1 | /* |
2 | * Copyright 2019 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/sksl/SkSLByteCodeGenerator.h" |
9 | |
10 | #include <algorithm> |
11 | |
12 | namespace SkSL { |
13 | |
14 | static TypeCategory type_category(const Type& type) { |
15 | switch (type.kind()) { |
16 | case Type::Kind::kVector_Kind: |
17 | case Type::Kind::kMatrix_Kind: |
18 | return type_category(type.componentType()); |
19 | default: |
20 | if (type.fName == "bool" ) { |
21 | return TypeCategory::kBool; |
22 | } else if (type.fName == "int" || |
23 | type.fName == "short" || |
24 | type.fName == "$intLiteral" ) { |
25 | return TypeCategory::kSigned; |
26 | } else if (type.fName == "uint" || |
27 | type.fName == "ushort" ) { |
28 | return TypeCategory::kUnsigned; |
29 | } else { |
30 | SkASSERT(type.fName == "float" || |
31 | type.fName == "half" || |
32 | type.fName == "$floatLiteral" ); |
33 | return TypeCategory::kFloat; |
34 | } |
35 | ABORT("unsupported type: %s\n" , type.displayName().c_str()); |
36 | } |
37 | } |
38 | |
39 | |
40 | ByteCodeGenerator::ByteCodeGenerator(const Context* context, const Program* program, ErrorReporter* errors, |
41 | ByteCode* output) |
42 | : INHERITED(program, errors, nullptr) |
43 | , fContext(*context) |
44 | , fOutput(output) |
45 | , fIntrinsics { |
46 | { "cos" , ByteCodeInstruction::kCos }, |
47 | { "dot" , SpecialIntrinsic::kDot }, |
48 | { "inverse" , ByteCodeInstruction::kInverse2x2 }, |
49 | { "sin" , ByteCodeInstruction::kSin }, |
50 | { "sqrt" , ByteCodeInstruction::kSqrt }, |
51 | { "tan" , ByteCodeInstruction::kTan }, |
52 | } {} |
53 | |
54 | |
55 | int ByteCodeGenerator::SlotCount(const Type& type) { |
56 | if (type.kind() == Type::kOther_Kind) { |
57 | return 0; |
58 | } else if (type.kind() == Type::kStruct_Kind) { |
59 | int slots = 0; |
60 | for (const auto& f : type.fields()) { |
61 | slots += SlotCount(*f.fType); |
62 | } |
63 | SkASSERT(slots <= 255); |
64 | return slots; |
65 | } else if (type.kind() == Type::kArray_Kind) { |
66 | int columns = type.columns(); |
67 | SkASSERT(columns >= 0); |
68 | int slots = columns * SlotCount(type.componentType()); |
69 | SkASSERT(slots <= 255); |
70 | return slots; |
71 | } else { |
72 | return type.columns() * type.rows(); |
73 | } |
74 | } |
75 | |
76 | static inline bool is_uniform(const SkSL::Variable& var) { |
77 | return var.fModifiers.fFlags & Modifiers::kUniform_Flag; |
78 | } |
79 | |
80 | static inline bool is_in(const SkSL::Variable& var) { |
81 | return var.fModifiers.fFlags & Modifiers::kIn_Flag; |
82 | } |
83 | |
84 | void ByteCodeGenerator::gatherUniforms(const Type& type, const String& name) { |
85 | if (type.kind() == Type::kOther_Kind) { |
86 | return; |
87 | } else if (type.kind() == Type::kStruct_Kind) { |
88 | for (const auto& f : type.fields()) { |
89 | this->gatherUniforms(*f.fType, name + "." + f.fName); |
90 | } |
91 | } else if (type.kind() == Type::kArray_Kind) { |
92 | for (int i = 0; i < type.columns(); ++i) { |
93 | this->gatherUniforms(type.componentType(), String::printf("%s[%d]" , name.c_str(), i)); |
94 | } |
95 | } else { |
96 | fOutput->fUniforms.push_back({ name, type_category(type), type.rows(), type.columns(), |
97 | fOutput->fUniformSlotCount }); |
98 | fOutput->fUniformSlotCount += type.columns() * type.rows(); |
99 | } |
100 | } |
101 | |
102 | bool ByteCodeGenerator::generateCode() { |
103 | for (const auto& e : fProgram) { |
104 | switch (e.fKind) { |
105 | case ProgramElement::kFunction_Kind: { |
106 | std::unique_ptr<ByteCodeFunction> f = this->writeFunction((FunctionDefinition&) e); |
107 | if (!f) { |
108 | return false; |
109 | } |
110 | fOutput->fFunctions.push_back(std::move(f)); |
111 | fFunctions.push_back(&(FunctionDefinition&)e); |
112 | break; |
113 | } |
114 | case ProgramElement::kVar_Kind: { |
115 | VarDeclarations& decl = (VarDeclarations&) e; |
116 | for (const auto& v : decl.fVars) { |
117 | const Variable* declVar = ((VarDeclaration&) *v).fVar; |
118 | if (declVar->fModifiers.fLayout.fBuiltin >= 0 || is_in(*declVar)) { |
119 | continue; |
120 | } |
121 | if (is_uniform(*declVar)) { |
122 | this->gatherUniforms(declVar->fType, declVar->fName); |
123 | } else { |
124 | fOutput->fGlobalSlotCount += SlotCount(declVar->fType); |
125 | } |
126 | } |
127 | break; |
128 | } |
129 | default: |
130 | ; // ignore |
131 | } |
132 | } |
133 | return 0 == fErrors.errorCount(); |
134 | } |
135 | |
136 | std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const FunctionDefinition& f) { |
137 | fFunction = &f; |
138 | std::unique_ptr<ByteCodeFunction> result(new ByteCodeFunction(&f.fDeclaration)); |
139 | fParameterCount = result->fParameterCount; |
140 | fLoopCount = fMaxLoopCount = 0; |
141 | fConditionCount = fMaxConditionCount = 0; |
142 | fStackCount = fMaxStackCount = 0; |
143 | fCode = &result->fCode; |
144 | |
145 | this->writeStatement(*f.fBody); |
146 | if (0 == fErrors.errorCount()) { |
147 | SkASSERT(fLoopCount == 0); |
148 | SkASSERT(fConditionCount == 0); |
149 | SkASSERT(fStackCount == 0); |
150 | } |
151 | this->write(ByteCodeInstruction::kReturn, 0); |
152 | this->write8(0); |
153 | |
154 | result->fLocalCount = fLocals.size(); |
155 | result->fConditionCount = fMaxConditionCount; |
156 | result->fLoopCount = fMaxLoopCount; |
157 | result->fStackCount = fMaxStackCount; |
158 | |
159 | const Type& returnType = f.fDeclaration.fReturnType; |
160 | if (returnType != *fContext.fVoid_Type) { |
161 | result->fReturnCount = SlotCount(returnType); |
162 | } |
163 | fLocals.clear(); |
164 | fFunction = nullptr; |
165 | return result; |
166 | } |
167 | |
168 | // A "simple" Swizzle is based on a variable (or a compound variable like a struct or array), and |
169 | // that references consecutive values, such that it can be implemented using normal load/store ops |
170 | // with an offset. Note that all single-component swizzles (of suitable base types) are simple. |
171 | static bool swizzle_is_simple(const Swizzle& s) { |
172 | switch (s.fBase->fKind) { |
173 | case Expression::kFieldAccess_Kind: |
174 | case Expression::kIndex_Kind: |
175 | case Expression::kVariableReference_Kind: |
176 | break; |
177 | default: |
178 | return false; |
179 | } |
180 | |
181 | for (size_t i = 1; i < s.fComponents.size(); ++i) { |
182 | if (s.fComponents[i] != s.fComponents[i - 1] + 1) { |
183 | return false; |
184 | } |
185 | } |
186 | return true; |
187 | } |
188 | |
189 | int ByteCodeGenerator::StackUsage(ByteCodeInstruction inst, int count_) { |
190 | // Ensures that we use count iff we're passed a non-default value. Most instructions have an |
191 | // implicit count, so the caller shouldn't need to worry about it (or count makes no sense). |
192 | // The asserts avoids callers thinking they're supplying useful information in that scenario, |
193 | // or failing to supply necessary information for the ops that need a count. |
194 | struct CountValue { |
195 | operator int() { |
196 | SkASSERT(val != ByteCodeGenerator::kUnusedStackCount); |
197 | SkDEBUGCODE(used = true); |
198 | return val; |
199 | } |
200 | ~CountValue() { |
201 | SkASSERT(used || val == ByteCodeGenerator::kUnusedStackCount); |
202 | } |
203 | int val; |
204 | SkDEBUGCODE(bool used = false;) |
205 | } count = { count_ }; |
206 | |
207 | switch (inst) { |
208 | // Unary functions/operators that don't change stack depth at all: |
209 | #define VECTOR_UNARY_OP(base) \ |
210 | case ByteCodeInstruction::base: \ |
211 | case ByteCodeInstruction::base ## 2: \ |
212 | case ByteCodeInstruction::base ## 3: \ |
213 | case ByteCodeInstruction::base ## 4: \ |
214 | return 0; |
215 | |
216 | VECTOR_UNARY_OP(kConvertFtoI) |
217 | VECTOR_UNARY_OP(kConvertStoF) |
218 | VECTOR_UNARY_OP(kConvertUtoF) |
219 | |
220 | VECTOR_UNARY_OP(kCos) |
221 | VECTOR_UNARY_OP(kSin) |
222 | VECTOR_UNARY_OP(kSqrt) |
223 | VECTOR_UNARY_OP(kTan) |
