| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | #include <cstdint> |
| 32 | #include <numeric> |
| 33 | |
| 34 | #include <google/protobuf/extension_set.h> |
| 35 | #include <google/protobuf/generated_message_tctable_decl.h> |
| 36 | #include <google/protobuf/generated_message_tctable_impl.h> |
| 37 | #include <google/protobuf/inlined_string_field.h> |
| 38 | #include <google/protobuf/message_lite.h> |
| 39 | #include <google/protobuf/parse_context.h> |
| 40 | #include <google/protobuf/wire_format_lite.h> |
| 41 | |
| 42 | // clang-format off |
| 43 | #include <google/protobuf/port_def.inc> |
| 44 | // clang-format on |
| 45 | |
| 46 | namespace google { |
| 47 | namespace protobuf { |
| 48 | namespace internal { |
| 49 | |
| 50 | using FieldEntry = TcParseTableBase::FieldEntry; |
| 51 | |
| 52 | ////////////////////////////////////////////////////////////////////////////// |
| 53 | // Template instantiations: |
| 54 | ////////////////////////////////////////////////////////////////////////////// |
| 55 | |
| 56 | #ifndef NDEBUG |
| 57 | template void AlignFail<4>(uintptr_t); |
| 58 | template void AlignFail<8>(uintptr_t); |
| 59 | #endif |
| 60 | |
| 61 | const char* TcParser::GenericFallbackLite(PROTOBUF_TC_PARAM_DECL) { |
| 62 | return GenericFallbackImpl<MessageLite, std::string>(PROTOBUF_TC_PARAM_PASS); |
| 63 | } |
| 64 | |
| 65 | ////////////////////////////////////////////////////////////////////////////// |
| 66 | // Core fast parsing implementation: |
| 67 | ////////////////////////////////////////////////////////////////////////////// |
| 68 | |
| 69 | class TcParser::ScopedArenaSwap final { |
| 70 | public: |
| 71 | ScopedArenaSwap(MessageLite* msg, ParseContext* ctx) |
| 72 | : ctx_(ctx), saved_(ctx->data().arena) { |
| 73 | ctx_->data().arena = msg->GetArenaForAllocation(); |
| 74 | } |
| 75 | ScopedArenaSwap(const ScopedArenaSwap&) = delete; |
| 76 | ~ScopedArenaSwap() { ctx_->data().arena = saved_; } |
| 77 | |
| 78 | private: |
| 79 | ParseContext* const ctx_; |
| 80 | Arena* const saved_; |
| 81 | }; |
| 82 | |
| 83 | PROTOBUF_NOINLINE const char* TcParser::ParseLoop( |
| 84 | MessageLite* msg, const char* ptr, ParseContext* ctx, |
| 85 | const TcParseTableBase* table) { |
| 86 | ScopedArenaSwap saved(msg, ctx); |
| 87 | while (!ctx->Done(ptr: &ptr)) { |
| 88 | // Unconditionally read has bits, even if we don't have has bits. |
| 89 | // has_bits_offset will be 0 and we will just read something valid. |
| 90 | uint64_t hasbits = ReadAt<uint32_t>(x: msg, offset: table->has_bits_offset); |
| 91 | ptr = TagDispatch(msg, ptr, ctx, table, hasbits, data: {}); |
| 92 | if (ptr == nullptr) break; |
| 93 | if (ctx->LastTag() != 1) break; // Ended on terminating tag |
| 94 | } |
| 95 | return ptr; |
| 96 | } |
| 97 | |
| 98 | // Dispatch to the designated parse function |
| 99 | inline PROTOBUF_ALWAYS_INLINE const char* TcParser::TagDispatch( |
| 100 | PROTOBUF_TC_PARAM_DECL) { |
| 101 | const auto coded_tag = UnalignedLoad<uint16_t>(p: ptr); |
| 102 | const size_t idx = coded_tag & table->fast_idx_mask; |
| 103 | PROTOBUF_ASSUME((idx & 7) == 0); |
| 104 | auto* fast_entry = table->fast_entry(idx: idx >> 3); |
| 105 | data = fast_entry->bits; |
| 106 | data.data ^= coded_tag; |
| 107 | PROTOBUF_MUSTTAIL return fast_entry->target(PROTOBUF_TC_PARAM_PASS); |
| 108 | } |
| 109 | |
| 110 | // We can only safely call from field to next field if the call is optimized |
| 111 | // to a proper tail call. Otherwise we blow through stack. Clang and gcc |
| 112 | // reliably do this optimization in opt mode, but do not perform this in debug |
| 113 | // mode. Luckily the structure of the algorithm is such that it's always |
| 114 | // possible to just return and use the enclosing parse loop as a trampoline. |
| 115 | inline PROTOBUF_ALWAYS_INLINE const char* TcParser::ToTagDispatch( |
| 116 | PROTOBUF_TC_PARAM_DECL) { |
| 117 | constexpr bool always_return = !PROTOBUF_TAILCALL; |
| 118 | if (always_return || !ctx->DataAvailable(ptr)) { |
| 119 | PROTOBUF_MUSTTAIL return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 120 | } |
| 121 | PROTOBUF_MUSTTAIL return TagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 122 | } |
| 123 | |
| 124 | inline PROTOBUF_ALWAYS_INLINE const char* TcParser::ToParseLoop( |
| 125 | PROTOBUF_TC_PARAM_DECL) { |
| 126 | (void)data; |
| 127 | (void)ctx; |
| 128 | SyncHasbits(msg, hasbits, table); |
| 129 | return ptr; |
| 130 | } |
| 131 | |
| 132 | inline PROTOBUF_ALWAYS_INLINE const char* TcParser::Error( |
| 133 | PROTOBUF_TC_PARAM_DECL) { |
| 134 | (void)data; |
| 135 | (void)ctx; |
| 136 | (void)ptr; |
| 137 | SyncHasbits(msg, hasbits, table); |
| 138 | return nullptr; |
| 139 | } |
| 140 | |
| 141 | // On the fast path, a (matching) 1-byte tag already has the decoded value. |
| 142 | static uint32_t FastDecodeTag(uint8_t coded_tag) { |
| 143 | return coded_tag; |
| 144 | } |
| 145 | |
| 146 | // On the fast path, a (matching) 2-byte tag always needs to be decoded. |
| 147 | static uint32_t FastDecodeTag(uint16_t coded_tag) { |
| 148 | uint32_t result = coded_tag; |
| 149 | result += static_cast<int8_t>(coded_tag); |
| 150 | return result >> 1; |
| 151 | } |
| 152 | |
| 153 | ////////////////////////////////////////////////////////////////////////////// |
| 154 | // Core mini parsing implementation: |
| 155 | ////////////////////////////////////////////////////////////////////////////// |
| 156 | |
| 157 | // Field lookup table layout: |
| 158 | // |
| 159 | // Because it consists of a series of variable-length segments, the lookuup |
| 160 | // table is organized within an array of uint16_t, and each element is either |
