| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // Based on original Protocol Buffers design by |
| 33 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 34 | // |
| 35 | // DynamicMessage is implemented by constructing a data structure which |
| 36 | // has roughly the same memory layout as a generated message would have. |
| 37 | // Then, we use Reflection to implement our reflection interface. All |
| 38 | // the other operations we need to implement (e.g. parsing, copying, |
| 39 | // etc.) are already implemented in terms of Reflection, so the rest is |
| 40 | // easy. |
| 41 | // |
| 42 | // The up side of this strategy is that it's very efficient. We don't |
| 43 | // need to use hash_maps or generic representations of fields. The |
| 44 | // down side is that this is a low-level memory management hack which |
| 45 | // can be tricky to get right. |
| 46 | // |
| 47 | // As mentioned in the header, we only expose a DynamicMessageFactory |
| 48 | // publicly, not the DynamicMessage class itself. This is because |
| 49 | // GenericMessageReflection wants to have a pointer to a "default" |
| 50 | // copy of the class, with all fields initialized to their default |
| 51 | // values. We only want to construct one of these per message type, |
| 52 | // so DynamicMessageFactory stores a cache of default messages for |
| 53 | // each type it sees (each unique Descriptor pointer). The code |
| 54 | // refers to the "default" copy of the class as the "prototype". |
| 55 | // |
| 56 | // Note on memory allocation: This module often calls "operator new()" |
| 57 | // to allocate untyped memory, rather than calling something like |
| 58 | // "new uint8_t[]". This is because "operator new()" means "Give me some |
| 59 | // space which I can use as I please." while "new uint8_t[]" means "Give |
| 60 | // me an array of 8-bit integers.". In practice, the later may return |
| 61 | // a pointer that is not aligned correctly for general use. I believe |
| 62 | // Item 8 of "More Effective C++" discusses this in more detail, though |
| 63 | // I don't have the book on me right now so I'm not sure. |
| 64 | |
| 65 | #include <google/protobuf/dynamic_message.h> |
| 66 | |
| 67 | #include <algorithm> |
| 68 | #include <cstddef> |
| 69 | #include <memory> |
| 70 | #include <new> |
| 71 | #include <unordered_map> |
| 72 | |
| 73 | #include <google/protobuf/descriptor.h> |
| 74 | #include <google/protobuf/descriptor.pb.h> |
| 75 | #include <google/protobuf/generated_message_reflection.h> |
| 76 | #include <google/protobuf/generated_message_util.h> |
| 77 | #include <google/protobuf/unknown_field_set.h> |
| 78 | #include <google/protobuf/stubs/hash.h> |
| 79 | #include <google/protobuf/arenastring.h> |
| 80 | #include <google/protobuf/extension_set.h> |
| 81 | #include <google/protobuf/map_field.h> |
| 82 | #include <google/protobuf/map_field_inl.h> |
| 83 | #include <google/protobuf/map_type_handler.h> |
| 84 | #include <google/protobuf/reflection_ops.h> |
| 85 | #include <google/protobuf/repeated_field.h> |
| 86 | #include <google/protobuf/wire_format.h> |
| 87 | |
| 88 | // Must be included last. |
| 89 | #include <google/protobuf/port_def.inc> |
| 90 | |
| 91 | namespace google { |
| 92 | namespace protobuf { |
| 93 | |
| 94 | using internal::DynamicMapField; |
| 95 | using internal::ExtensionSet; |
| 96 | using internal::MapField; |
| 97 | |
| 98 | |
| 99 | using internal::ArenaStringPtr; |
| 100 | |
| 101 | // =================================================================== |
| 102 | // Some helper tables and functions... |
| 103 | |
| 104 | namespace { |
| 105 | |
| 106 | bool IsMapFieldInApi(const FieldDescriptor* field) { return field->is_map(); } |
| 107 | |
| 108 | // Sync with helpers.h. |
| 109 | inline bool HasHasbit(const FieldDescriptor* field) { |
| 110 | // This predicate includes proto3 message fields only if they have "optional". |
| 111 | // Foo submsg1 = 1; // HasHasbit() == false |
| 112 | // optional Foo submsg2 = 2; // HasHasbit() == true |
| 113 | // This is slightly odd, as adding "optional" to a singular proto3 field does |
| 114 | // not change the semantics or API. However whenever any field in a message |
