1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkMatrix.h" |
9 | #include "include/private/SkMalloc.h" |
10 | #include "src/core/SkBuffer.h" |
11 | #include "src/core/SkRRectPriv.h" |
12 | #include "src/core/SkScaleToSides.h" |
13 | |
14 | #include <cmath> |
15 | #include <utility> |
16 | |
17 | /////////////////////////////////////////////////////////////////////////////// |
18 | |
19 | void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { |
20 | if (!this->initializeRect(rect)) { |
21 | return; |
22 | } |
23 | |
24 | if (!SkScalarsAreFinite(xRad, yRad)) { |
25 | xRad = yRad = 0; // devolve into a simple rect |
26 | } |
27 | |
28 | if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { |
29 | // At most one of these two divides will be by zero, and neither numerator is zero. |
30 | SkScalar scale = std::min(sk_ieee_float_divide(fRect. width(), xRad + xRad), |
31 | sk_ieee_float_divide(fRect.height(), yRad + yRad)); |
32 | SkASSERT(scale < SK_Scalar1); |
33 | xRad *= scale; |
34 | yRad *= scale; |
35 | } |
36 | |
37 | if (xRad <= 0 || yRad <= 0) { |
38 | // all corners are square in this case |
39 | this->setRect(rect); |
40 | return; |
41 | } |
42 | |
43 | for (int i = 0; i < 4; ++i) { |
44 | fRadii[i].set(xRad, yRad); |
45 | } |
46 | fType = kSimple_Type; |
47 | if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { |
48 | fType = kOval_Type; |
49 | // TODO: assert that all the x&y radii are already W/2 & H/2 |
50 | } |
51 | |
52 | SkASSERT(this->isValid()); |
53 | } |
54 | |
55 | void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, |
56 | SkScalar rightRad, SkScalar bottomRad) { |
57 | if (!this->initializeRect(rect)) { |
58 | return; |
59 | } |
60 | |
61 | const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; |
62 | if (!SkScalarsAreFinite(array, 4)) { |
63 | this->setRect(rect); // devolve into a simple rect |
64 | return; |
65 | } |
66 | |
67 | leftRad = std::max(leftRad, 0.0f); |
68 | topRad = std::max(topRad, 0.0f); |
69 | rightRad = std::max(rightRad, 0.0f); |
70 | bottomRad = std::max(bottomRad, 0.0f); |
71 | |
72 | SkScalar scale = SK_Scalar1; |
73 | if (leftRad + rightRad > fRect.width()) { |
74 | scale = fRect.width() / (leftRad + rightRad); |
75 | } |
76 | if (topRad + bottomRad > fRect.height()) { |
77 | scale = std::min(scale, fRect.height() / (topRad + bottomRad)); |
78 | } |
79 | |
80 | if (scale < SK_Scalar1) { |
81 | leftRad *= scale; |
82 | topRad *= scale; |
83 | rightRad *= scale; |
84 | bottomRad *= scale; |
85 | } |
86 | |
87 | if (leftRad == rightRad && topRad == bottomRad) { |
88 | if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { |
89 | fType = kOval_Type; |
90 | } else if (0 == leftRad || 0 == topRad) { |
91 | // If the left and (by equality check above) right radii are zero then it is a rect. |
92 | // Same goes for top/bottom. |
93 | fType = kRect_Type; |
94 | leftRad = 0; |
95 | topRad = 0; |
96 | rightRad = 0; |
97 | bottomRad = 0; |
98 | } else { |
99 | fType = kSimple_Type; |
100 | } |
101 | } else { |
102 | fType = kNinePatch_Type; |
103 | } |
104 | |
105 | fRadii[kUpperLeft_Corner].set(leftRad, topRad); |
106 | fRadii[kUpperRight_Corner].set(rightRad, topRad); |
107 | fRadii[kLowerRight_Corner].set(rightRad, bottomRad); |
108 | fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); |
109 | |
110 | SkASSERT(this->isValid()); |
111 | } |
112 | |
113 | // These parameters intentionally double. Apropos crbug.com/463920, if one of the |
114 | // radii is huge while the other is small, single precision math can completely |
115 | // miss the fact that a scale is required. |
116 | static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { |
117 | if ((rad1 + rad2) > limit) { |
118 | return std::min(curMin, limit / (rad1 + rad2)); |
119 | } |
120 | return curMin; |
121 | } |
122 | |
123 | static bool clamp_to_zero(SkVector radii[4]) { |
124 | bool = true; |
125 | |
