| 1 | /* | 
|---|
| 2 | * Copyright 2012 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "include/core/SkMatrix.h" | 
|---|
| 9 | #include "include/private/SkMalloc.h" | 
|---|
| 10 | #include "src/core/SkBuffer.h" | 
|---|
| 11 | #include "src/core/SkRRectPriv.h" | 
|---|
| 12 | #include "src/core/SkScaleToSides.h" | 
|---|
| 13 |  | 
|---|
| 14 | #include <cmath> | 
|---|
| 15 | #include <utility> | 
|---|
| 16 |  | 
|---|
| 17 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 18 |  | 
|---|
| 19 | void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { | 
|---|
| 20 | if (!this->initializeRect(rect)) { | 
|---|
| 21 | return; | 
|---|
| 22 | } | 
|---|
| 23 |  | 
|---|
| 24 | if (!SkScalarsAreFinite(xRad, yRad)) { | 
|---|
| 25 | xRad = yRad = 0;    // devolve into a simple rect | 
|---|
| 26 | } | 
|---|
| 27 |  | 
|---|
| 28 | if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { | 
|---|
| 29 | // At most one of these two divides will be by zero, and neither numerator is zero. | 
|---|
| 30 | SkScalar scale = std::min(sk_ieee_float_divide(fRect. width(), xRad + xRad), | 
|---|
| 31 | sk_ieee_float_divide(fRect.height(), yRad + yRad)); | 
|---|
| 32 | SkASSERT(scale < SK_Scalar1); | 
|---|
| 33 | xRad *= scale; | 
|---|
| 34 | yRad *= scale; | 
|---|
| 35 | } | 
|---|
| 36 |  | 
|---|
| 37 | if (xRad <= 0 || yRad <= 0) { | 
|---|
| 38 | // all corners are square in this case | 
|---|
| 39 | this->setRect(rect); | 
|---|
| 40 | return; | 
|---|
| 41 | } | 
|---|
| 42 |  | 
|---|
| 43 | for (int i = 0; i < 4; ++i) { | 
|---|
| 44 | fRadii[i].set(xRad, yRad); | 
|---|
| 45 | } | 
|---|
| 46 | fType = kSimple_Type; | 
|---|
| 47 | if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { | 
|---|
| 48 | fType = kOval_Type; | 
|---|
| 49 | // TODO: assert that all the x&y radii are already W/2 & H/2 | 
|---|
| 50 | } | 
|---|
| 51 |  | 
|---|
| 52 | SkASSERT(this->isValid()); | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, | 
|---|
| 56 | SkScalar rightRad, SkScalar bottomRad) { | 
|---|
| 57 | if (!this->initializeRect(rect)) { | 
|---|
| 58 | return; | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; | 
|---|
| 62 | if (!SkScalarsAreFinite(array, 4)) { | 
|---|
| 63 | this->setRect(rect);    // devolve into a simple rect | 
|---|
| 64 | return; | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | leftRad = std::max(leftRad, 0.0f); | 
|---|
| 68 | topRad = std::max(topRad, 0.0f); | 
|---|
| 69 | rightRad = std::max(rightRad, 0.0f); | 
|---|
| 70 | bottomRad = std::max(bottomRad, 0.0f); | 
|---|
| 71 |  | 
|---|
| 72 | SkScalar scale = SK_Scalar1; | 
|---|
| 73 | if (leftRad + rightRad > fRect.width()) { | 
|---|
| 74 | scale = fRect.width() / (leftRad + rightRad); | 
|---|
| 75 | } | 
|---|
| 76 | if (topRad + bottomRad > fRect.height()) { | 
|---|
| 77 | scale = std::min(scale, fRect.height() / (topRad + bottomRad)); | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | if (scale < SK_Scalar1) { | 
|---|
| 81 | leftRad *= scale; | 
|---|
| 82 | topRad *= scale; | 
|---|
| 83 | rightRad *= scale; | 
|---|
| 84 | bottomRad *= scale; | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | if (leftRad == rightRad && topRad == bottomRad) { | 
|---|
| 88 | if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { | 
|---|
| 89 | fType = kOval_Type; | 
|---|
| 90 | } else if (0 == leftRad || 0 == topRad) { | 
|---|
| 91 | // If the left and (by equality check above) right radii are zero then it is a rect. | 
|---|
| 92 | // Same goes for top/bottom. | 
|---|
| 93 | fType = kRect_Type; | 
|---|
| 94 | leftRad = 0; | 
|---|
| 95 | topRad = 0; | 
|---|
| 96 | rightRad = 0; | 
