1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // Based on original Protocol Buffers design by |
33 | // Sanjay Ghemawat, Jeff Dean, and others. |
34 | // |
35 | // This header is logically internal, but is made public because it is used |
36 | // from protocol-compiler-generated code, which may reside in other components. |
37 | |
38 | #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
39 | #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
40 | |
41 | |
42 | #include <algorithm> |
43 | #include <cassert> |
44 | #include <map> |
45 | #include <string> |
46 | #include <utility> |
47 | #include <vector> |
48 | |
49 | #include <google/protobuf/stubs/common.h> |
50 | #include <google/protobuf/stubs/logging.h> |
51 | #include <google/protobuf/io/coded_stream.h> |
52 | #include <google/protobuf/port.h> |
53 | #include <google/protobuf/parse_context.h> |
54 | #include <google/protobuf/repeated_field.h> |
55 | #include <google/protobuf/wire_format_lite.h> |
56 | |
57 | // clang-format off |
58 | #include <google/protobuf/port_def.inc> // Must be last |
59 | // clang-format on |
60 | |
61 | #ifdef SWIG |
62 | #error "You cannot SWIG proto headers" |
63 | #endif |
64 | |
65 | namespace google { |
66 | namespace protobuf { |
67 | class Arena; |
68 | class Descriptor; // descriptor.h |
69 | class FieldDescriptor; // descriptor.h |
70 | class DescriptorPool; // descriptor.h |
71 | class MessageLite; // message_lite.h |
72 | class Message; // message.h |
73 | class MessageFactory; // message.h |
74 | class Reflection; // message.h |
75 | class UnknownFieldSet; // unknown_field_set.h |
76 | namespace internal { |
77 | class FieldSkipper; // wire_format_lite.h |
78 | enum class LazyVerifyOption; |
79 | } // namespace internal |
80 | } // namespace protobuf |
81 | } // namespace google |
82 | |
83 | namespace google { |
84 | namespace protobuf { |
85 | namespace internal { |
86 | |
87 | class InternalMetadata; |
88 | |
89 | // Used to store values of type WireFormatLite::FieldType without having to |
90 | // #include wire_format_lite.h. Also, ensures that we use only one byte to |
91 | // store these values, which is important to keep the layout of |
92 | // ExtensionSet::Extension small. |
93 | typedef uint8_t FieldType; |
94 | |
95 | // A function which, given an integer value, returns true if the number |
96 | // matches one of the defined values for the corresponding enum type. This |
97 | // is used with RegisterEnumExtension, below. |
98 | typedef bool EnumValidityFunc(int number); |
99 | |
100 | // Version of the above which takes an argument. This is needed to deal with |
101 | // extensions that are not compiled in. |
102 | typedef bool EnumValidityFuncWithArg(const void* arg, int number); |
103 | |
104 | // Information about a registered extension. |
105 | struct ExtensionInfo { |
106 | constexpr ExtensionInfo() : enum_validity_check() {} |
107 | constexpr ExtensionInfo(const MessageLite* extendee, int param_number, |
108 | FieldType type_param, bool isrepeated, bool ispacked, |
109 | LazyEagerVerifyFnType verify_func) |
110 | : message(extendee), |
111 | number(param_number), |
112 | type(type_param), |
113 | is_repeated(isrepeated), |
114 | is_packed(ispacked), |
115 | enum_validity_check(), |
116 | lazy_eager_verify_func(verify_func) {} |
117 | |
118 | const MessageLite* message = nullptr; |
119 | int number = 0; |
120 | |
121 | FieldType type = 0; |
122 | bool is_repeated = false; |
123 | bool is_packed = false; |
124 | |
125 | struct EnumValidityCheck { |
126 | EnumValidityFuncWithArg* func; |
127 | const void* arg; |
128 | }; |
129 | |
130 | struct MessageInfo { |
131 | const MessageLite* prototype; |
132 | }; |
133 | |
134 | union { |
135 | EnumValidityCheck enum_validity_check; |
136 | MessageInfo message_info; |
137 | }; |
138 | |
139 | // The descriptor for this extension, if one exists and is known. May be |
140 | // nullptr. Must not be nullptr if the descriptor for the extension does not |
141 | // live in the same pool as the descriptor for the containing type. |
142 | const FieldDescriptor* descriptor = nullptr; |
143 | |
144 | // If this field is potentially lazy this function can be used as a cheap |
145 | // verification of the raw bytes. |
146 | // If nullptr then no verification is performed. |
147 | LazyEagerVerifyFnType lazy_eager_verify_func = nullptr; |
148 | }; |
149 | |
150 | // An ExtensionFinder is an object which looks up extension definitions. It |
151 | // must implement this method: |
152 | // |
153 | // bool Find(int number, ExtensionInfo* output); |
154 | |
155 | // GeneratedExtensionFinder is an ExtensionFinder which finds extensions |
156 | // defined in .proto files which have been compiled into the binary. |
157 | class PROTOBUF_EXPORT GeneratedExtensionFinder { |
158 | public: |
159 | explicit GeneratedExtensionFinder(const MessageLite* extendee) |
160 | : extendee_(extendee) {} |
161 | |
162 | // Returns true and fills in *output if found, otherwise returns false. |
163 | bool Find(int number, ExtensionInfo* output); |
164 | |
165 | private: |
166 | const MessageLite* extendee_; |
167 | }; |
168 | |
169 | // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for |
170 | // finding extensions from a DescriptorPool. |
171 | |
172 | // This is an internal helper class intended for use within the protocol buffer |
173 | // library and generated classes. Clients should not use it directly. Instead, |
174 | // use the generated accessors such as GetExtension() of the class being |
175 | // extended. |
176 | // |
177 | // This class manages extensions for a protocol message object. The |
178 | // message's HasExtension(), GetExtension(), MutableExtension(), and |
179 | // ClearExtension() methods are just thin wrappers around the embedded |
180 | // ExtensionSet. When parsing, if a tag number is encountered which is |
181 | // inside one of the message type's extension ranges, the tag is passed |
182 | // off to the ExtensionSet for parsing. Etc. |
183 | class PROTOBUF_EXPORT ExtensionSet { |
184 | public: |
185 | constexpr ExtensionSet(); |
186 | explicit ExtensionSet(Arena* arena); |
187 | ExtensionSet(ArenaInitialized, Arena* arena) : ExtensionSet(arena) {} |
188 | ~ExtensionSet(); |
189 | |
190 | // These are called at startup by protocol-compiler-generated code to |
191 | // register known extensions. The registrations are used by ParseField() |
192 | // to look up extensions for parsed field numbers. Note that dynamic parsing |
193 | // does not use ParseField(); only protocol-compiler-generated parsing |
194 | // methods do. |
195 | static void RegisterExtension(const MessageLite* extendee, int number, |
196 | FieldType type, bool is_repeated, |
197 | bool is_packed, |
198 | LazyEagerVerifyFnType verify_func); |
199 | static void RegisterEnumExtension(const MessageLite* extendee, int number, |
200 | FieldType type, bool is_repeated, |
201 | bool is_packed, EnumValidityFunc* is_valid); |
202 | static void RegisterMessageExtension(const MessageLite* extendee, int number, |
203 | FieldType type, bool is_repeated, |
204 | bool is_packed, |
205 | const MessageLite* prototype, |
206 | LazyEagerVerifyFnType verify_func); |
207 | |
208 | // ================================================================= |
209 | |
210 | // Add all fields which are currently present to the given vector. This |
211 | // is useful to implement Reflection::ListFields(). |
212 | void AppendToList(const Descriptor* extendee, const DescriptorPool* pool, |
213 | std::vector<const FieldDescriptor*>* output) const; |
214 | |
215 | // ================================================================= |
216 | // Accessors |
217 | // |
218 | // Generated message classes include type-safe templated wrappers around |
219 | // these methods. Generally you should use those rather than call these |
220 | // directly, unless you are doing low-level memory management. |
221 | // |
222 | // When calling any of these accessors, the extension number requested |
223 | // MUST exist in the DescriptorPool provided to the constructor. Otherwise, |
224 | // the method will fail an assert. Normally, though, you would not call |
225 | // these directly; you would either call the generated accessors of your |
226 | // message class (e.g. GetExtension()) or you would call the accessors |
227 | // of the reflection interface. In both cases, it is impossible to |
228 | // trigger this assert failure: the generated accessors only accept |
229 | // linked-in extension types as parameters, while the Reflection interface |
230 | // requires you to provide the FieldDescriptor describing the extension. |
231 | // |
232 | // When calling any of these accessors, a protocol-compiler-generated |
233 | // implementation of the extension corresponding to the number MUST |
234 | // be linked in, and the FieldDescriptor used to refer to it MUST be |