| 161 | // a uint16_t or a uint32_t stored little-endian as a pair of uint16_t. |
| 162 | // |
| 163 | // Its fundamental building block maps 16 contiguously ascending field numbers |
| 164 | // to their locations within the field entry table: |
| 165 | |
| 166 | struct SkipEntry16 { |
| 167 | uint16_t skipmap; |
| 168 | uint16_t field_entry_offset; |
| 169 | }; |
| 170 | |
| 171 | // The skipmap is a bitfield of which of those field numbers do NOT have a |
| 172 | // field entry. The lowest bit of the skipmap corresponds to the lowest of |
| 173 | // the 16 field numbers, so if a proto had only fields 1, 2, 3, and 7, the |
| 174 | // skipmap would contain 0b11111111'10111000. |
| 175 | // |
| 176 | // The field lookup table begins with a single 32-bit skipmap that maps the |
| 177 | // field numbers 1 through 32. This is because the majority of proto |
| 178 | // messages only contain fields numbered 1 to 32. |
| 179 | // |
| 180 | // The rest of the lookup table is a repeated series of |
| 181 | // { 32-bit field #, #SkipEntry16s, {SkipEntry16...} } |
| 182 | // That is, the next thing is a pair of uint16_t that form the next |
| 183 | // lowest field number that the lookup table handles. If this number is -1, |
| 184 | // that is the end of the table. Then there is a uint16_t that is |
| 185 | // the number of contiguous SkipEntry16 entries that follow, and then of |
| 186 | // course the SkipEntry16s themselves. |
| 187 | |
| 188 | // Originally developed and tested at https://godbolt.org/z/vbc7enYcf |
| 189 | |
| 190 | // Returns the address of the field for `tag` in the table's field entries. |
| 191 | // Returns nullptr if the field was not found. |
| 192 | const TcParseTableBase::FieldEntry* TcParser::FindFieldEntry( |
| 193 | const TcParseTableBase* table, uint32_t field_num) { |
| 194 | const FieldEntry* const field_entries = table->field_entries_begin(); |
| 195 | |
| 196 | uint32_t fstart = 1; |
| 197 | uint32_t adj_fnum = field_num - fstart; |
| 198 | |
| 199 | if (PROTOBUF_PREDICT_TRUE(adj_fnum < 32)) { |
| 200 | uint32_t skipmap = table->skipmap32; |
| 201 | uint32_t skipbit = 1 << adj_fnum; |
| 202 | if (PROTOBUF_PREDICT_FALSE(skipmap & skipbit)) return nullptr; |
| 203 | skipmap &= skipbit - 1; |
| 204 | #if (__GNUC__ || __clang__) && __POPCNT__ |
| 205 | // Note: here and below, skipmap typically has very few set bits |
| 206 | // (31 in the worst case, but usually zero) so a loop isn't that |
| 207 | // bad, and a compiler-generated popcount is typically only |
| 208 | // worthwhile if the processor itself has hardware popcount support. |
| 209 | adj_fnum -= __builtin_popcount(skipmap); |
| 210 | #else |
| 211 | while (skipmap) { |
| 212 | --adj_fnum; |
| 213 | skipmap &= skipmap - 1; |
| 214 | } |
| 215 | #endif |
| 216 | auto* entry = field_entries + adj_fnum; |
| 217 | PROTOBUF_ASSUME(entry != nullptr); |
| 218 | return entry; |
| 219 | } |
| 220 | const uint16_t* lookup_table = table->field_lookup_begin(); |
| 221 | for (;;) { |
| 222 | #ifdef PROTOBUF_LITTLE_ENDIAN |
| 223 | memcpy(dest: &fstart, src: lookup_table, n: sizeof(fstart)); |
| 224 | #else |
| 225 | fstart = lookup_table[0] | (lookup_table[1] << 16); |
| 226 | #endif |
| 227 | lookup_table += sizeof(fstart) / sizeof(*lookup_table); |
| 228 | uint32_t num_skip_entries = *lookup_table++; |
| 229 | if (field_num < fstart) return nullptr; |
| 230 | adj_fnum = field_num - fstart; |
| 231 | uint32_t skip_num = adj_fnum / 16; |
| 232 | if (PROTOBUF_PREDICT_TRUE(skip_num < num_skip_entries)) { |
| 233 | // for each group of 16 fields we have: |
| 234 | // a bitmap of 16 bits |
| 235 | // a 16-bit field-entry offset for the first of them. |
| 236 | auto* skip_data = lookup_table + (adj_fnum / 16) * (sizeof(SkipEntry16) / |
| 237 | sizeof(uint16_t)); |
| 238 | SkipEntry16 se = {.skipmap: skip_data[0], .field_entry_offset: skip_data[1]}; |
| 239 | adj_fnum &= 15; |
| 240 | uint32_t skipmap = se.skipmap; |
| 241 | uint16_t skipbit = 1 << adj_fnum; |
| 242 | if (PROTOBUF_PREDICT_FALSE(skipmap & skipbit)) return nullptr; |
| 243 | skipmap &= skipbit - 1; |
| 244 | adj_fnum += se.field_entry_offset; |
| 245 | #if (__GNUC__ || __clang__) && __POPCNT__ |
| 246 | adj_fnum -= __builtin_popcount(skipmap); |
| 247 | #else |
| 248 | while (skipmap) { |
| 249 | --adj_fnum; |
| 250 | skipmap &= skipmap - 1; |
| 251 | } |
| 252 | #endif |
| 253 | auto* entry = field_entries + adj_fnum; |
| 254 | PROTOBUF_ASSUME(entry != nullptr); |
| 255 | return entry; |
| 256 | } |
| 257 | lookup_table += |
| 258 | num_skip_entries * (sizeof(SkipEntry16) / sizeof(*lookup_table)); |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | // Field names are stored in a format of: |
| 263 | // |
| 264 | // 1) A table of name sizes, one byte each, from 1 to 255 per name. |
| 265 | // `entries` is the size of this first table. |
| 266 | // 1a) padding bytes, so the table of name sizes is a multiple of |
| 267 | // eight bytes in length. They are zero. |
| 268 | // |
| 269 | // 2) All the names, concatenated, with neither separation nor termination. |
| 270 | // |
| 271 | // This is designed to be compact but not particularly fast to retrieve. |
| 272 | // In particular, it takes O(n) to retrieve the name of the n'th field, |
| 273 | // which is usually fine because most protos have fewer than 10 fields. |
| 274 | static StringPiece FindName(const char* name_data, size_t entries, |
| 275 | size_t index) { |
| 276 | // The compiler unrolls these... if this isn't fast enough, |
| 277 | // there's an AVX version at https://godbolt.org/z/eojrjqzfr |