|---|
| 97 | bottomRad = 0; | 
|---|
| 98 | } else { | 
|---|
| 99 | fType = kSimple_Type; | 
|---|
| 100 | } | 
|---|
| 101 | } else { | 
|---|
| 102 | fType = kNinePatch_Type; | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | fRadii[kUpperLeft_Corner].set(leftRad, topRad); | 
|---|
| 106 | fRadii[kUpperRight_Corner].set(rightRad, topRad); | 
|---|
| 107 | fRadii[kLowerRight_Corner].set(rightRad, bottomRad); | 
|---|
| 108 | fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); | 
|---|
| 109 |  | 
|---|
| 110 | SkASSERT(this->isValid()); | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 | // These parameters intentionally double. Apropos crbug.com/463920, if one of the | 
|---|
| 114 | // radii is huge while the other is small, single precision math can completely | 
|---|
| 115 | // miss the fact that a scale is required. | 
|---|
| 116 | static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { | 
|---|
| 117 | if ((rad1 + rad2) > limit) { | 
|---|
| 118 | return std::min(curMin, limit / (rad1 + rad2)); | 
|---|
| 119 | } | 
|---|
| 120 | return curMin; | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | static bool clamp_to_zero(SkVector radii[4]) { | 
|---|
| 124 | bool  = true; | 
|---|
| 125 |  | 
|---|
| 126 | // Clamp negative radii to zero | 
|---|
| 127 | for (int i = 0; i < 4; ++i) { | 
|---|
| 128 | if (radii[i].fX <= 0 || radii[i].fY <= 0) { | 
|---|
| 129 | // In this case we are being a little fast & loose. Since one of | 
|---|
| 130 | // the radii is 0 the corner is square. However, the other radii | 
|---|
| 131 | // could still be non-zero and play in the global scale factor | 
|---|
| 132 | // computation. | 
|---|
| 133 | radii[i].fX = 0; | 
|---|
| 134 | radii[i].fY = 0; | 
|---|
| 135 | } else { | 
|---|
| 136 | allCornersSquare = false; | 
|---|
| 137 | } | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | return allCornersSquare; | 
|---|
| 141 | } | 
|---|
| 142 |  | 
|---|
| 143 | void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { | 
|---|
| 144 | if (!this->initializeRect(rect)) { | 
|---|
| 145 | return; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | if (!SkScalarsAreFinite(&radii[0].fX, 8)) { | 
|---|
| 149 | this->setRect(rect);    // devolve into a simple rect | 
|---|
| 150 | return; | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | memcpy(fRadii, radii, sizeof(fRadii)); | 
|---|
| 154 |  | 
|---|
| 155 | if (clamp_to_zero(fRadii)) { | 
|---|
| 156 | this->setRect(rect); | 
|---|
| 157 | return; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | this->scaleRadii(rect); | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | bool SkRRect::initializeRect(const SkRect& rect) { | 
|---|
| 164 | // Check this before sorting because sorting can hide nans. | 
|---|
| 165 | if (!rect.isFinite()) { | 
|---|
| 166 | *this = SkRRect(); | 
|---|
| 167 | return false; | 
|---|
| 168 | } | 
|---|
| 169 | fRect = rect.makeSorted(); | 
|---|
| 170 | if (fRect.isEmpty()) { | 
|---|
| 171 | memset(fRadii, 0, sizeof(fRadii)); | 
|---|
| 172 | fType = kEmpty_Type; | 
|---|
| 173 | return false; | 
|---|
| 174 | } | 
|---|
| 175 | return true; | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | // If we can't distinguish one of the radii relative to the other, force it to zero so it | 
|---|
| 179 | // doesn't confuse us later. See crbug.com/850350 | 
|---|
| 180 | // | 
|---|
| 181 | static void flush_to_zero(SkScalar& a, SkScalar& b) { | 
|---|
| 182 | SkASSERT(a >= 0); | 
|---|
| 183 | SkASSERT(b >= 0); | 
|---|
| 184 | if (a + b == a) { | 
|---|
| 185 | b = 0; | 
|---|
| 186 | } else if (a + b == b) { | 
|---|
| 187 | a = 0; | 
|---|