235 | // the one generated by that linked-in code. Otherwise, the method will |
236 | // die on an assert failure. The message objects returned by the message |
237 | // accessors are guaranteed to be of the correct linked-in type. |
238 | // |
239 | // These methods pretty much match Reflection except that: |
240 | // - They're not virtual. |
241 | // - They identify fields by number rather than FieldDescriptors. |
242 | // - They identify enum values using integers rather than descriptors. |
243 | // - Strings provide Mutable() in addition to Set() accessors. |
244 | |
245 | bool Has(int number) const; |
246 | int ExtensionSize(int number) const; // Size of a repeated extension. |
247 | int NumExtensions() const; // The number of extensions |
248 | FieldType ExtensionType(int number) const; |
249 | void ClearExtension(int number); |
250 | |
251 | // singular fields ------------------------------------------------- |
252 | |
253 | int32_t GetInt32(int number, int32_t default_value) const; |
254 | int64_t GetInt64(int number, int64_t default_value) const; |
255 | uint32_t GetUInt32(int number, uint32_t default_value) const; |
256 | uint64_t GetUInt64(int number, uint64_t default_value) const; |
257 | float GetFloat(int number, float default_value) const; |
258 | double GetDouble(int number, double default_value) const; |
259 | bool GetBool(int number, bool default_value) const; |
260 | int GetEnum(int number, int default_value) const; |
261 | const std::string& GetString(int number, |
262 | const std::string& default_value) const; |
263 | const MessageLite& GetMessage(int number, |
264 | const MessageLite& default_value) const; |
265 | const MessageLite& GetMessage(int number, const Descriptor* message_type, |
266 | MessageFactory* factory) const; |
267 | |
268 | // |descriptor| may be nullptr so long as it is known that the descriptor for |
269 | // the extension lives in the same pool as the descriptor for the containing |
270 | // type. |
271 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
272 | void SetInt32(int number, FieldType type, int32_t value, desc); |
273 | void SetInt64(int number, FieldType type, int64_t value, desc); |
274 | void SetUInt32(int number, FieldType type, uint32_t value, desc); |
275 | void SetUInt64(int number, FieldType type, uint64_t value, desc); |
276 | void SetFloat(int number, FieldType type, float value, desc); |
277 | void SetDouble(int number, FieldType type, double value, desc); |
278 | void SetBool(int number, FieldType type, bool value, desc); |
279 | void SetEnum(int number, FieldType type, int value, desc); |
280 | void SetString(int number, FieldType type, std::string value, desc); |
281 | std::string* MutableString(int number, FieldType type, desc); |
282 | MessageLite* MutableMessage(int number, FieldType type, |
283 | const MessageLite& prototype, desc); |
284 | MessageLite* MutableMessage(const FieldDescriptor* descriptor, |
285 | MessageFactory* factory); |
286 | // Adds the given message to the ExtensionSet, taking ownership of the |
287 | // message object. Existing message with the same number will be deleted. |
288 | // If "message" is nullptr, this is equivalent to "ClearExtension(number)". |
289 | void SetAllocatedMessage(int number, FieldType type, |
290 | const FieldDescriptor* descriptor, |
291 | MessageLite* message); |
292 | void UnsafeArenaSetAllocatedMessage(int number, FieldType type, |
293 | const FieldDescriptor* descriptor, |
294 | MessageLite* message); |
295 | PROTOBUF_NODISCARD MessageLite* ReleaseMessage(int number, |
296 | const MessageLite& prototype); |
297 | MessageLite* UnsafeArenaReleaseMessage(int number, |
298 | const MessageLite& prototype); |
299 | |
300 | PROTOBUF_NODISCARD MessageLite* ReleaseMessage( |
301 | const FieldDescriptor* descriptor, MessageFactory* factory); |
302 | MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, |
303 | MessageFactory* factory); |
304 | #undef desc |
305 | Arena* GetArena() const { return arena_; } |
306 | |
307 | // repeated fields ------------------------------------------------- |
308 | |
309 | // Fetches a RepeatedField extension by number; returns |default_value| |
310 | // if no such extension exists. User should not touch this directly; it is |
311 | // used by the GetRepeatedExtension() method. |
312 | const void* GetRawRepeatedField(int number, const void* default_value) const; |
313 | // Fetches a mutable version of a RepeatedField extension by number, |
314 | // instantiating one if none exists. Similar to above, user should not use |
315 | // this directly; it underlies MutableRepeatedExtension(). |
316 | void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, |
317 | const FieldDescriptor* desc); |
318 | |
319 | // This is an overload of MutableRawRepeatedField to maintain compatibility |
320 | // with old code using a previous API. This version of |
321 | // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. |
322 | // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) |
323 | void* MutableRawRepeatedField(int number); |
324 | |
325 | int32_t GetRepeatedInt32(int number, int index) const; |
326 | int64_t GetRepeatedInt64(int number, int index) const; |
327 | uint32_t GetRepeatedUInt32(int number, int index) const; |
328 | uint64_t GetRepeatedUInt64(int number, int index) const; |
329 | float GetRepeatedFloat(int number, int index) const; |
330 | double GetRepeatedDouble(int number, int index) const; |
331 | bool GetRepeatedBool(int number, int index) const; |
332 | int GetRepeatedEnum(int number, int index) const; |
333 | const std::string& GetRepeatedString(int number, int index) const; |
334 | const MessageLite& GetRepeatedMessage(int number, int index) const; |
335 | |
336 | void SetRepeatedInt32(int number, int index, int32_t value); |
337 | void SetRepeatedInt64(int number, int index, int64_t value); |
338 | void SetRepeatedUInt32(int number, int index, uint32_t value); |
339 | void SetRepeatedUInt64(int number, int index, uint64_t value); |
340 | void SetRepeatedFloat(int number, int index, float value); |
341 | void SetRepeatedDouble(int number, int index, double value); |
342 | void SetRepeatedBool(int number, int index, bool value); |
343 | void SetRepeatedEnum(int number, int index, int value); |
344 | void SetRepeatedString(int number, int index, std::string value); |
345 | std::string* MutableRepeatedString(int number, int index); |
346 | MessageLite* MutableRepeatedMessage(int number, int index); |
347 | |
348 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
349 | void AddInt32(int number, FieldType type, bool packed, int32_t value, desc); |
350 | void AddInt64(int number, FieldType type, bool packed, int64_t value, desc); |
351 | void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc); |
352 | void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc); |
353 | void AddFloat(int number, FieldType type, bool packed, float value, desc); |
354 | void AddDouble(int number, FieldType type, bool packed, double value, desc); |
355 | void AddBool(int number, FieldType type, bool packed, bool value, desc); |
356 | void AddEnum(int number, FieldType type, bool packed, int value, desc); |
357 | void AddString(int number, FieldType type, std::string value, desc); |
358 | std::string* AddString(int number, FieldType type, desc); |
359 | MessageLite* AddMessage(int number, FieldType type, |
360 | const MessageLite& prototype, desc); |
361 | MessageLite* AddMessage(const FieldDescriptor* descriptor, |
362 | MessageFactory* factory); |
363 | void AddAllocatedMessage(const FieldDescriptor* descriptor, |
364 | MessageLite* new_entry); |
365 | void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor, |
366 | MessageLite* new_entry); |
367 | #undef desc |
368 | |
369 | void RemoveLast(int number); |
370 | PROTOBUF_NODISCARD MessageLite* ReleaseLast(int number); |
371 | MessageLite* UnsafeArenaReleaseLast(int number); |
372 | void SwapElements(int number, int index1, int index2); |
373 | |
374 | // ================================================================= |
375 | // convenience methods for implementing methods of Message |
376 | // |
377 | // These could all be implemented in terms of the other methods of this |
378 | // class, but providing them here helps keep the generated code size down. |
379 | |
380 | void Clear(); |
381 | void MergeFrom(const MessageLite* extendee, const ExtensionSet& other); |
382 | void Swap(const MessageLite* extendee, ExtensionSet* other); |
383 | void InternalSwap(ExtensionSet* other); |
384 | void SwapExtension(const MessageLite* extendee, ExtensionSet* other, |
385 | int number); |
386 | void UnsafeShallowSwapExtension(ExtensionSet* other, int number); |
387 | bool IsInitialized() const; |
388 | |
389 | // Lite parser |
390 | const char* ParseField(uint64_t tag, const char* ptr, |
