1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkIntersections.h" |
8 | #include "src/pathops/SkPathOpsCurve.h" |
9 | #include "src/pathops/SkPathOpsLine.h" |
10 | #include "src/pathops/SkPathOpsQuad.h" |
11 | |
12 | /* |
13 | Find the interection of a line and quadratic by solving for valid t values. |
14 | |
15 | From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
16 | |
17 | "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
18 | control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
19 | A, B and C are points and t goes from zero to one. |
20 | |
21 | This will give you two equations: |
22 | |
23 | x = a(1 - t)^2 + b(1 - t)t + ct^2 |
24 | y = d(1 - t)^2 + e(1 - t)t + ft^2 |
25 | |
26 | If you add for instance the line equation (y = kx + m) to that, you'll end up |
27 | with three equations and three unknowns (x, y and t)." |
28 | |
29 | Similar to above, the quadratic is represented as |
30 | x = a(1-t)^2 + 2b(1-t)t + ct^2 |
31 | y = d(1-t)^2 + 2e(1-t)t + ft^2 |
32 | and the line as |
33 | y = g*x + h |
34 | |
35 | Using Mathematica, solve for the values of t where the quadratic intersects the |
36 | line: |
37 | |
38 | (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
39 | d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
40 | (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
41 | g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
42 | (in) Solve[t1 == 0, t] |
43 | (out) { |
44 | {t -> (-2 d + 2 e + 2 a g - 2 b g - |
45 | Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
46 | 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
47 | (2 (-d + 2 e - f + a g - 2 b g + c g)) |
48 | }, |
49 | {t -> (-2 d + 2 e + 2 a g - 2 b g + |
50 | Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
51 | 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
52 | (2 (-d + 2 e - f + a g - 2 b g + c g)) |
53 | } |
54 | } |
55 | |
56 | Using the results above (when the line tends towards horizontal) |
57 | A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
58 | B = 2*( (d - e ) - g*(a - b ) ) |
59 | C = (-(d ) + g*(a ) + h ) |
60 | |
61 | If g goes to infinity, we can rewrite the line in terms of x. |
62 | x = g'*y + h' |
63 | |
64 | And solve accordingly in Mathematica: |
65 | |
66 | (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
67 | d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
68 | (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
69 | g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
70 | (in) Solve[t2 == 0, t] |
71 | (out) { |
72 | {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
73 | Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
74 | 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
75 | (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
76 | }, |
77 | {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
78 | Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
79 | 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
80 | (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
81 | } |
82 | } |
83 | |
84 | Thus, if the slope of the line tends towards vertical, we use: |
85 | A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
86 | B = 2*(-(a - b ) + g'*(d - e ) ) |
87 | C = ( (a ) - g'*(d ) - h' ) |
88 | */ |
89 | |
90 | class LineQuadraticIntersections { |
91 | public: |
92 | enum PinTPoint { |
93 | kPointUninitialized, |
94 | kPointInitialized |
95 | }; |
96 | |
97 | LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i) |
98 | : fQuad(q) |
99 | , fLine(&l) |
100 | , fIntersections(i) |
101 | , fAllowNear(true) { |
102 | i->setMax(5); // allow short partial coincidence plus discrete intersections |
103 | } |
104 | |
105 | LineQuadraticIntersections(const SkDQuad& q) |
106 | : fQuad(q) |
107 | SkDEBUGPARAMS(fLine(nullptr)) |
108 | SkDEBUGPARAMS(fIntersections(nullptr)) |
109 | SkDEBUGPARAMS(fAllowNear(false)) { |
110 | } |
111 | |
112 | void allowNear(bool allow) { |
113 | fAllowNear = allow; |
114 | } |
115 | |
116 | void checkCoincident() { |
117 | int last = fIntersections->used() - 1; |
118 | for (int index = 0; index < last; ) { |