| 115 | // has a hasbit, it forces reflection to include hasbit offsets for *all* |
| 116 | // fields, even if almost all of them are set to -1 (no hasbit). So to avoid |
| 117 | // causing a sudden size regression for ~all proto3 messages, we give proto3 |
| 118 | // message fields a hasbit only if "optional" is present. If the user is |
| 119 | // explicitly writing "optional", it is likely they are writing it on |
| 120 | // primitive fields also. |
| 121 | return (field->has_optional_keyword() || field->is_required()) && |
| 122 | !field->options().weak(); |
| 123 | } |
| 124 | |
| 125 | inline bool InRealOneof(const FieldDescriptor* field) { |
| 126 | return field->containing_oneof() && |
| 127 | !field->containing_oneof()->is_synthetic(); |
| 128 | } |
| 129 | |
| 130 | // Compute the byte size of the in-memory representation of the field. |
| 131 | int FieldSpaceUsed(const FieldDescriptor* field) { |
| 132 | typedef FieldDescriptor FD; // avoid line wrapping |
| 133 | if (field->label() == FD::LABEL_REPEATED) { |
| 134 | switch (field->cpp_type()) { |
| 135 | case FD::CPPTYPE_INT32: |
| 136 | return sizeof(RepeatedField<int32_t>); |
| 137 | case FD::CPPTYPE_INT64: |
| 138 | return sizeof(RepeatedField<int64_t>); |
| 139 | case FD::CPPTYPE_UINT32: |
| 140 | return sizeof(RepeatedField<uint32_t>); |
| 141 | case FD::CPPTYPE_UINT64: |
| 142 | return sizeof(RepeatedField<uint64_t>); |
| 143 | case FD::CPPTYPE_DOUBLE: |
| 144 | return sizeof(RepeatedField<double>); |
| 145 | case FD::CPPTYPE_FLOAT: |
| 146 | return sizeof(RepeatedField<float>); |
| 147 | case FD::CPPTYPE_BOOL: |
| 148 | return sizeof(RepeatedField<bool>); |
| 149 | case FD::CPPTYPE_ENUM: |
| 150 | return sizeof(RepeatedField<int>); |
| 151 | case FD::CPPTYPE_MESSAGE: |
| 152 | if (IsMapFieldInApi(field)) { |
| 153 | return sizeof(DynamicMapField); |
| 154 | } else { |
| 155 | return sizeof(RepeatedPtrField<Message>); |
| 156 | } |
| 157 | |
| 158 | case FD::CPPTYPE_STRING: |
| 159 | switch (field->options().ctype()) { |
| 160 | default: // TODO(kenton): Support other string reps. |
| 161 | case FieldOptions::STRING: |
| 162 | return sizeof(RepeatedPtrField<std::string>); |
| 163 | } |
| 164 | break; |
| 165 | } |
| 166 | } else { |
| 167 | switch (field->cpp_type()) { |
| 168 | case FD::CPPTYPE_INT32: |
| 169 | return sizeof(int32_t); |
| 170 | case FD::CPPTYPE_INT64: |
| 171 | return sizeof(int64_t); |
| 172 | case FD::CPPTYPE_UINT32: |
| 173 | return sizeof(uint32_t); |
| 174 | case FD::CPPTYPE_UINT64: |
| 175 | return sizeof(uint64_t); |
| 176 | case FD::CPPTYPE_DOUBLE: |
| 177 | return sizeof(double); |
| 178 | case FD::CPPTYPE_FLOAT: |
| 179 | return sizeof(float); |
| 180 | case FD::CPPTYPE_BOOL: |
| 181 | return sizeof(bool); |
| 182 | case FD::CPPTYPE_ENUM: |
| 183 | return sizeof(int); |
| 184 | |
| 185 | case FD::CPPTYPE_MESSAGE: |
| 186 | return sizeof(Message*); |
| 187 | |
| 188 | case FD::CPPTYPE_STRING: |
| 189 | switch (field->options().ctype()) { |
| 190 | default: // TODO(kenton): Support other string reps. |
| 191 | case FieldOptions::STRING: |
| 192 | return sizeof(ArenaStringPtr); |
| 193 | } |
| 194 | break; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | GOOGLE_LOG(DFATAL) << "Can't get here." ; |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; } |
| 203 | |
| 204 | static const int kSafeAlignment = sizeof(uint64_t); |
| 205 | static const int kMaxOneofUnionSize = sizeof(uint64_t); |
| 206 | |
| 207 | inline int AlignTo(int offset, int alignment) { |
| 208 | return DivideRoundingUp(i: offset, j: alignment) * alignment; |
| 209 | } |
| 210 | |
| 211 | // Rounds the given byte offset up to the next offset aligned such that any |
| 212 | // type may be stored at it. |
| 213 | inline int AlignOffset(int offset) { return AlignTo(offset, alignment: kSafeAlignment); } |
| 214 | |
| 215 | #define bitsizeof(T) (sizeof(T) * 8) |
| 216 | |
| 217 | } // namespace |
| 218 | |
| 219 | // =================================================================== |
| 220 | |
| 221 | class DynamicMessage : public Message { |
| 222 | public: |
| 223 | explicit DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info); |
| 224 | |
| 225 | // This should only be used by GetPrototypeNoLock() to avoid dead lock. |
