| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkMatrix.h" |
| 9 | #include "include/private/SkMalloc.h" |
| 10 | #include "src/core/SkBuffer.h" |
| 11 | #include "src/core/SkRRectPriv.h" |
| 12 | #include "src/core/SkScaleToSides.h" |
| 13 | |
| 14 | #include <cmath> |
| 15 | #include <utility> |
| 16 | |
| 17 | /////////////////////////////////////////////////////////////////////////////// |
| 18 | |
| 19 | void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { |
| 20 | if (!this->initializeRect(rect)) { |
| 21 | return; |
| 22 | } |
| 23 | |
| 24 | if (!SkScalarsAreFinite(xRad, yRad)) { |
| 25 | xRad = yRad = 0; // devolve into a simple rect |
| 26 | } |
| 27 | |
| 28 | if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { |
| 29 | // At most one of these two divides will be by zero, and neither numerator is zero. |
| 30 | SkScalar scale = std::min(sk_ieee_float_divide(fRect. width(), xRad + xRad), |
| 31 | sk_ieee_float_divide(fRect.height(), yRad + yRad)); |
| 32 | SkASSERT(scale < SK_Scalar1); |
| 33 | xRad *= scale; |
| 34 | yRad *= scale; |
| 35 | } |
| 36 | |
| 37 | if (xRad <= 0 || yRad <= 0) { |
| 38 | // all corners are square in this case |
| 39 | this->setRect(rect); |
| 40 | return; |
| 41 | } |
| 42 | |
| 43 | for (int i = 0; i < 4; ++i) { |
| 44 | fRadii[i].set(xRad, yRad); |
| 45 | } |
| 46 | fType = kSimple_Type; |
| 47 | if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { |
| 48 | fType = kOval_Type; |
| 49 | // TODO: assert that all the x&y radii are already W/2 & H/2 |
| 50 | } |
| 51 | |
| 52 | SkASSERT(this->isValid()); |
| 53 | } |
| 54 | |
| 55 | void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, |
| 56 | SkScalar rightRad, SkScalar bottomRad) { |
| 57 | if (!this->initializeRect(rect)) { |
| 58 | return; |
| 59 | } |
| 60 | |
| 61 | const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; |
| 62 | if (!SkScalarsAreFinite(array, 4)) { |
| 63 | this->setRect(rect); // devolve into a simple rect |
| 64 | return; |
| 65 | } |
| 66 | |
| 67 | leftRad = std::max(leftRad, 0.0f); |
| 68 | topRad = std::max(topRad, 0.0f); |
| 69 | rightRad = std::max(rightRad, 0.0f); |
| 70 | bottomRad = std::max(bottomRad, 0.0f); |
| 71 | |
| 72 | SkScalar scale = SK_Scalar1; |
| 73 | if (leftRad + rightRad > fRect.width()) { |
| 74 | scale = fRect.width() / (leftRad + rightRad); |
| 75 | } |
| 76 | if (topRad + bottomRad > fRect.height()) { |
| 77 | scale = std::min(scale, fRect.height() / (topRad + bottomRad)); |
| 78 | } |
| 79 | |
| 80 | if (scale < SK_Scalar1) { |
| 81 | leftRad *= scale; |
| 82 | topRad *= scale; |
| 83 | rightRad *= scale; |
| 84 | bottomRad *= scale; |
| 85 | } |
| 86 | |
| 87 | if (leftRad == rightRad && topRad == bottomRad) { |
| 88 | if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { |
| 89 | fType = kOval_Type; |
| 90 | } else if (0 == leftRad || 0 == topRad) { |
| 91 | // If the left and (by equality check above) right radii are zero then it is a rect. |
| 92 | // Same goes for top/bottom. |
| 93 | fType = kRect_Type; |
| 94 | leftRad = 0; |
| 95 | topRad = 0; |
| 96 | rightRad = 0; |
| 97 | bottomRad = 0; |
| 98 | } else { |
| 99 | fType = kSimple_Type; |
| 100 | } |
| 101 | } else { |
| 102 | fType = kNinePatch_Type; |
| 103 | } |
| 104 | |
| 105 | fRadii[kUpperLeft_Corner].set(leftRad, topRad); |
| 106 | fRadii[kUpperRight_Corner].set(rightRad, topRad); |
| 107 | fRadii[kLowerRight_Corner].set(rightRad, bottomRad); |
| 108 | fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); |
| 109 | |
| 110 | SkASSERT(this->isValid()); |
| 111 | } |
| 112 | |
| 113 | // These parameters intentionally double. Apropos crbug.com/463920, if one of the |
| 114 | // radii is huge while the other is small, single precision math can completely |
| 115 | // miss the fact that a scale is required. |
| 116 | static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { |
| 117 | if ((rad1 + rad2) > limit) { |
| 118 | return std::min(curMin, limit / (rad1 + rad2)); |
| 119 | } |
| 120 | return curMin; |
| 121 | } |
| 122 | |
| 123 | static bool clamp_to_zero(SkVector radii[4]) { |
| 124 | bool = true; |
| 125 | |