| 188 | } | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | void SkRRect::scaleRadii(const SkRect& rect) { | 
|---|
| 192 | // Proportionally scale down all radii to fit. Find the minimum ratio | 
|---|
| 193 | // of a side and the radii on that side (for all four sides) and use | 
|---|
| 194 | // that to scale down _all_ the radii. This algorithm is from the | 
|---|
| 195 | // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping | 
|---|
| 196 | // Curves: | 
|---|
| 197 | // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, | 
|---|
| 198 | //   Si is the sum of the two corresponding radii of the corners on side i, | 
|---|
| 199 | //   and Ltop = Lbottom = the width of the box, | 
|---|
| 200 | //   and Lleft = Lright = the height of the box. | 
|---|
| 201 | // If f < 1, then all corner radii are reduced by multiplying them by f." | 
|---|
| 202 | double scale = 1.0; | 
|---|
| 203 |  | 
|---|
| 204 | // The sides of the rectangle may be larger than a float. | 
|---|
| 205 | double width = (double)fRect.fRight - (double)fRect.fLeft; | 
|---|
| 206 | double height = (double)fRect.fBottom - (double)fRect.fTop; | 
|---|
| 207 | scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width,  scale); | 
|---|
| 208 | scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); | 
|---|
| 209 | scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width,  scale); | 
|---|
| 210 | scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); | 
|---|
| 211 |  | 
|---|
| 212 | flush_to_zero(fRadii[0].fX, fRadii[1].fX); | 
|---|
| 213 | flush_to_zero(fRadii[1].fY, fRadii[2].fY); | 
|---|
| 214 | flush_to_zero(fRadii[2].fX, fRadii[3].fX); | 
|---|
| 215 | flush_to_zero(fRadii[3].fY, fRadii[0].fY); | 
|---|
| 216 |  | 
|---|
| 217 | if (scale < 1.0) { | 
|---|
| 218 | SkScaleToSides::AdjustRadii(width,  scale, &fRadii[0].fX, &fRadii[1].fX); | 
|---|
| 219 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); | 
|---|
| 220 | SkScaleToSides::AdjustRadii(width,  scale, &fRadii[2].fX, &fRadii[3].fX); | 
|---|
| 221 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); | 
|---|
| 222 | } | 
|---|
| 223 |  | 
|---|
| 224 | // adjust radii may set x or y to zero; set companion to zero as well | 
|---|
| 225 | if (clamp_to_zero(fRadii)) { | 
|---|
| 226 | this->setRect(rect); | 
|---|
| 227 | return; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | // At this point we're either oval, simple, or complex (not empty or rect). | 
|---|
| 231 | this->computeType(); | 
|---|
| 232 |  | 
|---|
| 233 | SkASSERT(this->isValid()); | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | // This method determines if a point known to be inside the RRect's bounds is | 
|---|
| 237 | // inside all the corners. | 
|---|
| 238 | bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { | 
|---|
| 239 | SkPoint canonicalPt; // (x,y) translated to one of the quadrants | 
|---|
| 240 | int index; | 
|---|
| 241 |  | 
|---|
| 242 | if (kOval_Type == this->type()) { | 
|---|
| 243 | canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); | 
|---|
| 244 | index = kUpperLeft_Corner;  // any corner will do in this case | 
|---|
| 245 | } else { | 
|---|
| 246 | if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && | 
|---|
| 247 | y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { | 
|---|
| 248 | // UL corner | 
|---|
| 249 | index = kUpperLeft_Corner; | 
|---|
| 250 | canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), | 
|---|
| 251 | y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); | 
|---|
| 252 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); | 
|---|