| 226 | DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, bool lock_factory); |
| 227 | |
| 228 | ~DynamicMessage() override; |
| 229 | |
| 230 | // Called on the prototype after construction to initialize message fields. |
| 231 | // Cross linking the default instances allows for fast reflection access of |
| 232 | // unset message fields. Without it we would have to go to the MessageFactory |
| 233 | // to get the prototype, which is a much more expensive operation. |
| 234 | // |
| 235 | // Generated messages do not cross-link to avoid dynamic initialization of the |
| 236 | // global instances. |
| 237 | // Instead, they keep the default instances in the FieldDescriptor objects. |
| 238 | void CrossLinkPrototypes(); |
| 239 | |
| 240 | // implements Message ---------------------------------------------- |
| 241 | |
| 242 | Message* New(Arena* arena) const override; |
| 243 | |
| 244 | int GetCachedSize() const override; |
| 245 | void SetCachedSize(int size) const override; |
| 246 | |
| 247 | Metadata GetMetadata() const override; |
| 248 | |
| 249 | #if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation) |
| 250 | static void operator delete(DynamicMessage* msg, std::destroying_delete_t); |
| 251 | #else |
| 252 | // We actually allocate more memory than sizeof(*this) when this |
| 253 | // class's memory is allocated via the global operator new. Thus, we need to |
| 254 | // manually call the global operator delete. Calling the destructor is taken |
| 255 | // care of for us. This makes DynamicMessage compatible with -fsized-delete. |
| 256 | // It doesn't work for MSVC though. |
| 257 | #ifndef _MSC_VER |
| 258 | static void operator delete(void* ptr) { ::operator delete(ptr); } |
| 259 | #endif // !_MSC_VER |
| 260 | #endif |
| 261 | |
| 262 | private: |
| 263 | DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info, |
| 264 | Arena* arena); |
| 265 | |
| 266 | void SharedCtor(bool lock_factory); |
| 267 | |
| 268 | // Needed to get the offset of the internal metadata member. |
| 269 | friend class DynamicMessageFactory; |
| 270 | |
| 271 | bool is_prototype() const; |
| 272 | |
| 273 | inline void* OffsetToPointer(int offset) { |
| 274 | return reinterpret_cast<uint8_t*>(this) + offset; |
| 275 | } |
| 276 | inline const void* OffsetToPointer(int offset) const { |
| 277 | return reinterpret_cast<const uint8_t*>(this) + offset; |
| 278 | } |
| 279 | |
| 280 | void* MutableRaw(int i); |
| 281 | void* MutableExtensionsRaw(); |
| 282 | void* MutableWeakFieldMapRaw(); |
| 283 | void* MutableOneofCaseRaw(int i); |
| 284 | void* MutableOneofFieldRaw(const FieldDescriptor* f); |
| 285 | |
| 286 | const DynamicMessageFactory::TypeInfo* type_info_; |
| 287 | mutable std::atomic<int> cached_byte_size_; |
| 288 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage); |
| 289 | }; |
| 290 | |
| 291 | struct DynamicMessageFactory::TypeInfo { |
| 292 | int size; |
| 293 | int has_bits_offset; |
| 294 | int oneof_case_offset; |
| 295 | int extensions_offset; |
| 296 | |
| 297 | // Not owned by the TypeInfo. |
| 298 | DynamicMessageFactory* factory; // The factory that created this object. |
| 299 | const DescriptorPool* pool; // The factory's DescriptorPool. |
| 300 | const Descriptor* type; // Type of this DynamicMessage. |
| 301 | |
| 302 | // Warning: The order in which the following pointers are defined is |
| 303 | // important (the prototype must be deleted *before* the offsets). |
| 304 | std::unique_ptr<uint32_t[]> offsets; |
| 305 | std::unique_ptr<uint32_t[]> has_bits_indices; |
| 306 | std::unique_ptr<const Reflection> reflection; |
| 307 | // Don't use a unique_ptr to hold the prototype: the destructor for |
| 308 | // DynamicMessage needs to know whether it is the prototype, and does so by |
| 309 | // looking back at this field. This would assume details about the |
| 310 | // implementation of unique_ptr. |
| 311 | const DynamicMessage* prototype; |
| 312 | int weak_field_map_offset; // The offset for the weak_field_map; |
| 313 | |
| 314 | TypeInfo() : prototype(nullptr) {} |
| 315 | |
| 316 | ~TypeInfo() { delete prototype; } |
| 317 | }; |
| 318 | |
| 319 | DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info) |
| 320 | : type_info_(type_info), cached_byte_size_(0) { |