126 | // Clamp negative radii to zero |
127 | for (int i = 0; i < 4; ++i) { |
128 | if (radii[i].fX <= 0 || radii[i].fY <= 0) { |
129 | // In this case we are being a little fast & loose. Since one of |
130 | // the radii is 0 the corner is square. However, the other radii |
131 | // could still be non-zero and play in the global scale factor |
132 | // computation. |
133 | radii[i].fX = 0; |
134 | radii[i].fY = 0; |
135 | } else { |
136 | allCornersSquare = false; |
137 | } |
138 | } |
139 | |
140 | return allCornersSquare; |
141 | } |
142 | |
143 | void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { |
144 | if (!this->initializeRect(rect)) { |
145 | return; |
146 | } |
147 | |
148 | if (!SkScalarsAreFinite(&radii[0].fX, 8)) { |
149 | this->setRect(rect); // devolve into a simple rect |
150 | return; |
151 | } |
152 | |
153 | memcpy(fRadii, radii, sizeof(fRadii)); |
154 | |
155 | if (clamp_to_zero(fRadii)) { |
156 | this->setRect(rect); |
157 | return; |
158 | } |
159 | |
160 | this->scaleRadii(rect); |
161 | } |
162 | |
163 | bool SkRRect::initializeRect(const SkRect& rect) { |
164 | // Check this before sorting because sorting can hide nans. |
165 | if (!rect.isFinite()) { |
166 | *this = SkRRect(); |
167 | return false; |
168 | } |
169 | fRect = rect.makeSorted(); |
170 | if (fRect.isEmpty()) { |
171 | memset(fRadii, 0, sizeof(fRadii)); |
172 | fType = kEmpty_Type; |
173 | return false; |
174 | } |
175 | return true; |
176 | } |
177 | |
178 | // If we can't distinguish one of the radii relative to the other, force it to zero so it |
179 | // doesn't confuse us later. See crbug.com/850350 |
180 | // |
181 | static void flush_to_zero(SkScalar& a, SkScalar& b) { |
182 | SkASSERT(a >= 0); |
183 | SkASSERT(b >= 0); |
184 | if (a + b == a) { |
185 | b = 0; |
186 | } else if (a + b == b) { |
187 | a = 0; |
188 | } |
189 | } |
190 | |
191 | void SkRRect::scaleRadii(const SkRect& rect) { |
192 | // Proportionally scale down all radii to fit. Find the minimum ratio |
193 | // of a side and the radii on that side (for all four sides) and use |
194 | // that to scale down _all_ the radii. This algorithm is from the |
195 | // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping |
196 | // Curves: |
197 | // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, |
198 | // Si is the sum of the two corresponding radii of the corners on side i, |
199 | // and Ltop = Lbottom = the width of the box, |
200 | // and Lleft = Lright = the height of the box. |
201 | // If f < 1, then all corner radii are reduced by multiplying them by f." |
202 | double scale = 1.0; |
203 | |
204 | // The sides of the rectangle may be larger than a float. |
205 | double width = (double)fRect.fRight - (double)fRect.fLeft; |
206 | double height = (double)fRect.fBottom - (double)fRect.fTop; |
207 | scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); |
208 | scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); |
209 | scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); |
210 | scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); |
211 | |
212 | flush_to_zero(fRadii[0].fX, fRadii[1].fX); |
213 | flush_to_zero(fRadii[1].fY, fRadii[2].fY); |
214 | flush_to_zero(fRadii[2].fX, fRadii[3].fX); |
215 | flush_to_zero(fRadii[3].fY, fRadii[0].fY); |
216 | |
217 | if (scale < 1.0) { |
218 | SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); |
219 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); |
220 | SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); |
221 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); |
222 | } |
223 | |
224 | // adjust radii may set x or y to zero; set companion to zero as well |
225 | if (clamp_to_zero(fRadii)) { |
226 | this->setRect(rect); |
227 | return; |
228 | } |
229 | |
230 | // At this point we're either oval, simple, or complex (not empty or rect). |
231 | this->computeType(); |
232 | |