| 253 | } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && | 
|---|
| 254 | y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { | 
|---|
| 255 | // LL corner | 
|---|
| 256 | index = kLowerLeft_Corner; | 
|---|
| 257 | canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), | 
|---|
| 258 | y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); | 
|---|
| 259 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); | 
|---|
| 260 | } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && | 
|---|
| 261 | y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { | 
|---|
| 262 | // UR corner | 
|---|
| 263 | index = kUpperRight_Corner; | 
|---|
| 264 | canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), | 
|---|
| 265 | y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); | 
|---|
| 266 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); | 
|---|
| 267 | } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && | 
|---|
| 268 | y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { | 
|---|
| 269 | // LR corner | 
|---|
| 270 | index = kLowerRight_Corner; | 
|---|
| 271 | canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), | 
|---|
| 272 | y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); | 
|---|
| 273 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); | 
|---|
| 274 | } else { | 
|---|
| 275 | // not in any of the corners | 
|---|
| 276 | return true; | 
|---|
| 277 | } | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | // A point is in an ellipse (in standard position) if: | 
|---|
| 281 | //      x^2     y^2 | 
|---|
| 282 | //     ----- + ----- <= 1 | 
|---|
| 283 | //      a^2     b^2 | 
|---|
| 284 | // or : | 
|---|
| 285 | //     b^2*x^2 + a^2*y^2 <= (ab)^2 | 
|---|
| 286 | SkScalar dist =  SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + | 
|---|
| 287 | SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); | 
|---|
| 288 | return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { | 
|---|
| 292 | return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && | 
|---|
| 293 | SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && | 
|---|
| 294 | SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && | 
|---|
| 295 | SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | bool SkRRect::contains(const SkRect& rect) const { | 
|---|
| 299 | if (!this->getBounds().contains(rect)) { | 
|---|
| 300 | // If 'rect' isn't contained by the RR's bounds then the | 
|---|
| 301 | // RR definitely doesn't contain it | 
|---|
| 302 | return false; | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | if (this->isRect()) { | 
|---|
| 306 | // the prior test was sufficient | 
|---|
| 307 | return true; | 
|---|
| 308 | } | 
|---|
| 309 |  | 
|---|
| 310 | // At this point we know all four corners of 'rect' are inside the | 
|---|
| 311 | // bounds of of this RR. Check to make sure all the corners are inside | 
|---|
| 312 | // all the curves | 
|---|
| 313 | return this->checkCornerContainment(rect.fLeft, rect.fTop) && | 
|---|
| 314 | this->checkCornerContainment(rect.fRight, rect.fTop) && | 
|---|
| 315 | this->checkCornerContainment(rect.fRight, rect.fBottom) && | 
|---|
| 316 | this->checkCornerContainment(rect.fLeft, rect.fBottom); | 
|---|
| 317 | } | 
|---|
| 318 |  | 
|---|
| 319 | static bool radii_are_nine_patch(const SkVector radii[4]) { | 
|---|
| 320 | return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && | 
|---|
| 321 | radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && | 
|---|
| 322 | radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && | 
|---|
| 323 | radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | // There is a simplified version of this method in setRectXY | 
