1 | /* |
2 | * Copyright 2016 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef GrShape_DEFINED |
9 | #define GrShape_DEFINED |
10 | |
11 | #include "include/core/SkPath.h" |
12 | #include "include/core/SkRRect.h" |
13 | #include "include/private/SkTemplates.h" |
14 | #include "src/core/SkPathPriv.h" |
15 | #include "src/core/SkTLazy.h" |
16 | #include "src/gpu/GrStyle.h" |
17 | #include <new> |
18 | |
19 | class SkIDChangeListener; |
20 | |
21 | /** |
22 | * Represents a geometric shape (rrect or path) and the GrStyle that it should be rendered with. |
23 | * It is possible to apply the style to the GrShape to produce a new GrShape where the geometry |
24 | * reflects the styling information (e.g. is stroked). It is also possible to apply just the |
25 | * path effect from the style. In this case the resulting shape will include any remaining |
26 | * stroking information that is to be applied after the path effect. |
27 | * |
28 | * Shapes can produce keys that represent only the geometry information, not the style. Note that |
29 | * when styling information is applied to produce a new shape then the style has been converted |
30 | * to geometric information and is included in the new shape's key. When the same style is applied |
31 | * to two shapes that reflect the same underlying geometry the computed keys of the stylized shapes |
32 | * will be the same. |
33 | * |
34 | * Currently this can only be constructed from a path, rect, or rrect though it can become a path |
35 | * applying style to the geometry. The idea is to expand this to cover most or all of the geometries |
36 | * that have fast paths in the GPU backend. |
37 | */ |
38 | class GrShape { |
39 | public: |
40 | // Keys for paths may be extracted from the path data for small paths. Clients aren't supposed |
41 | // to have to worry about this. This value is exposed for unit tests. |
42 | static constexpr int kMaxKeyFromDataVerbCnt = 10; |
43 | |
44 | GrShape() { this->initType(Type::kEmpty); } |
45 | |
46 | explicit GrShape(const SkPath& path) : GrShape(path, GrStyle::SimpleFill()) {} |
47 | |
48 | explicit GrShape(const SkRRect& rrect) : GrShape(rrect, GrStyle::SimpleFill()) {} |
49 | |
50 | explicit GrShape(const SkRect& rect) : GrShape(rect, GrStyle::SimpleFill()) {} |
51 | |
52 | GrShape(const SkPath& path, const GrStyle& style) : fStyle(style) { |
53 | this->initType(Type::kPath, &path); |
54 | this->attemptToSimplifyPath(); |
55 | } |
56 | |
57 | GrShape(const SkRRect& rrect, const GrStyle& style) : fStyle(style) { |
58 | this->initType(Type::kRRect); |
59 | fRRectData.fRRect = rrect; |
60 | fRRectData.fInverted = false; |
61 | fRRectData.fStart = DefaultRRectDirAndStartIndex(rrect, style.hasPathEffect(), |
62 | &fRRectData.fDir); |
63 | this->attemptToSimplifyRRect(); |
64 | } |
65 | |
66 | GrShape(const SkRRect& rrect, SkPathDirection dir, unsigned start, bool inverted, |
67 | const GrStyle& style) |
68 | : fStyle(style) { |
69 | this->initType(Type::kRRect); |
70 | fRRectData.fRRect = rrect; |
71 | fRRectData.fInverted = inverted; |
72 | if (style.pathEffect()) { |
73 | fRRectData.fDir = dir; |
74 | fRRectData.fStart = start; |
75 | if (fRRectData.fRRect.getType() == SkRRect::kRect_Type) { |
76 | fRRectData.fStart = (fRRectData.fStart + 1) & 0b110; |
