1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkIntersections.h" |
8 | #include "src/pathops/SkPathOpsConic.h" |
9 | #include "src/pathops/SkPathOpsCurve.h" |
10 | #include "src/pathops/SkPathOpsLine.h" |
11 | |
12 | class LineConicIntersections { |
13 | public: |
14 | enum PinTPoint { |
15 | kPointUninitialized, |
16 | kPointInitialized |
17 | }; |
18 | |
19 | LineConicIntersections(const SkDConic& c, const SkDLine& l, SkIntersections* i) |
20 | : fConic(c) |
21 | , fLine(&l) |
22 | , fIntersections(i) |
23 | , fAllowNear(true) { |
24 | i->setMax(4); // allow short partial coincidence plus discrete intersection |
25 | } |
26 | |
27 | LineConicIntersections(const SkDConic& c) |
28 | : fConic(c) |
29 | SkDEBUGPARAMS(fLine(nullptr)) |
30 | SkDEBUGPARAMS(fIntersections(nullptr)) |
31 | SkDEBUGPARAMS(fAllowNear(false)) { |
32 | } |
33 | |
34 | void allowNear(bool allow) { |
35 | fAllowNear = allow; |
36 | } |
37 | |
38 | void checkCoincident() { |
39 | int last = fIntersections->used() - 1; |
40 | for (int index = 0; index < last; ) { |
41 | double conicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; |
42 | SkDPoint conicMidPt = fConic.ptAtT(conicMidT); |
43 | double t = fLine->nearPoint(conicMidPt, nullptr); |
44 | if (t < 0) { |
45 | ++index; |
46 | continue; |
47 | } |
48 | if (fIntersections->isCoincident(index)) { |
49 | fIntersections->removeOne(index); |
50 | --last; |
51 | } else if (fIntersections->isCoincident(index + 1)) { |
52 | fIntersections->removeOne(index + 1); |
53 | --last; |
54 | } else { |
55 | fIntersections->setCoincident(index++); |
56 | } |
57 | fIntersections->setCoincident(index); |
58 | } |
59 | } |
60 | |
61 | #ifdef SK_DEBUG |
62 | static bool close_to(double a, double b, const double c[3]) { |
63 | double max = std::max(-std::min(std::min(c[0], c[1]), c[2]), std::max(std::max(c[0], c[1]), c[2])); |
64 | return approximately_zero_when_compared_to(a - b, max); |
65 | } |
66 | #endif |
67 | int horizontalIntersect(double axisIntercept, double roots[2]) { |
68 | double conicVals[] = { fConic[0].fY, fConic[1].fY, fConic[2].fY }; |
69 | return this->validT(conicVals, axisIntercept, roots); |
70 | } |
71 | |
72 | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
73 | this->addExactHorizontalEndPoints(left, right, axisIntercept); |
74 | if (fAllowNear) { |
75 | this->addNearHorizontalEndPoints(left, right, axisIntercept); |
76 | } |
77 | double roots[2]; |
78 | int count = this->horizontalIntersect(axisIntercept, roots); |
79 | for (int index = 0; index < count; ++index) { |
80 | double conicT = roots[index]; |
81 | SkDPoint pt = fConic.ptAtT(conicT); |
82 | SkDEBUGCODE(double conicVals[] = { fConic[0].fY, fConic[1].fY, fConic[2].fY }); |
83 | SkOPOBJASSERT(fIntersections, close_to(pt.fY, axisIntercept, conicVals)); |
84 | double lineT = (pt.fX - left) / (right - left); |
85 | if (this->pinTs(&conicT, &lineT, &pt, kPointInitialized) |
86 | && this->uniqueAnswer(conicT, pt)) { |
87 | fIntersections->insert(conicT, lineT, pt); |
88 | } |
89 | } |
90 | if (flipped) { |
91 | fIntersections->flip(); |
92 | } |
93 | this->checkCoincident(); |
94 | return fIntersections->used(); |
95 | } |
96 | |
97 | int intersect() { |
98 | this->addExactEndPoints(); |
99 | if (fAllowNear) { |
100 | this->addNearEndPoints(); |
101 | } |
102 | double rootVals[2]; |
103 | int roots = this->intersectRay(rootVals); |
104 | for (int index = 0; index < roots; ++index) { |