|---|
| 327 | void SkRRect::computeType() { | 
|---|
| 328 | if (fRect.isEmpty()) { | 
|---|
| 329 | SkASSERT(fRect.isSorted()); | 
|---|
| 330 | for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { | 
|---|
| 331 | SkASSERT((fRadii[i] == SkVector{0, 0})); | 
|---|
| 332 | } | 
|---|
| 333 | fType = kEmpty_Type; | 
|---|
| 334 | SkASSERT(this->isValid()); | 
|---|
| 335 | return; | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | bool allRadiiEqual = true; // are all x radii equal and all y radii? | 
|---|
| 339 | bool  = 0 == fRadii[0].fX || 0 == fRadii[0].fY; | 
|---|
| 340 |  | 
|---|
| 341 | for (int i = 1; i < 4; ++i) { | 
|---|
| 342 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { | 
|---|
| 343 | // if either radius is zero the corner is square so both have to | 
|---|
| 344 | // be non-zero to have a rounded corner | 
|---|
| 345 | allCornersSquare = false; | 
|---|
| 346 | } | 
|---|
| 347 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { | 
|---|
| 348 | allRadiiEqual = false; | 
|---|
| 349 | } | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | if (allCornersSquare) { | 
|---|
| 353 | fType = kRect_Type; | 
|---|
| 354 | SkASSERT(this->isValid()); | 
|---|
| 355 | return; | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | if (allRadiiEqual) { | 
|---|
| 359 | if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && | 
|---|
| 360 | fRadii[0].fY >= SkScalarHalf(fRect.height())) { | 
|---|
| 361 | fType = kOval_Type; | 
|---|
| 362 | } else { | 
|---|
| 363 | fType = kSimple_Type; | 
|---|
| 364 | } | 
|---|
| 365 | SkASSERT(this->isValid()); | 
|---|
| 366 | return; | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | if (radii_are_nine_patch(fRadii)) { | 
|---|
| 370 | fType = kNinePatch_Type; | 
|---|
| 371 | } else { | 
|---|
| 372 | fType = kComplex_Type; | 
|---|
| 373 | } | 
|---|
| 374 | SkASSERT(this->isValid()); | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { | 
|---|
| 378 | if (nullptr == dst) { | 
|---|
| 379 | return false; | 
|---|
| 380 | } | 
|---|
| 381 |  | 
|---|
| 382 | // Assert that the caller is not trying to do this in place, which | 
|---|
| 383 | // would violate const-ness. Do not return false though, so that | 
|---|
| 384 | // if they know what they're doing and want to violate it they can. | 
|---|
| 385 | SkASSERT(dst != this); | 
|---|
| 386 |  | 
|---|
| 387 | if (matrix.isIdentity()) { | 
|---|
| 388 | *dst = *this; | 
|---|
| 389 | return true; | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 | if (!matrix.preservesAxisAlignment()) { | 
|---|
| 393 | return false; | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | SkRect newRect; | 
|---|
| 397 | if (!matrix.mapRect(&newRect, fRect)) { | 
|---|
| 398 | return false; | 
|---|
| 399 | } | 
|---|
| 400 |  | 
|---|
| 401 | // The matrix may have scaled us to zero (or due to float madness, we now have collapsed | 
|---|
| 402 | // some dimension of the rect, so we need to check for that. Note that matrix must be | 
|---|
| 403 | // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates | 
|---|
| 404 | // loss of precision. | 
|---|
| 405 | if (!newRect.isFinite() || newRect.isEmpty()) { | 
|---|
| 406 | return false; | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | // At this point, this is guaranteed to succeed, so we can modify dst. | 
|---|
| 410 | dst->fRect = newRect; | 
|---|
| 411 |  | 
|---|
| 412 | // Since the only transforms that were allowed are axis aligned, the type | 
|---|
| 413 | // remains unchanged. | 
|---|
| 414 | dst->fType = fType; | 
|---|
| 415 |  | 
|---|
| 416 | if (kRect_Type == fType) { | 