| 321 | SharedCtor(lock_factory: true); |
| 322 | } |
| 323 | |
| 324 | DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info, |
| 325 | Arena* arena) |
| 326 | : Message(arena), type_info_(type_info), cached_byte_size_(0) { |
| 327 | SharedCtor(lock_factory: true); |
| 328 | } |
| 329 | |
| 330 | DynamicMessage::DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, |
| 331 | bool lock_factory) |
| 332 | : type_info_(type_info), cached_byte_size_(0) { |
| 333 | // The prototype in type_info has to be set before creating the prototype |
| 334 | // instance on memory. e.g., message Foo { map<int32_t, Foo> a = 1; }. When |
| 335 | // creating prototype for Foo, prototype of the map entry will also be |
| 336 | // created, which needs the address of the prototype of Foo (the value in |
| 337 | // map). To break the cyclic dependency, we have to assign the address of |
| 338 | // prototype into type_info first. |
| 339 | type_info->prototype = this; |
| 340 | SharedCtor(lock_factory); |
| 341 | } |
| 342 | |
| 343 | inline void* DynamicMessage::MutableRaw(int i) { |
| 344 | return OffsetToPointer(offset: type_info_->offsets[i]); |
| 345 | } |
| 346 | inline void* DynamicMessage::MutableExtensionsRaw() { |
| 347 | return OffsetToPointer(offset: type_info_->extensions_offset); |
| 348 | } |
| 349 | inline void* DynamicMessage::MutableWeakFieldMapRaw() { |
| 350 | return OffsetToPointer(offset: type_info_->weak_field_map_offset); |
| 351 | } |
| 352 | inline void* DynamicMessage::MutableOneofCaseRaw(int i) { |
| 353 | return OffsetToPointer(offset: type_info_->oneof_case_offset + sizeof(uint32_t) * i); |
| 354 | } |
| 355 | inline void* DynamicMessage::MutableOneofFieldRaw(const FieldDescriptor* f) { |
| 356 | return OffsetToPointer(offset: type_info_->offsets[type_info_->type->field_count() + |
| 357 | f->containing_oneof()->index()]); |
| 358 | } |
| 359 | |
| 360 | void DynamicMessage::SharedCtor(bool lock_factory) { |
| 361 | // We need to call constructors for various fields manually and set |
| 362 | // default values where appropriate. We use placement new to call |
| 363 | // constructors. If you haven't heard of placement new, I suggest Googling |
| 364 | // it now. We use placement new even for primitive types that don't have |
| 365 | // constructors for consistency. (In theory, placement new should be used |
| 366 | // any time you are trying to convert untyped memory to typed memory, though |
| 367 | // in practice that's not strictly necessary for types that don't have a |
| 368 | // constructor.) |
| 369 | |
| 370 | const Descriptor* descriptor = type_info_->type; |
| 371 | // Initialize oneof cases. |
| 372 | int oneof_count = 0; |
| 373 | for (int i = 0; i < descriptor->oneof_decl_count(); ++i) { |
| 374 | if (descriptor->oneof_decl(index: i)->is_synthetic()) continue; |
| 375 | new (MutableOneofCaseRaw(i: oneof_count++)) uint32_t{0}; |
| 376 | } |
| 377 | |
| 378 | if (type_info_->extensions_offset != -1) { |
| 379 | new (MutableExtensionsRaw()) ExtensionSet(GetArenaForAllocation()); |
| 380 | } |
| 381 | for (int i = 0; i < descriptor->field_count(); i++) { |
| 382 | const FieldDescriptor* field = descriptor->field(index: i); |
| 383 | void* field_ptr = MutableRaw(i); |
| 384 | if (InRealOneof(field)) { |
| 385 | continue; |
| 386 | } |
| 387 | switch (field->cpp_type()) { |
| 388 | #define HANDLE_TYPE(CPPTYPE, TYPE) \ |
| 389 | case FieldDescriptor::CPPTYPE_##CPPTYPE: \ |
| 390 | if (!field->is_repeated()) { \ |
| 391 | new (field_ptr) TYPE(field->default_value_##TYPE()); \ |
| 392 | } else { \ |
| 393 | new (field_ptr) RepeatedField<TYPE>(GetArenaForAllocation()); \ |
| 394 | } \ |
| 395 | break; |
| 396 | |
| 397 | HANDLE_TYPE(INT32, int32_t); |
| 398 | HANDLE_TYPE(INT64, int64_t); |
| 399 | HANDLE_TYPE(UINT32, uint32_t); |
| 400 | HANDLE_TYPE(UINT64, uint64_t); |
| 401 | HANDLE_TYPE(DOUBLE, double); |
| 402 | HANDLE_TYPE(FLOAT, float); |
| 403 | HANDLE_TYPE(BOOL, bool); |
| 404 | #undef HANDLE_TYPE |
| 405 | |
| 406 | case FieldDescriptor::CPPTYPE_ENUM: |
| 407 | if (!field->is_repeated()) { |
| 408 | new (field_ptr) int{field->default_value_enum()->number()}; |
| 409 | } else { |
| 410 | new (field_ptr) RepeatedField<int>(GetArenaForAllocation()); |