| 278 | // ARM-compatible version at https://godbolt.org/z/n5YT5Ee85 |
| 279 | |
| 280 | // The field name sizes are padded up to a multiple of 8, so we |
| 281 | // must pad them here. |
| 282 | size_t num_sizes = (entries + 7) & -8; |
| 283 | auto* uint8s = reinterpret_cast<const uint8_t*>(name_data); |
| 284 | size_t pos = std::accumulate(first: uint8s, last: uint8s + index, init: num_sizes); |
| 285 | size_t size = name_data[index]; |
| 286 | auto* start = &name_data[pos]; |
| 287 | return {start, size}; |
| 288 | } |
| 289 | |
| 290 | StringPiece TcParser::MessageName(const TcParseTableBase* table) { |
| 291 | return FindName(name_data: table->name_data(), entries: table->num_field_entries + 1, index: 0); |
| 292 | } |
| 293 | |
| 294 | StringPiece TcParser::FieldName(const TcParseTableBase* table, |
| 295 | const FieldEntry* field_entry) { |
| 296 | const FieldEntry* const field_entries = table->field_entries_begin(); |
| 297 | auto field_index = static_cast<size_t>(field_entry - field_entries); |
| 298 | return FindName(name_data: table->name_data(), entries: table->num_field_entries + 1, |
| 299 | index: field_index + 1); |
| 300 | } |
| 301 | |
| 302 | const char* TcParser::MiniParse(PROTOBUF_TC_PARAM_DECL) { |
| 303 | uint32_t tag; |
| 304 | ptr = ReadTagInlined(ptr, out: &tag); |
| 305 | if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) return nullptr; |
| 306 | |
| 307 | auto* entry = FindFieldEntry(table, field_num: tag >> 3); |
| 308 | if (entry == nullptr) { |
| 309 | data.data = tag; |
| 310 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 311 | } |
| 312 | |
| 313 | // The handler may need the tag and the entry to resolve fallback logic. Both |
| 314 | // of these are 32 bits, so pack them into (the 64-bit) `data`. Since we can't |
| 315 | // pack the entry pointer itself, just pack its offset from `table`. |
| 316 | uint64_t entry_offset = reinterpret_cast<const char*>(entry) - |
| 317 | reinterpret_cast<const char*>(table); |
| 318 | data.data = entry_offset << 32 | tag; |
| 319 | |
| 320 | using field_layout::FieldKind; |
| 321 | auto field_type = entry->type_card & FieldKind::kFkMask; |
| 322 | switch (field_type) { |
| 323 | case FieldKind::kFkNone: |
| 324 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 325 | case FieldKind::kFkVarint: |
| 326 | PROTOBUF_MUSTTAIL return MpVarint(PROTOBUF_TC_PARAM_PASS); |
| 327 | case FieldKind::kFkPackedVarint: |
| 328 | PROTOBUF_MUSTTAIL return MpPackedVarint(PROTOBUF_TC_PARAM_PASS); |
| 329 | case FieldKind::kFkFixed: |
| 330 | PROTOBUF_MUSTTAIL return MpFixed(PROTOBUF_TC_PARAM_PASS); |
| 331 | case FieldKind::kFkPackedFixed: |
| 332 | PROTOBUF_MUSTTAIL return MpPackedFixed(PROTOBUF_TC_PARAM_PASS); |
| 333 | case FieldKind::kFkString: |
| 334 | PROTOBUF_MUSTTAIL return MpString(PROTOBUF_TC_PARAM_PASS); |
| 335 | case FieldKind::kFkMessage: |
| 336 | PROTOBUF_MUSTTAIL return MpMessage(PROTOBUF_TC_PARAM_PASS); |
| 337 | case FieldKind::kFkMap: |
| 338 | PROTOBUF_MUSTTAIL return MpMap(PROTOBUF_TC_PARAM_PASS); |
| 339 | default: |
| 340 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | namespace { |
| 345 | |
| 346 | // Offset returns the address `offset` bytes after `base`. |
| 347 | inline void* Offset(void* base, uint32_t offset) { |
| 348 | return static_cast<uint8_t*>(base) + offset; |
| 349 | } |
| 350 | |
| 351 | // InvertPacked changes tag bits from the given wire type to length |
| 352 | // delimited. This is the difference expected between packed and non-packed |
| 353 | // repeated fields. |
| 354 | template <WireFormatLite::WireType Wt> |
| 355 | inline PROTOBUF_ALWAYS_INLINE void InvertPacked(TcFieldData& data) { |
| 356 | data.data ^= Wt ^ WireFormatLite::WIRETYPE_LENGTH_DELIMITED; |
| 357 | } |
| 358 | |
| 359 | } // namespace |
| 360 | |
| 361 | ////////////////////////////////////////////////////////////////////////////// |
| 362 | // Message fields |
| 363 | ////////////////////////////////////////////////////////////////////////////// |
| 364 | |
| 365 | template <typename TagType, bool group_coding> |
| 366 | inline PROTOBUF_ALWAYS_INLINE |
| 367 | const char* TcParser::SingularParseMessageAuxImpl(PROTOBUF_TC_PARAM_DECL) { |
| 368 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 369 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 370 | } |
| 371 | auto saved_tag = UnalignedLoad<TagType>(ptr); |
| 372 | ptr += sizeof(TagType); |
| 373 | hasbits |= (uint64_t{1} << data.hasbit_idx()); |
| 374 | SyncHasbits(msg, hasbits, table); |
| 375 | auto& field = RefAt<MessageLite*>(x: msg, offset: data.offset()); |
| 376 | if (field == nullptr) { |
| 377 | const MessageLite* default_instance = |
| 378 | table->field_aux(idx: data.aux_idx())->message_default; |
| 379 | field = default_instance->New(arena: ctx->data().arena); |
| 380 | } |
| 381 | if (group_coding) { |
| 382 | return ctx->ParseGroup(field, ptr, FastDecodeTag(saved_tag)); |
| 383 | } |
| 384 | return ctx->ParseMessage(msg: field, ptr); |
| 385 | } |
| 386 | |
| 387 | const char* TcParser::FastMS1(PROTOBUF_TC_PARAM_DECL) { |
| 388 | PROTOBUF_MUSTTAIL return SingularParseMessageAuxImpl<uint8_t, false>( |
| 389 | PROTOBUF_TC_PARAM_PASS); |
| 390 | } |
| 391 | |
| 392 | const char* TcParser::FastMS2(PROTOBUF_TC_PARAM_DECL) { |
| 393 | PROTOBUF_MUSTTAIL return SingularParseMessageAuxImpl<uint16_t, false>( |
| 394 | PROTOBUF_TC_PARAM_PASS); |
| 395 | } |
| 396 | |
| 397 | const char* TcParser::FastGS1(PROTOBUF_TC_PARAM_DECL) { |
| 398 | PROTOBUF_MUSTTAIL return SingularParseMessageAuxImpl<uint8_t, true>( |
| 399 | PROTOBUF_TC_PARAM_PASS); |
| 400 | } |
| 401 | |
| 402 | const char* TcParser::FastGS2(PROTOBUF_TC_PARAM_DECL) { |
