1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "include/private/SkFloatBits.h" |
8 | #include "src/core/SkArenaAlloc.h" |
9 | #include "src/pathops/SkOpCoincidence.h" |
10 | #include "src/pathops/SkPathOpsTypes.h" |
11 | |
12 | static bool arguments_denormalized(float a, float b, int epsilon) { |
13 | float denormalizedCheck = FLT_EPSILON * epsilon / 2; |
14 | return fabsf(a) <= denormalizedCheck && fabsf(b) <= denormalizedCheck; |
15 | } |
16 | |
17 | // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
18 | // FIXME: move to SkFloatBits.h |
19 | static bool equal_ulps(float a, float b, int epsilon, int depsilon) { |
20 | if (arguments_denormalized(a, b, depsilon)) { |
21 | return true; |
22 | } |
23 | int aBits = SkFloatAs2sCompliment(a); |
24 | int bBits = SkFloatAs2sCompliment(b); |
25 | // Find the difference in ULPs. |
26 | return aBits < bBits + epsilon && bBits < aBits + epsilon; |
27 | } |
28 | |
29 | static bool equal_ulps_no_normal_check(float a, float b, int epsilon, int depsilon) { |
30 | int aBits = SkFloatAs2sCompliment(a); |
31 | int bBits = SkFloatAs2sCompliment(b); |
32 | // Find the difference in ULPs. |
33 | return aBits < bBits + epsilon && bBits < aBits + epsilon; |
34 | } |
35 | |
36 | static bool equal_ulps_pin(float a, float b, int epsilon, int depsilon) { |
37 | if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { |
38 | return false; |
39 | } |
40 | if (arguments_denormalized(a, b, depsilon)) { |
41 | return true; |
42 | } |
43 | int aBits = SkFloatAs2sCompliment(a); |
44 | int bBits = SkFloatAs2sCompliment(b); |
45 | // Find the difference in ULPs. |
46 | return aBits < bBits + epsilon && bBits < aBits + epsilon; |
47 | } |
48 | |
49 | static bool d_equal_ulps(float a, float b, int epsilon) { |
50 | int aBits = SkFloatAs2sCompliment(a); |
51 | int bBits = SkFloatAs2sCompliment(b); |
52 | // Find the difference in ULPs. |
53 | return aBits < bBits + epsilon && bBits < aBits + epsilon; |
54 | } |
55 | |
56 | static bool not_equal_ulps(float a, float b, int epsilon) { |
57 | if (arguments_denormalized(a, b, epsilon)) { |
58 | return false; |
59 | } |
60 | int aBits = SkFloatAs2sCompliment(a); |
61 | int bBits = SkFloatAs2sCompliment(b); |
62 | // Find the difference in ULPs. |
63 | return aBits >= bBits + epsilon || bBits >= aBits + epsilon; |
64 | } |
65 | |
66 | static bool not_equal_ulps_pin(float a, float b, int epsilon) { |
67 | if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { |
68 | return false; |
69 | } |
70 | if (arguments_denormalized(a, b, epsilon)) { |
71 | return false; |
72 | } |
73 | int aBits = SkFloatAs2sCompliment(a); |
74 | int bBits = SkFloatAs2sCompliment(b); |
75 | // Find the difference in ULPs. |
76 | return aBits >= bBits + epsilon || bBits >= aBits + epsilon; |
77 | } |
78 | |
79 | static bool d_not_equal_ulps(float a, float b, int epsilon) { |
80 | int aBits = SkFloatAs2sCompliment(a); |
81 | int bBits = SkFloatAs2sCompliment(b); |
82 | // Find the difference in ULPs. |
83 | return aBits >= bBits + epsilon || bBits >= aBits + epsilon; |
84 | } |
85 | |
86 | static bool less_ulps(float a, float b, int epsilon) { |
87 | if (arguments_denormalized(a, b, epsilon)) { |
88 | return a <= b - FLT_EPSILON * epsilon; |
89 | } |
90 | int aBits = SkFloatAs2sCompliment(a); |
91 | int bBits = SkFloatAs2sCompliment(b); |
92 | // Find the difference in ULPs. |
93 | return aBits <= bBits - epsilon; |
94 | } |
95 | |
96 | static bool less_or_equal_ulps(float a, float b, int epsilon) { |
97 | if (arguments_denormalized(a, b, epsilon)) { |
98 | return a < b + FLT_EPSILON * epsilon; |
99 | } |
100 | int aBits = SkFloatAs2sCompliment(a); |
101 | int bBits = SkFloatAs2sCompliment(b); |
102 | // Find the difference in ULPs. |
103 | return aBits < bBits + epsilon; |
104 | } |
105 | |
106 | // equality using the same error term as between |
107 | bool AlmostBequalUlps(float a, float b) { |
108 | const int UlpsEpsilon = 2; |
109 | return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); |
110 | } |
111 | |
112 | bool AlmostPequalUlps(float a, float b) { |
113 | const int UlpsEpsilon = 8; |
114 | return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); |
115 | } |
116 | |
117 | bool AlmostDequalUlps(float a, float b) { |
118 | const int UlpsEpsilon = 16; |
119 | return d_equal_ulps(a, b, UlpsEpsilon); |
120 | } |
121 | |
122 | bool AlmostDequalUlps(double a, double b) { |
123 | if (fabs(a) < SK_ScalarMax && fabs(b) < SK_ScalarMax) { |