| 411 | } |
| 412 | break; |
| 413 | |
| 414 | case FieldDescriptor::CPPTYPE_STRING: |
| 415 | switch (field->options().ctype()) { |
| 416 | default: // TODO(kenton): Support other string reps. |
| 417 | case FieldOptions::STRING: |
| 418 | if (!field->is_repeated()) { |
| 419 | ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr(); |
| 420 | asp->InitDefault(); |
| 421 | } else { |
| 422 | new (field_ptr) |
| 423 | RepeatedPtrField<std::string>(GetArenaForAllocation()); |
| 424 | } |
| 425 | break; |
| 426 | } |
| 427 | break; |
| 428 | |
| 429 | case FieldDescriptor::CPPTYPE_MESSAGE: { |
| 430 | if (!field->is_repeated()) { |
| 431 | new (field_ptr) Message*(nullptr); |
| 432 | } else { |
| 433 | if (IsMapFieldInApi(field)) { |
| 434 | // We need to lock in most cases to avoid data racing. Only not lock |
| 435 | // when the constructor is called inside GetPrototype(), in which |
| 436 | // case we have already locked the factory. |
| 437 | if (lock_factory) { |
| 438 | if (GetArenaForAllocation() != nullptr) { |
| 439 | new (field_ptr) DynamicMapField( |
| 440 | type_info_->factory->GetPrototype(type: field->message_type()), |
| 441 | GetArenaForAllocation()); |
| 442 | if (GetOwningArena() != nullptr) { |
| 443 | // Needs to destroy the mutex member. |
| 444 | GetOwningArena()->OwnDestructor( |
| 445 | object: static_cast<DynamicMapField*>(field_ptr)); |
| 446 | } |
| 447 | } else { |
| 448 | new (field_ptr) DynamicMapField( |
| 449 | type_info_->factory->GetPrototype(type: field->message_type())); |
| 450 | } |
| 451 | } else { |
| 452 | if (GetArenaForAllocation() != nullptr) { |
| 453 | new (field_ptr) |
| 454 | DynamicMapField(type_info_->factory->GetPrototypeNoLock( |
| 455 | type: field->message_type()), |
| 456 | GetArenaForAllocation()); |
| 457 | if (GetOwningArena() != nullptr) { |
| 458 | // Needs to destroy the mutex member. |
| 459 | GetOwningArena()->OwnDestructor( |
| 460 | object: static_cast<DynamicMapField*>(field_ptr)); |
| 461 | } |
| 462 | } else { |
| 463 | new (field_ptr) |
| 464 | DynamicMapField(type_info_->factory->GetPrototypeNoLock( |
| 465 | type: field->message_type())); |
| 466 | } |
| 467 | } |
| 468 | } else { |
| 469 | new (field_ptr) RepeatedPtrField<Message>(GetArenaForAllocation()); |
| 470 | } |
| 471 | } |
| 472 | break; |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | bool DynamicMessage::is_prototype() const { |
| 479 | return type_info_->prototype == this || |
| 480 | // If type_info_->prototype is nullptr, then we must be constructing |
| 481 | // the prototype now, which means we must be the prototype. |
| 482 | type_info_->prototype == nullptr; |
| 483 | } |
| 484 | |
| 485 | #if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation) |
| 486 | void DynamicMessage::operator delete(DynamicMessage* msg, |
| 487 | std::destroying_delete_t) { |
| 488 | const size_t size = msg->type_info_->size; |
| 489 | msg->~DynamicMessage(); |
| 490 | ::operator delete(msg, size); |
| 491 | } |
| 492 | #endif |
| 493 | |
| 494 | DynamicMessage::~DynamicMessage() { |
| 495 | const Descriptor* descriptor = type_info_->type; |
| 496 | |
| 497 | _internal_metadata_.Delete<UnknownFieldSet>(); |
| 498 | |
| 499 | if (type_info_->extensions_offset != -1) { |
| 500 | reinterpret_cast<ExtensionSet*>(MutableExtensionsRaw())->~ExtensionSet(); |
| 501 | } |
| 502 | |
| 503 | // We need to manually run the destructors for repeated fields and strings, |
| 504 | // just as we ran their constructors in the DynamicMessage constructor. |
| 505 | // We also need to manually delete oneof fields if it is set and is string |
| 506 | // or message. |
| 507 | // Additionally, if any singular embedded messages have been allocated, we |
| 508 | // need to delete them, UNLESS we are the prototype message of this type, |
| 509 | // in which case any embedded messages are other prototypes and shouldn't |
| 510 | // be touched. |
| 511 | for (int i = 0; i < descriptor->field_count(); i++) { |
| 512 | const FieldDescriptor* field = descriptor->field(index: i); |
| 513 | if (InRealOneof(field)) { |
| 514 | void* field_ptr = MutableOneofCaseRaw(i: field->containing_oneof()->index()); |