| 403 | PROTOBUF_MUSTTAIL return SingularParseMessageAuxImpl<uint16_t, true>( |
| 404 | PROTOBUF_TC_PARAM_PASS); |
| 405 | } |
| 406 | |
| 407 | template <typename TagType, bool group_coding> |
| 408 | inline PROTOBUF_ALWAYS_INLINE |
| 409 | const char* TcParser::RepeatedParseMessageAuxImpl(PROTOBUF_TC_PARAM_DECL) { |
| 410 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 411 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 412 | } |
| 413 | auto saved_tag = UnalignedLoad<TagType>(ptr); |
| 414 | ptr += sizeof(TagType); |
| 415 | SyncHasbits(msg, hasbits, table); |
| 416 | const MessageLite* default_instance = |
| 417 | table->field_aux(idx: data.aux_idx())->message_default; |
| 418 | auto& field = RefAt<RepeatedPtrFieldBase>(x: msg, offset: data.offset()); |
| 419 | MessageLite* submsg = |
| 420 | field.Add<GenericTypeHandler<MessageLite>>(prototype: default_instance); |
| 421 | if (group_coding) { |
| 422 | return ctx->ParseGroup(submsg, ptr, FastDecodeTag(saved_tag)); |
| 423 | } |
| 424 | return ctx->ParseMessage(msg: submsg, ptr); |
| 425 | } |
| 426 | |
| 427 | const char* TcParser::FastMR1(PROTOBUF_TC_PARAM_DECL) { |
| 428 | PROTOBUF_MUSTTAIL return RepeatedParseMessageAuxImpl<uint8_t, false>( |
| 429 | PROTOBUF_TC_PARAM_PASS); |
| 430 | } |
| 431 | |
| 432 | const char* TcParser::FastMR2(PROTOBUF_TC_PARAM_DECL) { |
| 433 | PROTOBUF_MUSTTAIL return RepeatedParseMessageAuxImpl<uint16_t, false>( |
| 434 | PROTOBUF_TC_PARAM_PASS); |
| 435 | } |
| 436 | |
| 437 | const char* TcParser::FastGR1(PROTOBUF_TC_PARAM_DECL) { |
| 438 | PROTOBUF_MUSTTAIL return RepeatedParseMessageAuxImpl<uint8_t, true>( |
| 439 | PROTOBUF_TC_PARAM_PASS); |
| 440 | } |
| 441 | |
| 442 | const char* TcParser::FastGR2(PROTOBUF_TC_PARAM_DECL) { |
| 443 | PROTOBUF_MUSTTAIL return RepeatedParseMessageAuxImpl<uint16_t, true>( |
| 444 | PROTOBUF_TC_PARAM_PASS); |
| 445 | } |
| 446 | |
| 447 | ////////////////////////////////////////////////////////////////////////////// |
| 448 | // Fixed fields |
| 449 | ////////////////////////////////////////////////////////////////////////////// |
| 450 | |
| 451 | template <typename LayoutType, typename TagType> |
| 452 | PROTOBUF_ALWAYS_INLINE const char* TcParser::SingularFixed( |
| 453 | PROTOBUF_TC_PARAM_DECL) { |
| 454 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 455 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 456 | } |
| 457 | ptr += sizeof(TagType); // Consume tag |
| 458 | hasbits |= (uint64_t{1} << data.hasbit_idx()); |
| 459 | RefAt<LayoutType>(msg, data.offset()) = UnalignedLoad<LayoutType>(ptr); |
| 460 | ptr += sizeof(LayoutType); |
| 461 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 462 | } |
| 463 | |
| 464 | const char* TcParser::FastF32S1(PROTOBUF_TC_PARAM_DECL) { |
| 465 | PROTOBUF_MUSTTAIL return SingularFixed<uint32_t, uint8_t>( |
| 466 | PROTOBUF_TC_PARAM_PASS); |
| 467 | } |
| 468 | const char* TcParser::FastF32S2(PROTOBUF_TC_PARAM_DECL) { |
| 469 | PROTOBUF_MUSTTAIL return SingularFixed<uint32_t, uint16_t>( |
| 470 | PROTOBUF_TC_PARAM_PASS); |
| 471 | } |
| 472 | const char* TcParser::FastF64S1(PROTOBUF_TC_PARAM_DECL) { |
| 473 | PROTOBUF_MUSTTAIL return SingularFixed<uint64_t, uint8_t>( |
| 474 | PROTOBUF_TC_PARAM_PASS); |
| 475 | } |
| 476 | const char* TcParser::FastF64S2(PROTOBUF_TC_PARAM_DECL) { |
| 477 | PROTOBUF_MUSTTAIL return SingularFixed<uint64_t, uint16_t>( |
| 478 | PROTOBUF_TC_PARAM_PASS); |
| 479 | } |
| 480 | |
| 481 | template <typename LayoutType, typename TagType> |
| 482 | PROTOBUF_ALWAYS_INLINE const char* TcParser::RepeatedFixed( |
| 483 | PROTOBUF_TC_PARAM_DECL) { |
| 484 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 485 | // Check if the field can be parsed as packed repeated: |
| 486 | constexpr WireFormatLite::WireType fallback_wt = |
| 487 | sizeof(LayoutType) == 4 ? WireFormatLite::WIRETYPE_FIXED32 |
| 488 | : WireFormatLite::WIRETYPE_FIXED64; |
| 489 | InvertPacked<fallback_wt>(data); |
| 490 | if (data.coded_tag<TagType>() == 0) { |
| 491 | return PackedFixed<LayoutType, TagType>(PROTOBUF_TC_PARAM_PASS); |
| 492 | } else { |
| 493 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 494 | } |
| 495 | } |
| 496 | auto& field = RefAt<RepeatedField<LayoutType>>(msg, data.offset()); |
| 497 | int idx = field.size(); |
| 498 | auto elem = field.Add(); |
| 499 | int space = field.Capacity() - idx; |
| 500 | idx = 0; |
| 501 | auto expected_tag = UnalignedLoad<TagType>(ptr); |
| 502 | do { |
| 503 | ptr += sizeof(TagType); |
| 504 | elem[idx++] = UnalignedLoad<LayoutType>(ptr); |
| 505 | ptr += sizeof(LayoutType); |
| 506 | if (idx >= space) break; |
| 507 | if (!ctx->DataAvailable(ptr)) break; |
| 508 | } while (UnalignedLoad<TagType>(ptr) == expected_tag); |
| 509 | field.AddNAlreadyReserved(idx - 1); |
| 510 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 511 | } |
| 512 | |
| 513 | const char* TcParser::FastF32R1(PROTOBUF_TC_PARAM_DECL) { |
| 514 | PROTOBUF_MUSTTAIL return RepeatedFixed<uint32_t, uint8_t>( |
| 515 | PROTOBUF_TC_PARAM_PASS); |
| 516 | } |
| 517 | const char* TcParser::FastF32R2(PROTOBUF_TC_PARAM_DECL) { |
| 518 | PROTOBUF_MUSTTAIL return RepeatedFixed<uint32_t, uint16_t>( |
| 519 | PROTOBUF_TC_PARAM_PASS); |
| 520 | } |
| 521 | const char* TcParser::FastF64R1(PROTOBUF_TC_PARAM_DECL) { |
| 522 | PROTOBUF_MUSTTAIL return RepeatedFixed<uint64_t, uint8_t>( |
| 523 | PROTOBUF_TC_PARAM_PASS); |
| 524 | } |
| 525 | const char* TcParser::FastF64R2(PROTOBUF_TC_PARAM_DECL) { |
| 526 | PROTOBUF_MUSTTAIL return RepeatedFixed<uint64_t, uint16_t>( |
| 527 | PROTOBUF_TC_PARAM_PASS); |
| 528 | } |