|---|
| 417 | SkASSERT(dst->isValid()); | 
|---|
| 418 | return true; | 
|---|
| 419 | } | 
|---|
| 420 | if (kOval_Type == fType) { | 
|---|
| 421 | for (int i = 0; i < 4; ++i) { | 
|---|
| 422 | dst->fRadii[i].fX = SkScalarHalf(newRect.width()); | 
|---|
| 423 | dst->fRadii[i].fY = SkScalarHalf(newRect.height()); | 
|---|
| 424 | } | 
|---|
| 425 | SkASSERT(dst->isValid()); | 
|---|
| 426 | return true; | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | // Now scale each corner | 
|---|
| 430 | SkScalar xScale = matrix.getScaleX(); | 
|---|
| 431 | SkScalar yScale = matrix.getScaleY(); | 
|---|
| 432 |  | 
|---|
| 433 | // There is a rotation of 90 (Clockwise 90) or 270 (Counter clockwise 90). | 
|---|
| 434 | // 180 degrees rotations are simply flipX with a flipY and would come under | 
|---|
| 435 | // a scale transform. | 
|---|
| 436 | if (!matrix.isScaleTranslate()) { | 
|---|
| 437 | const bool isClockwise = matrix.getSkewX() < 0; | 
|---|
| 438 |  | 
|---|
| 439 | // The matrix location for scale changes if there is a rotation. | 
|---|
| 440 | xScale = matrix.getSkewY() * (isClockwise ? 1 : -1); | 
|---|
| 441 | yScale = matrix.getSkewX() * (isClockwise ? -1 : 1); | 
|---|
| 442 |  | 
|---|
| 443 | const int dir = isClockwise ? 3 : 1; | 
|---|
| 444 | for (int i = 0; i < 4; ++i) { | 
|---|
| 445 | const int src = (i + dir) >= 4 ? (i + dir) % 4 : (i + dir); | 
|---|
| 446 | // Swap X and Y axis for the radii. | 
|---|
| 447 | dst->fRadii[i].fX = fRadii[src].fY; | 
|---|
| 448 | dst->fRadii[i].fY = fRadii[src].fX; | 
|---|
| 449 | } | 
|---|
| 450 | } else { | 
|---|
| 451 | for (int i = 0; i < 4; ++i) { | 
|---|
| 452 | dst->fRadii[i].fX = fRadii[i].fX; | 
|---|
| 453 | dst->fRadii[i].fY = fRadii[i].fY; | 
|---|
| 454 | } | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | const bool flipX = xScale < 0; | 
|---|
| 458 | if (flipX) { | 
|---|
| 459 | xScale = -xScale; | 
|---|
| 460 | } | 
|---|
| 461 |  | 
|---|
| 462 | const bool flipY = yScale < 0; | 
|---|
| 463 | if (flipY) { | 
|---|
| 464 | yScale = -yScale; | 
|---|
| 465 | } | 
|---|
| 466 |  | 
|---|
| 467 | // Scale the radii without respecting the flip. | 
|---|
| 468 | for (int i = 0; i < 4; ++i) { | 
|---|
| 469 | dst->fRadii[i].fX *= xScale; | 
|---|
| 470 | dst->fRadii[i].fY *= yScale; | 
|---|
| 471 | } | 
|---|
| 472 |  | 
|---|
| 473 | // Now swap as necessary. | 
|---|
| 474 | using std::swap; | 
|---|
| 475 | if (flipX) { | 
|---|
| 476 | if (flipY) { | 
|---|
| 477 | // Swap with opposite corners | 
|---|
| 478 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); | 
|---|
| 479 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); | 
|---|
| 480 | } else { | 
|---|
| 481 | // Only swap in x | 
|---|
| 482 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); | 
|---|
| 483 | swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); | 
|---|
| 484 | } | 
|---|
| 485 | } else if (flipY) { | 
|---|
| 486 | // Only swap in y | 
|---|
| 487 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); | 
|---|
| 488 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); | 
|---|
| 489 | } | 
|---|
| 490 |  | 
|---|
| 491 | if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { | 
|---|
| 492 | return false; | 
|---|
| 493 | } | 
|---|
| 494 |  | 
|---|
| 495 | dst->scaleRadii(dst->fRect); | 
|---|
| 496 | dst->isValid(); | 
|---|
| 497 |  | 
|---|
| 498 | return true; | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 502 |  | 
|---|
| 503 | void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { | 
|---|
| 504 | SkRect r = fRect.makeInset(dx, dy); | 
|---|
| 505 | bool degenerate = false; | 
|---|
