 | float mag; | 
|---|
| 69 | if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) { | 
|---|
| 70 | return mag; | 
|---|
| 71 | } | 
|---|
| 72 | return 0; | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { | 
|---|
| 76 | float mag2 = dx * dx + dy * dy; | 
|---|
| 77 | if (SkScalarIsFinite(mag2)) { | 
|---|
| 78 | return sk_float_sqrt(mag2); | 
|---|
| 79 | } else { | 
|---|
| 80 | double xx = dx; | 
|---|
| 81 | double yy = dy; | 
|---|
| 82 | return sk_double_to_float(sqrt(xx * xx + yy * yy)); | 
|---|
| 83 | } | 
|---|
| 84 | } | 
|---|
| 85 |  | 
|---|
| 86 | bool SkPoint::setLength(float x, float y, float length) { | 
|---|
| 87 | return set_point_length<false>(this, x, y, length); | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) { | 
|---|
| 91 | return set_point_length<true>(pt, pt->fX, pt->fY, length); | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 |  | 
|---|
| 95 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 96 |  | 
|---|
| 97 | SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a, | 
|---|
| 98 | const SkPoint& b, | 
|---|
| 99 | Side* side) { | 
|---|
| 100 |  | 
|---|
| 101 | SkVector u = b - a; | 
|---|
| 102 | SkVector v = pt - a; | 
|---|
| 103 |  | 
|---|
| 104 | SkScalar uLengthSqd = LengthSqd(u); | 
|---|
| 105 | SkScalar det = u.cross(v); | 
|---|
| 106 | if (side) { | 
|---|
| 107 | SkASSERT(-1 == kLeft_Side && | 
|---|
| 108 | 0 == kOn_Side && | 
|---|
| 109 | 1 == kRight_Side); | 
|---|
| 110 | *side = (Side) SkScalarSignAsInt(det); | 
|---|
| 111 | } | 
|---|
| 112 | SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); | 
|---|
| 113 | temp *= det; | 
|---|
| 114 | // It's possible we have a degenerate line vector, or we're so far away it looks degenerate | 
|---|
| 115 | // In this case, return squared distance to point A. | 
|---|
| 116 | if (!SkScalarIsFinite(temp)) { | 
|---|
| 117 | return LengthSqd(v); | 
|---|
| 118 | } | 
|---|
| 119 | return temp; | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a, | 
|---|
| 123 | const SkPoint& b) { | 
|---|
| 124 | // See comments to distanceToLineBetweenSqd. If the projection of c onto | 
|---|
| 125 | // u is between a and b then this returns the same result as that | 
|---|
| 126 | // function. Otherwise, it returns the distance to the closer of a and | 
|---|
| 127 | // b. Let the projection of v onto u be v'.  There are three cases: | 
|---|
| 128 | //    1. v' points opposite to u. c is not between a and b and is closer | 
|---|
| 129 | //       to a than b. | 
|---|
| 130 | //    2. v' points along u and has magnitude less than y. c is between | 
|---|
| 131 | //       a and b and the distance to the segment is the same as distance | 
|---|
| 132 | //       to the line ab. | 
|---|
| 133 | //    3. v' points along u and has greater magnitude than u. c is not | 
|---|
| 134 | //       not between a and b and is closer to b than a. | 
|---|
| 135 | // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're | 
|---|
| 136 | // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise | 
|---|
| 137 | // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to | 
|---|
| 138 | // avoid a sqrt to compute |u|. | 
|---|
| 139 |  | 
|---|
| 140 | SkVector u = b - a; | 
|---|
| 141 | SkVector v = pt - a; | 
|---|
| 142 |  | 
|---|
| 143 | SkScalar uLengthSqd = LengthSqd(u); | 
|---|
| 144 | SkScalar uDotV = SkPoint::DotProduct(u, v); | 
|---|
| 145 |  | 
|---|
| 146 | // closest point is point A | 
|---|
| 147 | if (uDotV <= 0) { | 
|---|
| 148 | return LengthSqd(v); | 
|---|
| 149 | // closest point is point B | 
|---|
| 150 | } else if (uDotV > uLengthSqd) { | 
|---|
| 151 | return DistanceToSqd(b, pt); | 
|---|
| 152 | // closest point is inside segment | 
|---|
| 153 | } else { | 
|---|
| 154 | SkScalar det = u.cross(v); | 
|---|
| 155 | SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); | 
|---|
| 156 | temp *= det; | 
|---|
| 157 | // It's possible we have a degenerate segment, or we're so far away it looks degenerate | 
|---|
| 158 | // In this case, return squared distance to point A. | 
|---|
| 159 | if (!SkScalarIsFinite(temp)) { | 
|---|
| 160 | return LengthSqd(v); | 
|---|
| 161 | } | 
|---|
| 162 | return temp; | 
|---|
| 163 | } | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|