77 | } else if (fRRectData.fRRect.getType() == SkRRect::kOval_Type) { |
78 | fRRectData.fStart &= 0b110; |
79 | } |
80 | } else { |
81 | fRRectData.fStart = DefaultRRectDirAndStartIndex(rrect, false, &fRRectData.fDir); |
82 | } |
83 | this->attemptToSimplifyRRect(); |
84 | } |
85 | |
86 | GrShape(const SkRect& rect, const GrStyle& style) : fStyle(style) { |
87 | this->initType(Type::kRRect); |
88 | fRRectData.fRRect = SkRRect::MakeRect(rect); |
89 | fRRectData.fInverted = false; |
90 | fRRectData.fStart = DefaultRectDirAndStartIndex(rect, style.hasPathEffect(), |
91 | &fRRectData.fDir); |
92 | this->attemptToSimplifyRRect(); |
93 | } |
94 | |
95 | GrShape(const SkPath& path, const SkPaint& paint) : fStyle(paint) { |
96 | this->initType(Type::kPath, &path); |
97 | this->attemptToSimplifyPath(); |
98 | } |
99 | |
100 | GrShape(const SkRRect& rrect, const SkPaint& paint) : fStyle(paint) { |
101 | this->initType(Type::kRRect); |
102 | fRRectData.fRRect = rrect; |
103 | fRRectData.fInverted = false; |
104 | fRRectData.fStart = DefaultRRectDirAndStartIndex(rrect, fStyle.hasPathEffect(), |
105 | &fRRectData.fDir); |
106 | this->attemptToSimplifyRRect(); |
107 | } |
108 | |
109 | GrShape(const SkRect& rect, const SkPaint& paint) : fStyle(paint) { |
110 | this->initType(Type::kRRect); |
111 | fRRectData.fRRect = SkRRect::MakeRect(rect); |
112 | fRRectData.fInverted = false; |
113 | fRRectData.fStart = DefaultRectDirAndStartIndex(rect, fStyle.hasPathEffect(), |
114 | &fRRectData.fDir); |
115 | this->attemptToSimplifyRRect(); |
116 | } |
117 | |
118 | static GrShape MakeArc(const SkRect& oval, SkScalar startAngleDegrees, |
119 | SkScalar sweepAngleDegrees, bool useCenter, const GrStyle& style); |
120 | |
121 | GrShape(const GrShape&); |
122 | GrShape& operator=(const GrShape& that); |
123 | |
124 | ~GrShape() { this->changeType(Type::kEmpty); } |
125 | |
126 | /** |
127 | * Informs MakeFilled on how to modify that shape's fill rule when making a simple filled |
128 | * version of the shape. |
129 | */ |
130 | enum class FillInversion { |
131 | kPreserve, |
132 | kFlip, |
133 | kForceNoninverted, |
134 | kForceInverted |
135 | }; |
136 | /** |
137 | * Makes a filled shape from the pre-styled original shape and optionally modifies whether |
138 | * the fill is inverted or not. It's important to note that the original shape's geometry |
139 | * may already have been modified if doing so was neutral with respect to its style |
140 | * (e.g. filled paths are always closed when stored in a shape and dashed paths are always |
141 | * made non-inverted since dashing ignores inverseness). |
142 | */ |
143 | static GrShape MakeFilled(const GrShape& original, FillInversion = FillInversion::kPreserve); |
144 | |
145 | const GrStyle& style() const { return fStyle; } |
146 | |
147 | /** |
148 | * Returns a shape that has either applied the path effect or path effect and stroking |
149 | * information from this shape's style to its geometry. Scale is used when approximating the |
150 | * output geometry and typically is computed from the view matrix |
151 | */ |
152 | GrShape applyStyle(GrStyle::Apply apply, SkScalar scale) const { |
153 | return GrShape(*this, apply, scale); |
154 | } |
155 | |
156 | bool isRect() const { |
157 | if (Type::kRRect != fType) { |
158 | return false; |
159 | } |
160 | |