119 | double quadMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; |
120 | SkDPoint quadMidPt = fQuad.ptAtT(quadMidT); |
121 | double t = fLine->nearPoint(quadMidPt, nullptr); |
122 | if (t < 0) { |
123 | ++index; |
124 | continue; |
125 | } |
126 | if (fIntersections->isCoincident(index)) { |
127 | fIntersections->removeOne(index); |
128 | --last; |
129 | } else if (fIntersections->isCoincident(index + 1)) { |
130 | fIntersections->removeOne(index + 1); |
131 | --last; |
132 | } else { |
133 | fIntersections->setCoincident(index++); |
134 | } |
135 | fIntersections->setCoincident(index); |
136 | } |
137 | } |
138 | |
139 | int intersectRay(double roots[2]) { |
140 | /* |
141 | solve by rotating line+quad so line is horizontal, then finding the roots |
142 | set up matrix to rotate quad to x-axis |
143 | |cos(a) -sin(a)| |
144 | |sin(a) cos(a)| |
145 | note that cos(a) = A(djacent) / Hypoteneuse |
146 | sin(a) = O(pposite) / Hypoteneuse |
147 | since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
148 | | A -O | |
149 | | O A | |
150 | A = line[1].fX - line[0].fX (adjacent side of the right triangle) |
151 | O = line[1].fY - line[0].fY (opposite side of the right triangle) |
152 | for each of the three points (e.g. n = 0 to 2) |
153 | quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O |
154 | */ |
155 | double adj = (*fLine)[1].fX - (*fLine)[0].fX; |
156 | double opp = (*fLine)[1].fY - (*fLine)[0].fY; |
157 | double r[3]; |
158 | for (int n = 0; n < 3; ++n) { |
159 | r[n] = (fQuad[n].fY - (*fLine)[0].fY) * adj - (fQuad[n].fX - (*fLine)[0].fX) * opp; |
160 | } |
161 | double A = r[2]; |
162 | double B = r[1]; |
163 | double C = r[0]; |
164 | A += C - 2 * B; // A = a - 2*b + c |
165 | B -= C; // B = -(b - c) |
166 | return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
167 | } |
168 | |
169 | int intersect() { |
170 | addExactEndPoints(); |
171 | if (fAllowNear) { |
172 | addNearEndPoints(); |
173 | } |
174 | double rootVals[2]; |
175 | int roots = intersectRay(rootVals); |
176 | for (int index = 0; index < roots; ++index) { |
177 | double quadT = rootVals[index]; |
178 | double lineT = findLineT(quadT); |
179 | SkDPoint pt; |
180 | if (pinTs(&quadT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(quadT, pt)) { |
181 | fIntersections->insert(quadT, lineT, pt); |
182 | } |
183 | } |
184 | checkCoincident(); |
185 | return fIntersections->used(); |
186 | } |
187 | |
188 | int horizontalIntersect(double axisIntercept, double roots[2]) { |
189 | double D = fQuad[2].fY; // f |
190 | double E = fQuad[1].fY; // e |
191 | double F = fQuad[0].fY; // d |
192 | D += F - 2 * E; // D = d - 2*e + f |
193 | E -= F; // E = -(d - e) |
194 | F -= axisIntercept; |
195 | return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
196 | } |
197 | |
198 | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
199 | addExactHorizontalEndPoints(left, right, axisIntercept); |
200 | if (fAllowNear) { |
201 | addNearHorizontalEndPoints(left, right, axisIntercept); |
202 | } |
203 | double rootVals[2]; |
204 | int roots = horizontalIntersect(axisIntercept, rootVals); |
205 | for (int index = 0; index < roots; ++index) { |
206 | double quadT = rootVals[index]; |
207 | SkDPoint pt = fQuad.ptAtT(quadT); |
208 | double lineT = (pt.fX - left) / (right - left); |
209 | if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) { |
210 | fIntersections->insert(quadT, lineT, pt); |
211 | } |
212 | } |
213 | if (flipped) { |
214 | fIntersections->flip(); |
215 | } |
216 | checkCoincident(); |
217 | return fIntersections->used(); |
218 | } |
219 | |
220 | bool uniqueAnswer(double quadT, const SkDPoint& pt) { |
221 | for (int inner = 0; inner < fIntersections->used(); ++inner) { |
222 | if (fIntersections->pt(inner) != pt) { |
223 | continue; |
224 | } |
225 | double existingQuadT = (*fIntersections)[0][inner]; |
226 | if (quadT == existingQuadT) { |
227 | return false; |
228 | } |
229 | // check if midway on quad is also same point. If so, discard this |
230 | double quadMidT = (existingQuadT + quadT) / 2; |