| 506 | if (r.fRight <= r.fLeft) { | 
|---|
| 507 | degenerate = true; | 
|---|
| 508 | r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); | 
|---|
| 509 | } | 
|---|
| 510 | if (r.fBottom <= r.fTop) { | 
|---|
| 511 | degenerate = true; | 
|---|
| 512 | r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); | 
|---|
| 513 | } | 
|---|
| 514 | if (degenerate) { | 
|---|
| 515 | dst->fRect = r; | 
|---|
| 516 | memset(dst->fRadii, 0, sizeof(dst->fRadii)); | 
|---|
| 517 | dst->fType = kEmpty_Type; | 
|---|
| 518 | return; | 
|---|
| 519 | } | 
|---|
| 520 | if (!r.isFinite()) { | 
|---|
| 521 | *dst = SkRRect(); | 
|---|
| 522 | return; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | SkVector radii[4]; | 
|---|
| 526 | memcpy(radii, fRadii, sizeof(radii)); | 
|---|
| 527 | for (int i = 0; i < 4; ++i) { | 
|---|
| 528 | if (radii[i].fX) { | 
|---|
| 529 | radii[i].fX -= dx; | 
|---|
| 530 | } | 
|---|
| 531 | if (radii[i].fY) { | 
|---|
| 532 | radii[i].fY -= dy; | 
|---|
| 533 | } | 
|---|
| 534 | } | 
|---|
| 535 | dst->setRectRadii(r, radii); | 
|---|
| 536 | } | 
|---|
| 537 |  | 
|---|
| 538 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 539 |  | 
|---|
| 540 | size_t SkRRect::writeToMemory(void* buffer) const { | 
|---|
| 541 | // Serialize only the rect and corners, but not the derived type tag. | 
|---|
| 542 | memcpy(buffer, this, kSizeInMemory); | 
|---|
| 543 | return kSizeInMemory; | 
|---|
| 544 | } | 
|---|
| 545 |  | 
|---|
| 546 | void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { | 
|---|
| 547 | // Serialize only the rect and corners, but not the derived type tag. | 
|---|
| 548 | buffer->write(&rr, SkRRect::kSizeInMemory); | 
|---|
| 549 | } | 
|---|
| 550 |  | 
|---|
| 551 | size_t SkRRect::readFromMemory(const void* buffer, size_t length) { | 
|---|
| 552 | if (length < kSizeInMemory) { | 
|---|
| 553 | return 0; | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | // The extra (void*) tells GCC not to worry that kSizeInMemory < sizeof(SkRRect). | 
|---|
| 557 |  | 
|---|
| 558 | SkRRect raw; | 
|---|
| 559 | memcpy((void*)&raw, buffer, kSizeInMemory); | 
|---|
| 560 | this->setRectRadii(raw.fRect, raw.fRadii); | 
|---|
| 561 | return kSizeInMemory; | 
|---|
| 562 | } | 
|---|
| 563 |  | 
|---|
| 564 | bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { | 
|---|
| 565 | if (buffer->available() < SkRRect::kSizeInMemory) { | 
|---|
| 566 | return false; | 
|---|
| 567 | } | 
|---|
| 568 | SkRRect storage; | 
|---|
| 569 | return buffer->read(&storage, SkRRect::kSizeInMemory) && | 
|---|
| 570 | (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); | 
|---|
| 571 | } | 
|---|
| 572 |  | 
|---|
| 573 | #include "include/core/SkString.h" | 
|---|
| 574 | #include "src/core/SkStringUtils.h" | 
|---|
| 575 |  | 
|---|
| 576 | void SkRRect::dump(bool asHex) const { | 
|---|
| 577 | SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; | 
|---|
| 578 |  | 
|---|
| 579 | fRect.dump(asHex); | 
|---|
| 580 | SkString line( "const SkPoint corners[] = {\n"); | 
|---|
| 581 | for (int i = 0; i < 4; ++i) { | 
|---|
| 582 | SkString strX, strY; | 
|---|
| 583 | SkAppendScalar(&strX, fRadii[i].x(), asType); | 
|---|
| 584 | SkAppendScalar(&strY, fRadii[i].y(), asType); | 
|---|
| 585 | line.appendf( "    { %s, %s },", strX.c_str(), strY.c_str()); | 
|---|
| 586 | if (asHex) { | 
|---|
| 587 | line.appendf( " /* %f %f */", fRadii[i].x(), fRadii[i].y()); | 
|---|
| 588 | } | 
|---|
| 589 | line.append( "\n"); | 
|---|
| 590 | } | 
|---|
| 591 | line.append( "};"); | 
|---|
| 592 | SkDebugf( "%s\n", line.c_str()); | 
|---|
| 593 | } | 
|---|
| 594 |  | 
|---|