161 | return fRRectData.fRRect.isRect(); |
162 | } |
163 | |
164 | /** Returns the unstyled geometry as a rrect if possible. */ |
165 | bool asRRect(SkRRect* rrect, SkPathDirection* dir, unsigned* start, bool* inverted) const { |
166 | if (Type::kRRect != fType) { |
167 | return false; |
168 | } |
169 | if (rrect) { |
170 | *rrect = fRRectData.fRRect; |
171 | } |
172 | if (dir) { |
173 | *dir = fRRectData.fDir; |
174 | } |
175 | if (start) { |
176 | *start = fRRectData.fStart; |
177 | } |
178 | if (inverted) { |
179 | *inverted = fRRectData.fInverted; |
180 | } |
181 | return true; |
182 | } |
183 | |
184 | /** |
185 | * If the unstyled shape is a straight line segment, returns true and sets pts to the endpoints. |
186 | * An inverse filled line path is still considered a line. |
187 | */ |
188 | bool asLine(SkPoint pts[2], bool* inverted) const { |
189 | if (fType != Type::kLine) { |
190 | return false; |
191 | } |
192 | if (pts) { |
193 | pts[0] = fLineData.fPts[0]; |
194 | pts[1] = fLineData.fPts[1]; |
195 | } |
196 | if (inverted) { |
197 | *inverted = fLineData.fInverted; |
198 | } |
199 | return true; |
200 | } |
201 | |
202 | /** Returns the unstyled geometry as a path. */ |
203 | void asPath(SkPath* out) const { |
204 | switch (fType) { |
205 | case Type::kEmpty: |
206 | out->reset(); |
207 | break; |
208 | case Type::kInvertedEmpty: |
209 | out->reset(); |
210 | out->setFillType(kDefaultPathInverseFillType); |
211 | break; |
212 | case Type::kRRect: |
213 | out->reset(); |
214 | out->addRRect(fRRectData.fRRect, fRRectData.fDir, fRRectData.fStart); |
215 | // Below matches the fill type that attemptToSimplifyPath uses. |
216 | if (fRRectData.fInverted) { |
217 | out->setFillType(kDefaultPathInverseFillType); |
218 | } else { |
219 | out->setFillType(kDefaultPathFillType); |
220 | } |
221 | break; |
222 | case Type::kArc: |
223 | SkPathPriv::CreateDrawArcPath(out, fArcData.fOval, fArcData.fStartAngleDegrees, |
224 | fArcData.fSweepAngleDegrees, fArcData.fUseCenter, |
225 | fStyle.isSimpleFill()); |
226 | if (fArcData.fInverted) { |
227 | out->setFillType(kDefaultPathInverseFillType); |
228 | } else { |
229 | out->setFillType(kDefaultPathFillType); |
230 | } |
231 | break; |
232 | case Type::kLine: |
233 | out->reset(); |
234 | out->moveTo(fLineData.fPts[0]); |
235 | out->lineTo(fLineData.fPts[1]); |
236 | if (fLineData.fInverted) { |
237 | out->setFillType(kDefaultPathInverseFillType); |
238 | } else { |
239 | out->setFillType(kDefaultPathFillType); |
240 | } |
241 | break; |
242 | case Type::kPath: |
243 | *out = this->path(); |
244 | break; |
245 | } |
246 | } |
247 | |
248 | // Can this shape be drawn as a pair of filled nested rectangles? |
249 | bool asNestedRects(SkRect rects[2]) const { |
250 | if (Type::kPath != fType) { |
251 | return false; |
252 | } |
253 | |
254 | // TODO: it would be better two store DRRects natively in the shape rather than converting |
255 | // them to a path and then reextracting the nested rects |
256 | if (this->path().isInverseFillType()) { |
257 | return false; |
258 | } |
259 | |
260 | SkPathDirection dirs[2]; |
261 | if (!SkPathPriv::IsNestedFillRects(this->path(), rects, dirs)) { |
262 | return false; |
263 | } |
264 | |
265 | if (SkPathFillType::kWinding == this->path().getFillType() && dirs[0] == dirs[1]) { |