105 | double conicT = rootVals[index]; |
106 | double lineT = this->findLineT(conicT); |
107 | #ifdef SK_DEBUG |
108 | if (!fIntersections->globalState() |
109 | || !fIntersections->globalState()->debugSkipAssert()) { |
110 | SkDEBUGCODE(SkDPoint conicPt = fConic.ptAtT(conicT)); |
111 | SkDEBUGCODE(SkDPoint linePt = fLine->ptAtT(lineT)); |
112 | SkASSERT(conicPt.approximatelyDEqual(linePt)); |
113 | } |
114 | #endif |
115 | SkDPoint pt; |
116 | if (this->pinTs(&conicT, &lineT, &pt, kPointUninitialized) |
117 | && this->uniqueAnswer(conicT, pt)) { |
118 | fIntersections->insert(conicT, lineT, pt); |
119 | } |
120 | } |
121 | this->checkCoincident(); |
122 | return fIntersections->used(); |
123 | } |
124 | |
125 | int intersectRay(double roots[2]) { |
126 | double adj = (*fLine)[1].fX - (*fLine)[0].fX; |
127 | double opp = (*fLine)[1].fY - (*fLine)[0].fY; |
128 | double r[3]; |
129 | for (int n = 0; n < 3; ++n) { |
130 | r[n] = (fConic[n].fY - (*fLine)[0].fY) * adj - (fConic[n].fX - (*fLine)[0].fX) * opp; |
131 | } |
132 | return this->validT(r, 0, roots); |
133 | } |
134 | |
135 | int validT(double r[3], double axisIntercept, double roots[2]) { |
136 | double A = r[2]; |
137 | double B = r[1] * fConic.fWeight - axisIntercept * fConic.fWeight + axisIntercept; |
138 | double C = r[0]; |
139 | A += C - 2 * B; // A = a + c - 2*(b*w - xCept*w + xCept) |
140 | B -= C; // B = b*w - w * xCept + xCept - a |
141 | C -= axisIntercept; |
142 | return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
143 | } |
144 | |
145 | int verticalIntersect(double axisIntercept, double roots[2]) { |
146 | double conicVals[] = { fConic[0].fX, fConic[1].fX, fConic[2].fX }; |
147 | return this->validT(conicVals, axisIntercept, roots); |
148 | } |
149 | |
150 | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
151 | this->addExactVerticalEndPoints(top, bottom, axisIntercept); |
152 | if (fAllowNear) { |
153 | this->addNearVerticalEndPoints(top, bottom, axisIntercept); |
154 | } |
155 | double roots[2]; |
156 | int count = this->verticalIntersect(axisIntercept, roots); |
157 | for (int index = 0; index < count; ++index) { |
158 | double conicT = roots[index]; |
159 | SkDPoint pt = fConic.ptAtT(conicT); |
160 | SkDEBUGCODE(double conicVals[] = { fConic[0].fX, fConic[1].fX, fConic[2].fX }); |
161 | SkOPOBJASSERT(fIntersections, close_to(pt.fX, axisIntercept, conicVals)); |
162 | double lineT = (pt.fY - top) / (bottom - top); |
163 | if (this->pinTs(&conicT, &lineT, &pt, kPointInitialized) |
164 | && this->uniqueAnswer(conicT, pt)) { |
165 | fIntersections->insert(conicT, lineT, pt); |
166 | } |
167 | } |
168 | if (flipped) { |
169 | fIntersections->flip(); |
170 | } |
171 | this->checkCoincident(); |
172 | return fIntersections->used(); |
173 | } |
174 | |
175 | protected: |
176 | // OPTIMIZE: Functions of the form add .. points are indentical to the conic routines. |
177 | // add endpoints first to get zero and one t values exactly |
178 | void addExactEndPoints() { |
179 | for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
180 | double lineT = fLine->exactPoint(fConic[cIndex]); |
181 | if (lineT < 0) { |
182 | continue; |
183 | } |
184 | double conicT = (double) (cIndex >> 1); |
185 | fIntersections->insert(conicT, lineT, fConic[cIndex]); |
186 | } |
187 | } |
188 | |
189 | void addNearEndPoints() { |
190 | for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