| 595 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 596 |  | 
|---|
| 597 | /** | 
|---|
| 598 | *  We need all combinations of predicates to be true to have a "safe" radius value. | 
|---|
| 599 | */ | 
|---|
| 600 | static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { | 
|---|
| 601 | return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && | 
|---|
| 602 | rad >= 0; | 
|---|
| 603 | } | 
|---|
| 604 |  | 
|---|
| 605 | bool SkRRect::isValid() const { | 
|---|
| 606 | if (!AreRectAndRadiiValid(fRect, fRadii)) { | 
|---|
| 607 | return false; | 
|---|
| 608 | } | 
|---|
| 609 |  | 
|---|
| 610 | bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); | 
|---|
| 611 | bool  = (0 == fRadii[0].fX || 0 == fRadii[0].fY); | 
|---|
| 612 | bool allRadiiSame = true; | 
|---|
| 613 |  | 
|---|
| 614 | for (int i = 1; i < 4; ++i) { | 
|---|
| 615 | if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { | 
|---|
| 616 | allRadiiZero = false; | 
|---|
| 617 | } | 
|---|
| 618 |  | 
|---|
| 619 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { | 
|---|
| 620 | allRadiiSame = false; | 
|---|
| 621 | } | 
|---|
| 622 |  | 
|---|
| 623 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { | 
|---|
| 624 | allCornersSquare = false; | 
|---|
| 625 | } | 
|---|
| 626 | } | 
|---|
| 627 | bool patchesOfNine = radii_are_nine_patch(fRadii); | 
|---|
| 628 |  | 
|---|
| 629 | if (fType < 0 || fType > kLastType) { | 
|---|
| 630 | return false; | 
|---|
| 631 | } | 
|---|
| 632 |  | 
|---|
| 633 | switch (fType) { | 
|---|
| 634 | case kEmpty_Type: | 
|---|
| 635 | if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { | 
|---|
| 636 | return false; | 
|---|
| 637 | } | 
|---|
| 638 | break; | 
|---|
| 639 | case kRect_Type: | 
|---|
| 640 | if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { | 
|---|
| 641 | return false; | 
|---|
| 642 | } | 
|---|
| 643 | break; | 
|---|
| 644 | case kOval_Type: | 
|---|
| 645 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { | 
|---|
| 646 | return false; | 
|---|
| 647 | } | 
|---|
| 648 |  | 
|---|
| 649 | for (int i = 0; i < 4; ++i) { | 
|---|
| 650 | if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || | 
|---|
| 651 | !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { | 
|---|
| 652 | return false; | 
|---|
| 653 | } | 
|---|
| 654 | } | 
|---|
| 655 | break; | 
|---|
| 656 | case kSimple_Type: | 
|---|
| 657 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { | 
|---|
| 658 | return false; | 
|---|
| 659 | } | 
|---|
| 660 | break; | 
|---|
| 661 | case kNinePatch_Type: | 
|---|
| 662 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || | 
|---|
| 663 | !patchesOfNine) { | 
|---|
| 664 | return false; | 
|---|
| 665 | } | 
|---|
| 666 | break; | 
|---|
| 667 | case kComplex_Type: | 
|---|
| 668 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || | 
|---|
| 669 | patchesOfNine) { | 
|---|
| 670 | return false; | 
|---|
| 671 | } | 
|---|
| 672 | break; | 
|---|
| 673 | } | 
|---|
| 674 |  | 
|---|
| 675 | return true; | 
|---|
| 676 | } | 
|---|
| 677 |  | 
|---|
| 678 | bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { | 
|---|
| 679 | if (!rect.isFinite() || !rect.isSorted()) { | 
|---|
| 680 | return false; | 
|---|
| 681 | } | 
|---|
| 682 | for (int i = 0; i < 4; ++i) { | 
|---|
| 683 | if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || | 
|---|
| 684 | !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { | 
|---|
| 685 | return false; | 
|---|
| 686 | } | 
|---|
| 687 | } | 
|---|
| 688 | return true; | 
|---|
| 689 | } | 
|---|
| 690 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 691 |  | 
|---|