224 | |
225 | VECTOR_UNARY_OP(kNegateF) |
226 | VECTOR_UNARY_OP(kNegateI) |
227 | |
228 | case ByteCodeInstruction::kInverse2x2: |
229 | case ByteCodeInstruction::kInverse3x3: |
230 | case ByteCodeInstruction::kInverse4x4: return 0; |
231 | |
232 | case ByteCodeInstruction::kClampIndex: return 0; |
233 | case ByteCodeInstruction::kNotB: return 0; |
234 | case ByteCodeInstruction::kNegateFN: return 0; |
235 | case ByteCodeInstruction::kShiftLeft: return 0; |
236 | case ByteCodeInstruction::kShiftRightS: return 0; |
237 | case ByteCodeInstruction::kShiftRightU: return 0; |
238 | |
239 | #undef VECTOR_UNARY_OP |
240 | |
241 | // Binary functions/operators that do a 2 -> 1 reduction (possibly N times) |
242 | #define VECTOR_BINARY_OP(base) \ |
243 | case ByteCodeInstruction::base: return -1; \ |
244 | case ByteCodeInstruction::base ## 2: return -2; \ |
245 | case ByteCodeInstruction::base ## 3: return -3; \ |
246 | case ByteCodeInstruction::base ## 4: return -4; |
247 | |
248 | #define VECTOR_MATRIX_BINARY_OP(base) \ |
249 | VECTOR_BINARY_OP(base) \ |
250 | case ByteCodeInstruction::base ## N: return -count; |
251 | |
252 | case ByteCodeInstruction::kAndB: return -1; |
253 | case ByteCodeInstruction::kOrB: return -1; |
254 | case ByteCodeInstruction::kXorB: return -1; |
255 | |
256 | VECTOR_BINARY_OP(kAddI) |
257 | VECTOR_MATRIX_BINARY_OP(kAddF) |
258 | |
259 | VECTOR_BINARY_OP(kCompareIEQ) |
260 | VECTOR_MATRIX_BINARY_OP(kCompareFEQ) |
261 | VECTOR_BINARY_OP(kCompareINEQ) |
262 | VECTOR_MATRIX_BINARY_OP(kCompareFNEQ) |
263 | VECTOR_BINARY_OP(kCompareSGT) |
264 | VECTOR_BINARY_OP(kCompareUGT) |
265 | VECTOR_BINARY_OP(kCompareFGT) |
266 | VECTOR_BINARY_OP(kCompareSGTEQ) |
267 | VECTOR_BINARY_OP(kCompareUGTEQ) |
268 | VECTOR_BINARY_OP(kCompareFGTEQ) |
269 | VECTOR_BINARY_OP(kCompareSLT) |
270 | VECTOR_BINARY_OP(kCompareULT) |
271 | VECTOR_BINARY_OP(kCompareFLT) |
272 | VECTOR_BINARY_OP(kCompareSLTEQ) |
273 | VECTOR_BINARY_OP(kCompareULTEQ) |
274 | VECTOR_BINARY_OP(kCompareFLTEQ) |
275 | |
276 | VECTOR_BINARY_OP(kDivideS) |
277 | VECTOR_BINARY_OP(kDivideU) |
278 | VECTOR_MATRIX_BINARY_OP(kDivideF) |
279 | VECTOR_BINARY_OP(kMultiplyI) |
280 | VECTOR_MATRIX_BINARY_OP(kMultiplyF) |
281 | VECTOR_BINARY_OP(kRemainderF) |
282 | VECTOR_BINARY_OP(kRemainderS) |
283 | VECTOR_BINARY_OP(kRemainderU) |
284 | VECTOR_BINARY_OP(kSubtractI) |
285 | VECTOR_MATRIX_BINARY_OP(kSubtractF) |
286 | |
287 | #undef VECTOR_BINARY_OP |
288 | #undef VECTOR_MATRIX_BINARY_OP |
289 | |
290 | // Ops that push or load data to grow the stack: |
291 | case ByteCodeInstruction::kDup: |
292 | case ByteCodeInstruction::kLoad: |
293 | case ByteCodeInstruction::kLoadGlobal: |
294 | case ByteCodeInstruction::kLoadUniform: |
295 | case ByteCodeInstruction::kReadExternal: |
296 | case ByteCodeInstruction::kPushImmediate: |
297 | return 1; |
298 | |
299 | case ByteCodeInstruction::kDup2: |
300 | case ByteCodeInstruction::kLoad2: |
301 | case ByteCodeInstruction::kLoadGlobal2: |
302 | case ByteCodeInstruction::kLoadUniform2: |
303 | case ByteCodeInstruction::kReadExternal2: |
304 | return 2; |
305 | |
306 | case ByteCodeInstruction::kDup3: |
307 | case ByteCodeInstruction::kLoad3: |
308 | case ByteCodeInstruction::kLoadGlobal3: |
309 | case ByteCodeInstruction::kLoadUniform3: |
310 | case ByteCodeInstruction::kReadExternal3: |
311 | return 3; |
312 | |
313 | case ByteCodeInstruction::kDup4: |
314 | case ByteCodeInstruction::kLoad4: |
315 | case ByteCodeInstruction::kLoadGlobal4: |
316 | case ByteCodeInstruction::kLoadUniform4: |
317 | case ByteCodeInstruction::kReadExternal4: |
318 | return 4; |
319 | |
320 | case ByteCodeInstruction::kDupN: |
321 | case ByteCodeInstruction::kLoadSwizzle: |
322 | case ByteCodeInstruction::kLoadSwizzleGlobal: |
323 | case ByteCodeInstruction::kLoadSwizzleUniform: |
324 | return count; |
325 | |
326 | // Pushes 'count' values, minus one for the 'address' that's consumed first |
327 | case ByteCodeInstruction::kLoadExtended: |
328 | case ByteCodeInstruction::kLoadExtendedGlobal: |
329 | case ByteCodeInstruction::kLoadExtendedUniform: |
330 | return count - 1; |
331 | |
332 | // Ops that pop or store data to shrink the stack: |
333 | case ByteCodeInstruction::kPop: |
334 | case ByteCodeInstruction::kStore: |
335 | case ByteCodeInstruction::kStoreGlobal: |
336 | case ByteCodeInstruction::kWriteExternal: |
337 | return -1; |
338 | |
339 | case ByteCodeInstruction::kPop2: |
340 | case ByteCodeInstruction::kStore2: |
341 | case ByteCodeInstruction::kStoreGlobal2: |
342 | case ByteCodeInstruction::kWriteExternal2: |
343 | return -2; |
344 | |
345 | case ByteCodeInstruction::kPop3: |
346 | case ByteCodeInstruction::kStore3: |
347 | case ByteCodeInstruction::kStoreGlobal3: |
348 | case ByteCodeInstruction::kWriteExternal3: |
349 | return -3; |
350 | |
351 | case ByteCodeInstruction::kPop4: |
352 | case ByteCodeInstruction::kStore4: |
353 | case ByteCodeInstruction::kStoreGlobal4: |
354 | case ByteCodeInstruction::kWriteExternal4: |
355 | return -4; |
356 | |
357 | case ByteCodeInstruction::kPopN: |
358 | case ByteCodeInstruction::kStoreSwizzle: |
359 | case ByteCodeInstruction::kStoreSwizzleGlobal: |
360 | return -count; |
361 | |
362 | // Consumes 'count' values, plus one for the 'address' |
363 | case ByteCodeInstruction::kStoreExtended: |
364 | case ByteCodeInstruction::kStoreExtendedGlobal: |
365 | case ByteCodeInstruction::kStoreSwizzleIndirect: |
366 | case ByteCodeInstruction::kStoreSwizzleIndirectGlobal: |
367 | return -count - 1; |
368 | |
369 | // Strange ops where the caller computes the delta for us: |
370 | case ByteCodeInstruction::kCallExternal: |
371 | case ByteCodeInstruction::kMatrixToMatrix: |
372 | case ByteCodeInstruction::kMatrixMultiply: |
373 | case ByteCodeInstruction::kReserve: |
374 | case ByteCodeInstruction::kReturn: |
375 | case ByteCodeInstruction::kScalarToMatrix: |
376 | case ByteCodeInstruction::kSwizzle: |
377 | return count; |
378 | |
379 | // Miscellaneous |
380 | |
381 | // kCall is net-zero. Max stack depth is adjusted in writeFunctionCall. |
382 | case ByteCodeInstruction::kCall: return 0; |
383 | case ByteCodeInstruction::kBranch: return 0; |
384 | case ByteCodeInstruction::kBranchIfAllFalse: return 0; |
385 | |
386 | case ByteCodeInstruction::kMaskPush: return -1; |
387 | case ByteCodeInstruction::kMaskPop: return 0; |
388 | case ByteCodeInstruction::kMaskNegate: return 0; |
389 | case ByteCodeInstruction::kMaskBlend: return -count; |
390 | |
391 | case ByteCodeInstruction::kLoopBegin: return 0; |
392 | case ByteCodeInstruction::kLoopNext: return 0; |
393 | case ByteCodeInstruction::kLoopMask: return -1; |
394 | case ByteCodeInstruction::kLoopEnd: return 0; |
395 | case ByteCodeInstruction::kLoopBreak: return 0; |
396 | case ByteCodeInstruction::kLoopContinue: return 0; |
397 | |
398 | default: |
399 | ABORT("unsupported instruction %d\n" , (int)inst); |
400 | return 0; |
401 | } |
402 | } |
403 | |
404 | ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Variable& var) { |
405 | // given that we seldom have more than a couple of variables, linear search is probably the most |
406 | // efficient way to handle lookups |
407 | switch (var.fStorage) { |
408 | case Variable::kLocal_Storage: { |
409 | for (int i = fLocals.size() - 1; i >= 0; --i) { |
410 | if (fLocals[i] == &var) { |
411 | SkASSERT(fParameterCount + i <= 255); |
412 | return { fParameterCount + i, Storage::kLocal }; |
413 | } |
414 | } |
415 | int result = fParameterCount + fLocals.size(); |
416 | fLocals.push_back(&var); |
417 | for (int i = 0; i < SlotCount(var.fType) - 1; ++i) { |
418 | fLocals.push_back(nullptr); |
419 | } |
420 | SkASSERT(result <= 255); |
421 | return { result, Storage::kLocal }; |
422 | } |
423 | case Variable::kParameter_Storage: { |
424 | int offset = 0; |