391 | const MessageLite* extendee, |
392 | internal::InternalMetadata* metadata, |
393 | internal::ParseContext* ctx); |
394 | // Full parser |
395 | const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee, |
396 | internal::InternalMetadata* metadata, |
397 | internal::ParseContext* ctx); |
398 | template <typename Msg> |
399 | const char* ParseMessageSet(const char* ptr, const Msg* extendee, |
400 | InternalMetadata* metadata, |
401 | internal::ParseContext* ctx) { |
402 | struct MessageSetItem { |
403 | const char* _InternalParse(const char* ptr, ParseContext* ctx) { |
404 | return me->ParseMessageSetItem(ptr, extendee, metadata, ctx); |
405 | } |
406 | ExtensionSet* me; |
407 | const Msg* extendee; |
408 | InternalMetadata* metadata; |
409 | } item{this, extendee, metadata}; |
410 | while (!ctx->Done(ptr: &ptr)) { |
411 | uint32_t tag; |
412 | ptr = ReadTag(p: ptr, out: &tag); |
413 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
414 | if (tag == WireFormatLite::kMessageSetItemStartTag) { |
415 | ptr = ctx->ParseGroup(&item, ptr, tag); |
416 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
417 | } else { |
418 | if (tag == 0 || (tag & 7) == 4) { |
419 | ctx->SetLastTag(tag); |
420 | return ptr; |
421 | } |
422 | ptr = ParseField(tag, ptr, extendee, metadata, ctx); |
423 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
424 | } |
425 | } |
426 | return ptr; |
427 | } |
428 | |
429 | // Write all extension fields with field numbers in the range |
430 | // [start_field_number, end_field_number) |
431 | // to the output stream, using the cached sizes computed when ByteSize() was |
432 | // last called. Note that the range bounds are inclusive-exclusive. |
433 | void SerializeWithCachedSizes(const MessageLite* extendee, |
434 | int start_field_number, int end_field_number, |
435 | io::CodedOutputStream* output) const { |
436 | output->SetCur(_InternalSerialize(extendee, start_field_number, |
437 | end_field_number, target: output->Cur(), |
438 | stream: output->EpsCopy())); |
439 | } |
440 | |
441 | // Same as SerializeWithCachedSizes, but without any bounds checking. |
442 | // The caller must ensure that target has sufficient capacity for the |
443 | // serialized extensions. |
444 | // |
445 | // Returns a pointer past the last written byte. |
446 | |
447 | uint8_t* _InternalSerialize(const MessageLite* extendee, |
448 | int start_field_number, int end_field_number, |
449 | uint8_t* target, |
450 | io::EpsCopyOutputStream* stream) const { |
451 | if (flat_size_ == 0) { |
452 | assert(!is_large()); |
453 | return target; |
454 | } |
455 | return _InternalSerializeImpl(extendee, start_field_number, |
456 | end_field_number, target, stream); |
457 | } |
458 | |
459 | // Like above but serializes in MessageSet format. |
460 | void SerializeMessageSetWithCachedSizes(const MessageLite* extendee, |
461 | io::CodedOutputStream* output) const { |
462 | output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( |
463 | extendee, target: output->Cur(), stream: output->EpsCopy())); |
464 | } |
465 | uint8_t* InternalSerializeMessageSetWithCachedSizesToArray( |
466 | const MessageLite* extendee, uint8_t* target, |
467 | io::EpsCopyOutputStream* stream) const; |
468 | |
469 | // For backward-compatibility, versions of two of the above methods that |
470 | // serialize deterministically iff SetDefaultSerializationDeterministic() |
471 | // has been called. |
472 | uint8_t* SerializeWithCachedSizesToArray(int start_field_number, |
473 | int end_field_number, |
474 | uint8_t* target) const; |
475 | uint8_t* SerializeMessageSetWithCachedSizesToArray( |
476 | const MessageLite* extendee, uint8_t* target) const; |
477 | |
478 | // Returns the total serialized size of all the extensions. |
479 | size_t ByteSize() const; |
480 | |
481 | // Like ByteSize() but uses MessageSet format. |
482 | size_t MessageSetByteSize() const; |
483 | |
484 | // Returns (an estimate of) the total number of bytes used for storing the |
485 | // extensions in memory, excluding sizeof(*this). If the ExtensionSet is |
486 | // for a lite message (and thus possibly contains lite messages), the results |
487 | // are undefined (might work, might crash, might corrupt data, might not even |
488 | // be linked in). It's up to the protocol compiler to avoid calling this on |
489 | // such ExtensionSets (easy enough since lite messages don't implement |
490 | // SpaceUsed()). |
491 | size_t SpaceUsedExcludingSelfLong() const; |
492 | |
493 | // This method just calls SpaceUsedExcludingSelfLong() but it can not be |
494 | // inlined because the definition of SpaceUsedExcludingSelfLong() is not |
495 | // included in lite runtime and when an inline method refers to it MSVC |
496 | // will complain about unresolved symbols when building the lite runtime |
497 | // as .dll. |
498 | int SpaceUsedExcludingSelf() const; |
499 | |
500 | private: |
501 | template <typename Type> |
502 | friend class PrimitiveTypeTraits; |
503 | |
504 | template <typename Type> |
505 | friend class RepeatedPrimitiveTypeTraits; |
506 | |
507 | template <typename Type, bool IsValid(int)> |
508 | friend class EnumTypeTraits; |
509 | |
510 | template <typename Type, bool IsValid(int)> |
511 | friend class RepeatedEnumTypeTraits; |
512 | |
513 | friend class google::protobuf::Reflection; |
514 | |
515 | const int32_t& GetRefInt32(int number, const int32_t& default_value) const; |
516 | const int64_t& GetRefInt64(int number, const int64_t& default_value) const; |
517 | const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const; |
518 | const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const; |
519 | const float& GetRefFloat(int number, const float& default_value) const; |
520 | const double& GetRefDouble(int number, const double& default_value) const; |
521 | const bool& GetRefBool(int number, const bool& default_value) const; |
522 | const int& GetRefEnum(int number, const int& default_value) const; |
523 | const int32_t& GetRefRepeatedInt32(int number, int index) const; |
524 | const int64_t& GetRefRepeatedInt64(int number, int index) const; |
525 | const uint32_t& GetRefRepeatedUInt32(int number, int index) const; |
526 | const uint64_t& GetRefRepeatedUInt64(int number, int index) const; |
527 | const float& GetRefRepeatedFloat(int number, int index) const; |
528 | const double& GetRefRepeatedDouble(int number, int index) const; |
529 | const bool& GetRefRepeatedBool(int number, int index) const; |
530 | const int& GetRefRepeatedEnum(int number, int index) const; |
531 | |
532 | // Implementation of _InternalSerialize for non-empty map_. |
533 | uint8_t* _InternalSerializeImpl(const MessageLite* extendee, |
534 | int start_field_number, int end_field_number, |
535 | uint8_t* target, |
536 | io::EpsCopyOutputStream* stream) const; |
537 | // Interface of a lazily parsed singular message extension. |
538 | class PROTOBUF_EXPORT LazyMessageExtension { |
539 | public: |
540 | LazyMessageExtension() {} |
541 | virtual ~LazyMessageExtension() {} |
542 | |
543 | virtual LazyMessageExtension* New(Arena* arena) const = 0; |
544 | virtual const MessageLite& GetMessage(const MessageLite& prototype, |
545 | Arena* arena) const = 0; |
546 | virtual MessageLite* MutableMessage(const MessageLite& prototype, |
547 | Arena* arena) = 0; |
548 | virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0; |
549 | virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message, |
550 | Arena* arena) = 0; |
551 | PROTOBUF_NODISCARD virtual MessageLite* ReleaseMessage( |
552 | const MessageLite& prototype, Arena* arena) = 0; |
553 | virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype, |
554 | Arena* arena) = 0; |
555 | |
556 | virtual bool IsInitialized() const = 0; |
557 | |
558 | PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead" ) |
559 | virtual int ByteSize() const { return internal::ToIntSize(size: ByteSizeLong()); } |
560 | virtual size_t ByteSizeLong() const = 0; |
561 | virtual size_t SpaceUsedLong() const = 0; |
562 | |
563 | virtual void MergeFrom(const MessageLite* prototype, |
564 | const LazyMessageExtension& other, Arena* arena) = 0; |
565 | virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0; |
566 | virtual void Clear() = 0; |
567 | |
568 | virtual const char* _InternalParse(const Message& prototype, Arena* arena, |
569 | LazyVerifyOption option, const char* ptr, |
570 | ParseContext* ctx) = 0; |
571 | virtual uint8_t* WriteMessageToArray( |
572 | const MessageLite* prototype, int number, uint8_t* target, |
573 | io::EpsCopyOutputStream* stream) const = 0; |
574 | |
575 | private: |
576 | virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. |
577 | |
578 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); |
579 | }; |
580 | // Give access to function defined below to see LazyMessageExtension. |
581 | friend LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena); |