233 | SkASSERT(this->isValid()); |
234 | } |
235 | |
236 | // This method determines if a point known to be inside the RRect's bounds is |
237 | // inside all the corners. |
238 | bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { |
239 | SkPoint canonicalPt; // (x,y) translated to one of the quadrants |
240 | int index; |
241 | |
242 | if (kOval_Type == this->type()) { |
243 | canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); |
244 | index = kUpperLeft_Corner; // any corner will do in this case |
245 | } else { |
246 | if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && |
247 | y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { |
248 | // UL corner |
249 | index = kUpperLeft_Corner; |
250 | canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), |
251 | y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); |
252 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); |
253 | } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && |
254 | y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { |
255 | // LL corner |
256 | index = kLowerLeft_Corner; |
257 | canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), |
258 | y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); |
259 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); |
260 | } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && |
261 | y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { |
262 | // UR corner |
263 | index = kUpperRight_Corner; |
264 | canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), |
265 | y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); |
266 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); |
267 | } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && |
268 | y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { |
269 | // LR corner |
270 | index = kLowerRight_Corner; |
271 | canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), |
272 | y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); |
273 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); |
274 | } else { |
275 | // not in any of the corners |
276 | return true; |
277 | } |
278 | } |
279 | |
280 | // A point is in an ellipse (in standard position) if: |
281 | // x^2 y^2 |
282 | // ----- + ----- <= 1 |
283 | // a^2 b^2 |
284 | // or : |
285 | // b^2*x^2 + a^2*y^2 <= (ab)^2 |
286 | SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + |
287 | SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); |
288 | return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); |
289 | } |
290 | |
291 | bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { |
292 | return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && |
293 | SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && |
294 | SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && |
295 | SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); |
296 | } |
297 | |
298 | bool SkRRect::contains(const SkRect& rect) const { |
299 | if (!this->getBounds().contains(rect)) { |
300 | // If 'rect' isn't contained by the RR's bounds then the |
301 | // RR definitely doesn't contain it |
302 | return false; |
303 | } |
304 | |
305 | if (this->isRect()) { |
306 | // the prior test was sufficient |
307 | return true; |
308 | } |
309 | |
310 | // At this point we know all four corners of 'rect' are inside the |
311 | // bounds of of this RR. Check to make sure all the corners are inside |
312 | // all the curves |
313 | return this->checkCornerContainment(rect.fLeft, rect.fTop) && |
314 | this->checkCornerContainment(rect.fRight, rect.fTop) && |
315 | this->checkCornerContainment(rect.fRight, rect.fBottom) && |
316 | this->checkCornerContainment(rect.fLeft, rect.fBottom); |
317 | } |
318 | |
319 | static bool radii_are_nine_patch(const SkVector radii[4]) { |
320 | return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && |
321 | radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && |
322 | radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && |
323 | radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; |
324 | } |
325 | |
326 | // There is a simplified version of this method in setRectXY |
327 | void SkRRect::computeType() { |
328 | if (fRect.isEmpty()) { |
329 | SkASSERT(fRect.isSorted()); |
330 | for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { |
331 | SkASSERT((fRadii[i] == SkVector{0, 0})); |
332 | } |
333 | fType = kEmpty_Type; |
334 | SkASSERT(this->isValid()); |
335 | return; |
336 | } |
337 | |
338 | bool allRadiiEqual = true; // are all x radii equal and all y radii? |
339 | bool = 0 == fRadii[0].fX || 0 == fRadii[0].fY; |
340 | |
341 | for (int i = 1; i < 4; ++i) { |
342 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
343 | // if either radius is zero the corner is square so both have to |
344 | // be non-zero to have a rounded corner |
345 | allCornersSquare = false; |
346 | } |
347 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
348 | allRadiiEqual = false; |
349 | } |
350 | } |
351 | |
352 | if (allCornersSquare) { |
353 | fType = kRect_Type; |
354 | SkASSERT(this->isValid()); |
355 | return; |
356 | } |
357 | |
358 | if (allRadiiEqual) { |
359 | if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && |
360 | fRadii[0].fY >= SkScalarHalf(fRect.height())) { |
361 | fType = kOval_Type; |
362 | } else { |
363 | fType = kSimple_Type; |
364 | } |
365 | SkASSERT(this->isValid()); |
366 | return; |
367 | } |
368 | |
369 | if (radii_are_nine_patch(fRadii)) { |
370 | fType = kNinePatch_Type; |
371 | } else { |
372 | fType = kComplex_Type; |
373 | } |
374 | SkASSERT(this->isValid()); |
375 | } |
376 | |
377 | bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { |
378 | if (nullptr == dst) { |
379 | return false; |
380 | } |
381 | |
382 | // Assert that the caller is not trying to do this in place, which |
383 | // would violate const-ness. Do not return false though, so that |
384 | // if they know what they're doing and want to violate it they can. |
385 | SkASSERT(dst != this); |
386 | |
387 | if (matrix.isIdentity()) { |
388 | *dst = *this; |
389 | return true; |
390 | } |
391 | |
392 | if (!matrix.preservesAxisAlignment()) { |
393 | return false; |
394 | } |
395 | |
396 | SkRect newRect; |
397 | if (!matrix.mapRect(&newRect, fRect)) { |
398 | return false; |
399 | } |
400 | |
401 | // The matrix may have scaled us to zero (or due to float madness, we now have collapsed |
402 | // some dimension of the rect, so we need to check for that. Note that matrix must be |
403 | // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates |
404 | // loss of precision. |
405 | if (!newRect.isFinite() || newRect.isEmpty()) { |
406 | return false; |
407 | } |
408 | |
409 | // At this point, this is guaranteed to succeed, so we can modify dst. |
410 | dst->fRect = newRect; |
411 | |
412 | // Since the only transforms that were allowed are axis aligned, the type |
413 | // remains unchanged. |
414 | dst->fType = fType; |
415 | |
416 | if (kRect_Type == fType) { |
417 | SkASSERT(dst->isValid()); |
418 | return true; |
419 | } |
420 | if (kOval_Type == fType) { |
421 | for (int i = 0; i < 4; ++i) { |
422 | dst->fRadii[i].fX = SkScalarHalf(newRect.width()); |
423 | dst->fRadii[i].fY = SkScalarHalf(newRect.height()); |
424 | } |
425 | SkASSERT(dst->isValid()); |
426 | return true; |
427 | } |
428 | |
429 | // Now scale each corner |
430 | SkScalar xScale = matrix.getScaleX(); |
431 | SkScalar yScale = matrix.getScaleY(); |
432 | |
433 | // There is a rotation of 90 (Clockwise 90) or 270 (Counter clockwise 90). |
434 | // 180 degrees rotations are simply flipX with a flipY and would come under |
435 | // a scale transform. |
436 | if (!matrix.isScaleTranslate()) { |
437 | const bool isClockwise = matrix.getSkewX() < 0; |
438 | |
439 | // The matrix location for scale changes if there is a rotation. |