425 | for (const auto& p : fFunction->fDeclaration.fParameters) { |
426 | if (p == &var) { |
427 | SkASSERT(offset <= 255); |
428 | return { offset, Storage::kLocal }; |
429 | } |
430 | offset += SlotCount(p->fType); |
431 | } |
432 | SkASSERT(false); |
433 | return Location::MakeInvalid(); |
434 | } |
435 | case Variable::kGlobal_Storage: { |
436 | if (is_in(var)) { |
437 | // If you see this error, it means the program is using raw 'in' variables. You |
438 | // should either specialize the program (Compiler::specialize) to bake in the final |
439 | // values of the 'in' variables, or not use 'in' variables (maybe you meant to use |
440 | // 'uniform' instead?). |
441 | fErrors.error(var.fOffset, |
442 | "'in' variable is not specialized or has unsupported type" ); |
443 | return Location::MakeInvalid(); |
444 | } |
445 | int offset = 0; |
446 | bool isUniform = is_uniform(var); |
447 | for (const auto& e : fProgram) { |
448 | if (e.fKind == ProgramElement::kVar_Kind) { |
449 | VarDeclarations& decl = (VarDeclarations&) e; |
450 | for (const auto& v : decl.fVars) { |
451 | const Variable* declVar = ((VarDeclaration&) *v).fVar; |
452 | if (declVar->fModifiers.fLayout.fBuiltin >= 0 || is_in(*declVar)) { |
453 | continue; |
454 | } |
455 | if (isUniform != is_uniform(*declVar)) { |
456 | continue; |
457 | } |
458 | if (declVar == &var) { |
459 | SkASSERT(offset <= 255); |
460 | return { offset, isUniform ? Storage::kUniform : Storage::kGlobal }; |
461 | } |
462 | offset += SlotCount(declVar->fType); |
463 | } |
464 | } |
465 | } |
466 | SkASSERT(false); |
467 | return Location::MakeInvalid(); |
468 | } |
469 | default: |
470 | SkASSERT(false); |
471 | return Location::MakeInvalid(); |
472 | } |
473 | } |
474 | |
475 | ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Expression& expr) { |
476 | switch (expr.fKind) { |
477 | case Expression::kFieldAccess_Kind: { |
478 | const FieldAccess& f = (const FieldAccess&)expr; |
479 | Location baseLoc = this->getLocation(*f.fBase); |
480 | int offset = 0; |
481 | for (int i = 0; i < f.fFieldIndex; ++i) { |
482 | offset += SlotCount(*f.fBase->fType.fields()[i].fType); |
483 | } |
484 | if (baseLoc.isOnStack()) { |
485 | if (offset != 0) { |
486 | this->write(ByteCodeInstruction::kPushImmediate); |
487 | this->write32(offset); |
488 | this->write(ByteCodeInstruction::kAddI); |
489 | this->write8(1); |
490 | } |
491 | return baseLoc; |
492 | } else { |
493 | return baseLoc + offset; |
494 | } |
495 | } |
496 | case Expression::kIndex_Kind: { |
497 | const IndexExpression& i = (const IndexExpression&)expr; |
498 | int stride = SlotCount(i.fType); |
499 | int length = i.fBase->fType.columns(); |
500 | SkASSERT(length <= 255); |
501 | int offset = -1; |
502 | if (i.fIndex->isConstant()) { |
503 | int64_t index = i.fIndex->getConstantInt(); |
504 | if (index < 0 || index >= length) { |
505 | fErrors.error(i.fIndex->fOffset, "Array index out of bounds." ); |
506 | return Location::MakeInvalid(); |
507 | } |
508 | offset = index * stride; |
509 | } else { |
510 | if (i.fIndex->hasSideEffects()) { |
511 | // Having a side-effect in an indexer is technically safe for an rvalue, |
512 | // but with lvalues we have to evaluate the indexer twice, so make it an error. |
513 | fErrors.error(i.fIndex->fOffset, |
514 | "Index expressions with side-effects not supported in byte code." ); |
515 | return Location::MakeInvalid(); |
516 | } |
517 | this->writeExpression(*i.fIndex); |
518 | this->write(ByteCodeInstruction::kClampIndex); |
519 | this->write8(length); |
520 | if (stride != 1) { |
521 | this->write(ByteCodeInstruction::kPushImmediate); |
522 | this->write32(stride); |
523 | this->write(ByteCodeInstruction::kMultiplyI); |
524 | this->write8(1); |
525 | } |
526 | } |
527 | Location baseLoc = this->getLocation(*i.fBase); |
528 | |
529 | // Are both components known statically? |
530 | if (!baseLoc.isOnStack() && offset >= 0) { |
531 | return baseLoc + offset; |
532 | } |
533 | |
534 | // At least one component is dynamic (and on the stack). |
535 | |
536 | // If the other component is zero, we're done |
537 | if (baseLoc.fSlot == 0 || offset == 0) { |
538 | return baseLoc.makeOnStack(); |
539 | } |
540 | |
541 | // Push the non-dynamic component (if any) to the stack, then add the two |
542 | if (!baseLoc.isOnStack()) { |
543 | this->write(ByteCodeInstruction::kPushImmediate); |
544 | this->write32(baseLoc.fSlot); |
545 | } |
546 | if (offset >= 0) { |
547 | this->write(ByteCodeInstruction::kPushImmediate); |
548 | this->write32(offset); |
549 | } |
550 | this->write(ByteCodeInstruction::kAddI); |
551 | this->write8(1); |
552 | return baseLoc.makeOnStack(); |
553 | } |
554 | case Expression::kSwizzle_Kind: { |
555 | const Swizzle& s = (const Swizzle&)expr; |
556 | SkASSERT(swizzle_is_simple(s)); |
557 | Location baseLoc = this->getLocation(*s.fBase); |
558 | int offset = s.fComponents[0]; |
559 | if (baseLoc.isOnStack()) { |
560 | if (offset != 0) { |
561 | this->write(ByteCodeInstruction::kPushImmediate); |
562 | this->write32(offset); |
563 | this->write(ByteCodeInstruction::kAddI); |
564 | this->write8(1); |
565 | } |
566 | return baseLoc; |
567 | } else { |
568 | return baseLoc + offset; |
569 | } |
570 | } |
571 | case Expression::kVariableReference_Kind: { |
572 | const Variable& var = ((const VariableReference&)expr).fVariable; |
573 | return this->getLocation(var); |
574 | } |
575 | default: |
576 | SkASSERT(false); |
577 | return Location::MakeInvalid(); |
578 | } |
579 | } |
580 | |
581 | void ByteCodeGenerator::write8(uint8_t b) { |
582 | fCode->push_back(b); |
583 | } |
584 | |
585 | void ByteCodeGenerator::write16(uint16_t i) { |
586 | size_t n = fCode->size(); |
587 | fCode->resize(n+2); |
588 | memcpy(fCode->data() + n, &i, 2); |
589 | } |
590 | |
591 | void ByteCodeGenerator::write32(uint32_t i) { |
592 | size_t n = fCode->size(); |
593 | fCode->resize(n+4); |
594 | memcpy(fCode->data() + n, &i, 4); |
595 | } |
596 | |
597 | void ByteCodeGenerator::write(ByteCodeInstruction i, int count) { |
598 | switch (i) { |
599 | case ByteCodeInstruction::kLoopBegin: this->enterLoop(); break; |
600 | case ByteCodeInstruction::kLoopEnd: this->exitLoop(); break; |
601 | |
602 | case ByteCodeInstruction::kMaskPush: this->enterCondition(); break; |
603 | case ByteCodeInstruction::kMaskPop: |
604 | case ByteCodeInstruction::kMaskBlend: this->exitCondition(); break; |
605 | default: /* Do nothing */ break; |
606 | } |
607 | instruction val = (instruction) i; |
608 | size_t n = fCode->size(); |
609 | fCode->resize(n + sizeof(val)); |
610 | memcpy(fCode->data() + n, &val, sizeof(val)); |
611 | fStackCount += StackUsage(i, count); |
612 | fMaxStackCount = std::max(fMaxStackCount, fStackCount); |
613 | } |
614 | |
615 | static ByteCodeInstruction vector_instruction(ByteCodeInstruction base, int count) { |
616 | SkASSERT(count >= 1 && count <= 4); |
617 | return ((ByteCodeInstruction) ((int) base + 1 - count)); |
618 | } |
619 | |
620 | void ByteCodeGenerator::writeTypedInstruction(const Type& type, ByteCodeInstruction s, |
621 | ByteCodeInstruction u, ByteCodeInstruction f, |
622 | int count, bool writeCount) { |
623 | switch (type_category(type)) { |
624 | case TypeCategory::kSigned: |
625 | this->write(vector_instruction(s, count)); |
626 | break; |
627 | case TypeCategory::kUnsigned: |
628 | this->write(vector_instruction(u, count)); |
629 | break; |
630 | case TypeCategory::kFloat: { |
631 | if (count > 4) { |
632 | this->write((ByteCodeInstruction)((int)f + 1), count); |
633 | } else { |
634 | this->write(vector_instruction(f, count)); |
635 | } |
636 | break; |
637 | } |
638 | default: |
639 | SkASSERT(false); |
640 | } |
641 | if (writeCount) { |
642 | this->write8(count); |
643 | } |
644 | } |
645 | |
646 | bool ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b, bool discard) { |