582 | struct Extension { |
583 | // The order of these fields packs Extension into 24 bytes when using 8 |
584 | // byte alignment. Consider this when adding or removing fields here. |
585 | union { |
586 | int32_t int32_t_value; |
587 | int64_t int64_t_value; |
588 | uint32_t uint32_t_value; |
589 | uint64_t uint64_t_value; |
590 | float float_value; |
591 | double double_value; |
592 | bool bool_value; |
593 | int enum_value; |
594 | std::string* string_value; |
595 | MessageLite* message_value; |
596 | LazyMessageExtension* lazymessage_value; |
597 | |
598 | RepeatedField<int32_t>* repeated_int32_t_value; |
599 | RepeatedField<int64_t>* repeated_int64_t_value; |
600 | RepeatedField<uint32_t>* repeated_uint32_t_value; |
601 | RepeatedField<uint64_t>* repeated_uint64_t_value; |
602 | RepeatedField<float>* repeated_float_value; |
603 | RepeatedField<double>* repeated_double_value; |
604 | RepeatedField<bool>* repeated_bool_value; |
605 | RepeatedField<int>* repeated_enum_value; |
606 | RepeatedPtrField<std::string>* repeated_string_value; |
607 | RepeatedPtrField<MessageLite>* repeated_message_value; |
608 | }; |
609 | |
610 | FieldType type; |
611 | bool is_repeated; |
612 | |
613 | // For singular types, indicates if the extension is "cleared". This |
614 | // happens when an extension is set and then later cleared by the caller. |
615 | // We want to keep the Extension object around for reuse, so instead of |
616 | // removing it from the map, we just set is_cleared = true. This has no |
617 | // meaning for repeated types; for those, the size of the RepeatedField |
618 | // simply becomes zero when cleared. |
619 | bool is_cleared : 4; |
620 | |
621 | // For singular message types, indicates whether lazy parsing is enabled |
622 | // for this extension. This field is only valid when type == TYPE_MESSAGE |
623 | // and !is_repeated because we only support lazy parsing for singular |
624 | // message types currently. If is_lazy = true, the extension is stored in |
625 | // lazymessage_value. Otherwise, the extension will be message_value. |
626 | bool is_lazy : 4; |
627 | |
628 | // For repeated types, this indicates if the [packed=true] option is set. |
629 | bool is_packed; |
630 | |
631 | // For packed fields, the size of the packed data is recorded here when |
632 | // ByteSize() is called then used during serialization. |
633 | // TODO(kenton): Use atomic<int> when C++ supports it. |
634 | mutable int cached_size; |
635 | |
636 | // The descriptor for this extension, if one exists and is known. May be |
637 | // nullptr. Must not be nullptr if the descriptor for the extension does |
638 | // not live in the same pool as the descriptor for the containing type. |
639 | const FieldDescriptor* descriptor; |
640 | |
641 | // Some helper methods for operations on a single Extension. |
642 | uint8_t* InternalSerializeFieldWithCachedSizesToArray( |
643 | const MessageLite* extendee, const ExtensionSet* extension_set, |
644 | int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; |
645 | uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray( |
646 | const MessageLite* extendee, const ExtensionSet* extension_set, |
647 | int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; |
648 | size_t ByteSize(int number) const; |
649 | size_t MessageSetItemByteSize(int number) const; |
650 | void Clear(); |
651 | int GetSize() const; |
652 | void Free(); |
653 | size_t SpaceUsedExcludingSelfLong() const; |
654 | bool IsInitialized() const; |
655 | }; |
656 | |
657 | // The Extension struct is small enough to be passed by value, so we use it |
658 | // directly as the value type in mappings rather than use pointers. We use |
659 | // sorted maps rather than hash-maps because we expect most ExtensionSets will |
660 | // only contain a small number of extension. Also, we want AppendToList and |
661 | // deterministic serialization to order fields by field number. |
662 | |
663 | struct KeyValue { |
664 | int first; |
665 | Extension second; |
666 | |
667 | struct FirstComparator { |
668 | bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { |
669 | return lhs.first < rhs.first; |
670 | } |
671 | bool operator()(const KeyValue& lhs, int key) const { |
672 | return lhs.first < key; |
673 | } |
674 | bool operator()(int key, const KeyValue& rhs) const { |
675 | return key < rhs.first; |
676 | } |
677 | }; |
678 | }; |
679 | |
680 | typedef std::map<int, Extension> LargeMap; |
681 | |
682 | // Wrapper API that switches between flat-map and LargeMap. |
683 | |
684 | // Finds a key (if present) in the ExtensionSet. |
685 | const Extension* FindOrNull(int key) const; |
686 | Extension* FindOrNull(int key); |
687 | |
688 | // Helper-functions that only inspect the LargeMap. |
689 | const Extension* FindOrNullInLargeMap(int key) const; |
690 | Extension* FindOrNullInLargeMap(int key); |
691 | |
692 | // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or |
693 | // finds the already-existing Extension for that key (returns false). |
694 | // The Extension* will point to the new-or-found Extension. |
695 | std::pair<Extension*, bool> Insert(int key); |
696 | |
697 | // Grows the flat_capacity_. |
698 | // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. |
699 | void GrowCapacity(size_t minimum_new_capacity); |
700 | static constexpr uint16_t kMaximumFlatCapacity = 256; |
701 | bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; } |
702 | |
703 | // Removes a key from the ExtensionSet. |
704 | void Erase(int key); |
705 | |
706 | size_t Size() const { |
707 | return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; |
708 | } |
709 | |
710 | // Similar to std::for_each. |
711 | // Each Iterator is decomposed into ->first and ->second fields, so |
712 | // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. |
713 | template <typename Iterator, typename KeyValueFunctor> |
714 | static KeyValueFunctor ForEach(Iterator begin, Iterator end, |
715 | KeyValueFunctor func) { |
716 | for (Iterator it = begin; it != end; ++it) func(it->first, it->second); |
717 | return std::move(func); |
718 | } |
719 | |
720 | // Applies a functor to the <int, Extension&> pairs in sorted order. |
721 | template <typename KeyValueFunctor> |
722 | KeyValueFunctor ForEach(KeyValueFunctor func) { |
723 | if (PROTOBUF_PREDICT_FALSE(is_large())) { |
724 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
725 | } |
726 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
727 | } |
728 | |
729 | // Applies a functor to the <int, const Extension&> pairs in sorted order. |
730 | template <typename KeyValueFunctor> |
731 | KeyValueFunctor ForEach(KeyValueFunctor func) const { |
732 | if (PROTOBUF_PREDICT_FALSE(is_large())) { |
733 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
734 | } |
735 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
736 | } |
737 | |
738 | // Merges existing Extension from other_extension |
739 | void InternalExtensionMergeFrom(const MessageLite* extendee, int number, |
740 | const Extension& other_extension, |
741 | Arena* other_arena); |
742 | |
743 | inline static bool is_packable(WireFormatLite::WireType type) { |
744 | switch (type) { |
745 | case WireFormatLite::WIRETYPE_VARINT: |
746 | case WireFormatLite::WIRETYPE_FIXED64: |
747 | case WireFormatLite::WIRETYPE_FIXED32: |
748 | return true; |
749 | case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: |
750 | case WireFormatLite::WIRETYPE_START_GROUP: |
751 | case WireFormatLite::WIRETYPE_END_GROUP: |
752 | return false; |
753 | |
754 | // Do not add a default statement. Let the compiler complain when |
755 | // someone |
756 | // adds a new wire type. |
757 | } |
758 | PROTOBUF_ASSUME(false); // switch handles all possible enum values |
759 | return false; |
760 | } |
761 | |
762 | // Returns true and fills field_number and extension if extension is found. |
763 | // Note to support packed repeated field compatibility, it also fills whether |
764 | // the tag on wire is packed, which can be different from |
765 | // extension->is_packed (whether packed=true is specified). |
766 | template <typename ExtensionFinder> |
767 | bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder, |
768 | int* field_number, ExtensionInfo* extension, |
769 | bool* was_packed_on_wire) { |
770 | *field_number = WireFormatLite::GetTagFieldNumber(tag); |
771 | WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag); |
772 | return FindExtensionInfoFromFieldNumber(wire_type, *field_number, |
773 | extension_finder, extension, |
774 | was_packed_on_wire); |
775 | } |
776 | |
777 | // Returns true and fills extension if extension is found. |
778 | // Note to support packed repeated field compatibility, it also fills whether |
779 | // the tag on wire is packed, which can be different from |
780 | // extension->is_packed (whether packed=true is specified). |
