1 | //============================================================================ |
2 | // |
3 | // SSSS tt lll lll |
4 | // SS SS tt ll ll |
5 | // SS tttttt eeee ll ll aaaa |
6 | // SSSS tt ee ee ll ll aa |
7 | // SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator" |
8 | // SS SS tt ee ll ll aa aa |
9 | // SSSS ttt eeeee llll llll aaaaa |
10 | // |
11 | // Copyright (c) 1995-2019 by Bradford W. Mott, Stephen Anthony |
12 | // and the Stella Team |
13 | // |
14 | // See the file "License.txt" for information on usage and redistribution of |
15 | // this file, and for a DISCLAIMER OF ALL WARRANTIES. |
16 | //============================================================================ |
17 | |
18 | #include <cmath> |
19 | |
20 | #include "LanczosResampler.hxx" |
21 | |
22 | namespace { |
23 | |
24 | constexpr float CLIPPING_FACTOR = 0.75; |
25 | constexpr float HIGH_PASS_CUT_OFF = 10; |
26 | |
27 | uInt32 reducedDenominator(uInt32 n, uInt32 d) |
28 | { |
29 | for (uInt32 i = std::min(n ,d); i > 1; --i) { |
30 | if ((n % i == 0) && (d % i == 0)) { |
31 | n /= i; |
32 | d /= i; |
33 | i = std::min(n ,d); |
34 | } |
35 | } |
36 | |
37 | return d; |
38 | } |
39 | |
40 | float sinc(float x) |
41 | { |
42 | // We calculate the sinc with double precision in order to compensate for precision loss |
43 | // around zero |
44 | return x == 0.f ? 1 : static_cast<float>( |
45 | sin(BSPF::PI_d * static_cast<double>(x)) / BSPF::PI_d / static_cast<double>(x) |
46 | ); |
47 | } |
48 | |
49 | float lanczosKernel(float x, uInt32 a) { |
50 | return sinc(x) * sinc(x / static_cast<float>(a)); |
51 | } |
52 | |
53 | } |
54 | |
55 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
56 | LanczosResampler::LanczosResampler( |
57 | Resampler::Format formatFrom, |
58 | Resampler::Format formatTo, |
59 | Resampler::NextFragmentCallback nextFragmentCallback, |
60 | uInt32 kernelParameter) |
61 | : |
62 | Resampler(formatFrom, formatTo, nextFragmentCallback), |
63 | // In order to find the number of kernels we need to precompute, we need to find N minimal such that |
64 | // |
65 | // N / formatTo.sampleRate = M / formatFrom.sampleRate |
66 | // |
67 | // with integral N and M. Equivalently, we have |
68 | // |
69 | // formatFrom.sampleRate / formatTo.sampleRate = M / N |
70 | // |
71 | // -> we find N from fully reducing the fraction. |
72 | myPrecomputedKernelCount(reducedDenominator(formatFrom.sampleRate, formatTo.sampleRate)), |
73 | myKernelSize(2 * kernelParameter), |
74 | myCurrentKernelIndex(0), |
75 | myKernelParameter(kernelParameter), |
76 | myCurrentFragment(nullptr), |
77 | myFragmentIndex(0), |
78 | myIsUnderrun(true), |
79 | myHighPassL(HIGH_PASS_CUT_OFF, float(formatFrom.sampleRate)), |
80 | myHighPassR(HIGH_PASS_CUT_OFF, float(formatFrom.sampleRate)), |
81 | myHighPass(HIGH_PASS_CUT_OFF, float(formatFrom.sampleRate)), |
82 | myTimeIndex(0) |
83 | { |
84 | myPrecomputedKernels = make_unique<float[]>(myPrecomputedKernelCount * myKernelSize); |
85 | |
86 | if (myFormatFrom.stereo) |
87 | { |
88 | myBufferL = make_unique<ConvolutionBuffer>(myKernelSize); |
89 | myBufferR = make_unique<ConvolutionBuffer>(myKernelSize); |
90 | } |
91 | else |
92 | myBuffer = make_unique<ConvolutionBuffer>(myKernelSize); |
93 | |
94 | precomputeKernels(); |
95 | } |
96 | |
97 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
98 | void LanczosResampler::precomputeKernels() |
99 | { |
100 | // timeIndex = time * formatFrom.sampleRate * formatTo.sampleRAte |
101 | uInt32 timeIndex = 0; |
102 | |
103 | for (uInt32 i = 0; i < myPrecomputedKernelCount; ++i) { |
104 | float* kernel = myPrecomputedKernels.get() + myKernelSize * i; |
105 | // The kernel is normalized such to be evaluate on time * formatFrom.sampleRate |