647 | if (b.fOperator == Token::Kind::EQ) { |
648 | std::unique_ptr<LValue> lvalue = this->getLValue(*b.fLeft); |
649 | this->writeExpression(*b.fRight); |
650 | lvalue->store(discard); |
651 | discard = false; |
652 | return discard; |
653 | } |
654 | const Type& lType = b.fLeft->fType; |
655 | const Type& rType = b.fRight->fType; |
656 | bool lVecOrMtx = (lType.kind() == Type::kVector_Kind || lType.kind() == Type::kMatrix_Kind); |
657 | bool rVecOrMtx = (rType.kind() == Type::kVector_Kind || rType.kind() == Type::kMatrix_Kind); |
658 | Token::Kind op; |
659 | std::unique_ptr<LValue> lvalue; |
660 | if (is_assignment(b.fOperator)) { |
661 | lvalue = this->getLValue(*b.fLeft); |
662 | lvalue->load(); |
663 | op = remove_assignment(b.fOperator); |
664 | } else { |
665 | this->writeExpression(*b.fLeft); |
666 | op = b.fOperator; |
667 | if (!lVecOrMtx && rVecOrMtx) { |
668 | for (int i = SlotCount(rType); i > 1; --i) { |
669 | this->write(ByteCodeInstruction::kDup); |
670 | this->write8(1); |
671 | } |
672 | } |
673 | } |
674 | int count = std::max(SlotCount(lType), SlotCount(rType)); |
675 | SkDEBUGCODE(TypeCategory tc = type_category(lType)); |
676 | switch (op) { |
677 | case Token::Kind::LOGICALAND: { |
678 | SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
679 | this->write(ByteCodeInstruction::kDup); |
680 | this->write8(1); |
681 | this->write(ByteCodeInstruction::kMaskPush); |
682 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
683 | DeferredLocation falseLocation(this); |
684 | this->writeExpression(*b.fRight); |
685 | this->write(ByteCodeInstruction::kAndB); |
686 | falseLocation.set(); |
687 | this->write(ByteCodeInstruction::kMaskPop); |
688 | return false; |
689 | } |
690 | case Token::Kind::LOGICALOR: { |
691 | SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
692 | this->write(ByteCodeInstruction::kDup); |
693 | this->write8(1); |
694 | this->write(ByteCodeInstruction::kNotB); |
695 | this->write(ByteCodeInstruction::kMaskPush); |
696 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
697 | DeferredLocation falseLocation(this); |
698 | this->writeExpression(*b.fRight); |
699 | this->write(ByteCodeInstruction::kOrB); |
700 | falseLocation.set(); |
701 | this->write(ByteCodeInstruction::kMaskPop); |
702 | return false; |
703 | } |
704 | case Token::Kind::SHL: |
705 | case Token::Kind::SHR: { |
706 | SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned || |
707 | tc == SkSL::TypeCategory::kUnsigned)); |
708 | if (!b.fRight->isConstant()) { |
709 | fErrors.error(b.fRight->fOffset, "Shift amounts must be constant" ); |
710 | return false; |
711 | } |
712 | int64_t shift = b.fRight->getConstantInt(); |
713 | if (shift < 0 || shift > 31) { |
714 | fErrors.error(b.fRight->fOffset, "Shift amount out of range" ); |
715 | return false; |
716 | } |
717 | |
718 | if (op == Token::Kind::SHL) { |
719 | this->write(ByteCodeInstruction::kShiftLeft); |
720 | } else { |
721 | this->write(type_category(lType) == TypeCategory::kSigned |
722 | ? ByteCodeInstruction::kShiftRightS |
723 | : ByteCodeInstruction::kShiftRightU); |
724 | } |
725 | this->write8(shift); |
726 | return false; |
727 | } |
728 | |
729 | default: |
730 | break; |
731 | } |
732 | this->writeExpression(*b.fRight); |
733 | if (lVecOrMtx && !rVecOrMtx) { |
734 | for (int i = SlotCount(lType); i > 1; --i) { |
735 | this->write(ByteCodeInstruction::kDup); |
736 | this->write8(1); |
737 | } |
738 | } |
739 | // Special case for M*V, V*M, M*M (but not V*V!) |
740 | if (op == Token::Kind::STAR && lVecOrMtx && rVecOrMtx && |
741 | !(lType.kind() == Type::kVector_Kind && rType.kind() == Type::kVector_Kind)) { |
742 | this->write(ByteCodeInstruction::kMatrixMultiply, |
743 | SlotCount(b.fType) - (SlotCount(lType) + SlotCount(rType))); |
744 | int rCols = rType.columns(), |
745 | rRows = rType.rows(), |
746 | lCols = lType.columns(), |
747 | lRows = lType.rows(); |
748 | // M*V treats the vector as a column |
749 | if (rType.kind() == Type::kVector_Kind) { |
750 | std::swap(rCols, rRows); |
751 | } |
752 | SkASSERT(lCols == rRows); |
753 | SkASSERT(SlotCount(b.fType) == lRows * rCols); |
754 | this->write8(lCols); |
755 | this->write8(lRows); |
756 | this->write8(rCols); |
757 | } else { |
758 | switch (op) { |
759 | case Token::Kind::EQEQ: |
760 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareIEQ, |
761 | ByteCodeInstruction::kCompareIEQ, |
762 | ByteCodeInstruction::kCompareFEQ, |
763 | count); |
764 | // Collapse to a single bool |
765 | for (int i = count; i > 1; --i) { |
766 | this->write(ByteCodeInstruction::kAndB); |
767 | } |
768 | break; |
769 | case Token::Kind::GT: |
770 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGT, |
771 | ByteCodeInstruction::kCompareUGT, |
772 | ByteCodeInstruction::kCompareFGT, |
773 | count); |
774 | break; |
775 | case Token::Kind::GTEQ: |
776 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGTEQ, |
777 | ByteCodeInstruction::kCompareUGTEQ, |
778 | ByteCodeInstruction::kCompareFGTEQ, |
779 | count); |
780 | break; |
781 | case Token::Kind::LT: |
782 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLT, |
783 | ByteCodeInstruction::kCompareULT, |
784 | ByteCodeInstruction::kCompareFLT, |
785 | count); |
786 | break; |
787 | case Token::Kind::LTEQ: |
788 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLTEQ, |
789 | ByteCodeInstruction::kCompareULTEQ, |
790 | ByteCodeInstruction::kCompareFLTEQ, |
791 | count); |
792 | break; |
793 | case Token::Kind::MINUS: |
794 | this->writeTypedInstruction(lType, ByteCodeInstruction::kSubtractI, |
795 | ByteCodeInstruction::kSubtractI, |
796 | ByteCodeInstruction::kSubtractF, |
797 | count); |
798 | break; |
799 | case Token::Kind::NEQ: |
800 | this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareINEQ, |
801 | ByteCodeInstruction::kCompareINEQ, |
802 | ByteCodeInstruction::kCompareFNEQ, |
803 | count); |
804 | // Collapse to a single bool |
805 | for (int i = count; i > 1; --i) { |
806 | this->write(ByteCodeInstruction::kOrB); |
807 | } |
808 | break; |
809 | case Token::Kind::PERCENT: |
810 | this->writeTypedInstruction(lType, ByteCodeInstruction::kRemainderS, |
811 | ByteCodeInstruction::kRemainderU, |
812 | ByteCodeInstruction::kRemainderF, |
813 | count); |
814 | break; |
815 | case Token::Kind::PLUS: |
816 | this->writeTypedInstruction(lType, ByteCodeInstruction::kAddI, |
817 | ByteCodeInstruction::kAddI, |
818 | ByteCodeInstruction::kAddF, |
819 | count); |
820 | break; |
821 | case Token::Kind::SLASH: |
822 | this->writeTypedInstruction(lType, ByteCodeInstruction::kDivideS, |
823 | ByteCodeInstruction::kDivideU, |
824 | ByteCodeInstruction::kDivideF, |
825 | count); |
826 | break; |
827 | case Token::Kind::STAR: |
828 | this->writeTypedInstruction(lType, ByteCodeInstruction::kMultiplyI, |
829 | ByteCodeInstruction::kMultiplyI, |
830 | ByteCodeInstruction::kMultiplyF, |
831 | count); |
832 | break; |
833 | |
834 | case Token::Kind::LOGICALXOR: |
835 | SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
836 | this->write(ByteCodeInstruction::kXorB); |
837 | break; |
838 | |
839 | case Token::Kind::BITWISEAND: |
840 | SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned || |
841 | tc == SkSL::TypeCategory::kUnsigned)); |
842 | this->write(ByteCodeInstruction::kAndB); |
843 | break; |
844 | case Token::Kind::BITWISEOR: |
845 | SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned || |
846 | tc == SkSL::TypeCategory::kUnsigned)); |
847 | this->write(ByteCodeInstruction::kOrB); |
848 | break; |
849 | case Token::Kind::BITWISEXOR: |
850 | SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned || |
851 | tc == SkSL::TypeCategory::kUnsigned)); |
852 | this->write(ByteCodeInstruction::kXorB); |
853 | break; |
854 | |
855 | default: |
856 | fErrors.error(b.fOffset, SkSL::String::printf("Unsupported binary operator '%s'" , |