781 | template <typename ExtensionFinder> |
782 | bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, |
783 | ExtensionFinder* extension_finder, |
784 | ExtensionInfo* extension, |
785 | bool* was_packed_on_wire) const { |
786 | if (!extension_finder->Find(field_number, extension)) { |
787 | return false; |
788 | } |
789 | |
790 | GOOGLE_DCHECK(extension->type > 0 && |
791 | extension->type <= WireFormatLite::MAX_FIELD_TYPE); |
792 | auto real_type = static_cast<WireFormatLite::FieldType>(extension->type); |
793 | |
794 | WireFormatLite::WireType expected_wire_type = |
795 | WireFormatLite::WireTypeForFieldType(type: real_type); |
796 | |
797 | // Check if this is a packed field. |
798 | *was_packed_on_wire = false; |
799 | if (extension->is_repeated && |
800 | wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED && |
801 | is_packable(type: expected_wire_type)) { |
802 | *was_packed_on_wire = true; |
803 | return true; |
804 | } |
805 | // Otherwise the wire type must match. |
806 | return expected_wire_type == wire_type; |
807 | } |
808 | |
809 | // Find the prototype for a LazyMessage from the extension registry. Returns |
810 | // null if the extension is not found. |
811 | const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee, |
812 | int number) const; |
813 | |
814 | // Returns true if extension is present and lazy. |
815 | bool HasLazy(int number) const; |
816 | |
817 | // Gets the extension with the given number, creating it if it does not |
818 | // already exist. Returns true if the extension did not already exist. |
819 | bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, |
820 | Extension** result); |
821 | |
822 | // Gets the repeated extension for the given descriptor, creating it if |
823 | // it does not exist. |
824 | Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); |
825 | |
826 | bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee, |
827 | const internal::ParseContext* /*ctx*/, |
828 | ExtensionInfo* extension, bool* was_packed_on_wire) { |
829 | GeneratedExtensionFinder finder(extendee); |
830 | return FindExtensionInfoFromFieldNumber(wire_type, field_number: field, extension_finder: &finder, |
831 | extension, was_packed_on_wire); |
832 | } |
833 | inline bool FindExtension(int wire_type, uint32_t field, |
834 | const Message* extendee, |
835 | const internal::ParseContext* ctx, |
836 | ExtensionInfo* extension, bool* was_packed_on_wire); |
837 | // Used for MessageSet only |
838 | const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, |
839 | const MessageLite* extendee, |
840 | internal::InternalMetadata* metadata, |
841 | internal::ParseContext* ctx) { |
842 | // Lite MessageSet doesn't implement lazy. |
843 | return ParseField(tag, ptr, extendee, metadata, ctx); |
844 | } |
845 | const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, |
846 | const Message* extendee, |
847 | internal::InternalMetadata* metadata, |
848 | internal::ParseContext* ctx); |
849 | const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee, |
850 | internal::InternalMetadata* metadata, |
851 | internal::ParseContext* ctx); |
852 | const char* ParseMessageSetItem(const char* ptr, const Message* extendee, |
853 | internal::InternalMetadata* metadata, |
854 | internal::ParseContext* ctx); |
855 | |
856 | // Implemented in extension_set_inl.h to keep code out of the header file. |
857 | template <typename T> |
858 | const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, |
859 | const ExtensionInfo& info, |
860 | internal::InternalMetadata* metadata, |
861 | const char* ptr, |
862 | internal::ParseContext* ctx); |
863 | template <typename Msg, typename T> |
864 | const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee, |
865 | internal::InternalMetadata* metadata, |
866 | internal::ParseContext* ctx); |
867 | |
868 | // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This |
869 | // friendship should automatically extend to ExtensionSet::Extension, but |
870 | // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this |
871 | // correctly. So, we must provide helpers for calling methods of that |
872 | // class. |
873 | |
874 | // Defined in extension_set_heavy.cc. |
875 | static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( |
876 | RepeatedPtrFieldBase* field); |
877 | |
878 | KeyValue* flat_begin() { |
879 | assert(!is_large()); |
880 | return map_.flat; |
881 | } |
882 | const KeyValue* flat_begin() const { |
883 | assert(!is_large()); |
884 | return map_.flat; |
885 | } |
886 | KeyValue* flat_end() { |
887 | assert(!is_large()); |
888 | return map_.flat + flat_size_; |
889 | } |
890 | const KeyValue* flat_end() const { |
891 | assert(!is_large()); |
892 | return map_.flat + flat_size_; |
893 | } |
894 | |
895 | Arena* arena_; |
896 | |
897 | // Manual memory-management: |
898 | // map_.flat is an allocated array of flat_capacity_ elements. |
899 | // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. |
900 | uint16_t flat_capacity_; |
901 | uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large() |
902 | union AllocatedData { |
903 | KeyValue* flat; |
904 | |
905 | // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, |
906 | // which guarantees O(n lg n) CPU but larger constant factors. |
907 | LargeMap* large; |
908 | } map_; |
909 | |
910 | static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity); |
911 | |
912 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); |
913 | }; |
914 | |
915 | constexpr ExtensionSet::ExtensionSet() |
916 | : arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{.flat: nullptr} {} |
917 | |
918 | // These are just for convenience... |
919 | inline void ExtensionSet::SetString(int number, FieldType type, |
920 | std::string value, |
921 | const FieldDescriptor* descriptor) { |
922 | MutableString(number, type, descriptor)->assign(str: std::move(value)); |
923 | } |
924 | inline void ExtensionSet::SetRepeatedString(int number, int index, |
925 | std::string value) { |
926 | MutableRepeatedString(number, index)->assign(str: std::move(value)); |
927 | } |
928 | inline void ExtensionSet::AddString(int number, FieldType type, |
929 | std::string value, |
930 | const FieldDescriptor* descriptor) { |
931 | AddString(number, type, descriptor)->assign(str: std::move(value)); |
932 | } |
933 | // =================================================================== |
934 | // Glue for generated extension accessors |
935 | |
936 | // ------------------------------------------------------------------- |
937 | // Template magic |
938 | |
939 | // First we have a set of classes representing "type traits" for different |
940 | // field types. A type traits class knows how to implement basic accessors |
941 | // for extensions of a particular type given an ExtensionSet. The signature |
942 | // for a type traits class looks like this: |
943 | // |
944 | // class TypeTraits { |
945 | // public: |
946 | // typedef ? ConstType; |
947 | // typedef ? MutableType; |
948 | // // TypeTraits for singular fields and repeated fields will define the |
949 | // // symbol "Singular" or "Repeated" respectively. These two symbols will |
950 | // // be used in extension accessors to distinguish between singular |
951 | // // extensions and repeated extensions. If the TypeTraits for the passed |
952 | // // in extension doesn't have the expected symbol defined, it means the |
953 | // // user is passing a repeated extension to a singular accessor, or the |
954 | // // opposite. In that case the C++ compiler will generate an error |
955 | // // message "no matching member function" to inform the user. |
956 | // typedef ? Singular |
957 | // typedef ? Repeated |
958 | // |
959 | // static inline ConstType Get(int number, const ExtensionSet& set); |
960 | // static inline void Set(int number, ConstType value, ExtensionSet* set); |
961 | // static inline MutableType Mutable(int number, ExtensionSet* set); |
962 | // |
963 | // // Variants for repeated fields. |
964 | // static inline ConstType Get(int number, const ExtensionSet& set, |
965 | // int index); |
966 | // static inline void Set(int number, int index, |
967 | // ConstType value, ExtensionSet* set); |
968 | // static inline MutableType Mutable(int number, int index, |
969 | // ExtensionSet* set); |
970 | // static inline void Add(int number, ConstType value, ExtensionSet* set); |
971 | // static inline MutableType Add(int number, ExtensionSet* set); |
972 | // This is used by the ExtensionIdentifier constructor to register |
973 | // the extension at dynamic initialization. |
974 | // template <typename ExtendeeT> |
975 | // static void Register(int number, FieldType type, bool is_packed); |
976 | // }; |
977 | // |
978 | // Not all of these methods make sense for all field types. For example, the |