440 | xScale = matrix.getSkewY() * (isClockwise ? 1 : -1); |
441 | yScale = matrix.getSkewX() * (isClockwise ? -1 : 1); |
442 | |
443 | const int dir = isClockwise ? 3 : 1; |
444 | for (int i = 0; i < 4; ++i) { |
445 | const int src = (i + dir) >= 4 ? (i + dir) % 4 : (i + dir); |
446 | // Swap X and Y axis for the radii. |
447 | dst->fRadii[i].fX = fRadii[src].fY; |
448 | dst->fRadii[i].fY = fRadii[src].fX; |
449 | } |
450 | } else { |
451 | for (int i = 0; i < 4; ++i) { |
452 | dst->fRadii[i].fX = fRadii[i].fX; |
453 | dst->fRadii[i].fY = fRadii[i].fY; |
454 | } |
455 | } |
456 | |
457 | const bool flipX = xScale < 0; |
458 | if (flipX) { |
459 | xScale = -xScale; |
460 | } |
461 | |
462 | const bool flipY = yScale < 0; |
463 | if (flipY) { |
464 | yScale = -yScale; |
465 | } |
466 | |
467 | // Scale the radii without respecting the flip. |
468 | for (int i = 0; i < 4; ++i) { |
469 | dst->fRadii[i].fX *= xScale; |
470 | dst->fRadii[i].fY *= yScale; |
471 | } |
472 | |
473 | // Now swap as necessary. |
474 | using std::swap; |
475 | if (flipX) { |
476 | if (flipY) { |
477 | // Swap with opposite corners |
478 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); |
479 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
480 | } else { |
481 | // Only swap in x |
482 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); |
483 | swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
484 | } |
485 | } else if (flipY) { |
486 | // Only swap in y |
487 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); |
488 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); |
489 | } |
490 | |
491 | if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { |
492 | return false; |
493 | } |
494 | |
495 | dst->scaleRadii(dst->fRect); |
496 | dst->isValid(); |
497 | |
498 | return true; |
499 | } |
500 | |
501 | /////////////////////////////////////////////////////////////////////////////// |
502 | |
503 | void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { |
504 | SkRect r = fRect.makeInset(dx, dy); |
505 | bool degenerate = false; |
506 | if (r.fRight <= r.fLeft) { |
507 | degenerate = true; |
508 | r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); |
509 | } |
510 | if (r.fBottom <= r.fTop) { |
511 | degenerate = true; |
512 | r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); |
513 | } |
514 | if (degenerate) { |
515 | dst->fRect = r; |
516 | memset(dst->fRadii, 0, sizeof(dst->fRadii)); |
517 | dst->fType = kEmpty_Type; |
518 | return; |
519 | } |
520 | if (!r.isFinite()) { |
521 | *dst = SkRRect(); |
522 | return; |
523 | } |
524 | |
525 | SkVector radii[4]; |
526 | memcpy(radii, fRadii, sizeof(radii)); |
527 | for (int i = 0; i < 4; ++i) { |
528 | if (radii[i].fX) { |
529 | radii[i].fX -= dx; |
530 | } |
531 | if (radii[i].fY) { |
532 | radii[i].fY -= dy; |
533 | } |
534 | } |
535 | dst->setRectRadii(r, radii); |
536 | } |
537 | |
538 | /////////////////////////////////////////////////////////////////////////////// |
539 | |
540 | size_t SkRRect::writeToMemory(void* buffer) const { |
541 | // Serialize only the rect and corners, but not the derived type tag. |
542 | memcpy(buffer, this, kSizeInMemory); |
543 | return kSizeInMemory; |
544 | } |
545 | |
546 | void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { |
547 | // Serialize only the rect and corners, but not the derived type tag. |
548 | buffer->write(&rr, SkRRect::kSizeInMemory); |
549 | } |
550 | |
551 | size_t SkRRect::readFromMemory(const void* buffer, size_t length) { |
552 | if (length < kSizeInMemory) { |
553 | return 0; |
554 | } |
555 | |
556 | // The extra (void*) tells GCC not to worry that kSizeInMemory < sizeof(SkRRect). |
557 | |
558 | SkRRect raw; |
559 | memcpy((void*)&raw, buffer, kSizeInMemory); |
560 | this->setRectRadii(raw.fRect, raw.fRadii); |
561 | return kSizeInMemory; |
562 | } |
563 | |