857 | Compiler::OperatorName(op))); |
858 | break; |
859 | } |
860 | } |
861 | if (lvalue) { |
862 | lvalue->store(discard); |
863 | discard = false; |
864 | } |
865 | return discard; |
866 | } |
867 | |
868 | void ByteCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { |
869 | this->write(ByteCodeInstruction::kPushImmediate); |
870 | this->write32(b.fValue ? ~0 : 0); |
871 | } |
872 | |
873 | void ByteCodeGenerator::writeConstructor(const Constructor& c) { |
874 | for (const auto& arg : c.fArguments) { |
875 | this->writeExpression(*arg); |
876 | } |
877 | if (c.fArguments.size() == 1) { |
878 | const Type& inType = c.fArguments[0]->fType; |
879 | const Type& outType = c.fType; |
880 | TypeCategory inCategory = type_category(inType); |
881 | TypeCategory outCategory = type_category(outType); |
882 | int inCount = SlotCount(inType); |
883 | int outCount = SlotCount(outType); |
884 | if (inCategory != outCategory) { |
885 | SkASSERT(inCount == outCount); |
886 | if (inCategory == TypeCategory::kFloat) { |
887 | SkASSERT(outCategory == TypeCategory::kSigned || |
888 | outCategory == TypeCategory::kUnsigned); |
889 | this->write(vector_instruction(ByteCodeInstruction::kConvertFtoI, outCount)); |
890 | } else if (outCategory == TypeCategory::kFloat) { |
891 | if (inCategory == TypeCategory::kSigned) { |
892 | this->write(vector_instruction(ByteCodeInstruction::kConvertStoF, outCount)); |
893 | } else { |
894 | SkASSERT(inCategory == TypeCategory::kUnsigned); |
895 | this->write(vector_instruction(ByteCodeInstruction::kConvertUtoF, outCount)); |
896 | } |
897 | } else { |
898 | SkASSERT(false); |
899 | } |
900 | } |
901 | if (inType.kind() == Type::kMatrix_Kind && outType.kind() == Type::kMatrix_Kind) { |
902 | this->write(ByteCodeInstruction::kMatrixToMatrix, |
903 | SlotCount(outType) - SlotCount(inType)); |
904 | this->write8(inType.columns()); |
905 | this->write8(inType.rows()); |
906 | this->write8(outType.columns()); |
907 | this->write8(outType.rows()); |
908 | } else if (inCount != outCount) { |
909 | SkASSERT(inCount == 1); |
910 | if (outType.kind() == Type::kMatrix_Kind) { |
911 | this->write(ByteCodeInstruction::kScalarToMatrix, SlotCount(outType) - 1); |
912 | this->write8(outType.columns()); |
913 | this->write8(outType.rows()); |
914 | } else { |
915 | SkASSERT(outType.kind() == Type::kVector_Kind); |
916 | for (; inCount != outCount; ++inCount) { |
917 | this->write(ByteCodeInstruction::kDup); |
918 | this->write8(1); |
919 | } |
920 | } |
921 | } |
922 | } |
923 | } |
924 | |
925 | void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f) { |
926 | int argumentCount = 0; |
927 | for (const auto& arg : f.fArguments) { |
928 | this->writeExpression(*arg); |
929 | argumentCount += SlotCount(arg->fType); |
930 | } |
931 | this->write(ByteCodeInstruction::kCallExternal, SlotCount(f.fType) - argumentCount); |
932 | SkASSERT(argumentCount <= 255); |
933 | this->write8(argumentCount); |
934 | this->write8(SlotCount(f.fType)); |
935 | int index = fOutput->fExternalValues.size(); |
936 | fOutput->fExternalValues.push_back(f.fFunction); |
937 | SkASSERT(index <= 255); |
938 | this->write8(index); |
939 | } |
940 | |
941 | void ByteCodeGenerator::writeExternalValue(const ExternalValueReference& e) { |
942 | int count = SlotCount(e.fValue->type()); |
943 | this->write(vector_instruction(ByteCodeInstruction::kReadExternal, count)); |
944 | this->write8(count); |
945 | int index = fOutput->fExternalValues.size(); |
946 | fOutput->fExternalValues.push_back(e.fValue); |
947 | SkASSERT(index <= 255); |
948 | this->write8(index); |
949 | } |
950 | |
951 | void ByteCodeGenerator::writeVariableExpression(const Expression& expr) { |
952 | Location location = this->getLocation(expr); |
953 | int count = SlotCount(expr.fType); |
954 | if (location.isOnStack() || count > 4) { |
955 | if (!location.isOnStack()) { |
956 | this->write(ByteCodeInstruction::kPushImmediate); |
957 | this->write32(location.fSlot); |
958 | } |
959 | this->write(location.selectLoad(ByteCodeInstruction::kLoadExtended, |
960 | ByteCodeInstruction::kLoadExtendedGlobal, |
961 | ByteCodeInstruction::kLoadExtendedUniform), |
962 | count); |
963 | this->write8(count); |
964 | } else { |
965 | this->write(vector_instruction(location.selectLoad(ByteCodeInstruction::kLoad, |
966 | ByteCodeInstruction::kLoadGlobal, |
967 | ByteCodeInstruction::kLoadUniform), |
968 | count)); |
969 | this->write8(count); |
970 | this->write8(location.fSlot); |
971 | } |
972 | } |
973 | |
974 | static inline uint32_t float_to_bits(float x) { |
975 | uint32_t u; |
976 | memcpy(&u, &x, sizeof(uint32_t)); |
977 | return u; |
978 | } |
979 | |
980 | void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { |
981 | this->write(ByteCodeInstruction::kPushImmediate); |
982 | this->write32(float_to_bits(f.fValue)); |
983 | } |
984 | |
985 | void ByteCodeGenerator::writeIntrinsicCall(const FunctionCall& c) { |
986 | auto found = fIntrinsics.find(c.fFunction.fName); |
987 | if (found == fIntrinsics.end()) { |
988 | fErrors.error(c.fOffset, String::printf("Unsupported intrinsic: '%s'" , |
989 | String(c.fFunction.fName).c_str())); |
990 | return; |
991 | } |
992 | int count = SlotCount(c.fArguments[0]->fType); |
993 | if (found->second.fIsSpecial) { |
994 | SpecialIntrinsic special = found->second.fValue.fSpecial; |
995 | switch (special) { |
996 | case SpecialIntrinsic::kDot: { |
997 | SkASSERT(c.fArguments.size() == 2); |
998 | SkASSERT(count == SlotCount(c.fArguments[1]->fType)); |
999 | this->write(vector_instruction(ByteCodeInstruction::kMultiplyF, count)); |
1000 | this->write8(count); |
1001 | for (int i = count; i > 1; --i) { |
1002 | this->write(ByteCodeInstruction::kAddF); |
1003 | this->write8(1); |
1004 | } |
1005 | break; |
1006 | } |
1007 | default: |
1008 | SkASSERT(false); |
1009 | } |
1010 | } else { |
1011 | switch (found->second.fValue.fInstruction) { |
1012 | case ByteCodeInstruction::kCos: |
1013 | case ByteCodeInstruction::kSin: |
1014 | case ByteCodeInstruction::kTan: |
1015 | SkASSERT(c.fArguments.size() > 0); |
1016 | this->write(vector_instruction(found->second.fValue.fInstruction, count)); |
1017 | this->write8(count); |
1018 | break; |
1019 | case ByteCodeInstruction::kSqrt: |
1020 | SkASSERT(c.fArguments.size() > 0); |
1021 | this->write(vector_instruction(found->second.fValue.fInstruction, count)); |
1022 | break; |
1023 | case ByteCodeInstruction::kInverse2x2: { |
1024 | SkASSERT(c.fArguments.size() > 0); |
1025 | auto op = ByteCodeInstruction::kInverse2x2; |
1026 | switch (count) { |
1027 | case 4: break; // float2x2 |
1028 | case 9: op = ByteCodeInstruction::kInverse3x3; break; |
1029 | case 16: op = ByteCodeInstruction::kInverse4x4; break; |
1030 | default: SkASSERT(false); |
1031 | } |
1032 | this->write(op); |
1033 | break; |
1034 | } |
1035 | default: |
1036 | SkASSERT(false); |
1037 | } |
1038 | } |
1039 | } |
1040 | |
1041 | void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) { |
1042 | // Find the index of the function we're calling. We explicitly do not allow calls to functions |
1043 | // before they're defined. This is an easy-to-understand rule that prevents recursion. |
1044 | int idx = -1; |
1045 | for (size_t i = 0; i < fFunctions.size(); ++i) { |
1046 | if (f.fFunction.matches(fFunctions[i]->fDeclaration)) { |
1047 | idx = i; |
1048 | break; |
1049 | } |
1050 | } |
1051 | if (idx == -1) { |
1052 | for (const auto& arg : f.fArguments) { |
1053 | this->writeExpression(*arg); |
1054 | } |
1055 | this->writeIntrinsicCall(f); |
1056 | return; |
1057 | } |
1058 | |
1059 | |
1060 | if (idx > 255) { |
1061 | fErrors.error(f.fOffset, "Function count limit exceeded" ); |
1062 | return; |
1063 | } else if (idx >= (int) fFunctions.size()) { |