| 126 | // Clamp negative radii to zero |
| 127 | for (int i = 0; i < 4; ++i) { |
| 128 | if (radii[i].fX <= 0 || radii[i].fY <= 0) { |
| 129 | // In this case we are being a little fast & loose. Since one of |
| 130 | // the radii is 0 the corner is square. However, the other radii |
| 131 | // could still be non-zero and play in the global scale factor |
| 132 | // computation. |
| 133 | radii[i].fX = 0; |
| 134 | radii[i].fY = 0; |
| 135 | } else { |
| 136 | allCornersSquare = false; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | return allCornersSquare; |
| 141 | } |
| 142 | |
| 143 | void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { |
| 144 | if (!this->initializeRect(rect)) { |
| 145 | return; |
| 146 | } |
| 147 | |
| 148 | if (!SkScalarsAreFinite(&radii[0].fX, 8)) { |
| 149 | this->setRect(rect); // devolve into a simple rect |
| 150 | return; |
| 151 | } |
| 152 | |
| 153 | memcpy(fRadii, radii, sizeof(fRadii)); |
| 154 | |
| 155 | if (clamp_to_zero(fRadii)) { |
| 156 | this->setRect(rect); |
| 157 | return; |
| 158 | } |
| 159 | |
| 160 | this->scaleRadii(rect); |
| 161 | } |
| 162 | |
| 163 | bool SkRRect::initializeRect(const SkRect& rect) { |
| 164 | // Check this before sorting because sorting can hide nans. |
| 165 | if (!rect.isFinite()) { |
| 166 | *this = SkRRect(); |
| 167 | return false; |
| 168 | } |
| 169 | fRect = rect.makeSorted(); |
| 170 | if (fRect.isEmpty()) { |
| 171 | memset(fRadii, 0, sizeof(fRadii)); |
| 172 | fType = kEmpty_Type; |
| 173 | return false; |
| 174 | } |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | // If we can't distinguish one of the radii relative to the other, force it to zero so it |
| 179 | // doesn't confuse us later. See crbug.com/850350 |
| 180 | // |
| 181 | static void flush_to_zero(SkScalar& a, SkScalar& b) { |
| 182 | SkASSERT(a >= 0); |
| 183 | SkASSERT(b >= 0); |
| 184 | if (a + b == a) { |
| 185 | b = 0; |
| 186 | } else if (a + b == b) { |
| 187 | a = 0; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | void SkRRect::scaleRadii(const SkRect& rect) { |
| 192 | // Proportionally scale down all radii to fit. Find the minimum ratio |
| 193 | // of a side and the radii on that side (for all four sides) and use |
| 194 | // that to scale down _all_ the radii. This algorithm is from the |
| 195 | // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping |
| 196 | // Curves: |
| 197 | // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, |
| 198 | // Si is the sum of the two corresponding radii of the corners on side i, |
| 199 | // and Ltop = Lbottom = the width of the box, |
| 200 | // and Lleft = Lright = the height of the box. |
| 201 | // If f < 1, then all corner radii are reduced by multiplying them by f." |
| 202 | double scale = 1.0; |
| 203 | |
| 204 | // The sides of the rectangle may be larger than a float. |
| 205 | double width = (double)fRect.fRight - (double)fRect.fLeft; |
| 206 | double height = (double)fRect.fBottom - (double)fRect.fTop; |
| 207 | scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); |
| 208 | scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); |
| 209 | scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); |
| 210 | scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); |
| 211 | |
| 212 | flush_to_zero(fRadii[0].fX, fRadii[1].fX); |
| 213 | flush_to_zero(fRadii[1].fY, fRadii[2].fY); |
| 214 | flush_to_zero(fRadii[2].fX, fRadii[3].fX); |
| 215 | flush_to_zero(fRadii[3].fY, fRadii[0].fY); |
| 216 | |
| 217 | if (scale < 1.0) { |
| 218 | SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); |
| 219 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); |
| 220 | SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); |
| 221 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); |
| 222 | } |
| 223 | |
| 224 | // adjust radii may set x or y to zero; set companion to zero as well |
| 225 | if (clamp_to_zero(fRadii)) { |
| 226 | this->setRect(rect); |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | // At this point we're either oval, simple, or complex (not empty or rect). |
| 231 | this->computeType(); |
| 232 | |