| 515 | if (*(reinterpret_cast<const int32_t*>(field_ptr)) == field->number()) { |
| 516 | field_ptr = MutableOneofFieldRaw(f: field); |
| 517 | if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { |
| 518 | switch (field->options().ctype()) { |
| 519 | default: |
| 520 | case FieldOptions::STRING: { |
| 521 | reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(); |
| 522 | break; |
| 523 | } |
| 524 | } |
| 525 | } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { |
| 526 | delete *reinterpret_cast<Message**>(field_ptr); |
| 527 | } |
| 528 | } |
| 529 | continue; |
| 530 | } |
| 531 | void* field_ptr = MutableRaw(i); |
| 532 | |
| 533 | if (field->is_repeated()) { |
| 534 | switch (field->cpp_type()) { |
| 535 | #define HANDLE_TYPE(UPPERCASE, LOWERCASE) \ |
| 536 | case FieldDescriptor::CPPTYPE_##UPPERCASE: \ |
| 537 | reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr) \ |
| 538 | ->~RepeatedField<LOWERCASE>(); \ |
| 539 | break |
| 540 | |
| 541 | HANDLE_TYPE(INT32, int32_t); |
| 542 | HANDLE_TYPE(INT64, int64_t); |
| 543 | HANDLE_TYPE(UINT32, uint32_t); |
| 544 | HANDLE_TYPE(UINT64, uint64_t); |
| 545 | HANDLE_TYPE(DOUBLE, double); |
| 546 | HANDLE_TYPE(FLOAT, float); |
| 547 | HANDLE_TYPE(BOOL, bool); |
| 548 | HANDLE_TYPE(ENUM, int); |
| 549 | #undef HANDLE_TYPE |
| 550 | |
| 551 | case FieldDescriptor::CPPTYPE_STRING: |
| 552 | switch (field->options().ctype()) { |
| 553 | default: // TODO(kenton): Support other string reps. |
| 554 | case FieldOptions::STRING: |
| 555 | reinterpret_cast<RepeatedPtrField<std::string>*>(field_ptr) |
| 556 | ->~RepeatedPtrField<std::string>(); |
| 557 | break; |
| 558 | } |
| 559 | break; |
| 560 | |
| 561 | case FieldDescriptor::CPPTYPE_MESSAGE: |
| 562 | if (IsMapFieldInApi(field)) { |
| 563 | reinterpret_cast<DynamicMapField*>(field_ptr)->~DynamicMapField(); |
| 564 | } else { |
| 565 | reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr) |
| 566 | ->~RepeatedPtrField<Message>(); |
| 567 | } |
| 568 | break; |
| 569 | } |
| 570 | |
| 571 | } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { |
| 572 | switch (field->options().ctype()) { |
| 573 | default: // TODO(kenton): Support other string reps. |
| 574 | case FieldOptions::STRING: { |
| 575 | reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(); |
| 576 | break; |
| 577 | } |
| 578 | } |
| 579 | } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { |
| 580 | if (!is_prototype()) { |
| 581 | Message* message = *reinterpret_cast<Message**>(field_ptr); |
| 582 | if (message != nullptr) { |
| 583 | delete message; |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | void DynamicMessage::CrossLinkPrototypes() { |
| 591 | // This should only be called on the prototype message. |
| 592 | GOOGLE_CHECK(is_prototype()); |
| 593 | |
| 594 | DynamicMessageFactory* factory = type_info_->factory; |
| 595 | const Descriptor* descriptor = type_info_->type; |
| 596 | |
| 597 | // Cross-link default messages. |
| 598 | for (int i = 0; i < descriptor->field_count(); i++) { |
| 599 | const FieldDescriptor* field = descriptor->field(index: i); |
| 600 | if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && |
| 601 | !field->options().weak() && !InRealOneof(field) && |
| 602 | !field->is_repeated()) { |
| 603 | void* field_ptr = MutableRaw(i); |
| 604 | // For fields with message types, we need to cross-link with the |
| 605 | // prototype for the field's type. |
| 606 | // For singular fields, the field is just a pointer which should |
| 607 | // point to the prototype. |
| 608 | *reinterpret_cast<const Message**>(field_ptr) = |
| 609 | factory->GetPrototypeNoLock(type: field->message_type()); |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | Message* DynamicMessage::New(Arena* arena) const { |
| 615 | if (arena != nullptr) { |
| 616 | void* new_base = Arena::CreateArray<char>(arena, num_elements: type_info_->size); |
| 617 | memset(s: new_base, c: 0, n: type_info_->size); |
| 618 | return new (new_base) DynamicMessage(type_info_, arena); |
| 619 | } else { |
| 620 | void* new_base = operator new(type_info_->size); |
| 621 | memset(s: new_base, c: 0, n: type_info_->size); |
| 622 | return new (new_base) DynamicMessage(type_info_); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | int DynamicMessage::GetCachedSize() const { |