564 | bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { |
565 | if (buffer->available() < SkRRect::kSizeInMemory) { |
566 | return false; |
567 | } |
568 | SkRRect storage; |
569 | return buffer->read(&storage, SkRRect::kSizeInMemory) && |
570 | (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); |
571 | } |
572 | |
573 | #include "include/core/SkString.h" |
574 | #include "src/core/SkStringUtils.h" |
575 | |
576 | void SkRRect::dump(bool asHex) const { |
577 | SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
578 | |
579 | fRect.dump(asHex); |
580 | SkString line("const SkPoint corners[] = {\n" ); |
581 | for (int i = 0; i < 4; ++i) { |
582 | SkString strX, strY; |
583 | SkAppendScalar(&strX, fRadii[i].x(), asType); |
584 | SkAppendScalar(&strY, fRadii[i].y(), asType); |
585 | line.appendf(" { %s, %s }," , strX.c_str(), strY.c_str()); |
586 | if (asHex) { |
587 | line.appendf(" /* %f %f */" , fRadii[i].x(), fRadii[i].y()); |
588 | } |
589 | line.append("\n" ); |
590 | } |
591 | line.append("};" ); |
592 | SkDebugf("%s\n" , line.c_str()); |
593 | } |
594 | |
595 | /////////////////////////////////////////////////////////////////////////////// |
596 | |
597 | /** |
598 | * We need all combinations of predicates to be true to have a "safe" radius value. |
599 | */ |
600 | static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { |
601 | return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && |
602 | rad >= 0; |
603 | } |
604 | |
605 | bool SkRRect::isValid() const { |
606 | if (!AreRectAndRadiiValid(fRect, fRadii)) { |
607 | return false; |
608 | } |
609 | |
610 | bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); |
611 | bool = (0 == fRadii[0].fX || 0 == fRadii[0].fY); |
612 | bool allRadiiSame = true; |
613 | |
614 | for (int i = 1; i < 4; ++i) { |
615 | if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { |
616 | allRadiiZero = false; |
617 | } |
618 | |
619 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
620 | allRadiiSame = false; |
621 | } |
622 | |
623 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
624 | allCornersSquare = false; |
625 | } |
626 | } |
627 | bool patchesOfNine = radii_are_nine_patch(fRadii); |
628 | |
629 | if (fType < 0 || fType > kLastType) { |
630 | return false; |
631 | } |
632 | |
633 | switch (fType) { |
634 | case kEmpty_Type: |
635 | if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
636 | return false; |
637 | } |
638 | break; |
639 | case kRect_Type: |
640 | if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
641 | return false; |
642 | } |
643 | break; |
644 | case kOval_Type: |
645 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
646 | return false; |
647 | } |
648 | |
649 | for (int i = 0; i < 4; ++i) { |
650 | if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || |
651 | !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { |
652 | return false; |
653 | } |
654 | } |
655 | break; |
656 | case kSimple_Type: |
657 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
658 | return false; |
659 | } |
660 | break; |
661 | case kNinePatch_Type: |
662 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
663 | !patchesOfNine) { |
664 | return false; |
665 | } |
666 | break; |
667 | case kComplex_Type: |
668 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
669 | patchesOfNine) { |
670 | return false; |
671 | } |
672 | break; |
673 | } |
674 | |
675 | return true; |
676 | } |
677 | |
678 | bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { |
679 | if (!rect.isFinite() || !rect.isSorted()) { |
680 | return false; |
681 | } |
682 | for (int i = 0; i < 4; ++i) { |
683 | if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || |
684 | !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { |
685 | return false; |
686 | } |
687 | } |
688 | return true; |
689 | } |
690 | /////////////////////////////////////////////////////////////////////////////// |
691 | |