191 | double conicT = (double) (cIndex >> 1); |
192 | if (fIntersections->hasT(conicT)) { |
193 | continue; |
194 | } |
195 | double lineT = fLine->nearPoint(fConic[cIndex], nullptr); |
196 | if (lineT < 0) { |
197 | continue; |
198 | } |
199 | fIntersections->insert(conicT, lineT, fConic[cIndex]); |
200 | } |
201 | this->addLineNearEndPoints(); |
202 | } |
203 | |
204 | void addLineNearEndPoints() { |
205 | for (int lIndex = 0; lIndex < 2; ++lIndex) { |
206 | double lineT = (double) lIndex; |
207 | if (fIntersections->hasOppT(lineT)) { |
208 | continue; |
209 | } |
210 | double conicT = ((SkDCurve*) &fConic)->nearPoint(SkPath::kConic_Verb, |
211 | (*fLine)[lIndex], (*fLine)[!lIndex]); |
212 | if (conicT < 0) { |
213 | continue; |
214 | } |
215 | fIntersections->insert(conicT, lineT, (*fLine)[lIndex]); |
216 | } |
217 | } |
218 | |
219 | void addExactHorizontalEndPoints(double left, double right, double y) { |
220 | for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
221 | double lineT = SkDLine::ExactPointH(fConic[cIndex], left, right, y); |
222 | if (lineT < 0) { |
223 | continue; |
224 | } |
225 | double conicT = (double) (cIndex >> 1); |
226 | fIntersections->insert(conicT, lineT, fConic[cIndex]); |
227 | } |
228 | } |
229 | |
230 | void addNearHorizontalEndPoints(double left, double right, double y) { |
231 | for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
232 | double conicT = (double) (cIndex >> 1); |
233 | if (fIntersections->hasT(conicT)) { |
234 | continue; |
235 | } |
236 | double lineT = SkDLine::NearPointH(fConic[cIndex], left, right, y); |
237 | if (lineT < 0) { |
238 | continue; |
239 | } |
240 | fIntersections->insert(conicT, lineT, fConic[cIndex]); |
241 | } |
242 | this->addLineNearEndPoints(); |
243 | } |
244 | |
245 | void addExactVerticalEndPoints(double top, double bottom, double x) { |
246 | for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
247 | double lineT = SkDLine::ExactPointV(fConic[cIndex], top, bottom, x); |
248 | if (lineT < 0) { |
249 | continue; |
250 | } |
251 | double conicT = (double) (cIndex >> 1); |
252 | fIntersections->insert(conicT, lineT, fConic[cIndex]); |
253 | } |
254 | } |
255 | |
256 | void addNearVerticalEndPoints(double top, double bottom, double x) { |
257 | for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
258 | double conicT = (double) (cIndex >> 1); |
259 | if (fIntersections->hasT(conicT)) { |
260 | continue; |
261 | } |
262 | double lineT = SkDLine::NearPointV(fConic[cIndex], top, bottom, x); |
263 | if (lineT < 0) { |
264 | continue; |
265 | } |
266 | fIntersections->insert(conicT, lineT, fConic[cIndex]); |
267 | } |
268 | this->addLineNearEndPoints(); |
269 | } |
270 | |
271 | double findLineT(double t) { |
272 | SkDPoint xy = fConic.ptAtT(t); |
273 | double dx = (*fLine)[1].fX - (*fLine)[0].fX; |
274 | double dy = (*fLine)[1].fY - (*fLine)[0].fY; |
275 | if (fabs(dx) > fabs(dy)) { |
276 | return (xy.fX - (*fLine)[0].fX) / dx; |
277 | } |
278 | return (xy.fY - (*fLine)[0].fY) / dy; |
279 | } |
280 | |
281 | bool pinTs(double* conicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
282 | if (!approximately_one_or_less_double(*lineT)) { |
283 | return false; |
284 | } |
285 | if (!approximately_zero_or_more_double(*lineT)) { |
286 | return false; |
287 | } |
288 | double qT = *conicT = SkPinT(*conicT); |
289 | double lT = *lineT = SkPinT(*lineT); |