979 | // "Mutable" methods only make sense for strings and messages, and the |
980 | // repeated methods only make sense for repeated types. So, each type |
981 | // traits class implements only the set of methods from this signature that it |
982 | // actually supports. This will cause a compiler error if the user tries to |
983 | // access an extension using a method that doesn't make sense for its type. |
984 | // For example, if "foo" is an extension of type "optional int32", then if you |
985 | // try to write code like: |
986 | // my_message.MutableExtension(foo) |
987 | // you will get a compile error because PrimitiveTypeTraits<int32_t> does not |
988 | // have a "Mutable()" method. |
989 | |
990 | // ------------------------------------------------------------------- |
991 | // PrimitiveTypeTraits |
992 | |
993 | // Since the ExtensionSet has different methods for each primitive type, |
994 | // we must explicitly define the methods of the type traits class for each |
995 | // known type. |
996 | template <typename Type> |
997 | class PrimitiveTypeTraits { |
998 | public: |
999 | typedef Type ConstType; |
1000 | typedef Type MutableType; |
1001 | typedef PrimitiveTypeTraits<Type> Singular; |
1002 | |
1003 | static inline ConstType Get(int number, const ExtensionSet& set, |
1004 | ConstType default_value); |
1005 | |
1006 | static inline const ConstType* GetPtr(int number, const ExtensionSet& set, |
1007 | const ConstType& default_value); |
1008 | static inline void Set(int number, FieldType field_type, ConstType value, |
1009 | ExtensionSet* set); |
1010 | template <typename ExtendeeT> |
1011 | static void Register(int number, FieldType type, bool is_packed, |
1012 | LazyEagerVerifyFnType verify_func) { |
1013 | ExtensionSet::RegisterExtension(extendee: &ExtendeeT::default_instance(), number, |
1014 | type, is_repeated: false, is_packed, verify_func); |
1015 | } |
1016 | }; |
1017 | |
1018 | template <typename Type> |
1019 | class RepeatedPrimitiveTypeTraits { |
1020 | public: |
1021 | typedef Type ConstType; |
1022 | typedef Type MutableType; |
1023 | typedef RepeatedPrimitiveTypeTraits<Type> Repeated; |
1024 | |
1025 | typedef RepeatedField<Type> RepeatedFieldType; |
1026 | |
1027 | static inline Type Get(int number, const ExtensionSet& set, int index); |
1028 | static inline const Type* GetPtr(int number, const ExtensionSet& set, |
1029 | int index); |
1030 | static inline const RepeatedField<ConstType>* GetRepeatedPtr( |
1031 | int number, const ExtensionSet& set); |
1032 | static inline void Set(int number, int index, Type value, ExtensionSet* set); |
1033 | static inline void Add(int number, FieldType field_type, bool is_packed, |
1034 | Type value, ExtensionSet* set); |
1035 | |
1036 | static inline const RepeatedField<ConstType>& GetRepeated( |
1037 | int number, const ExtensionSet& set); |
1038 | static inline RepeatedField<Type>* MutableRepeated(int number, |
1039 | FieldType field_type, |
1040 | bool is_packed, |
1041 | ExtensionSet* set); |
1042 | |
1043 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1044 | template <typename ExtendeeT> |
1045 | static void Register(int number, FieldType type, bool is_packed, |
1046 | LazyEagerVerifyFnType verify_func) { |
1047 | ExtensionSet::RegisterExtension(extendee: &ExtendeeT::default_instance(), number, |
1048 | type, is_repeated: true, is_packed, verify_func); |
1049 | } |
1050 | }; |
1051 | |
1052 | class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { |
1053 | private: |
1054 | template <typename Type> |
1055 | friend class RepeatedPrimitiveTypeTraits; |
1056 | static const RepeatedPrimitiveDefaults* default_instance(); |
1057 | RepeatedField<int32_t> default_repeated_field_int32_t_; |
1058 | RepeatedField<int64_t> default_repeated_field_int64_t_; |
1059 | RepeatedField<uint32_t> default_repeated_field_uint32_t_; |
1060 | RepeatedField<uint64_t> default_repeated_field_uint64_t_; |
1061 | RepeatedField<double> default_repeated_field_double_; |
1062 | RepeatedField<float> default_repeated_field_float_; |
1063 | RepeatedField<bool> default_repeated_field_bool_; |
1064 | }; |
1065 | |
1066 | #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ |
1067 | template <> \ |
1068 | inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ |
1069 | int number, const ExtensionSet& set, TYPE default_value) { \ |
1070 | return set.Get##METHOD(number, default_value); \ |
1071 | } \ |
1072 | template <> \ |
1073 | inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \ |
1074 | int number, const ExtensionSet& set, const TYPE& default_value) { \ |
1075 | return &set.GetRef##METHOD(number, default_value); \ |
1076 | } \ |
1077 | template <> \ |
1078 | inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \ |
1079 | TYPE value, ExtensionSet* set) { \ |
1080 | set->Set##METHOD(number, field_type, value, nullptr); \ |
1081 | } \ |
1082 | \ |
1083 | template <> \ |
1084 | inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ |
1085 | int number, const ExtensionSet& set, int index) { \ |
1086 | return set.GetRepeated##METHOD(number, index); \ |
1087 | } \ |
1088 | template <> \ |
1089 | inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \ |
1090 | int number, const ExtensionSet& set, int index) { \ |
1091 | return &set.GetRefRepeated##METHOD(number, index); \ |
1092 | } \ |
1093 | template <> \ |
1094 | inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ |
1095 | int number, int index, TYPE value, ExtensionSet* set) { \ |
1096 | set->SetRepeated##METHOD(number, index, value); \ |
1097 | } \ |
1098 | template <> \ |
1099 | inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ |
1100 | int number, FieldType field_type, bool is_packed, TYPE value, \ |
1101 | ExtensionSet* set) { \ |
1102 | set->Add##METHOD(number, field_type, is_packed, value, nullptr); \ |
1103 | } \ |
1104 | template <> \ |
1105 | inline const RepeatedField<TYPE>* \ |
1106 | RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ |
1107 | return &RepeatedPrimitiveDefaults::default_instance() \ |
1108 | ->default_repeated_field_##TYPE##_; \ |
1109 | } \ |
1110 | template <> \ |
1111 | inline const RepeatedField<TYPE>& \ |
1112 | RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ |
1113 | const ExtensionSet& set) { \ |
1114 | return *reinterpret_cast<const RepeatedField<TYPE>*>( \ |
1115 | set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ |
1116 | } \ |
1117 | template <> \ |
1118 | inline const RepeatedField<TYPE>* \ |
1119 | RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \ |
1120 | const ExtensionSet& set) { \ |
1121 | return &GetRepeated(number, set); \ |
1122 | } \ |
1123 | template <> \ |
1124 | inline RepeatedField<TYPE>* \ |
1125 | RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \ |
1126 | int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ |
1127 | return reinterpret_cast<RepeatedField<TYPE>*>( \ |
1128 | set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \ |
1129 | } |
1130 | |
1131 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32) |
1132 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64) |
1133 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32) |
1134 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64) |
1135 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) |
1136 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) |
1137 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) |
1138 | |
1139 | #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE |
1140 | |
1141 | // ------------------------------------------------------------------- |
1142 | // StringTypeTraits |
1143 | |
1144 | // Strings support both Set() and Mutable(). |
1145 | class PROTOBUF_EXPORT StringTypeTraits { |
1146 | public: |
1147 | typedef const std::string& ConstType; |
1148 | typedef std::string* MutableType; |
1149 | typedef StringTypeTraits Singular; |
1150 | |
1151 | static inline const std::string& Get(int number, const ExtensionSet& set, |
1152 | ConstType default_value) { |
1153 | return set.GetString(number, default_value); |
1154 | } |
1155 | static inline const std::string* GetPtr(int number, const ExtensionSet& set, |
1156 | ConstType default_value) { |
1157 | return &Get(number, set, default_value); |
1158 | } |
1159 | static inline void Set(int number, FieldType field_type, |
1160 | const std::string& value, ExtensionSet* set) { |
1161 | set->SetString(number, type: field_type, value, descriptor: nullptr); |
1162 | } |
1163 | static inline std::string* Mutable(int number, FieldType field_type, |
1164 | ExtensionSet* set) { |
1165 | return set->MutableString(number, type: field_type, descriptor: nullptr); |
1166 | } |
1167 | template <typename ExtendeeT> |
1168 | static void Register(int number, FieldType type, bool is_packed, |
1169 | LazyEagerVerifyFnType verify_func) { |
1170 | ExtensionSet::RegisterExtension(extendee: &ExtendeeT::default_instance(), number, |