231 | SkDPoint quadMidPt = fQuad.ptAtT(quadMidT); |
232 | if (quadMidPt.approximatelyEqual(pt)) { |
233 | return false; |
234 | } |
235 | } |
236 | #if ONE_OFF_DEBUG |
237 | SkDPoint qPt = fQuad.ptAtT(quadT); |
238 | SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n" , __FUNCTION__, pt.fX, pt.fY, |
239 | qPt.fX, qPt.fY); |
240 | #endif |
241 | return true; |
242 | } |
243 | |
244 | int verticalIntersect(double axisIntercept, double roots[2]) { |
245 | double D = fQuad[2].fX; // f |
246 | double E = fQuad[1].fX; // e |
247 | double F = fQuad[0].fX; // d |
248 | D += F - 2 * E; // D = d - 2*e + f |
249 | E -= F; // E = -(d - e) |
250 | F -= axisIntercept; |
251 | return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
252 | } |
253 | |
254 | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
255 | addExactVerticalEndPoints(top, bottom, axisIntercept); |
256 | if (fAllowNear) { |
257 | addNearVerticalEndPoints(top, bottom, axisIntercept); |
258 | } |
259 | double rootVals[2]; |
260 | int roots = verticalIntersect(axisIntercept, rootVals); |
261 | for (int index = 0; index < roots; ++index) { |
262 | double quadT = rootVals[index]; |
263 | SkDPoint pt = fQuad.ptAtT(quadT); |
264 | double lineT = (pt.fY - top) / (bottom - top); |
265 | if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) { |
266 | fIntersections->insert(quadT, lineT, pt); |
267 | } |
268 | } |
269 | if (flipped) { |
270 | fIntersections->flip(); |
271 | } |
272 | checkCoincident(); |
273 | return fIntersections->used(); |
274 | } |
275 | |
276 | protected: |
277 | // add endpoints first to get zero and one t values exactly |
278 | void addExactEndPoints() { |
279 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
280 | double lineT = fLine->exactPoint(fQuad[qIndex]); |
281 | if (lineT < 0) { |
282 | continue; |
283 | } |
284 | double quadT = (double) (qIndex >> 1); |
285 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
286 | } |
287 | } |
288 | |
289 | void addNearEndPoints() { |
290 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
291 | double quadT = (double) (qIndex >> 1); |
292 | if (fIntersections->hasT(quadT)) { |
293 | continue; |
294 | } |
295 | double lineT = fLine->nearPoint(fQuad[qIndex], nullptr); |
296 | if (lineT < 0) { |
297 | continue; |
298 | } |
299 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
300 | } |
301 | this->addLineNearEndPoints(); |
302 | } |
303 | |
304 | void addLineNearEndPoints() { |
305 | for (int lIndex = 0; lIndex < 2; ++lIndex) { |
306 | double lineT = (double) lIndex; |
307 | if (fIntersections->hasOppT(lineT)) { |
308 | continue; |
309 | } |
310 | double quadT = ((SkDCurve*) &fQuad)->nearPoint(SkPath::kQuad_Verb, |
311 | (*fLine)[lIndex], (*fLine)[!lIndex]); |
312 | if (quadT < 0) { |
313 | continue; |
314 | } |
315 | fIntersections->insert(quadT, lineT, (*fLine)[lIndex]); |
316 | } |
317 | } |
318 | |
319 | void addExactHorizontalEndPoints(double left, double right, double y) { |
320 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
321 | double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y); |
322 | if (lineT < 0) { |
323 | continue; |
324 | } |
325 | double quadT = (double) (qIndex >> 1); |
326 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
327 | } |
328 | } |
329 | |
330 | void addNearHorizontalEndPoints(double left, double right, double y) { |
331 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
332 | double quadT = (double) (qIndex >> 1); |
333 | if (fIntersections->hasT(quadT)) { |
334 | continue; |
335 | } |
336 | double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y); |
337 | if (lineT < 0) { |
338 | continue; |
339 | } |
340 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
341 | } |
342 | this->addLineNearEndPoints(); |
343 | } |
344 | |
345 | void addExactVerticalEndPoints(double top, double bottom, double x) { |
346 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
347 | double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x); |
348 | if (lineT < 0) { |
349 | continue; |
350 | } |
351 | double quadT = (double) (qIndex >> 1); |