| 529 | |
| 530 | // Note: some versions of GCC will fail with error "function not inlinable" if |
| 531 | // corecursive functions are both marked with PROTOBUF_ALWAYS_INLINE (Clang |
| 532 | // accepts this). We can still apply the attribute to one of the two functions, |
| 533 | // just not both (so we do mark the Repeated variant as always inlined). This |
| 534 | // also applies to PackedVarint, below. |
| 535 | template <typename LayoutType, typename TagType> |
| 536 | const char* TcParser::PackedFixed(PROTOBUF_TC_PARAM_DECL) { |
| 537 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 538 | // Try parsing as non-packed repeated: |
| 539 | constexpr WireFormatLite::WireType fallback_wt = |
| 540 | sizeof(LayoutType) == 4 ? WireFormatLite::WIRETYPE_FIXED32 |
| 541 | : WireFormatLite::WIRETYPE_FIXED64; |
| 542 | InvertPacked<fallback_wt>(data); |
| 543 | if (data.coded_tag<TagType>() == 0) { |
| 544 | return RepeatedFixed<LayoutType, TagType>(PROTOBUF_TC_PARAM_PASS); |
| 545 | } else { |
| 546 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 547 | } |
| 548 | } |
| 549 | ptr += sizeof(TagType); |
| 550 | // Since ctx->ReadPackedFixed does not use TailCall<> or Return<>, sync any |
| 551 | // pending hasbits now: |
| 552 | SyncHasbits(msg, hasbits, table); |
| 553 | auto& field = RefAt<RepeatedField<LayoutType>>(msg, data.offset()); |
| 554 | int size = ReadSize(pp: &ptr); |
| 555 | // TODO(dlj): add a tailcalling variant of ReadPackedFixed. |
| 556 | return ctx->ReadPackedFixed(ptr, size, |
| 557 | static_cast<RepeatedField<LayoutType>*>(&field)); |
| 558 | } |
| 559 | |
| 560 | const char* TcParser::FastF32P1(PROTOBUF_TC_PARAM_DECL) { |
| 561 | PROTOBUF_MUSTTAIL return PackedFixed<uint32_t, uint8_t>( |
| 562 | PROTOBUF_TC_PARAM_PASS); |
| 563 | } |
| 564 | const char* TcParser::FastF32P2(PROTOBUF_TC_PARAM_DECL) { |
| 565 | PROTOBUF_MUSTTAIL return PackedFixed<uint32_t, uint16_t>( |
| 566 | PROTOBUF_TC_PARAM_PASS); |
| 567 | } |
| 568 | const char* TcParser::FastF64P1(PROTOBUF_TC_PARAM_DECL) { |
| 569 | PROTOBUF_MUSTTAIL return PackedFixed<uint64_t, uint8_t>( |
| 570 | PROTOBUF_TC_PARAM_PASS); |
| 571 | } |
| 572 | const char* TcParser::FastF64P2(PROTOBUF_TC_PARAM_DECL) { |
| 573 | PROTOBUF_MUSTTAIL return PackedFixed<uint64_t, uint16_t>( |
| 574 | PROTOBUF_TC_PARAM_PASS); |
| 575 | } |
| 576 | |
| 577 | ////////////////////////////////////////////////////////////////////////////// |
| 578 | // Varint fields |
| 579 | ////////////////////////////////////////////////////////////////////////////// |
| 580 | |
| 581 | namespace { |
| 582 | |
| 583 | // Shift "byte" left by n * 7 bits, filling vacated bits with ones. |
| 584 | template <int n> |
| 585 | inline PROTOBUF_ALWAYS_INLINE uint64_t |
| 586 | shift_left_fill_with_ones(uint64_t byte, uint64_t ones) { |
| 587 | return (byte << (n * 7)) | (ones >> (64 - (n * 7))); |
| 588 | } |
| 589 | |
| 590 | // Shift "byte" left by n * 7 bits, filling vacated bits with ones, and |
| 591 | // put the new value in res. Return whether the result was negative. |
| 592 | template <int n> |
| 593 | inline PROTOBUF_ALWAYS_INLINE bool shift_left_fill_with_ones_was_negative( |
| 594 | uint64_t byte, uint64_t ones, int64_t& res) { |
| 595 | #if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__) |
| 596 | // For the first two rounds (ptr[1] and ptr[2]), micro benchmarks show a |
| 597 | // substantial improvement from capturing the sign from the condition code |
| 598 | // register on x86-64. |
| 599 | bool sign_bit; |
| 600 | asm("shldq %3, %2, %1" |
| 601 | : "=@ccs" (sign_bit), "+r" (byte) |
| 602 | : "r" (ones), "i" (n * 7)); |
| 603 | res = byte; |
| 604 | return sign_bit; |
| 605 | #else |
| 606 | // Generic fallback: |
| 607 | res = (byte << (n * 7)) | (ones >> (64 - (n * 7))); |
| 608 | return static_cast<int64_t>(res) < 0; |
| 609 | #endif |
| 610 | } |
| 611 | |
| 612 | inline PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint64_t> |
| 613 | Parse64FallbackPair(const char* p, int64_t res1) { |
| 614 | auto ptr = reinterpret_cast<const int8_t*>(p); |
| 615 | |
| 616 | // The algorithm relies on sign extension for each byte to set all high bits |
| 617 | // when the varint continues. It also relies on asserting all of the lower |
| 618 | // bits for each successive byte read. This allows the result to be aggregated |
| 619 | // using a bitwise AND. For example: |
| 620 | // |
| 621 | // 8 1 64 57 ... 24 17 16 9 8 1 |
| 622 | // ptr[0] = 1aaa aaaa ; res1 = 1111 1111 ... 1111 1111 1111 1111 1aaa aaaa |
| 623 | // ptr[1] = 1bbb bbbb ; res2 = 1111 1111 ... 1111 1111 11bb bbbb b111 1111 |
| 624 | // ptr[2] = 1ccc cccc ; res3 = 0000 0000 ... 000c cccc cc11 1111 1111 1111 |
| 625 | // --------------------------------------------- |
| 626 | // res1 & res2 & res3 = 0000 0000 ... 000c cccc ccbb bbbb baaa aaaa |
| 627 | // |
| 628 | // On x86-64, a shld from a single register filled with enough 1s in the high |
| 629 | // bits can accomplish all this in one instruction. It so happens that res1 |
| 630 | // has 57 high bits of ones, which is enough for the largest shift done. |
| 631 | GOOGLE_DCHECK_EQ(res1 >> 7, -1); |
| 632 | uint64_t ones = res1; // save the high 1 bits from res1 (input to SHLD) |
| 633 | int64_t res2, res3; // accumulated result chunks |
| 634 | |
| 635 | if (!shift_left_fill_with_ones_was_negative<1>(byte: ptr[1], ones, res&: res2)) |
| 636 | goto done2; |
| 637 | if (!shift_left_fill_with_ones_was_negative<2>(byte: ptr[2], ones, res&: res3)) |
| 638 | goto done3; |
| 639 | |
| 640 | // For the remainder of the chunks, check the sign of the AND result. |