1171 | type, is_repeated: false, is_packed, verify_func); |
1172 | } |
1173 | }; |
1174 | |
1175 | class PROTOBUF_EXPORT RepeatedStringTypeTraits { |
1176 | public: |
1177 | typedef const std::string& ConstType; |
1178 | typedef std::string* MutableType; |
1179 | typedef RepeatedStringTypeTraits Repeated; |
1180 | |
1181 | typedef RepeatedPtrField<std::string> RepeatedFieldType; |
1182 | |
1183 | static inline const std::string& Get(int number, const ExtensionSet& set, |
1184 | int index) { |
1185 | return set.GetRepeatedString(number, index); |
1186 | } |
1187 | static inline const std::string* GetPtr(int number, const ExtensionSet& set, |
1188 | int index) { |
1189 | return &Get(number, set, index); |
1190 | } |
1191 | static inline const RepeatedPtrField<std::string>* GetRepeatedPtr( |
1192 | int number, const ExtensionSet& set) { |
1193 | return &GetRepeated(number, set); |
1194 | } |
1195 | static inline void Set(int number, int index, const std::string& value, |
1196 | ExtensionSet* set) { |
1197 | set->SetRepeatedString(number, index, value); |
1198 | } |
1199 | static inline std::string* Mutable(int number, int index, ExtensionSet* set) { |
1200 | return set->MutableRepeatedString(number, index); |
1201 | } |
1202 | static inline void Add(int number, FieldType field_type, bool /*is_packed*/, |
1203 | const std::string& value, ExtensionSet* set) { |
1204 | set->AddString(number, type: field_type, value, descriptor: nullptr); |
1205 | } |
1206 | static inline std::string* Add(int number, FieldType field_type, |
1207 | ExtensionSet* set) { |
1208 | return set->AddString(number, type: field_type, descriptor: nullptr); |
1209 | } |
1210 | static inline const RepeatedPtrField<std::string>& GetRepeated( |
1211 | int number, const ExtensionSet& set) { |
1212 | return *reinterpret_cast<const RepeatedPtrField<std::string>*>( |
1213 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
1214 | } |
1215 | |
1216 | static inline RepeatedPtrField<std::string>* MutableRepeated( |
1217 | int number, FieldType field_type, bool is_packed, ExtensionSet* set) { |
1218 | return reinterpret_cast<RepeatedPtrField<std::string>*>( |
1219 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, desc: nullptr)); |
1220 | } |
1221 | |
1222 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1223 | |
1224 | template <typename ExtendeeT> |
1225 | static void Register(int number, FieldType type, bool is_packed, |
1226 | LazyEagerVerifyFnType fn) { |
1227 | ExtensionSet::RegisterExtension(extendee: &ExtendeeT::default_instance(), number, |
1228 | type, is_repeated: true, is_packed, verify_func: fn); |
1229 | } |
1230 | |
1231 | private: |
1232 | static void InitializeDefaultRepeatedFields(); |
1233 | static void DestroyDefaultRepeatedFields(); |
1234 | }; |
1235 | |
1236 | // ------------------------------------------------------------------- |
1237 | // EnumTypeTraits |
1238 | |
1239 | // ExtensionSet represents enums using integers internally, so we have to |
1240 | // static_cast around. |
1241 | template <typename Type, bool IsValid(int)> |
1242 | class EnumTypeTraits { |
1243 | public: |
1244 | typedef Type ConstType; |
1245 | typedef Type MutableType; |
1246 | typedef EnumTypeTraits<Type, IsValid> Singular; |
1247 | |
1248 | static inline ConstType Get(int number, const ExtensionSet& set, |
1249 | ConstType default_value) { |
1250 | return static_cast<Type>(set.GetEnum(number, default_value)); |
1251 | } |
1252 | static inline const ConstType* GetPtr(int number, const ExtensionSet& set, |
1253 | const ConstType& default_value) { |
1254 | return reinterpret_cast<const Type*>( |
1255 | &set.GetRefEnum(number, default_value)); |
1256 | } |
1257 | static inline void Set(int number, FieldType field_type, ConstType value, |
1258 | ExtensionSet* set) { |
1259 | GOOGLE_DCHECK(IsValid(value)); |
1260 | set->SetEnum(number, type: field_type, value, descriptor: nullptr); |
1261 | } |
1262 | template <typename ExtendeeT> |
1263 | static void Register(int number, FieldType type, bool is_packed, |
1264 | LazyEagerVerifyFnType fn) { |
1265 | ExtensionSet::RegisterEnumExtension(extendee: &ExtendeeT::default_instance(), number, |
1266 | type, is_repeated: false, is_packed, is_valid: IsValid); |
1267 | } |
1268 | }; |
1269 | |
1270 | template <typename Type, bool IsValid(int)> |
1271 | class RepeatedEnumTypeTraits { |
1272 | public: |
1273 | typedef Type ConstType; |
1274 | typedef Type MutableType; |
1275 | typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated; |
1276 | |
1277 | typedef RepeatedField<Type> RepeatedFieldType; |
1278 | |
1279 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
1280 | return static_cast<Type>(set.GetRepeatedEnum(number, index)); |
1281 | } |
1282 | static inline const ConstType* GetPtr(int number, const ExtensionSet& set, |
1283 | int index) { |
1284 | return reinterpret_cast<const Type*>( |
1285 | &set.GetRefRepeatedEnum(number, index)); |
1286 | } |
1287 | static inline void Set(int number, int index, ConstType value, |
1288 | ExtensionSet* set) { |
1289 | GOOGLE_DCHECK(IsValid(value)); |
1290 | set->SetRepeatedEnum(number, index, value); |
1291 | } |
1292 | static inline void Add(int number, FieldType field_type, bool is_packed, |
1293 | ConstType value, ExtensionSet* set) { |
1294 | GOOGLE_DCHECK(IsValid(value)); |
1295 | set->AddEnum(number, type: field_type, packed: is_packed, value, descriptor: nullptr); |
1296 | } |
1297 | static inline const RepeatedField<Type>& GetRepeated( |
1298 | int number, const ExtensionSet& set) { |
1299 | // Hack: the `Extension` struct stores a RepeatedField<int> for enums. |
1300 | // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> |
1301 | // so we need to do some casting magic. See message.h for similar |
1302 | // contortions for non-extension fields. |
1303 | return *reinterpret_cast<const RepeatedField<Type>*>( |
1304 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
1305 | } |
1306 | static inline const RepeatedField<Type>* GetRepeatedPtr( |
1307 | int number, const ExtensionSet& set) { |
1308 | return &GetRepeated(number, set); |
1309 | } |
1310 | static inline RepeatedField<Type>* MutableRepeated(int number, |
1311 | FieldType field_type, |
1312 | bool is_packed, |
1313 | ExtensionSet* set) { |
1314 | return reinterpret_cast<RepeatedField<Type>*>( |
1315 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, desc: nullptr)); |
1316 | } |
1317 | |
1318 | static const RepeatedFieldType* GetDefaultRepeatedField() { |
1319 | // Hack: as noted above, repeated enum fields are internally stored as a |
1320 | // RepeatedField<int>. We need to be able to instantiate global static |
1321 | // objects to return as default (empty) repeated fields on non-existent |
1322 | // extensions. We would not be able to know a-priori all of the enum types |
1323 | // (values of |Type|) to instantiate all of these, so we just re-use |
1324 | // int32_t's default repeated field object. |
1325 | return reinterpret_cast<const RepeatedField<Type>*>( |
1326 | RepeatedPrimitiveTypeTraits<int32_t>::GetDefaultRepeatedField()); |
1327 | } |
1328 | template <typename ExtendeeT> |
1329 | static void Register(int number, FieldType type, bool is_packed, |
1330 | LazyEagerVerifyFnType fn) { |
1331 | ExtensionSet::RegisterEnumExtension(extendee: &ExtendeeT::default_instance(), number, |
1332 | type, is_repeated: true, is_packed, is_valid: IsValid); |
1333 | } |
1334 | }; |
1335 | |
1336 | // ------------------------------------------------------------------- |
1337 | // MessageTypeTraits |
1338 | |
1339 | // ExtensionSet guarantees that when manipulating extensions with message |
1340 | // types, the implementation used will be the compiled-in class representing |
1341 | // that type. So, we can static_cast down to the exact type we expect. |
1342 | template <typename Type> |
1343 | class MessageTypeTraits { |
1344 | public: |
1345 | typedef const Type& ConstType; |
1346 | typedef Type* MutableType; |
1347 | typedef MessageTypeTraits<Type> Singular; |
1348 | |
1349 | static inline ConstType Get(int number, const ExtensionSet& set, |
1350 | ConstType default_value) { |
1351 | return static_cast<const Type&>(set.GetMessage(number, default_value)); |
1352 | } |
1353 | static inline std::nullptr_t GetPtr(int /* number */, |
1354 | const ExtensionSet& /* set */, |
1355 | ConstType /* default_value */) { |
1356 | // Cannot be implemented because of forward declared messages? |
1357 | return nullptr; |
1358 | } |
1359 | static inline MutableType Mutable(int number, FieldType field_type, |
1360 | ExtensionSet* set) { |
1361 | return static_cast<Type*>(set->MutableMessage( |
1362 | number, field_type, Type::default_instance(), nullptr)); |
1363 | } |
1364 | static inline void SetAllocated(int number, FieldType field_type, |
1365 | MutableType message, ExtensionSet* set) { |