266 | // The two rects need to be wound opposite to each other |
267 | return false; |
268 | } |
269 | |
270 | // Right now, nested rects where the margin is not the same width |
271 | // all around do not render correctly |
272 | const SkScalar* outer = rects[0].asScalars(); |
273 | const SkScalar* inner = rects[1].asScalars(); |
274 | |
275 | bool allEq = true; |
276 | |
277 | SkScalar margin = SkScalarAbs(outer[0] - inner[0]); |
278 | bool allGoE1 = margin >= SK_Scalar1; |
279 | |
280 | for (int i = 1; i < 4; ++i) { |
281 | SkScalar temp = SkScalarAbs(outer[i] - inner[i]); |
282 | if (temp < SK_Scalar1) { |
283 | allGoE1 = false; |
284 | } |
285 | if (!SkScalarNearlyEqual(margin, temp)) { |
286 | allEq = false; |
287 | } |
288 | } |
289 | |
290 | return allEq || allGoE1; |
291 | } |
292 | |
293 | /** |
294 | * Returns whether the geometry is empty. Note that applying the style could produce a |
295 | * non-empty shape. It also may have an inverse fill. |
296 | */ |
297 | bool isEmpty() const { return Type::kEmpty == fType || Type::kInvertedEmpty == fType; } |
298 | |
299 | /** |
300 | * Gets the bounds of the geometry without reflecting the shape's styling. This ignores |
301 | * the inverse fill nature of the geometry. |
302 | */ |
303 | SkRect bounds() const; |
304 | |
305 | /** |
306 | * Gets the bounds of the geometry reflecting the shape's styling (ignoring inverse fill |
307 | * status). |
308 | */ |
309 | SkRect styledBounds() const; |
310 | |
311 | /** |
312 | * Is this shape known to be convex, before styling is applied. An unclosed but otherwise |
313 | * convex path is considered to be closed if they styling reflects a fill and not otherwise. |
314 | * This is because filling closes all contours in the path. |
315 | */ |
316 | bool knownToBeConvex() const { |
317 | switch (fType) { |
318 | case Type::kEmpty: |
319 | return true; |
320 | case Type::kInvertedEmpty: |
321 | return true; |
322 | case Type::kRRect: |
323 | return true; |
324 | case Type::kArc: |
325 | return SkPathPriv::DrawArcIsConvex(fArcData.fSweepAngleDegrees, |
326 | SkToBool(fArcData.fUseCenter), |
327 | fStyle.isSimpleFill()); |
328 | case Type::kLine: |
329 | return true; |
330 | case Type::kPath: |
331 | // SkPath.isConvex() really means "is this path convex were it to be closed" and |
332 | // thus doesn't give the correct answer for stroked paths, hence we also check |
333 | // whether the path is either filled or closed. Convex paths may only have one |
334 | // contour hence isLastContourClosed() is a sufficient for a convex path. |
335 | return (this->style().isSimpleFill() || this->path().isLastContourClosed()) && |
336 | this->path().isConvex(); |
337 | } |
338 | return false; |
339 | } |
340 | |
341 | /** |
342 | * Does the shape have a known winding direction. Some degenerate convex shapes may not have |
343 | * a computable direction, but this is not always a requirement for path renderers so it is |
344 | * kept separate from knownToBeConvex(). |
345 | */ |
346 | bool knownDirection() const { |
347 | switch (fType) { |
348 | case Type::kEmpty: |
349 | return true; |
350 | case Type::kInvertedEmpty: |
351 | return true; |
352 | case Type::kRRect: |
353 | return true; |
354 | case Type::kArc: |
355 | return true; |
356 | case Type::kLine: |
357 | return true; |
358 | case Type::kPath: |