106 | float center = |
107 | static_cast<float>(timeIndex) / static_cast<float>(myFormatTo.sampleRate); |
108 | |
109 | for (uInt32 j = 0; j < 2 * myKernelParameter; ++j) { |
110 | kernel[j] = lanczosKernel( |
111 | center - static_cast<float>(j) + static_cast<float>(myKernelParameter) - 1.f, myKernelParameter |
112 | ) * CLIPPING_FACTOR; |
113 | } |
114 | |
115 | // Next step: time += 1 / formatTo.sampleRate |
116 | // |
117 | // By construction, we limit the argument during kernel evaluation to 0 .. 1, which |
118 | // corresponds to 0 .. 1 / formatFrom.sampleRate for time. To implement this, we decompose |
119 | // time as follows: |
120 | // |
121 | // time = N / formatFrom.sampleRate + delta |
122 | // timeIndex = N * formatTo.sampleRate + delta * formatTo.sampleRate * formatFrom.sampleRate |
123 | // |
124 | // with N integral and delta < 0. From this, it follows that we replace |
125 | // time with delta, i.e. take the modulus of timeIndex. |
126 | timeIndex = (timeIndex + myFormatFrom.sampleRate) % myFormatTo.sampleRate; |
127 | } |
128 | } |
129 | |
130 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
131 | void LanczosResampler::fillFragment(float* fragment, uInt32 length) |
132 | { |
133 | if (myIsUnderrun) { |
134 | Int16* nextFragment = myNextFragmentCallback(); |
135 | |
136 | if (nextFragment) { |
137 | myCurrentFragment = nextFragment; |
138 | myFragmentIndex = 0; |
139 | myIsUnderrun = false; |
140 | } |
141 | } |
142 | |
143 | if (!myCurrentFragment) { |
144 | std::fill_n(fragment, length, 0.f); |
145 | return; |
146 | } |
147 | |
148 | const uInt32 outputSamples = myFormatTo.stereo ? (length >> 1) : length; |
149 | |
150 | for (uInt32 i = 0; i < outputSamples; ++i) { |
151 | float* kernel = myPrecomputedKernels.get() + (myCurrentKernelIndex * myKernelSize); |
152 | myCurrentKernelIndex = (myCurrentKernelIndex + 1) % myPrecomputedKernelCount; |
153 | |
154 | if (myFormatFrom.stereo) { |
155 | float sampleL = myBufferL->convoluteWith(kernel); |
156 | float sampleR = myBufferR->convoluteWith(kernel); |
157 | |
158 | if (myFormatTo.stereo) { |
159 | fragment[2*i] = sampleL; |
160 | fragment[2*i + 1] = sampleR; |
161 | } |
162 | else |
163 | fragment[i] = (sampleL + sampleR) / 2.f; |
164 | } else { |
165 | float sample = myBuffer->convoluteWith(kernel); |
166 | |
167 | if (myFormatTo.stereo) |
168 | fragment[2*i] = fragment[2*i + 1] = sample; |
169 | else |
170 | fragment[i] = sample; |
171 | } |
172 | |
173 | myTimeIndex += myFormatFrom.sampleRate; |
174 | |
175 | uInt32 samplesToShift = myTimeIndex / myFormatTo.sampleRate; |
176 | if (samplesToShift == 0) continue; |
177 | |
178 | myTimeIndex %= myFormatTo.sampleRate; |
179 | shiftSamples(samplesToShift); |
180 | } |
181 | } |
182 | |
183 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
184 | inline void LanczosResampler::shiftSamples(uInt32 samplesToShift) |
185 | { |
186 | while (samplesToShift-- > 0) { |
187 | if (myFormatFrom.stereo) { |
188 | myBufferL->shift(myHighPassL.apply(myCurrentFragment[2*myFragmentIndex] / static_cast<float>(0x7fff))); |
189 | myBufferR->shift(myHighPassR.apply(myCurrentFragment[2*myFragmentIndex + 1] / static_cast<float>(0x7fff))); |
190 | } |
191 | else |
192 | myBuffer->shift(myHighPass.apply(myCurrentFragment[myFragmentIndex] / static_cast<float>(0x7fff))); |
193 | |
194 | ++myFragmentIndex; |
195 | |
196 | if (myFragmentIndex >= myFormatFrom.fragmentSize) { |
197 | myFragmentIndex %= myFormatFrom.fragmentSize; |
198 | |
199 | Int16* nextFragment = myNextFragmentCallback(); |
200 | if (nextFragment) { |
201 | myCurrentFragment = nextFragment; |
202 | myIsUnderrun = false; |
203 | } else { |
204 | myUnderrunLogger.log(); |
205 | myIsUnderrun = true; |
206 | } |
207 | } |
208 | } |
209 | } |
210 | |