1366 | set->SetAllocatedMessage(number, type: field_type, descriptor: nullptr, message); |
1367 | } |
1368 | static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, |
1369 | MutableType message, |
1370 | ExtensionSet* set) { |
1371 | set->UnsafeArenaSetAllocatedMessage(number, type: field_type, descriptor: nullptr, message); |
1372 | } |
1373 | PROTOBUF_NODISCARD static inline MutableType Release( |
1374 | int number, FieldType /* field_type */, ExtensionSet* set) { |
1375 | return static_cast<Type*>( |
1376 | set->ReleaseMessage(number, Type::default_instance())); |
1377 | } |
1378 | static inline MutableType UnsafeArenaRelease(int number, |
1379 | FieldType /* field_type */, |
1380 | ExtensionSet* set) { |
1381 | return static_cast<Type*>( |
1382 | set->UnsafeArenaReleaseMessage(number, Type::default_instance())); |
1383 | } |
1384 | template <typename ExtendeeT> |
1385 | static void Register(int number, FieldType type, bool is_packed, |
1386 | LazyEagerVerifyFnType fn) { |
1387 | ExtensionSet::RegisterMessageExtension(extendee: &ExtendeeT::default_instance(), |
1388 | number, type, is_repeated: false, is_packed, |
1389 | prototype: &Type::default_instance(), verify_func: fn); |
1390 | } |
1391 | }; |
1392 | |
1393 | // Used by WireFormatVerify to extract the verify function from the registry. |
1394 | LazyEagerVerifyFnType FindExtensionLazyEagerVerifyFn( |
1395 | const MessageLite* extendee, int number); |
1396 | |
1397 | // forward declaration. |
1398 | class RepeatedMessageGenericTypeTraits; |
1399 | |
1400 | template <typename Type> |
1401 | class RepeatedMessageTypeTraits { |
1402 | public: |
1403 | typedef const Type& ConstType; |
1404 | typedef Type* MutableType; |
1405 | typedef RepeatedMessageTypeTraits<Type> Repeated; |
1406 | |
1407 | typedef RepeatedPtrField<Type> RepeatedFieldType; |
1408 | |
1409 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
1410 | return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); |
1411 | } |
1412 | static inline std::nullptr_t GetPtr(int /* number */, |
1413 | const ExtensionSet& /* set */, |
1414 | int /* index */) { |
1415 | // Cannot be implemented because of forward declared messages? |
1416 | return nullptr; |
1417 | } |
1418 | static inline std::nullptr_t GetRepeatedPtr(int /* number */, |
1419 | const ExtensionSet& /* set */) { |
1420 | // Cannot be implemented because of forward declared messages? |
1421 | return nullptr; |
1422 | } |
1423 | static inline MutableType Mutable(int number, int index, ExtensionSet* set) { |
1424 | return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); |
1425 | } |
1426 | static inline MutableType Add(int number, FieldType field_type, |
1427 | ExtensionSet* set) { |
1428 | return static_cast<Type*>( |
1429 | set->AddMessage(number, field_type, Type::default_instance(), nullptr)); |
1430 | } |
1431 | static inline const RepeatedPtrField<Type>& GetRepeated( |
1432 | int number, const ExtensionSet& set) { |
1433 | // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same |
1434 | // casting hack applies here, because a RepeatedPtrField<MessageLite> |
1435 | // cannot naturally become a RepeatedPtrType<Type> even though Type is |
1436 | // presumably a message. google::protobuf::Message goes through similar contortions |
1437 | // with a reinterpret_cast<>. |
1438 | return *reinterpret_cast<const RepeatedPtrField<Type>*>( |
1439 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
1440 | } |
1441 | static inline RepeatedPtrField<Type>* MutableRepeated(int number, |
1442 | FieldType field_type, |
1443 | bool is_packed, |
1444 | ExtensionSet* set) { |
1445 | return reinterpret_cast<RepeatedPtrField<Type>*>( |
1446 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, desc: nullptr)); |
1447 | } |
1448 | |
1449 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1450 | template <typename ExtendeeT> |
1451 | static void Register(int number, FieldType type, bool is_packed, |
1452 | LazyEagerVerifyFnType fn) { |
1453 | ExtensionSet::RegisterMessageExtension(extendee: &ExtendeeT::default_instance(), |
1454 | number, type, is_repeated: true, is_packed, |
1455 | prototype: &Type::default_instance(), verify_func: fn); |
1456 | } |
1457 | }; |
1458 | |
1459 | template <typename Type> |
1460 | inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* |
1461 | RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { |
1462 | static auto instance = OnShutdownDelete(new RepeatedFieldType); |
1463 | return instance; |
1464 | } |
1465 | |
1466 | // ------------------------------------------------------------------- |
1467 | // ExtensionIdentifier |
1468 | |
1469 | // This is the type of actual extension objects. E.g. if you have: |
1470 | // extend Foo { |
1471 | // optional int32 bar = 1234; |
1472 | // } |
1473 | // then "bar" will be defined in C++ as: |
1474 | // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32_t>, 5, false> bar(1234); |
1475 | // |
1476 | // Note that we could, in theory, supply the field number as a template |
1477 | // parameter, and thus make an instance of ExtensionIdentifier have no |
1478 | // actual contents. However, if we did that, then using an extension |
1479 | // identifier would not necessarily cause the compiler to output any sort |
1480 | // of reference to any symbol defined in the extension's .pb.o file. Some |
1481 | // linkers will actually drop object files that are not explicitly referenced, |
1482 | // but that would be bad because it would cause this extension to not be |
1483 | // registered at static initialization, and therefore using it would crash. |
1484 | |
1485 | template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type, |
1486 | bool is_packed> |
1487 | class ExtensionIdentifier { |
1488 | public: |
1489 | typedef TypeTraitsType TypeTraits; |
1490 | typedef ExtendeeType Extendee; |
1491 | |
1492 | ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value, |
1493 | LazyEagerVerifyFnType verify_func = nullptr) |
1494 | : number_(number), default_value_(default_value) { |
1495 | Register(number, verify_func); |
1496 | } |
1497 | inline int number() const { return number_; } |
1498 | typename TypeTraits::ConstType default_value() const { |
1499 | return default_value_; |
1500 | } |
1501 | |
1502 | static void Register(int number, LazyEagerVerifyFnType verify_func) { |
1503 | TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed, |
1504 | verify_func); |
1505 | } |
1506 | |
1507 | typename TypeTraits::ConstType const& default_value_ref() const { |
1508 | return default_value_; |
1509 | } |
1510 | |
1511 | private: |
1512 | const int number_; |
1513 | typename TypeTraits::ConstType default_value_; |
1514 | }; |
1515 | |
1516 | // ------------------------------------------------------------------- |
1517 | // Generated accessors |
1518 | |
1519 | |
1520 | // Used to retrieve a lazy extension, may return nullptr in some environments. |
1521 | extern PROTOBUF_ATTRIBUTE_WEAK ExtensionSet::LazyMessageExtension* |
1522 | MaybeCreateLazyExtension(Arena* arena); |
1523 | |
1524 | } // namespace internal |
1525 | |
1526 | // Call this function to ensure that this extensions's reflection is linked into |
1527 | // the binary: |
1528 | // |
1529 | // google::protobuf::LinkExtensionReflection(Foo::my_extension); |
1530 | // |
1531 | // This will ensure that the following lookup will succeed: |
1532 | // |
1533 | // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); |
1534 | // |
1535 | // This is often relevant for parsing extensions in text mode. |
1536 | // |
1537 | // As a side-effect, it will also guarantee that anything else from the same |
1538 | // .proto file will also be available for lookup in the generated pool. |
1539 | // |
1540 | // This function does not actually register the extension, so it does not need |
1541 | // to be called before the lookup. However it does need to occur in a function |
1542 | // that cannot be stripped from the binary (ie. it must be reachable from main). |
1543 | // |
1544 | // Best practice is to call this function as close as possible to where the |
1545 | // reflection is actually needed. This function is very cheap to call, so you |
1546 | // should not need to worry about its runtime overhead except in tight loops (on |
1547 | // x86-64 it compiles into two "mov" instructions). |
1548 | template <typename ExtendeeType, typename TypeTraitsType, |
1549 | internal::FieldType field_type, bool is_packed> |
1550 | void LinkExtensionReflection( |
1551 | const google::protobuf::internal::ExtensionIdentifier< |
1552 | ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { |
1553 | internal::StrongReference(extension); |
1554 | } |
1555 | |
1556 | } // namespace protobuf |
1557 | } // namespace google |
1558 | |
1559 | #include <google/protobuf/port_undef.inc> |
1560 | |
1561 | #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
1562 | |