| 233 | SkASSERT(this->isValid()); |
| 234 | } |
| 235 | |
| 236 | // This method determines if a point known to be inside the RRect's bounds is |
| 237 | // inside all the corners. |
| 238 | bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { |
| 239 | SkPoint canonicalPt; // (x,y) translated to one of the quadrants |
| 240 | int index; |
| 241 | |
| 242 | if (kOval_Type == this->type()) { |
| 243 | canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); |
| 244 | index = kUpperLeft_Corner; // any corner will do in this case |
| 245 | } else { |
| 246 | if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && |
| 247 | y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { |
| 248 | // UL corner |
| 249 | index = kUpperLeft_Corner; |
| 250 | canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), |
| 251 | y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); |
| 252 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); |
| 253 | } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && |
| 254 | y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { |
| 255 | // LL corner |
| 256 | index = kLowerLeft_Corner; |
| 257 | canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), |
| 258 | y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); |
| 259 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); |
| 260 | } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && |
| 261 | y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { |
| 262 | // UR corner |
| 263 | index = kUpperRight_Corner; |
| 264 | canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), |
| 265 | y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); |
| 266 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); |
| 267 | } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && |
| 268 | y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { |
| 269 | // LR corner |
| 270 | index = kLowerRight_Corner; |
| 271 | canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), |
| 272 | y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); |
| 273 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); |
| 274 | } else { |
| 275 | // not in any of the corners |
| 276 | return true; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | // A point is in an ellipse (in standard position) if: |
| 281 | // x^2 y^2 |
| 282 | // ----- + ----- <= 1 |
| 283 | // a^2 b^2 |
| 284 | // or : |
| 285 | // b^2*x^2 + a^2*y^2 <= (ab)^2 |
| 286 | SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + |
| 287 | SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); |
| 288 | return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); |
| 289 | } |
| 290 | |
| 291 | bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { |
| 292 | return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && |
| 293 | SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && |
| 294 | SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && |
| 295 | SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); |
| 296 | } |
| 297 | |
| 298 | bool SkRRect::contains(const SkRect& rect) const { |
| 299 | if (!this->getBounds().contains(rect)) { |
| 300 | // If 'rect' isn't contained by the RR's bounds then the |
| 301 | // RR definitely doesn't contain it |
| 302 | return false; |
| 303 | } |
| 304 | |
| 305 | if (this->isRect()) { |
| 306 | // the prior test was sufficient |
| 307 | return true; |
| 308 | } |
| 309 | |
| 310 | // At this point we know all four corners of 'rect' are inside the |
| 311 | // bounds of of this RR. Check to make sure all the corners are inside |
| 312 | // all the curves |
| 313 | return this->checkCornerContainment(rect.fLeft, rect.fTop) && |
| 314 | this->checkCornerContainment(rect.fRight, rect.fTop) && |
| 315 | this->checkCornerContainment(rect.fRight, rect.fBottom) && |
| 316 | this->checkCornerContainment(rect.fLeft, rect.fBottom); |
| 317 | } |
| 318 | |
| 319 | static bool radii_are_nine_patch(const SkVector radii[4]) { |
| 320 | return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && |
| 321 | radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && |
| 322 | radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && |
| 323 | radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; |
| 324 | } |
| 325 | |
| 326 | // There is a simplified version of this method in setRectXY |
| 327 | void SkRRect::computeType() { |
| 328 | if (fRect.isEmpty()) { |
| 329 | SkASSERT(fRect.isSorted()); |
| 330 | for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { |
| 331 | SkASSERT((fRadii[i] == SkVector{0, 0})); |
| 332 | } |
| 333 | fType = kEmpty_Type; |
| 334 | SkASSERT(this->isValid()); |
| 335 | return; |
| 336 | } |
| 337 | |
| 338 | bool allRadiiEqual = true; // are all x radii equal and all y radii? |
| 339 | bool = 0 == fRadii[0].fX || 0 == fRadii[0].fY; |
| 340 | |
| 341 | for (int i = 1; i < 4; ++i) { |
| 342 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| 343 | // if either radius is zero the corner is square so both have to |
| 344 | // be non-zero to have a rounded corner |
| 345 | allCornersSquare = false; |
| 346 | } |
| 347 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| 348 | allRadiiEqual = false; |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | if (allCornersSquare) { |
| 353 | fType = kRect_Type; |
| 354 | SkASSERT(this->isValid()); |
| 355 | return; |
| 356 | } |
| 357 | |
| 358 | if (allRadiiEqual) { |
| 359 | if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && |
| 360 | fRadii[0].fY >= SkScalarHalf(fRect.height())) { |
| 361 | fType = kOval_Type; |
| 362 | } else { |
| 363 | fType = kSimple_Type; |
| 364 | } |
| 365 | SkASSERT(this->isValid()); |
| 366 | return; |
| 367 | } |
| 368 | |
| 369 | if (radii_are_nine_patch(fRadii)) { |
| 370 | fType = kNinePatch_Type; |
| 371 | } else { |
| 372 | fType = kComplex_Type; |
| 373 | } |
| 374 | SkASSERT(this->isValid()); |
| 375 | } |
| 376 | |
| 377 | bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { |
| 378 | if (nullptr == dst) { |
| 379 | return false; |
| 380 | } |
| 381 | |
| 382 | // Assert that the caller is not trying to do this in place, which |
| 383 | // would violate const-ness. Do not return false though, so that |
| 384 | // if they know what they're doing and want to violate it they can. |
| 385 | SkASSERT(dst != this); |
| 386 | |
| 387 | if (matrix.isIdentity()) { |
| 388 | *dst = *this; |
| 389 | return true; |
| 390 | } |
| 391 | |
| 392 | if (!matrix.preservesAxisAlignment()) { |
| 393 | return false; |
| 394 | } |
| 395 | |
| 396 | SkRect newRect; |
| 397 | if (!matrix.mapRect(&newRect, fRect)) { |
| 398 | return false; |
| 399 | } |
| 400 | |
| 401 | // The matrix may have scaled us to zero (or due to float madness, we now have collapsed |
| 402 | // some dimension of the rect, so we need to check for that. Note that matrix must be |
| 403 | // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates |
| 404 | // loss of precision. |
| 405 | if (!newRect.isFinite() || newRect.isEmpty()) { |
| 406 | return false; |
| 407 | } |
| 408 | |
| 409 | // At this point, this is guaranteed to succeed, so we can modify dst. |
| 410 | dst->fRect = newRect; |
| 411 | |
| 412 | // Since the only transforms that were allowed are axis aligned, the type |
| 413 | // remains unchanged. |
| 414 | dst->fType = fType; |
| 415 | |
| 416 | if (kRect_Type == fType) { |
| 417 | SkASSERT(dst->isValid()); |
| 418 | return true; |
| 419 | } |
| 420 | if (kOval_Type == fType) { |
| 421 | for (int i = 0; i < 4; ++i) { |
| 422 | dst->fRadii[i].fX = SkScalarHalf(newRect.width()); |
| 423 | dst->fRadii[i].fY = SkScalarHalf(newRect.height()); |
| 424 | } |
| 425 | SkASSERT(dst->isValid()); |
| 426 | return true; |
| 427 | } |
| 428 | |
| 429 | // Now scale each corner |
| 430 | SkScalar xScale = matrix.getScaleX(); |
| 431 | SkScalar yScale = matrix.getScaleY(); |
| 432 | |
| 433 | // There is a rotation of 90 (Clockwise 90) or 270 (Counter clockwise 90). |
| 434 | // 180 degrees rotations are simply flipX with a flipY and would come under |
| 435 | // a scale transform. |
| 436 | if (!matrix.isScaleTranslate()) { |
| 437 | const bool isClockwise = matrix.getSkewX() < 0; |
| 438 | |
| 439 | // The matrix location for scale changes if there is a rotation. |