359 | // Assuming this is called after knownToBeConvex(), this should just be relying on |
360 | // cached convexity and direction and will be cheap. |
361 | return !SkPathPriv::CheapIsFirstDirection(this->path(), |
362 | SkPathPriv::kUnknown_FirstDirection); |
363 | } |
364 | return false; |
365 | } |
366 | |
367 | /** Is the pre-styled geometry inverse filled? */ |
368 | bool inverseFilled() const { |
369 | bool ret = false; |
370 | switch (fType) { |
371 | case Type::kEmpty: |
372 | ret = false; |
373 | break; |
374 | case Type::kInvertedEmpty: |
375 | ret = true; |
376 | break; |
377 | case Type::kRRect: |
378 | ret = fRRectData.fInverted; |
379 | break; |
380 | case Type::kArc: |
381 | ret = fArcData.fInverted; |
382 | break; |
383 | case Type::kLine: |
384 | ret = fLineData.fInverted; |
385 | break; |
386 | case Type::kPath: |
387 | ret = this->path().isInverseFillType(); |
388 | break; |
389 | } |
390 | // Dashing ignores inverseness. We should have caught this earlier. skbug.com/5421 |
391 | SkASSERT(!(ret && this->style().isDashed())); |
392 | return ret; |
393 | } |
394 | |
395 | /** |
396 | * Might applying the styling to the geometry produce an inverse fill. The "may" part comes in |
397 | * because an arbitrary path effect could produce an inverse filled path. In other cases this |
398 | * can be thought of as "inverseFilledAfterStyling()". |
399 | */ |
400 | bool mayBeInverseFilledAfterStyling() const { |
401 | // An arbitrary path effect can produce an arbitrary output path, which may be inverse |
402 | // filled. |
403 | if (this->style().hasNonDashPathEffect()) { |
404 | return true; |
405 | } |
406 | return this->inverseFilled(); |
407 | } |
408 | |
409 | /** |
410 | * Is it known that the unstyled geometry has no unclosed contours. This means that it will |
411 | * not have any caps if stroked (modulo the effect of any path effect). |
412 | */ |
413 | bool knownToBeClosed() const { |
414 | switch (fType) { |
415 | case Type::kEmpty: |
416 | return true; |
417 | case Type::kInvertedEmpty: |
418 | return true; |
419 | case Type::kRRect: |
420 | return true; |
421 | case Type::kArc: |
422 | return fArcData.fUseCenter; |
423 | case Type::kLine: |
424 | return false; |
425 | case Type::kPath: |
426 | // SkPath doesn't keep track of the closed status of each contour. |
427 | return SkPathPriv::IsClosedSingleContour(this->path()); |
428 | } |
429 | return false; |
430 | } |
431 | |
432 | uint32_t segmentMask() const { |
433 | switch (fType) { |
434 | case Type::kEmpty: |
435 | return 0; |
436 | case Type::kInvertedEmpty: |
437 | return 0; |
438 | case Type::kRRect: |
439 | if (fRRectData.fRRect.getType() == SkRRect::kOval_Type) { |
440 | return SkPath::kConic_SegmentMask; |
441 | } else if (fRRectData.fRRect.getType() == SkRRect::kRect_Type || |
442 | fRRectData.fRRect.getType() == SkRRect::kEmpty_Type) { |
443 | return SkPath::kLine_SegmentMask; |
444 | } |
445 | return SkPath::kLine_SegmentMask | SkPath::kConic_SegmentMask; |
446 | case Type::kArc: |
447 | if (fArcData.fUseCenter) { |
448 | return SkPath::kConic_SegmentMask | SkPath::kLine_SegmentMask; |
449 | } |
450 | return SkPath::kConic_SegmentMask; |
451 | case Type::kLine: |
452 | return SkPath::kLine_SegmentMask; |
453 | case Type::kPath: |
454 | return this->path().getSegmentMasks(); |
455 | } |