352 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
353 | } |
354 | } |
355 | |
356 | void addNearVerticalEndPoints(double top, double bottom, double x) { |
357 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
358 | double quadT = (double) (qIndex >> 1); |
359 | if (fIntersections->hasT(quadT)) { |
360 | continue; |
361 | } |
362 | double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x); |
363 | if (lineT < 0) { |
364 | continue; |
365 | } |
366 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
367 | } |
368 | this->addLineNearEndPoints(); |
369 | } |
370 | |
371 | double findLineT(double t) { |
372 | SkDPoint xy = fQuad.ptAtT(t); |
373 | double dx = (*fLine)[1].fX - (*fLine)[0].fX; |
374 | double dy = (*fLine)[1].fY - (*fLine)[0].fY; |
375 | if (fabs(dx) > fabs(dy)) { |
376 | return (xy.fX - (*fLine)[0].fX) / dx; |
377 | } |
378 | return (xy.fY - (*fLine)[0].fY) / dy; |
379 | } |
380 | |
381 | bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
382 | if (!approximately_one_or_less_double(*lineT)) { |
383 | return false; |
384 | } |
385 | if (!approximately_zero_or_more_double(*lineT)) { |
386 | return false; |
387 | } |
388 | double qT = *quadT = SkPinT(*quadT); |
389 | double lT = *lineT = SkPinT(*lineT); |
390 | if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) { |
391 | *pt = (*fLine).ptAtT(lT); |
392 | } else if (ptSet == kPointUninitialized) { |
393 | *pt = fQuad.ptAtT(qT); |
394 | } |
395 | SkPoint gridPt = pt->asSkPoint(); |
396 | if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) { |
397 | *pt = (*fLine)[0]; |
398 | *lineT = 0; |
399 | } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) { |
400 | *pt = (*fLine)[1]; |
401 | *lineT = 1; |
402 | } |
403 | if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) { |
404 | return false; |
405 | } |
406 | if (gridPt == fQuad[0].asSkPoint()) { |
407 | *pt = fQuad[0]; |
408 | *quadT = 0; |
409 | } else if (gridPt == fQuad[2].asSkPoint()) { |
410 | *pt = fQuad[2]; |
411 | *quadT = 1; |
412 | } |
413 | return true; |
414 | } |
415 | |
416 | private: |
417 | const SkDQuad& fQuad; |
418 | const SkDLine* fLine; |
419 | SkIntersections* fIntersections; |
420 | bool fAllowNear; |
421 | }; |
422 | |
423 | int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y, |
424 | bool flipped) { |
425 | SkDLine line = {{{ left, y }, { right, y }}}; |
426 | LineQuadraticIntersections q(quad, line, this); |
427 | return q.horizontalIntersect(y, left, right, flipped); |
428 | } |
429 | |
430 | int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x, |
431 | bool flipped) { |
432 | SkDLine line = {{{ x, top }, { x, bottom }}}; |
433 | LineQuadraticIntersections q(quad, line, this); |
434 | return q.verticalIntersect(x, top, bottom, flipped); |
435 | } |
436 | |
437 | int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) { |
438 | LineQuadraticIntersections q(quad, line, this); |
439 | q.allowNear(fAllowNear); |
440 | return q.intersect(); |
441 | } |
442 | |
443 | int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) { |
444 | LineQuadraticIntersections q(quad, line, this); |
445 | fUsed = q.intersectRay(fT[0]); |
446 | for (int index = 0; index < fUsed; ++index) { |
447 | fPt[index] = quad.ptAtT(fT[0][index]); |
448 | } |
449 | return fUsed; |
450 | } |
451 | |
452 | int SkIntersections::HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) { |
453 | LineQuadraticIntersections q(quad); |
454 | return q.horizontalIntersect(y, roots); |
455 | } |
456 | |
457 | int SkIntersections::VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) { |
458 | LineQuadraticIntersections q(quad); |
459 | return q.verticalIntersect(x, roots); |
460 | } |
461 | |
462 | // SkDQuad accessors to Intersection utilities |
463 | |
464 | int SkDQuad::horizontalIntersect(double yIntercept, double roots[2]) const { |
465 | return SkIntersections::HorizontalIntercept(*this, yIntercept, roots); |
466 | } |
467 | |
468 | int SkDQuad::verticalIntersect(double xIntercept, double roots[2]) const { |
469 | return SkIntersections::VerticalIntercept(*this, xIntercept, roots); |
470 | } |
471 | |