124 | return AlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
125 | } |
126 | return fabs(a - b) / std::max(fabs(a), fabs(b)) < FLT_EPSILON * 16; |
127 | } |
128 | |
129 | bool AlmostEqualUlps(float a, float b) { |
130 | const int UlpsEpsilon = 16; |
131 | return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); |
132 | } |
133 | |
134 | bool AlmostEqualUlpsNoNormalCheck(float a, float b) { |
135 | const int UlpsEpsilon = 16; |
136 | return equal_ulps_no_normal_check(a, b, UlpsEpsilon, UlpsEpsilon); |
137 | } |
138 | |
139 | bool AlmostEqualUlps_Pin(float a, float b) { |
140 | const int UlpsEpsilon = 16; |
141 | return equal_ulps_pin(a, b, UlpsEpsilon, UlpsEpsilon); |
142 | } |
143 | |
144 | bool NotAlmostEqualUlps(float a, float b) { |
145 | const int UlpsEpsilon = 16; |
146 | return not_equal_ulps(a, b, UlpsEpsilon); |
147 | } |
148 | |
149 | bool NotAlmostEqualUlps_Pin(float a, float b) { |
150 | const int UlpsEpsilon = 16; |
151 | return not_equal_ulps_pin(a, b, UlpsEpsilon); |
152 | } |
153 | |
154 | bool NotAlmostDequalUlps(float a, float b) { |
155 | const int UlpsEpsilon = 16; |
156 | return d_not_equal_ulps(a, b, UlpsEpsilon); |
157 | } |
158 | |
159 | bool RoughlyEqualUlps(float a, float b) { |
160 | const int UlpsEpsilon = 256; |
161 | const int DUlpsEpsilon = 1024; |
162 | return equal_ulps(a, b, UlpsEpsilon, DUlpsEpsilon); |
163 | } |
164 | |
165 | bool AlmostBetweenUlps(float a, float b, float c) { |
166 | const int UlpsEpsilon = 2; |
167 | return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon) |
168 | : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon); |
169 | } |
170 | |
171 | bool AlmostLessUlps(float a, float b) { |
172 | const int UlpsEpsilon = 16; |
173 | return less_ulps(a, b, UlpsEpsilon); |
174 | } |
175 | |
176 | bool AlmostLessOrEqualUlps(float a, float b) { |
177 | const int UlpsEpsilon = 16; |
178 | return less_or_equal_ulps(a, b, UlpsEpsilon); |
179 | } |
180 | |
181 | int UlpsDistance(float a, float b) { |
182 | SkFloatIntUnion floatIntA, floatIntB; |
183 | floatIntA.fFloat = a; |
184 | floatIntB.fFloat = b; |
185 | // Different signs means they do not match. |
186 | if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) { |
187 | // Check for equality to make sure +0 == -0 |
188 | return a == b ? 0 : SK_MaxS32; |
189 | } |
190 | // Find the difference in ULPs. |
191 | return SkTAbs(floatIntA.fSignBitInt - floatIntB.fSignBitInt); |
192 | } |
193 | |
194 | // cube root approximation using bit hack for 64-bit float |
195 | // adapted from Kahan's cbrt |
196 | static double cbrt_5d(double d) { |
197 | const unsigned int B1 = 715094163; |
198 | double t = 0.0; |
199 | unsigned int* pt = (unsigned int*) &t; |
200 | unsigned int* px = (unsigned int*) &d; |
201 | pt[1] = px[1] / 3 + B1; |
202 | return t; |
203 | } |
204 | |
205 | // iterative cube root approximation using Halley's method (double) |
206 | static double cbrta_halleyd(const double a, const double R) { |
207 | const double a3 = a * a * a; |
208 | const double b = a * (a3 + R + R) / (a3 + a3 + R); |
209 | return b; |
210 | } |
211 | |
212 | // cube root approximation using 3 iterations of Halley's method (double) |
213 | static double halley_cbrt3d(double d) { |
214 | double a = cbrt_5d(d); |
215 | a = cbrta_halleyd(a, d); |
216 | a = cbrta_halleyd(a, d); |
217 | return cbrta_halleyd(a, d); |
218 | } |
219 | |
220 | double SkDCubeRoot(double x) { |
221 | if (approximately_zero_cubed(x)) { |
222 | return 0; |
223 | } |
224 | double result = halley_cbrt3d(fabs(x)); |
225 | if (x < 0) { |
226 | result = -result; |
227 | } |
228 | return result; |
229 | } |
230 | |
231 | SkOpGlobalState::SkOpGlobalState(SkOpContourHead* head, |
232 | SkArenaAlloc* allocator |
233 | SkDEBUGPARAMS(bool debugSkipAssert) |
234 | SkDEBUGPARAMS(const char* testName)) |
235 | : fAllocator(allocator) |
236 | , fCoincidence(nullptr) |
237 | , fContourHead(head) |
238 | , fNested(0) |
239 | , fWindingFailed(false) |
240 | , fPhase(SkOpPhase::kIntersecting) |
241 | SkDEBUGPARAMS(fDebugTestName(testName)) |
242 | SkDEBUGPARAMS(fAngleID(0)) |
243 | SkDEBUGPARAMS(fCoinID(0)) |
244 | SkDEBUGPARAMS(fContourID(0)) |
245 | SkDEBUGPARAMS(fPtTID(0)) |
246 | SkDEBUGPARAMS(fSegmentID(0)) |
247 | SkDEBUGPARAMS(fSpanID(0)) |
248 | SkDEBUGPARAMS(fDebugSkipAssert(debugSkipAssert)) { |
249 | #if DEBUG_T_SECT_LOOP_COUNT |
250 | debugResetLoopCounts(); |
251 | #endif |
252 | #if DEBUG_COIN |
253 | fPreviousFuncName = nullptr; |
254 | #endif |
255 | } |
256 | |