290 | if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) { |
291 | *pt = (*fLine).ptAtT(lT); |
292 | } else if (ptSet == kPointUninitialized) { |
293 | *pt = fConic.ptAtT(qT); |
294 | } |
295 | SkPoint gridPt = pt->asSkPoint(); |
296 | if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) { |
297 | *pt = (*fLine)[0]; |
298 | *lineT = 0; |
299 | } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) { |
300 | *pt = (*fLine)[1]; |
301 | *lineT = 1; |
302 | } |
303 | if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) { |
304 | return false; |
305 | } |
306 | if (gridPt == fConic[0].asSkPoint()) { |
307 | *pt = fConic[0]; |
308 | *conicT = 0; |
309 | } else if (gridPt == fConic[2].asSkPoint()) { |
310 | *pt = fConic[2]; |
311 | *conicT = 1; |
312 | } |
313 | return true; |
314 | } |
315 | |
316 | bool uniqueAnswer(double conicT, const SkDPoint& pt) { |
317 | for (int inner = 0; inner < fIntersections->used(); ++inner) { |
318 | if (fIntersections->pt(inner) != pt) { |
319 | continue; |
320 | } |
321 | double existingConicT = (*fIntersections)[0][inner]; |
322 | if (conicT == existingConicT) { |
323 | return false; |
324 | } |
325 | // check if midway on conic is also same point. If so, discard this |
326 | double conicMidT = (existingConicT + conicT) / 2; |
327 | SkDPoint conicMidPt = fConic.ptAtT(conicMidT); |
328 | if (conicMidPt.approximatelyEqual(pt)) { |
329 | return false; |
330 | } |
331 | } |
332 | #if ONE_OFF_DEBUG |
333 | SkDPoint qPt = fConic.ptAtT(conicT); |
334 | SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n" , __FUNCTION__, pt.fX, pt.fY, |
335 | qPt.fX, qPt.fY); |
336 | #endif |
337 | return true; |
338 | } |
339 | |
340 | private: |
341 | const SkDConic& fConic; |
342 | const SkDLine* fLine; |
343 | SkIntersections* fIntersections; |
344 | bool fAllowNear; |
345 | }; |
346 | |
347 | int SkIntersections::horizontal(const SkDConic& conic, double left, double right, double y, |
348 | bool flipped) { |
349 | SkDLine line = {{{ left, y }, { right, y }}}; |
350 | LineConicIntersections c(conic, line, this); |
351 | return c.horizontalIntersect(y, left, right, flipped); |
352 | } |
353 | |
354 | int SkIntersections::vertical(const SkDConic& conic, double top, double bottom, double x, |
355 | bool flipped) { |
356 | SkDLine line = {{{ x, top }, { x, bottom }}}; |
357 | LineConicIntersections c(conic, line, this); |
358 | return c.verticalIntersect(x, top, bottom, flipped); |
359 | } |
360 | |
361 | int SkIntersections::intersect(const SkDConic& conic, const SkDLine& line) { |
362 | LineConicIntersections c(conic, line, this); |
363 | c.allowNear(fAllowNear); |
364 | return c.intersect(); |
365 | } |
366 | |
367 | int SkIntersections::intersectRay(const SkDConic& conic, const SkDLine& line) { |
368 | LineConicIntersections c(conic, line, this); |
369 | fUsed = c.intersectRay(fT[0]); |
370 | for (int index = 0; index < fUsed; ++index) { |
371 | fPt[index] = conic.ptAtT(fT[0][index]); |
372 | } |
373 | return fUsed; |
374 | } |
375 | |
376 | int SkIntersections::HorizontalIntercept(const SkDConic& conic, SkScalar y, double* roots) { |
377 | LineConicIntersections c(conic); |
378 | return c.horizontalIntersect(y, roots); |
379 | } |
380 | |
381 | int SkIntersections::VerticalIntercept(const SkDConic& conic, SkScalar x, double* roots) { |
382 | LineConicIntersections c(conic); |
383 | return c.verticalIntersect(x, roots); |
384 | } |
385 | |