1064 | fErrors.error(f.fOffset, "Call to undefined function" ); |
1065 | return; |
1066 | } |
1067 | |
1068 | // We may need to deal with out parameters, so the sequence is tricky |
1069 | if (int returnCount = SlotCount(f.fType)) { |
1070 | this->write(ByteCodeInstruction::kReserve, returnCount); |
1071 | this->write8(returnCount); |
1072 | } |
1073 | |
1074 | int argCount = f.fArguments.size(); |
1075 | std::vector<std::unique_ptr<LValue>> lvalues; |
1076 | for (int i = 0; i < argCount; ++i) { |
1077 | const auto& param = f.fFunction.fParameters[i]; |
1078 | const auto& arg = f.fArguments[i]; |
1079 | if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
1080 | lvalues.emplace_back(this->getLValue(*arg)); |
1081 | lvalues.back()->load(); |
1082 | } else { |
1083 | this->writeExpression(*arg); |
1084 | } |
1085 | } |
1086 | |
1087 | // The space used by the call is based on the callee, but it also unwinds all of that before |
1088 | // we continue execution. We adjust our max stack depths below. |
1089 | this->write(ByteCodeInstruction::kCall); |
1090 | this->write8(idx); |
1091 | |
1092 | const ByteCodeFunction* callee = fOutput->fFunctions[idx].get(); |
1093 | fMaxLoopCount = std::max(fMaxLoopCount, fLoopCount + callee->fLoopCount); |
1094 | fMaxConditionCount = std::max(fMaxConditionCount, fConditionCount + callee->fConditionCount); |
1095 | fMaxStackCount = std::max(fMaxStackCount, fStackCount + callee->fLocalCount |
1096 | + callee->fStackCount); |
1097 | |
1098 | // After the called function returns, the stack will still contain our arguments. We have to |
1099 | // pop them (storing any out parameters back to their lvalues as we go). We glob together slot |
1100 | // counts for all parameters that aren't out-params, so we can pop them in one big chunk. |
1101 | int popCount = 0; |
1102 | auto pop = [&]() { |
1103 | if (popCount > 4) { |
1104 | this->write(ByteCodeInstruction::kPopN, popCount); |
1105 | this->write8(popCount); |
1106 | } else if (popCount > 0) { |
1107 | this->write(vector_instruction(ByteCodeInstruction::kPop, popCount)); |
1108 | } |
1109 | popCount = 0; |
1110 | }; |
1111 | |
1112 | for (int i = argCount - 1; i >= 0; --i) { |
1113 | const auto& param = f.fFunction.fParameters[i]; |
1114 | const auto& arg = f.fArguments[i]; |
1115 | if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
1116 | pop(); |
1117 | lvalues.back()->store(true); |
1118 | lvalues.pop_back(); |
1119 | } else { |
1120 | popCount += SlotCount(arg->fType); |
1121 | } |
1122 | } |
1123 | pop(); |
1124 | } |
1125 | |
1126 | void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) { |
1127 | this->write(ByteCodeInstruction::kPushImmediate); |
1128 | this->write32(i.fValue); |
1129 | } |
1130 | |
1131 | void ByteCodeGenerator::writeNullLiteral(const NullLiteral& n) { |
1132 | // not yet implemented |
1133 | abort(); |
1134 | } |
1135 | |
1136 | bool ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p, bool discard) { |
1137 | switch (p.fOperator) { |
1138 | case Token::Kind::PLUSPLUS: // fall through |
1139 | case Token::Kind::MINUSMINUS: { |
1140 | SkASSERT(SlotCount(p.fOperand->fType) == 1); |
1141 | std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand); |
1142 | lvalue->load(); |
1143 | this->write(ByteCodeInstruction::kPushImmediate); |
1144 | this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); |
1145 | if (p.fOperator == Token::Kind::PLUSPLUS) { |
1146 | this->writeTypedInstruction(p.fType, |
1147 | ByteCodeInstruction::kAddI, |
1148 | ByteCodeInstruction::kAddI, |
1149 | ByteCodeInstruction::kAddF, |
1150 | 1); |
1151 | } else { |
1152 | this->writeTypedInstruction(p.fType, |
1153 | ByteCodeInstruction::kSubtractI, |
1154 | ByteCodeInstruction::kSubtractI, |
1155 | ByteCodeInstruction::kSubtractF, |
1156 | 1); |
1157 | } |
1158 | lvalue->store(discard); |
1159 | discard = false; |
1160 | break; |
1161 | } |
1162 | case Token::Kind::MINUS: { |
1163 | this->writeExpression(*p.fOperand); |
1164 | this->writeTypedInstruction(p.fType, |
1165 | ByteCodeInstruction::kNegateI, |
1166 | ByteCodeInstruction::kNegateI, |
1167 | ByteCodeInstruction::kNegateF, |
1168 | SlotCount(p.fOperand->fType), |
1169 | false); |
1170 | break; |
1171 | } |
1172 | case Token::Kind::LOGICALNOT: |
1173 | case Token::Kind::BITWISENOT: { |
1174 | SkASSERT(SlotCount(p.fOperand->fType) == 1); |
1175 | SkDEBUGCODE(TypeCategory tc = type_category(p.fOperand->fType)); |
1176 | SkASSERT((p.fOperator == Token::Kind::LOGICALNOT && tc == TypeCategory::kBool) || |
1177 | (p.fOperator == Token::Kind::BITWISENOT && (tc == TypeCategory::kSigned || |
1178 | tc == TypeCategory::kUnsigned))); |
1179 | this->writeExpression(*p.fOperand); |
1180 | this->write(ByteCodeInstruction::kNotB); |
1181 | break; |
1182 | } |
1183 | default: |
1184 | SkASSERT(false); |
1185 | } |
1186 | return discard; |
1187 | } |
1188 | |
1189 | bool ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p, bool discard) { |
1190 | switch (p.fOperator) { |
1191 | case Token::Kind::PLUSPLUS: // fall through |
1192 | case Token::Kind::MINUSMINUS: { |
1193 | SkASSERT(SlotCount(p.fOperand->fType) == 1); |
1194 | std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand); |
1195 | lvalue->load(); |
1196 | // If we're not supposed to discard the result, then make a copy *before* the +/- |
1197 | if (!discard) { |
1198 | this->write(ByteCodeInstruction::kDup); |
1199 | this->write8(1); |
1200 | } |
1201 | this->write(ByteCodeInstruction::kPushImmediate); |
1202 | this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); |
1203 | if (p.fOperator == Token::Kind::PLUSPLUS) { |
1204 | this->writeTypedInstruction(p.fType, |
1205 | ByteCodeInstruction::kAddI, |
1206 | ByteCodeInstruction::kAddI, |
1207 | ByteCodeInstruction::kAddF, |
1208 | 1); |
1209 | } else { |
1210 | this->writeTypedInstruction(p.fType, |
1211 | ByteCodeInstruction::kSubtractI, |
1212 | ByteCodeInstruction::kSubtractI, |
1213 | ByteCodeInstruction::kSubtractF, |
1214 | 1); |
1215 | } |
1216 | // Always consume the result as part of the store |
1217 | lvalue->store(true); |
1218 | discard = false; |
1219 | break; |
1220 | } |
1221 | default: |
1222 | SkASSERT(false); |
1223 | } |
1224 | return discard; |
1225 | } |
1226 | |
1227 | void ByteCodeGenerator::writeSwizzle(const Swizzle& s) { |
1228 | if (swizzle_is_simple(s)) { |
1229 | this->writeVariableExpression(s); |
1230 | return; |
1231 | } |
1232 | |
1233 | switch (s.fBase->fKind) { |
1234 | case Expression::kVariableReference_Kind: { |
1235 | Location location = this->getLocation(*s.fBase); |
1236 | this->write(location.selectLoad(ByteCodeInstruction::kLoadSwizzle, |
1237 | ByteCodeInstruction::kLoadSwizzleGlobal, |
1238 | ByteCodeInstruction::kLoadSwizzleUniform), |
1239 | s.fComponents.size()); |
1240 | this->write8(location.fSlot); |
1241 | this->write8(s.fComponents.size()); |
1242 | for (int c : s.fComponents) { |
1243 | this->write8(c); |
1244 | } |
1245 | break; |
1246 | } |
1247 | default: |
1248 | this->writeExpression(*s.fBase); |
1249 | this->write(ByteCodeInstruction::kSwizzle, |
1250 | s.fComponents.size() - s.fBase->fType.columns()); |
1251 | this->write8(s.fBase->fType.columns()); |
1252 | this->write8(s.fComponents.size()); |
1253 | for (int c : s.fComponents) { |
1254 | this->write8(c); |
1255 | } |
1256 | } |
1257 | } |
1258 | |
1259 | void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) { |
1260 | int count = SlotCount(t.fType); |
1261 | SkASSERT(count == SlotCount(t.fIfTrue->fType)); |
1262 | SkASSERT(count == SlotCount(t.fIfFalse->fType)); |
1263 | |
1264 | this->writeExpression(*t.fTest); |
1265 | this->write(ByteCodeInstruction::kMaskPush); |
1266 | this->writeExpression(*t.fIfTrue); |
1267 | this->write(ByteCodeInstruction::kMaskNegate); |
1268 | this->writeExpression(*t.fIfFalse); |
1269 | this->write(ByteCodeInstruction::kMaskBlend, count); |