| 641 | res1 &= shift_left_fill_with_ones<3>(byte: ptr[3], ones); |
| 642 | if (res1 >= 0) goto done4; |
| 643 | res2 &= shift_left_fill_with_ones<4>(byte: ptr[4], ones); |
| 644 | if (res2 >= 0) goto done5; |
| 645 | res3 &= shift_left_fill_with_ones<5>(byte: ptr[5], ones); |
| 646 | if (res3 >= 0) goto done6; |
| 647 | res1 &= shift_left_fill_with_ones<6>(byte: ptr[6], ones); |
| 648 | if (res1 >= 0) goto done7; |
| 649 | res2 &= shift_left_fill_with_ones<7>(byte: ptr[7], ones); |
| 650 | if (res2 >= 0) goto done8; |
| 651 | res3 &= shift_left_fill_with_ones<8>(byte: ptr[8], ones); |
| 652 | if (res3 >= 0) goto done9; |
| 653 | |
| 654 | // For valid 64bit varints, the 10th byte/ptr[9] should be exactly 1. In this |
| 655 | // case, the continuation bit of ptr[8] already set the top bit of res3 |
| 656 | // correctly, so all we have to do is check that the expected case is true. |
| 657 | if (PROTOBUF_PREDICT_TRUE(ptr[9] == 1)) goto done10; |
| 658 | |
| 659 | // A value of 0, however, represents an over-serialized varint. This case |
| 660 | // should not happen, but if does (say, due to a nonconforming serializer), |
| 661 | // deassert the continuation bit that came from ptr[8]. |
| 662 | if (ptr[9] == 0) { |
| 663 | #if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__) |
| 664 | // Use a small instruction since this is an uncommon code path. |
| 665 | asm("btcq $63,%0" : "+r" (res3)); |
| 666 | #else |
| 667 | res3 ^= static_cast<uint64_t>(1) << 63; |
| 668 | #endif |
| 669 | goto done10; |
| 670 | } |
| 671 | |
| 672 | // If the 10th byte/ptr[9] itself has any other value, then it is too big to |
| 673 | // fit in 64 bits. If the continue bit is set, it is an unterminated varint. |
| 674 | return {nullptr, 0}; |
| 675 | |
| 676 | done2: |
| 677 | return {p + 2, res1 & res2}; |
| 678 | done3: |
| 679 | return {p + 3, res1 & res2 & res3}; |
| 680 | done4: |
| 681 | return {p + 4, res1 & res2 & res3}; |
| 682 | done5: |
| 683 | return {p + 5, res1 & res2 & res3}; |
| 684 | done6: |
| 685 | return {p + 6, res1 & res2 & res3}; |
| 686 | done7: |
| 687 | return {p + 7, res1 & res2 & res3}; |
| 688 | done8: |
| 689 | return {p + 8, res1 & res2 & res3}; |
| 690 | done9: |
| 691 | return {p + 9, res1 & res2 & res3}; |
| 692 | done10: |
| 693 | return {p + 10, res1 & res2 & res3}; |
| 694 | } |
| 695 | |
| 696 | inline PROTOBUF_ALWAYS_INLINE const char* ParseVarint(const char* p, |
| 697 | uint64_t* value) { |
| 698 | int64_t byte = static_cast<int8_t>(*p); |
| 699 | if (PROTOBUF_PREDICT_TRUE(byte >= 0)) { |
| 700 | *value = byte; |
| 701 | return p + 1; |
| 702 | } else { |
| 703 | auto tmp = Parse64FallbackPair(p, res1: byte); |
| 704 | if (PROTOBUF_PREDICT_TRUE(tmp.first)) *value = tmp.second; |
| 705 | return tmp.first; |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | template <typename FieldType, bool zigzag = false> |
| 710 | inline FieldType ZigZagDecodeHelper(uint64_t value) { |
| 711 | return static_cast<FieldType>(value); |
| 712 | } |
| 713 | |
| 714 | template <> |
| 715 | inline int32_t ZigZagDecodeHelper<int32_t, true>(uint64_t value) { |
| 716 | return WireFormatLite::ZigZagDecode32(n: value); |
| 717 | } |
| 718 | |
| 719 | template <> |
| 720 | inline int64_t ZigZagDecodeHelper<int64_t, true>(uint64_t value) { |
| 721 | return WireFormatLite::ZigZagDecode64(n: value); |
| 722 | } |
| 723 | |
| 724 | bool EnumIsValidAux(int32_t val, uint16_t xform_val, |
| 725 | TcParseTableBase::FieldAux aux) { |
| 726 | if (xform_val == field_layout::kTvRange) { |
| 727 | auto lo = aux.enum_range.start; |
| 728 | return lo <= val && val < (lo + aux.enum_range.length); |
| 729 | } |
| 730 | return aux.enum_validator(val); |
| 731 | } |
| 732 | |
| 733 | } // namespace |
| 734 | |
| 735 | template <typename FieldType, typename TagType, bool zigzag> |
| 736 | PROTOBUF_ALWAYS_INLINE const char* TcParser::SingularVarint( |
| 737 | PROTOBUF_TC_PARAM_DECL) { |
| 738 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 739 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 740 | } |
| 741 | ptr += sizeof(TagType); // Consume tag |
| 742 | hasbits |= (uint64_t{1} << data.hasbit_idx()); |
| 743 | |
| 744 | // clang isn't smart enough to be able to only conditionally save |
| 745 | // registers to the stack, so we turn the integer-greater-than-128 |
| 746 | // case into a separate routine. |
| 747 | if (PROTOBUF_PREDICT_FALSE(static_cast<int8_t>(*ptr) < 0)) { |
| 748 | PROTOBUF_MUSTTAIL return SingularVarBigint<FieldType, TagType, zigzag>( |
| 749 | PROTOBUF_TC_PARAM_PASS); |
| 750 | } |
| 751 | |
| 752 | RefAt<FieldType>(msg, data.offset()) = |
| 753 | ZigZagDecodeHelper<FieldType, zigzag>(static_cast<uint8_t>(*ptr++)); |
| 754 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 755 | } |
| 756 | |
| 757 | template <typename FieldType, typename TagType, bool zigzag> |
| 758 | PROTOBUF_NOINLINE const char* TcParser::SingularVarBigint( |
| 759 | PROTOBUF_TC_PARAM_DECL) { |
| 760 | // For some reason clang wants to save 5 registers to the stack here, |
| 761 | // but we only need four for this code, so save the data we don't need |
| 762 | // to the stack. Happily, saving them this way uses regular store |
| 763 | // instructions rather than PUSH/POP, which saves time at the cost of greater |
| 764 | // code size, but for this heavily-used piece of code, that's fine. |
| 765 | struct Spill { |
| 766 | uint64_t field_data; |
| 767 | ::google::protobuf::MessageLite* msg; |
| 768 | const ::google::protobuf::internal::TcParseTableBase* table; |
| 769 | uint64_t hasbits; |
| 770 | }; |
| 771 | volatile Spill spill = {data.data, msg, table, hasbits}; |