| 627 | return cached_byte_size_.load(m: std::memory_order_relaxed); |
| 628 | } |
| 629 | |
| 630 | void DynamicMessage::SetCachedSize(int size) const { |
| 631 | cached_byte_size_.store(i: size, m: std::memory_order_relaxed); |
| 632 | } |
| 633 | |
| 634 | Metadata DynamicMessage::GetMetadata() const { |
| 635 | Metadata metadata; |
| 636 | metadata.descriptor = type_info_->type; |
| 637 | metadata.reflection = type_info_->reflection.get(); |
| 638 | return metadata; |
| 639 | } |
| 640 | |
| 641 | // =================================================================== |
| 642 | |
| 643 | DynamicMessageFactory::DynamicMessageFactory() |
| 644 | : pool_(nullptr), delegate_to_generated_factory_(false) {} |
| 645 | |
| 646 | DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool) |
| 647 | : pool_(pool), delegate_to_generated_factory_(false) {} |
| 648 | |
| 649 | DynamicMessageFactory::~DynamicMessageFactory() { |
| 650 | for (auto iter = prototypes_.begin(); iter != prototypes_.end(); ++iter) { |
| 651 | delete iter->second; |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) { |
| 656 | MutexLock lock(&prototypes_mutex_); |
| 657 | return GetPrototypeNoLock(type); |
| 658 | } |
| 659 | |
| 660 | const Message* DynamicMessageFactory::GetPrototypeNoLock( |
| 661 | const Descriptor* type) { |
| 662 | if (delegate_to_generated_factory_ && |
| 663 | type->file()->pool() == DescriptorPool::generated_pool()) { |
| 664 | return MessageFactory::generated_factory()->GetPrototype(type); |
| 665 | } |
| 666 | |
| 667 | const TypeInfo** target = &prototypes_[type]; |
| 668 | if (*target != nullptr) { |
| 669 | // Already exists. |
| 670 | return (*target)->prototype; |
| 671 | } |
| 672 | |
| 673 | TypeInfo* type_info = new TypeInfo; |
| 674 | *target = type_info; |
| 675 | |
| 676 | type_info->type = type; |
| 677 | type_info->pool = (pool_ == nullptr) ? type->file()->pool() : pool_; |
| 678 | type_info->factory = this; |
| 679 | |
| 680 | // We need to construct all the structures passed to Reflection's constructor. |
| 681 | // This includes: |
| 682 | // - A block of memory that contains space for all the message's fields. |
| 683 | // - An array of integers indicating the byte offset of each field within |
| 684 | // this block. |
| 685 | // - A big bitfield containing a bit for each field indicating whether |
| 686 | // or not that field is set. |
| 687 | int real_oneof_count = 0; |
| 688 | for (int i = 0; i < type->oneof_decl_count(); i++) { |
| 689 | if (!type->oneof_decl(index: i)->is_synthetic()) { |
| 690 | real_oneof_count++; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | // Compute size and offsets. |
| 695 | uint32_t* offsets = new uint32_t[type->field_count() + real_oneof_count]; |
| 696 | type_info->offsets.reset(p: offsets); |
| 697 | |
| 698 | // Decide all field offsets by packing in order. |
| 699 | // We place the DynamicMessage object itself at the beginning of the allocated |
| 700 | // space. |
| 701 | int size = sizeof(DynamicMessage); |
| 702 | size = AlignOffset(offset: size); |
| 703 | |
| 704 | // Next the has_bits, which is an array of uint32s. |
| 705 | type_info->has_bits_offset = -1; |
| 706 | int max_hasbit = 0; |
| 707 | for (int i = 0; i < type->field_count(); i++) { |
| 708 | if (HasHasbit(field: type->field(index: i))) { |
| 709 | if (type_info->has_bits_offset == -1) { |
| 710 | // At least one field in the message requires a hasbit, so allocate |
| 711 | // hasbits. |
| 712 | type_info->has_bits_offset = size; |
| 713 | uint32_t* has_bits_indices = new uint32_t[type->field_count()]; |
| 714 | for (int j = 0; j < type->field_count(); j++) { |
| 715 | // Initialize to -1, fields that need a hasbit will overwrite. |
| 716 | has_bits_indices[j] = static_cast<uint32_t>(-1); |
| 717 | } |
| 718 | type_info->has_bits_indices.reset(p: has_bits_indices); |
| 719 | } |
| 720 | type_info->has_bits_indices[i] = max_hasbit++; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | if (max_hasbit > 0) { |
| 725 | int has_bits_array_size = DivideRoundingUp(i: max_hasbit, bitsizeof(uint32_t)); |
| 726 | size += has_bits_array_size * sizeof(uint32_t); |
| 727 | size = AlignOffset(offset: size); |