1270 | this->write8(count); |
1271 | } |
1272 | |
1273 | void ByteCodeGenerator::writeExpression(const Expression& e, bool discard) { |
1274 | switch (e.fKind) { |
1275 | case Expression::kBinary_Kind: |
1276 | discard = this->writeBinaryExpression((BinaryExpression&) e, discard); |
1277 | break; |
1278 | case Expression::kBoolLiteral_Kind: |
1279 | this->writeBoolLiteral((BoolLiteral&) e); |
1280 | break; |
1281 | case Expression::kConstructor_Kind: |
1282 | this->writeConstructor((Constructor&) e); |
1283 | break; |
1284 | case Expression::kExternalFunctionCall_Kind: |
1285 | this->writeExternalFunctionCall((ExternalFunctionCall&) e); |
1286 | break; |
1287 | case Expression::kExternalValue_Kind: |
1288 | this->writeExternalValue((ExternalValueReference&) e); |
1289 | break; |
1290 | case Expression::kFieldAccess_Kind: |
1291 | case Expression::kIndex_Kind: |
1292 | case Expression::kVariableReference_Kind: |
1293 | this->writeVariableExpression(e); |
1294 | break; |
1295 | case Expression::kFloatLiteral_Kind: |
1296 | this->writeFloatLiteral((FloatLiteral&) e); |
1297 | break; |
1298 | case Expression::kFunctionCall_Kind: |
1299 | this->writeFunctionCall((FunctionCall&) e); |
1300 | break; |
1301 | case Expression::kIntLiteral_Kind: |
1302 | this->writeIntLiteral((IntLiteral&) e); |
1303 | break; |
1304 | case Expression::kNullLiteral_Kind: |
1305 | this->writeNullLiteral((NullLiteral&) e); |
1306 | break; |
1307 | case Expression::kPrefix_Kind: |
1308 | discard = this->writePrefixExpression((PrefixExpression&) e, discard); |
1309 | break; |
1310 | case Expression::kPostfix_Kind: |
1311 | discard = this->writePostfixExpression((PostfixExpression&) e, discard); |
1312 | break; |
1313 | case Expression::kSwizzle_Kind: |
1314 | this->writeSwizzle((Swizzle&) e); |
1315 | break; |
1316 | case Expression::kTernary_Kind: |
1317 | this->writeTernaryExpression((TernaryExpression&) e); |
1318 | break; |
1319 | default: |
1320 | #ifdef SK_DEBUG |
1321 | printf("unsupported expression %s\n" , e.description().c_str()); |
1322 | #endif |
1323 | SkASSERT(false); |
1324 | } |
1325 | if (discard) { |
1326 | int count = SlotCount(e.fType); |
1327 | if (count > 4) { |
1328 | this->write(ByteCodeInstruction::kPopN, count); |
1329 | this->write8(count); |
1330 | } else if (count != 0) { |
1331 | this->write(vector_instruction(ByteCodeInstruction::kPop, count)); |
1332 | } |
1333 | discard = false; |
1334 | } |
1335 | } |
1336 | |
1337 | class ByteCodeExternalValueLValue : public ByteCodeGenerator::LValue { |
1338 | public: |
1339 | ByteCodeExternalValueLValue(ByteCodeGenerator* generator, ExternalValue& value, int index) |
1340 | : INHERITED(*generator) |
1341 | , fCount(ByteCodeGenerator::SlotCount(value.type())) |
1342 | , fIndex(index) {} |
1343 | |
1344 | void load() override { |
1345 | fGenerator.write(vector_instruction(ByteCodeInstruction::kReadExternal, fCount)); |
1346 | fGenerator.write8(fCount); |
1347 | fGenerator.write8(fIndex); |
1348 | } |
1349 | |
1350 | void store(bool discard) override { |
1351 | if (!discard) { |
1352 | fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, fCount)); |
1353 | fGenerator.write8(fCount); |
1354 | } |
1355 | fGenerator.write(vector_instruction(ByteCodeInstruction::kWriteExternal, fCount)); |
1356 | fGenerator.write8(fCount); |
1357 | fGenerator.write8(fIndex); |
1358 | } |
1359 | |
1360 | private: |
1361 | typedef LValue INHERITED; |
1362 | |
1363 | int fCount; |
1364 | |
1365 | int fIndex; |
1366 | }; |
1367 | |
1368 | class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue { |
1369 | public: |
1370 | ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle) |
1371 | : INHERITED(*generator) |
1372 | , fSwizzle(swizzle) {} |
1373 | |
1374 | void load() override { |
1375 | fGenerator.writeSwizzle(fSwizzle); |
1376 | } |
1377 | |
1378 | void store(bool discard) override { |
1379 | int count = fSwizzle.fComponents.size(); |
1380 | if (!discard) { |
1381 | fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, count)); |
1382 | fGenerator.write8(count); |
1383 | } |
1384 | ByteCodeGenerator::Location location = fGenerator.getLocation(*fSwizzle.fBase); |
1385 | if (location.isOnStack()) { |
1386 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreSwizzleIndirect, |
1387 | ByteCodeInstruction::kStoreSwizzleIndirectGlobal), |
1388 | count); |
1389 | } else { |
1390 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreSwizzle, |
1391 | ByteCodeInstruction::kStoreSwizzleGlobal), |
1392 | count); |
1393 | fGenerator.write8(location.fSlot); |
1394 | } |
1395 | fGenerator.write8(count); |
1396 | for (int c : fSwizzle.fComponents) { |
1397 | fGenerator.write8(c); |
1398 | } |
1399 | } |
1400 | |
1401 | private: |
1402 | const Swizzle& fSwizzle; |
1403 | |
1404 | typedef LValue INHERITED; |
1405 | }; |
1406 | |
1407 | class ByteCodeExpressionLValue : public ByteCodeGenerator::LValue { |
1408 | public: |
1409 | ByteCodeExpressionLValue(ByteCodeGenerator* generator, const Expression& expr) |
1410 | : INHERITED(*generator) |
1411 | , fExpression(expr) {} |
1412 | |
1413 | void load() override { |
1414 | fGenerator.writeVariableExpression(fExpression); |
1415 | } |
1416 | |
1417 | void store(bool discard) override { |
1418 | int count = ByteCodeGenerator::SlotCount(fExpression.fType); |
1419 | if (!discard) { |
1420 | if (count > 4) { |
1421 | fGenerator.write(ByteCodeInstruction::kDupN, count); |
1422 | fGenerator.write8(count); |
1423 | } else { |
1424 | fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, count)); |
1425 | fGenerator.write8(count); |
1426 | } |
1427 | } |
1428 | ByteCodeGenerator::Location location = fGenerator.getLocation(fExpression); |
1429 | if (location.isOnStack() || count > 4) { |
1430 | if (!location.isOnStack()) { |
1431 | fGenerator.write(ByteCodeInstruction::kPushImmediate); |
1432 | fGenerator.write32(location.fSlot); |
1433 | } |
1434 | fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended, |
1435 | ByteCodeInstruction::kStoreExtendedGlobal), |
1436 | count); |
1437 | fGenerator.write8(count); |
1438 | } else { |
1439 | fGenerator.write( |
1440 | vector_instruction(location.selectStore(ByteCodeInstruction::kStore, |
1441 | ByteCodeInstruction::kStoreGlobal), |
1442 | count)); |
1443 | fGenerator.write8(location.fSlot); |
1444 | } |
1445 | } |
1446 | |
1447 | private: |
1448 | typedef LValue INHERITED; |
1449 | |
1450 | const Expression& fExpression; |
1451 | }; |
1452 | |
1453 | std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Expression& e) { |
1454 | switch (e.fKind) { |
1455 | case Expression::kExternalValue_Kind: { |
1456 | ExternalValue* value = ((ExternalValueReference&) e).fValue; |
1457 | int index = fOutput->fExternalValues.size(); |
1458 | fOutput->fExternalValues.push_back(value); |
1459 | SkASSERT(index <= 255); |
1460 | return std::unique_ptr<LValue>(new ByteCodeExternalValueLValue(this, *value, index)); |
1461 | } |
1462 | case Expression::kFieldAccess_Kind: |
1463 | case Expression::kIndex_Kind: |
1464 | case Expression::kVariableReference_Kind: |
1465 | return std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e)); |
1466 | case Expression::kSwizzle_Kind: { |
1467 | const Swizzle& s = (const Swizzle&) e; |
1468 | return swizzle_is_simple(s) |
1469 | ? std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e)) |
1470 | : std::unique_ptr<LValue>(new ByteCodeSwizzleLValue(this, s)); |
1471 | } |
1472 | case Expression::kTernary_Kind: |
1473 | default: |
1474 | #ifdef SK_DEBUG |
1475 | ABORT("unsupported lvalue %s\n" , e.description().c_str()); |
1476 | #endif |
1477 | return nullptr; |
1478 | } |
1479 | } |
1480 | |
1481 | void ByteCodeGenerator::writeBlock(const Block& b) { |
1482 | for (const auto& s : b.fStatements) { |
1483 | this->writeStatement(*s); |
1484 | } |
1485 | } |