| 440 | xScale = matrix.getSkewY() * (isClockwise ? 1 : -1); |
| 441 | yScale = matrix.getSkewX() * (isClockwise ? -1 : 1); |
| 442 | |
| 443 | const int dir = isClockwise ? 3 : 1; |
| 444 | for (int i = 0; i < 4; ++i) { |
| 445 | const int src = (i + dir) >= 4 ? (i + dir) % 4 : (i + dir); |
| 446 | // Swap X and Y axis for the radii. |
| 447 | dst->fRadii[i].fX = fRadii[src].fY; |
| 448 | dst->fRadii[i].fY = fRadii[src].fX; |
| 449 | } |
| 450 | } else { |
| 451 | for (int i = 0; i < 4; ++i) { |
| 452 | dst->fRadii[i].fX = fRadii[i].fX; |
| 453 | dst->fRadii[i].fY = fRadii[i].fY; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | const bool flipX = xScale < 0; |
| 458 | if (flipX) { |
| 459 | xScale = -xScale; |
| 460 | } |
| 461 | |
| 462 | const bool flipY = yScale < 0; |
| 463 | if (flipY) { |
| 464 | yScale = -yScale; |
| 465 | } |
| 466 | |
| 467 | // Scale the radii without respecting the flip. |
| 468 | for (int i = 0; i < 4; ++i) { |
| 469 | dst->fRadii[i].fX *= xScale; |
| 470 | dst->fRadii[i].fY *= yScale; |
| 471 | } |
| 472 | |
| 473 | // Now swap as necessary. |
| 474 | using std::swap; |
| 475 | if (flipX) { |
| 476 | if (flipY) { |
| 477 | // Swap with opposite corners |
| 478 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); |
| 479 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| 480 | } else { |
| 481 | // Only swap in x |
| 482 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); |
| 483 | swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| 484 | } |
| 485 | } else if (flipY) { |
| 486 | // Only swap in y |
| 487 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); |
| 488 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); |
| 489 | } |
| 490 | |
| 491 | if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { |
| 492 | return false; |
| 493 | } |
| 494 | |
| 495 | dst->scaleRadii(dst->fRect); |
| 496 | dst->isValid(); |
| 497 | |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | /////////////////////////////////////////////////////////////////////////////// |
| 502 | |
| 503 | void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { |
| 504 | SkRect r = fRect.makeInset(dx, dy); |
| 505 | bool degenerate = false; |
| 506 | if (r.fRight <= r.fLeft) { |
| 507 | degenerate = true; |
| 508 | r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); |
| 509 | } |
| 510 | if (r.fBottom <= r.fTop) { |
| 511 | degenerate = true; |
| 512 | r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); |
| 513 | } |
| 514 | if (degenerate) { |
| 515 | dst->fRect = r; |
| 516 | memset(dst->fRadii, 0, sizeof(dst->fRadii)); |
| 517 | dst->fType = kEmpty_Type; |
| 518 | return; |
| 519 | } |
| 520 | if (!r.isFinite()) { |
| 521 | *dst = SkRRect(); |
| 522 | return; |
| 523 | } |
| 524 | |
| 525 | SkVector radii[4]; |
| 526 | memcpy(radii, fRadii, sizeof(radii)); |
| 527 | for (int i = 0; i < 4; ++i) { |
| 528 | if (radii[i].fX) { |
| 529 | radii[i].fX -= dx; |
| 530 | } |
| 531 | if (radii[i].fY) { |
| 532 | radii[i].fY -= dy; |
| 533 | } |
| 534 | } |
| 535 | dst->setRectRadii(r, radii); |
| 536 | } |
| 537 | |
| 538 | /////////////////////////////////////////////////////////////////////////////// |
| 539 | |
| 540 | size_t SkRRect::writeToMemory(void* buffer) const { |
| 541 | // Serialize only the rect and corners, but not the derived type tag. |
| 542 | memcpy(buffer, this, kSizeInMemory); |
| 543 | return kSizeInMemory; |
| 544 | } |
| 545 | |
| 546 | void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { |
| 547 | // Serialize only the rect and corners, but not the derived type tag. |
| 548 | buffer->write(&rr, SkRRect::kSizeInMemory); |
| 549 | } |
| 550 | |
| 551 | size_t SkRRect::readFromMemory(const void* buffer, size_t length) { |
| 552 | if (length < kSizeInMemory) { |
| 553 | return 0; |
| 554 | } |
| 555 | |
| 556 | // The extra (void*) tells GCC not to worry that kSizeInMemory < sizeof(SkRRect). |
| 557 | |
| 558 | SkRRect raw; |
| 559 | memcpy((void*)&raw, buffer, kSizeInMemory); |
| 560 | this->setRectRadii(raw.fRect, raw.fRadii); |
| 561 | return kSizeInMemory; |
| 562 | } |
| 563 | |