| 728 | } |
| 729 | |
| 730 | // The oneof_case, if any. It is an array of uint32s. |
| 731 | if (real_oneof_count > 0) { |
| 732 | type_info->oneof_case_offset = size; |
| 733 | size += real_oneof_count * sizeof(uint32_t); |
| 734 | size = AlignOffset(offset: size); |
| 735 | } |
| 736 | |
| 737 | // The ExtensionSet, if any. |
| 738 | if (type->extension_range_count() > 0) { |
| 739 | type_info->extensions_offset = size; |
| 740 | size += sizeof(ExtensionSet); |
| 741 | size = AlignOffset(offset: size); |
| 742 | } else { |
| 743 | // No extensions. |
| 744 | type_info->extensions_offset = -1; |
| 745 | } |
| 746 | |
| 747 | // All the fields. |
| 748 | // |
| 749 | // TODO(b/31226269): Optimize the order of fields to minimize padding. |
| 750 | for (int i = 0; i < type->field_count(); i++) { |
| 751 | // Make sure field is aligned to avoid bus errors. |
| 752 | // Oneof fields do not use any space. |
| 753 | if (!InRealOneof(field: type->field(index: i))) { |
| 754 | int field_size = FieldSpaceUsed(field: type->field(index: i)); |
| 755 | size = AlignTo(offset: size, alignment: std::min(kSafeAlignment, field_size)); |
| 756 | offsets[i] = size; |
| 757 | size += field_size; |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | // The oneofs. |
| 762 | for (int i = 0; i < type->oneof_decl_count(); i++) { |
| 763 | if (!type->oneof_decl(index: i)->is_synthetic()) { |
| 764 | size = AlignTo(offset: size, alignment: kSafeAlignment); |
| 765 | offsets[type->field_count() + i] = size; |
| 766 | size += kMaxOneofUnionSize; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | type_info->weak_field_map_offset = -1; |
| 771 | |
| 772 | // Align the final size to make sure no clever allocators think that |
| 773 | // alignment is not necessary. |
| 774 | type_info->size = size; |
| 775 | |
| 776 | // Construct the reflection object. |
| 777 | |
| 778 | // Compute the size of default oneof instance and offsets of default |
| 779 | // oneof fields. |
| 780 | for (int i = 0; i < type->oneof_decl_count(); i++) { |
| 781 | if (type->oneof_decl(index: i)->is_synthetic()) continue; |
| 782 | for (int j = 0; j < type->oneof_decl(index: i)->field_count(); j++) { |
| 783 | const FieldDescriptor* field = type->oneof_decl(index: i)->field(index: j); |
| 784 | // oneof fields are not accessed through offsets, but we still have the |
| 785 | // entry from a legacy implementation. This should be removed at some |
| 786 | // point. |
| 787 | // Mark the field to prevent unintentional access through reflection. |
| 788 | // Don't use the top bit because that is for unused fields. |
| 789 | offsets[field->index()] = internal::kInvalidFieldOffsetTag; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | // Allocate the prototype fields. |
| 794 | void* base = operator new(size); |
| 795 | memset(s: base, c: 0, n: size); |
| 796 | |
| 797 | // We have already locked the factory so we should not lock in the constructor |
| 798 | // of dynamic message to avoid dead lock. |
| 799 | DynamicMessage* prototype = new (base) DynamicMessage(type_info, false); |
| 800 | |
| 801 | internal::ReflectionSchema schema = { |
| 802 | .default_instance_: type_info->prototype, |
| 803 | .offsets_: type_info->offsets.get(), |
| 804 | .has_bit_indices_: type_info->has_bits_indices.get(), |
| 805 | .has_bits_offset_: type_info->has_bits_offset, |
| 806 | PROTOBUF_FIELD_OFFSET(DynamicMessage, _internal_metadata_), |
| 807 | .extensions_offset_: type_info->extensions_offset, |
| 808 | .oneof_case_offset_: type_info->oneof_case_offset, |
| 809 | .object_size_: type_info->size, |
| 810 | .weak_field_map_offset_: type_info->weak_field_map_offset, |
| 811 | .inlined_string_indices_: nullptr /* inlined_string_indices_ */, |
| 812 | .inlined_string_donated_offset_: 0 /* inlined_string_donated_offset_ */}; |
| 813 | |
| 814 | type_info->reflection.reset( |
| 815 | p: new Reflection(type_info->type, schema, type_info->pool, this)); |
| 816 | |
| 817 | // Cross link prototypes. |
| 818 | prototype->CrossLinkPrototypes(); |
| 819 | |
| 820 | return prototype; |
| 821 | } |
| 822 | |
| 823 | } // namespace protobuf |
| 824 | } // namespace google |
| 825 | |
| 826 | #include <google/protobuf/port_undef.inc> // NOLINT |
| 827 | |