1486 | |
1487 | void ByteCodeGenerator::setBreakTargets() { |
1488 | std::vector<DeferredLocation>& breaks = fBreakTargets.top(); |
1489 | for (DeferredLocation& b : breaks) { |
1490 | b.set(); |
1491 | } |
1492 | fBreakTargets.pop(); |
1493 | } |
1494 | |
1495 | void ByteCodeGenerator::setContinueTargets() { |
1496 | std::vector<DeferredLocation>& continues = fContinueTargets.top(); |
1497 | for (DeferredLocation& c : continues) { |
1498 | c.set(); |
1499 | } |
1500 | fContinueTargets.pop(); |
1501 | } |
1502 | |
1503 | void ByteCodeGenerator::writeBreakStatement(const BreakStatement& b) { |
1504 | // TODO: Include BranchIfAllFalse to top-most LoopNext |
1505 | this->write(ByteCodeInstruction::kLoopBreak); |
1506 | } |
1507 | |
1508 | void ByteCodeGenerator::writeContinueStatement(const ContinueStatement& c) { |
1509 | // TODO: Include BranchIfAllFalse to top-most LoopNext |
1510 | this->write(ByteCodeInstruction::kLoopContinue); |
1511 | } |
1512 | |
1513 | void ByteCodeGenerator::writeDoStatement(const DoStatement& d) { |
1514 | this->write(ByteCodeInstruction::kLoopBegin); |
1515 | size_t start = fCode->size(); |
1516 | this->writeStatement(*d.fStatement); |
1517 | this->write(ByteCodeInstruction::kLoopNext); |
1518 | this->writeExpression(*d.fTest); |
1519 | this->write(ByteCodeInstruction::kLoopMask); |
1520 | // TODO: Could shorten this with kBranchIfAnyTrue |
1521 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1522 | DeferredLocation endLocation(this); |
1523 | this->write(ByteCodeInstruction::kBranch); |
1524 | this->write16(start); |
1525 | endLocation.set(); |
1526 | this->write(ByteCodeInstruction::kLoopEnd); |
1527 | } |
1528 | |
1529 | void ByteCodeGenerator::writeForStatement(const ForStatement& f) { |
1530 | fContinueTargets.emplace(); |
1531 | fBreakTargets.emplace(); |
1532 | if (f.fInitializer) { |
1533 | this->writeStatement(*f.fInitializer); |
1534 | } |
1535 | this->write(ByteCodeInstruction::kLoopBegin); |
1536 | size_t start = fCode->size(); |
1537 | if (f.fTest) { |
1538 | this->writeExpression(*f.fTest); |
1539 | this->write(ByteCodeInstruction::kLoopMask); |
1540 | } |
1541 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1542 | DeferredLocation endLocation(this); |
1543 | this->writeStatement(*f.fStatement); |
1544 | this->write(ByteCodeInstruction::kLoopNext); |
1545 | if (f.fNext) { |
1546 | this->writeExpression(*f.fNext, true); |
1547 | } |
1548 | this->write(ByteCodeInstruction::kBranch); |
1549 | this->write16(start); |
1550 | endLocation.set(); |
1551 | this->write(ByteCodeInstruction::kLoopEnd); |
1552 | } |
1553 | |
1554 | void ByteCodeGenerator::writeIfStatement(const IfStatement& i) { |
1555 | this->writeExpression(*i.fTest); |
1556 | this->write(ByteCodeInstruction::kMaskPush); |
1557 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1558 | DeferredLocation falseLocation(this); |
1559 | this->writeStatement(*i.fIfTrue); |
1560 | falseLocation.set(); |
1561 | if (i.fIfFalse) { |
1562 | this->write(ByteCodeInstruction::kMaskNegate); |
1563 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1564 | DeferredLocation endLocation(this); |
1565 | this->writeStatement(*i.fIfFalse); |
1566 | endLocation.set(); |
1567 | } |
1568 | this->write(ByteCodeInstruction::kMaskPop); |
1569 | } |
1570 | |
1571 | void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) { |
1572 | if (fLoopCount || fConditionCount) { |
1573 | fErrors.error(r.fOffset, "return not allowed inside conditional or loop" ); |
1574 | return; |
1575 | } |
1576 | int count = SlotCount(r.fExpression->fType); |
1577 | this->writeExpression(*r.fExpression); |
1578 | |
1579 | // Technically, the kReturn also pops fOutput->fLocalCount values from the stack, too, but we |
1580 | // haven't counted pushing those (they're outside the scope of our stack tracking). Instead, |
1581 | // we account for those in writeFunction(). |
1582 | |
1583 | // This is all fine because we don't allow conditional returns, so we only return once anyway. |
1584 | this->write(ByteCodeInstruction::kReturn, -count); |
1585 | this->write8(count); |
1586 | } |
1587 | |
1588 | void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) { |
1589 | // not yet implemented |
1590 | abort(); |
1591 | } |
1592 | |
1593 | void ByteCodeGenerator::writeVarDeclarations(const VarDeclarations& v) { |
1594 | for (const auto& declStatement : v.fVars) { |
1595 | const VarDeclaration& decl = (VarDeclaration&) *declStatement; |
1596 | // we need to grab the location even if we don't use it, to ensure it has been allocated |
1597 | Location location = this->getLocation(*decl.fVar); |
1598 | if (decl.fValue) { |
1599 | this->writeExpression(*decl.fValue); |
1600 | int count = SlotCount(decl.fValue->fType); |
1601 | if (count > 4) { |
1602 | this->write(ByteCodeInstruction::kPushImmediate); |
1603 | this->write32(location.fSlot); |
1604 | this->write(ByteCodeInstruction::kStoreExtended, count); |
1605 | this->write8(count); |
1606 | } else { |
1607 | this->write(vector_instruction(ByteCodeInstruction::kStore, count)); |
1608 | this->write8(location.fSlot); |
1609 | } |
1610 | } |
1611 | } |
1612 | } |
1613 | |
1614 | void ByteCodeGenerator::writeWhileStatement(const WhileStatement& w) { |
1615 | this->write(ByteCodeInstruction::kLoopBegin); |
1616 | size_t cond = fCode->size(); |
1617 | this->writeExpression(*w.fTest); |
1618 | this->write(ByteCodeInstruction::kLoopMask); |
1619 | this->write(ByteCodeInstruction::kBranchIfAllFalse); |
1620 | DeferredLocation endLocation(this); |
1621 | this->writeStatement(*w.fStatement); |
1622 | this->write(ByteCodeInstruction::kLoopNext); |
1623 | this->write(ByteCodeInstruction::kBranch); |
1624 | this->write16(cond); |
1625 | endLocation.set(); |
1626 | this->write(ByteCodeInstruction::kLoopEnd); |
1627 | } |
1628 | |
1629 | void ByteCodeGenerator::writeStatement(const Statement& s) { |
1630 | switch (s.fKind) { |
1631 | case Statement::kBlock_Kind: |
1632 | this->writeBlock((Block&) s); |
1633 | break; |
1634 | case Statement::kBreak_Kind: |
1635 | this->writeBreakStatement((BreakStatement&) s); |
1636 | break; |
1637 | case Statement::kContinue_Kind: |
1638 | this->writeContinueStatement((ContinueStatement&) s); |
1639 | break; |
1640 | case Statement::kDiscard_Kind: |
1641 | // not yet implemented |
1642 | abort(); |
1643 | case Statement::kDo_Kind: |
1644 | this->writeDoStatement((DoStatement&) s); |
1645 | break; |
1646 | case Statement::kExpression_Kind: |
1647 | this->writeExpression(*((ExpressionStatement&) s).fExpression, true); |
1648 | break; |
1649 | case Statement::kFor_Kind: |
1650 | this->writeForStatement((ForStatement&) s); |
1651 | break; |
1652 | case Statement::kIf_Kind: |
1653 | this->writeIfStatement((IfStatement&) s); |
1654 | break; |
1655 | case Statement::kNop_Kind: |
1656 | break; |
1657 | case Statement::kReturn_Kind: |
1658 | this->writeReturnStatement((ReturnStatement&) s); |
1659 | break; |
1660 | case Statement::kSwitch_Kind: |
1661 | this->writeSwitchStatement((SwitchStatement&) s); |
1662 | break; |
1663 | case Statement::kVarDeclarations_Kind: |
1664 | this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration); |
1665 | break; |
1666 | case Statement::kWhile_Kind: |
1667 | this->writeWhileStatement((WhileStatement&) s); |
1668 | break; |
1669 | default: |
1670 | SkASSERT(false); |
1671 | } |
1672 | } |
1673 | |
1674 | ByteCodeFunction::ByteCodeFunction(const FunctionDeclaration* declaration) |
1675 | : fName(declaration->fName) { |
1676 | fParameterCount = 0; |
1677 | for (const auto& p : declaration->fParameters) { |
1678 | int slots = ByteCodeGenerator::SlotCount(p->fType); |
1679 | fParameters.push_back({ slots, (bool)(p->fModifiers.fFlags & Modifiers::kOut_Flag) }); |
1680 | fParameterCount += slots; |
1681 | } |
1682 | } |
1683 | |
1684 | } |
1685 | |