456 | return 0; |
457 | } |
458 | |
459 | /** |
460 | * Gets the size of the key for the shape represented by this GrShape (ignoring its styling). |
461 | * A negative value is returned if the shape has no key (shouldn't be cached). |
462 | */ |
463 | int unstyledKeySize() const; |
464 | |
465 | bool hasUnstyledKey() const { return this->unstyledKeySize() >= 0; } |
466 | |
467 | /** |
468 | * Writes unstyledKeySize() bytes into the provided pointer. Assumes that there is enough |
469 | * space allocated for the key and that unstyledKeySize() does not return a negative value |
470 | * for this shape. |
471 | */ |
472 | void writeUnstyledKey(uint32_t* key) const; |
473 | |
474 | /** |
475 | * Adds a listener to the *original* path. Typically used to invalidate cached resources when |
476 | * a path is no longer in-use. If the shape started out as something other than a path, this |
477 | * does nothing. |
478 | */ |
479 | void addGenIDChangeListener(sk_sp<SkIDChangeListener>) const; |
480 | |
481 | /** |
482 | * Helpers that are only exposed for unit tests, to determine if the shape is a path, and get |
483 | * the generation ID of the *original* path. This is the path that will receive |
484 | * GenIDChangeListeners added to this shape. |
485 | */ |
486 | uint32_t testingOnly_getOriginalGenerationID() const; |
487 | bool testingOnly_isPath() const; |
488 | bool testingOnly_isNonVolatilePath() const; |
489 | |
490 | private: |
491 | enum class Type { |
492 | kEmpty, |
493 | kInvertedEmpty, |
494 | kRRect, |
495 | kArc, |
496 | kLine, |
497 | kPath, |
498 | }; |
499 | |
500 | void initType(Type type, const SkPath* path = nullptr) { |
501 | fType = Type::kEmpty; |
502 | this->changeType(type, path); |
503 | } |
504 | |
505 | void changeType(Type type, const SkPath* path = nullptr) { |
506 | bool wasPath = Type::kPath == fType; |
507 | fType = type; |
508 | bool isPath = Type::kPath == type; |
509 | SkASSERT(!path || isPath); |
510 | if (wasPath && !isPath) { |
511 | fPathData.fPath.~SkPath(); |
512 | } else if (!wasPath && isPath) { |
513 | if (path) { |
514 | new (&fPathData.fPath) SkPath(*path); |
515 | } else { |
516 | new (&fPathData.fPath) SkPath(); |
517 | } |
518 | } else if (isPath && path) { |
519 | fPathData.fPath = *path; |
520 | } |
521 | // Whether or not we use the path's gen ID is decided in attemptToSimplifyPath. |
522 | fPathData.fGenID = 0; |
523 | } |
524 | |
525 | SkPath& path() { |
526 | SkASSERT(Type::kPath == fType); |
527 | return fPathData.fPath; |
528 | } |
529 | |
530 | const SkPath& path() const { |
531 | SkASSERT(Type::kPath == fType); |
532 | return fPathData.fPath; |
533 | } |
534 | |
535 | /** Constructor used by the applyStyle() function */ |
536 | GrShape(const GrShape& parentShape, GrStyle::Apply, SkScalar scale); |
537 | |
538 | /** |
539 | * Determines the key we should inherit from the input shape's geometry and style when |
540 | * we are applying the style to create a new shape. |
541 | */ |
542 | void setInheritedKey(const GrShape& parentShape, GrStyle::Apply, SkScalar scale); |
543 | |
544 | void attemptToSimplifyPath(); |
545 | void attemptToSimplifyRRect(); |
546 | void attemptToSimplifyLine(); |
547 | void attemptToSimplifyArc(); |
548 | |
549 | bool attemptToSimplifyStrokedLineToRRect(); |
550 | |