| 564 | bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { |
| 565 | if (buffer->available() < SkRRect::kSizeInMemory) { |
| 566 | return false; |
| 567 | } |
| 568 | SkRRect storage; |
| 569 | return buffer->read(&storage, SkRRect::kSizeInMemory) && |
| 570 | (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); |
| 571 | } |
| 572 | |
| 573 | #include "include/core/SkString.h" |
| 574 | #include "src/core/SkStringUtils.h" |
| 575 | |
| 576 | void SkRRect::dump(bool asHex) const { |
| 577 | SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| 578 | |
| 579 | fRect.dump(asHex); |
| 580 | SkString line("const SkPoint corners[] = {\n" ); |
| 581 | for (int i = 0; i < 4; ++i) { |
| 582 | SkString strX, strY; |
| 583 | SkAppendScalar(&strX, fRadii[i].x(), asType); |
| 584 | SkAppendScalar(&strY, fRadii[i].y(), asType); |
| 585 | line.appendf(" { %s, %s }," , strX.c_str(), strY.c_str()); |
| 586 | if (asHex) { |
| 587 | line.appendf(" /* %f %f */" , fRadii[i].x(), fRadii[i].y()); |
| 588 | } |
| 589 | line.append("\n" ); |
| 590 | } |
| 591 | line.append("};" ); |
| 592 | SkDebugf("%s\n" , line.c_str()); |
| 593 | } |
| 594 | |
| 595 | /////////////////////////////////////////////////////////////////////////////// |
| 596 | |
| 597 | /** |
| 598 | * We need all combinations of predicates to be true to have a "safe" radius value. |
| 599 | */ |
| 600 | static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { |
| 601 | return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && |
| 602 | rad >= 0; |
| 603 | } |
| 604 | |
| 605 | bool SkRRect::isValid() const { |
| 606 | if (!AreRectAndRadiiValid(fRect, fRadii)) { |
| 607 | return false; |
| 608 | } |
| 609 | |
| 610 | bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); |
| 611 | bool = (0 == fRadii[0].fX || 0 == fRadii[0].fY); |
| 612 | bool allRadiiSame = true; |
| 613 | |
| 614 | for (int i = 1; i < 4; ++i) { |
| 615 | if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { |
| 616 | allRadiiZero = false; |
| 617 | } |
| 618 | |
| 619 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| 620 | allRadiiSame = false; |
| 621 | } |
| 622 | |
| 623 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| 624 | allCornersSquare = false; |
| 625 | } |
| 626 | } |
| 627 | bool patchesOfNine = radii_are_nine_patch(fRadii); |
| 628 | |
| 629 | if (fType < 0 || fType > kLastType) { |
| 630 | return false; |
| 631 | } |
| 632 | |
| 633 | switch (fType) { |
| 634 | case kEmpty_Type: |
| 635 | if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| 636 | return false; |
| 637 | } |
| 638 | break; |
| 639 | case kRect_Type: |
| 640 | if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| 641 | return false; |
| 642 | } |
| 643 | break; |
| 644 | case kOval_Type: |
| 645 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| 646 | return false; |
| 647 | } |
| 648 | |
| 649 | for (int i = 0; i < 4; ++i) { |
| 650 | if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || |
| 651 | !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { |
| 652 | return false; |
| 653 | } |
| 654 | } |
| 655 | break; |
| 656 | case kSimple_Type: |
| 657 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| 658 | return false; |
| 659 | } |
| 660 | break; |
| 661 | case kNinePatch_Type: |
| 662 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| 663 | !patchesOfNine) { |
| 664 | return false; |
| 665 | } |
| 666 | break; |
| 667 | case kComplex_Type: |
| 668 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| 669 | patchesOfNine) { |
| 670 | return false; |
| 671 | } |
| 672 | break; |
| 673 | } |
| 674 | |
| 675 | return true; |
| 676 | } |
| 677 | |
| 678 | bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { |
| 679 | if (!rect.isFinite() || !rect.isSorted()) { |
| 680 | return false; |
| 681 | } |
| 682 | for (int i = 0; i < 4; ++i) { |
| 683 | if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || |
| 684 | !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { |
| 685 | return false; |
| 686 | } |
| 687 | } |
| 688 | return true; |
| 689 | } |
| 690 | /////////////////////////////////////////////////////////////////////////////// |
| 691 | |