| 772 | |
| 773 | uint64_t tmp; |
| 774 | PROTOBUF_ASSUME(static_cast<int8_t>(*ptr) < 0); |
| 775 | ptr = ParseVarint(p: ptr, value: &tmp); |
| 776 | |
| 777 | data.data = spill.field_data; |
| 778 | msg = spill.msg; |
| 779 | table = spill.table; |
| 780 | hasbits = spill.hasbits; |
| 781 | |
| 782 | if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) { |
| 783 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 784 | } |
| 785 | RefAt<FieldType>(msg, data.offset()) = |
| 786 | ZigZagDecodeHelper<FieldType, zigzag>(tmp); |
| 787 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 788 | } |
| 789 | |
| 790 | const char* TcParser::FastV8S1(PROTOBUF_TC_PARAM_DECL) { |
| 791 | PROTOBUF_MUSTTAIL return SingularVarint<bool, uint8_t>( |
| 792 | PROTOBUF_TC_PARAM_PASS); |
| 793 | } |
| 794 | const char* TcParser::FastV8S2(PROTOBUF_TC_PARAM_DECL) { |
| 795 | PROTOBUF_MUSTTAIL return SingularVarint<bool, uint16_t>( |
| 796 | PROTOBUF_TC_PARAM_PASS); |
| 797 | } |
| 798 | const char* TcParser::FastV32S1(PROTOBUF_TC_PARAM_DECL) { |
| 799 | PROTOBUF_MUSTTAIL return SingularVarint<uint32_t, uint8_t>( |
| 800 | PROTOBUF_TC_PARAM_PASS); |
| 801 | } |
| 802 | const char* TcParser::FastV32S2(PROTOBUF_TC_PARAM_DECL) { |
| 803 | PROTOBUF_MUSTTAIL return SingularVarint<uint32_t, uint16_t>( |
| 804 | PROTOBUF_TC_PARAM_PASS); |
| 805 | } |
| 806 | const char* TcParser::FastV64S1(PROTOBUF_TC_PARAM_DECL) { |
| 807 | PROTOBUF_MUSTTAIL return SingularVarint<uint64_t, uint8_t>( |
| 808 | PROTOBUF_TC_PARAM_PASS); |
| 809 | } |
| 810 | const char* TcParser::FastV64S2(PROTOBUF_TC_PARAM_DECL) { |
| 811 | PROTOBUF_MUSTTAIL return SingularVarint<uint64_t, uint16_t>( |
| 812 | PROTOBUF_TC_PARAM_PASS); |
| 813 | } |
| 814 | |
| 815 | const char* TcParser::FastZ32S1(PROTOBUF_TC_PARAM_DECL) { |
| 816 | PROTOBUF_MUSTTAIL return SingularVarint<int32_t, uint8_t, true>( |
| 817 | PROTOBUF_TC_PARAM_PASS); |
| 818 | } |
| 819 | const char* TcParser::FastZ32S2(PROTOBUF_TC_PARAM_DECL) { |
| 820 | PROTOBUF_MUSTTAIL return SingularVarint<int32_t, uint16_t, true>( |
| 821 | PROTOBUF_TC_PARAM_PASS); |
| 822 | } |
| 823 | const char* TcParser::FastZ64S1(PROTOBUF_TC_PARAM_DECL) { |
| 824 | PROTOBUF_MUSTTAIL return SingularVarint<int64_t, uint8_t, true>( |
| 825 | PROTOBUF_TC_PARAM_PASS); |
| 826 | } |
| 827 | const char* TcParser::FastZ64S2(PROTOBUF_TC_PARAM_DECL) { |
| 828 | PROTOBUF_MUSTTAIL return SingularVarint<int64_t, uint16_t, true>( |
| 829 | PROTOBUF_TC_PARAM_PASS); |
| 830 | } |
| 831 | |
| 832 | template <typename FieldType, typename TagType, bool zigzag> |
| 833 | PROTOBUF_ALWAYS_INLINE const char* TcParser::RepeatedVarint( |
| 834 | PROTOBUF_TC_PARAM_DECL) { |
| 835 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 836 | // Try parsing as non-packed repeated: |
| 837 | InvertPacked<WireFormatLite::WIRETYPE_VARINT>(data); |
| 838 | if (data.coded_tag<TagType>() == 0) { |
| 839 | return PackedVarint<FieldType, TagType, zigzag>(PROTOBUF_TC_PARAM_PASS); |
| 840 | } else { |
| 841 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 842 | } |
| 843 | } |
| 844 | auto& field = RefAt<RepeatedField<FieldType>>(msg, data.offset()); |
| 845 | auto expected_tag = UnalignedLoad<TagType>(ptr); |
| 846 | do { |
| 847 | ptr += sizeof(TagType); |
| 848 | uint64_t tmp; |
| 849 | ptr = ParseVarint(p: ptr, value: &tmp); |
| 850 | if (ptr == nullptr) { |
| 851 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 852 | } |
| 853 | field.Add(ZigZagDecodeHelper<FieldType, zigzag>(tmp)); |
| 854 | if (!ctx->DataAvailable(ptr)) { |
| 855 | break; |
| 856 | } |
| 857 | } while (UnalignedLoad<TagType>(ptr) == expected_tag); |
| 858 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 859 | } |
| 860 | |
| 861 | const char* TcParser::FastV8R1(PROTOBUF_TC_PARAM_DECL) { |
| 862 | PROTOBUF_MUSTTAIL return RepeatedVarint<bool, uint8_t>( |
| 863 | PROTOBUF_TC_PARAM_PASS); |
| 864 | } |
| 865 | const char* TcParser::FastV8R2(PROTOBUF_TC_PARAM_DECL) { |
| 866 | PROTOBUF_MUSTTAIL return RepeatedVarint<bool, uint16_t>( |
| 867 | PROTOBUF_TC_PARAM_PASS); |
| 868 | } |
| 869 | const char* TcParser::FastV32R1(PROTOBUF_TC_PARAM_DECL) { |
| 870 | PROTOBUF_MUSTTAIL return RepeatedVarint<uint32_t, uint8_t>( |
| 871 | PROTOBUF_TC_PARAM_PASS); |
| 872 | } |
| 873 | const char* TcParser::FastV32R2(PROTOBUF_TC_PARAM_DECL) { |
| 874 | PROTOBUF_MUSTTAIL return RepeatedVarint<uint32_t, uint16_t>( |
| 875 | PROTOBUF_TC_PARAM_PASS); |
| 876 | } |
| 877 | const char* TcParser::FastV64R1(PROTOBUF_TC_PARAM_DECL) { |
| 878 | PROTOBUF_MUSTTAIL return RepeatedVarint<uint64_t, uint8_t>( |
| 879 | PROTOBUF_TC_PARAM_PASS); |
| 880 | } |
| 881 | const char* TcParser::FastV64R2(PROTOBUF_TC_PARAM_DECL) { |
| 882 | PROTOBUF_MUSTTAIL return RepeatedVarint<uint64_t, uint16_t>( |
| 883 | PROTOBUF_TC_PARAM_PASS); |
| 884 | } |
| 885 | |
| 886 | const char* TcParser::FastZ32R1(PROTOBUF_TC_PARAM_DECL) { |
| 887 | PROTOBUF_MUSTTAIL return RepeatedVarint<int32_t, uint8_t, true>( |
| 888 | PROTOBUF_TC_PARAM_PASS); |
| 889 | } |
| 890 | const char* TcParser::FastZ32R2(PROTOBUF_TC_PARAM_DECL) { |
| 891 | PROTOBUF_MUSTTAIL return RepeatedVarint<int32_t, uint16_t, true>( |
| 892 | PROTOBUF_TC_PARAM_PASS); |
| 893 | } |
| 894 | const char* TcParser::FastZ64R1(PROTOBUF_TC_PARAM_DECL) { |
| 895 | PROTOBUF_MUSTTAIL return RepeatedVarint<int64_t, uint8_t, true>( |
| 896 | PROTOBUF_TC_PARAM_PASS); |
| 897 | } |
| 898 | const char* TcParser::FastZ64R2(PROTOBUF_TC_PARAM_DECL) { |
| 899 | PROTOBUF_MUSTTAIL return RepeatedVarint<int64_t, uint16_t, true>( |
| 900 | PROTOBUF_TC_PARAM_PASS); |
| 901 | } |
| 902 | |