551 | /** Gets the path that gen id listeners should be added to. */ |
552 | const SkPath* originalPathForListeners() const; |
553 | |
554 | // Defaults to use when there is no distinction between even/odd and winding fills. |
555 | static constexpr SkPathFillType kDefaultPathFillType = SkPathFillType::kEvenOdd; |
556 | static constexpr SkPathFillType kDefaultPathInverseFillType = SkPathFillType::kInverseEvenOdd; |
557 | |
558 | static constexpr SkPathDirection kDefaultRRectDir = SkPathDirection::kCW; |
559 | static constexpr unsigned kDefaultRRectStart = 0; |
560 | |
561 | static unsigned DefaultRectDirAndStartIndex(const SkRect& rect, bool hasPathEffect, |
562 | SkPathDirection* dir) { |
563 | *dir = kDefaultRRectDir; |
564 | // This comes from SkPath's interface. The default for adding a SkRect is counter clockwise |
565 | // beginning at index 0 (which happens to correspond to rrect index 0 or 7). |
566 | if (!hasPathEffect) { |
567 | // It doesn't matter what start we use, just be consistent to avoid redundant keys. |
568 | return kDefaultRRectStart; |
569 | } |
570 | // In SkPath a rect starts at index 0 by default. This is the top left corner. However, |
571 | // we store rects as rrects. RRects don't preserve the invertedness, but rather sort the |
572 | // rect edges. Thus, we may need to modify the rrect's start index to account for the sort. |
573 | bool swapX = rect.fLeft > rect.fRight; |
574 | bool swapY = rect.fTop > rect.fBottom; |
575 | if (swapX && swapY) { |
576 | // 0 becomes start index 2 and times 2 to convert from rect the rrect indices. |
577 | return 2 * 2; |
578 | } else if (swapX) { |
579 | *dir = SkPathDirection::kCCW; |
580 | // 0 becomes start index 1 and times 2 to convert from rect the rrect indices. |
581 | return 2 * 1; |
582 | } else if (swapY) { |
583 | *dir = SkPathDirection::kCCW; |
584 | // 0 becomes start index 3 and times 2 to convert from rect the rrect indices. |
585 | return 2 * 3; |
586 | } |
587 | return 0; |
588 | } |
589 | |
590 | static unsigned DefaultRRectDirAndStartIndex(const SkRRect& rrect, bool hasPathEffect, |
591 | SkPathDirection* dir) { |
592 | // This comes from SkPath's interface. The default for adding a SkRRect to a path is |
593 | // clockwise beginning at starting index 6. |
594 | static constexpr unsigned kPathRRectStartIdx = 6; |
595 | *dir = kDefaultRRectDir; |
596 | if (!hasPathEffect) { |
597 | // It doesn't matter what start we use, just be consistent to avoid redundant keys. |
598 | return kDefaultRRectStart; |
599 | } |
600 | return kPathRRectStartIdx; |
601 | } |
602 | |
603 | union { |
604 | struct { |
605 | SkRRect fRRect; |
606 | SkPathDirection fDir; |
607 | unsigned fStart; |
608 | bool fInverted; |
609 | } fRRectData; |
610 | struct { |
611 | SkRect fOval; |
612 | SkScalar fStartAngleDegrees; |
613 | SkScalar fSweepAngleDegrees; |
614 | int16_t fUseCenter; |
615 | int16_t fInverted; |
616 | } fArcData; |
617 | struct { |
618 | SkPath fPath; |
619 | // Gen ID of the original path (fPath may be modified) |
620 | int32_t fGenID; |
621 | } fPathData; |
622 | struct { |
623 | SkPoint fPts[2]; |
624 | bool fInverted; |
625 | } fLineData; |
626 | }; |
627 | GrStyle fStyle; |
628 | SkTLazy<SkPath> fInheritedPathForListeners; |
629 | SkAutoSTArray<8, uint32_t> fInheritedKey; |
630 | Type fType; |
631 | }; |
632 | #endif |
633 | |