| 903 | // See comment on PackedFixed for why this is not PROTOBUF_ALWAYS_INLINE. |
| 904 | template <typename FieldType, typename TagType, bool zigzag> |
| 905 | const char* TcParser::PackedVarint(PROTOBUF_TC_PARAM_DECL) { |
| 906 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 907 | InvertPacked<WireFormatLite::WIRETYPE_VARINT>(data); |
| 908 | if (data.coded_tag<TagType>() == 0) { |
| 909 | return RepeatedVarint<FieldType, TagType, zigzag>(PROTOBUF_TC_PARAM_PASS); |
| 910 | } else { |
| 911 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 912 | } |
| 913 | } |
| 914 | ptr += sizeof(TagType); |
| 915 | // Since ctx->ReadPackedVarint does not use TailCall or Return, sync any |
| 916 | // pending hasbits now: |
| 917 | SyncHasbits(msg, hasbits, table); |
| 918 | auto* field = &RefAt<RepeatedField<FieldType>>(msg, data.offset()); |
| 919 | return ctx->ReadPackedVarint(ptr, [field](uint64_t varint) { |
| 920 | FieldType val; |
| 921 | if (zigzag) { |
| 922 | if (sizeof(FieldType) == 8) { |
| 923 | val = WireFormatLite::ZigZagDecode64(n: varint); |
| 924 | } else { |
| 925 | val = WireFormatLite::ZigZagDecode32(n: varint); |
| 926 | } |
| 927 | } else { |
| 928 | val = varint; |
| 929 | } |
| 930 | field->Add(val); |
| 931 | }); |
| 932 | } |
| 933 | |
| 934 | const char* TcParser::FastV8P1(PROTOBUF_TC_PARAM_DECL) { |
| 935 | PROTOBUF_MUSTTAIL return PackedVarint<bool, uint8_t>(PROTOBUF_TC_PARAM_PASS); |
| 936 | } |
| 937 | const char* TcParser::FastV8P2(PROTOBUF_TC_PARAM_DECL) { |
| 938 | PROTOBUF_MUSTTAIL return PackedVarint<bool, uint16_t>(PROTOBUF_TC_PARAM_PASS); |
| 939 | } |
| 940 | const char* TcParser::FastV32P1(PROTOBUF_TC_PARAM_DECL) { |
| 941 | PROTOBUF_MUSTTAIL return PackedVarint<uint32_t, uint8_t>( |
| 942 | PROTOBUF_TC_PARAM_PASS); |
| 943 | } |
| 944 | const char* TcParser::FastV32P2(PROTOBUF_TC_PARAM_DECL) { |
| 945 | PROTOBUF_MUSTTAIL return PackedVarint<uint32_t, uint16_t>( |
| 946 | PROTOBUF_TC_PARAM_PASS); |
| 947 | } |
| 948 | const char* TcParser::FastV64P1(PROTOBUF_TC_PARAM_DECL) { |
| 949 | PROTOBUF_MUSTTAIL return PackedVarint<uint64_t, uint8_t>( |
| 950 | PROTOBUF_TC_PARAM_PASS); |
| 951 | } |
| 952 | const char* TcParser::FastV64P2(PROTOBUF_TC_PARAM_DECL) { |
| 953 | PROTOBUF_MUSTTAIL return PackedVarint<uint64_t, uint16_t>( |
| 954 | PROTOBUF_TC_PARAM_PASS); |
| 955 | } |
| 956 | |
| 957 | const char* TcParser::FastZ32P1(PROTOBUF_TC_PARAM_DECL) { |
| 958 | PROTOBUF_MUSTTAIL return PackedVarint<int32_t, uint8_t, true>( |
| 959 | PROTOBUF_TC_PARAM_PASS); |
| 960 | } |
| 961 | const char* TcParser::FastZ32P2(PROTOBUF_TC_PARAM_DECL) { |
| 962 | PROTOBUF_MUSTTAIL return PackedVarint<int32_t, uint16_t, true>( |
| 963 | PROTOBUF_TC_PARAM_PASS); |
| 964 | } |
| 965 | const char* TcParser::FastZ64P1(PROTOBUF_TC_PARAM_DECL) { |
| 966 | PROTOBUF_MUSTTAIL return PackedVarint<int64_t, uint8_t, true>( |
| 967 | PROTOBUF_TC_PARAM_PASS); |
| 968 | } |
| 969 | const char* TcParser::FastZ64P2(PROTOBUF_TC_PARAM_DECL) { |
| 970 | PROTOBUF_MUSTTAIL return PackedVarint<int64_t, uint16_t, true>( |
| 971 | PROTOBUF_TC_PARAM_PASS); |
| 972 | } |
| 973 | |
| 974 | ////////////////////////////////////////////////////////////////////////////// |
| 975 | // Enum fields |
| 976 | ////////////////////////////////////////////////////////////////////////////// |
| 977 | |
| 978 | PROTOBUF_NOINLINE const char* TcParser::FastUnknownEnumFallback( |
| 979 | PROTOBUF_TC_PARAM_DECL) { |
| 980 | (void)msg; |
| 981 | (void)ctx; |
| 982 | (void)hasbits; |
| 983 | |
| 984 | // If we know we want to put this field directly into the unknown field set, |
| 985 | // then we can skip the call to MiniParse and directly call table->fallback. |
| 986 | // However, we first have to update `data` to contain the decoded tag. |
| 987 | uint32_t tag; |
| 988 | ptr = ReadTag(p: ptr, out: &tag); |
| 989 | if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) { |
| 990 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 991 | } |
| 992 | data.data = tag; |
| 993 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 994 | } |
| 995 | |
| 996 | template <typename TagType, uint16_t xform_val> |
| 997 | PROTOBUF_ALWAYS_INLINE const char* TcParser::SingularEnum( |
| 998 | PROTOBUF_TC_PARAM_DECL) { |
| 999 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 1000 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1001 | } |
| 1002 | const char* ptr2 = ptr; // Save for unknown enum case |
| 1003 | ptr += sizeof(TagType); // Consume tag |
| 1004 | uint64_t tmp; |
| 1005 | ptr = ParseVarint(p: ptr, value: &tmp); |
| 1006 | if (ptr == nullptr) { |
| 1007 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1008 | } |
| 1009 | const TcParseTableBase::FieldAux aux = *table->field_aux(idx: data.aux_idx()); |
| 1010 | if (PROTOBUF_PREDICT_FALSE( |
| 1011 | !EnumIsValidAux(static_cast<int32_t>(tmp), xform_val, aux))) { |
| 1012 | ptr = ptr2; |
| 1013 | PROTOBUF_MUSTTAIL return FastUnknownEnumFallback(PROTOBUF_TC_PARAM_PASS); |
| 1014 | } |
| 1015 | hasbits |= (uint64_t{1} << data.hasbit_idx()); |
| 1016 | RefAt<int32_t>(x: msg, offset: data.offset()) = tmp; |
| 1017 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 1018 | } |
| 1019 | |
| 1020 | const char* TcParser::FastErS1(PROTOBUF_TC_PARAM_DECL) { |
| 1021 | PROTOBUF_MUSTTAIL return SingularEnum<uint8_t, field_layout::kTvRange>( |
| 1022 | PROTOBUF_TC_PARAM_PASS); |
| 1023 | } |
| 1024 | const char* TcParser::FastErS2(PROTOBUF_TC_PARAM_DECL) { |
| 1025 | PROTOBUF_MUSTTAIL return SingularEnum<uint16_t, field_layout::kTvRange>( |
| 1026 | PROTOBUF_TC_PARAM_PASS); |
| 1027 | } |
| 1028 | const char* TcParser::FastEvS1(PROTOBUF_TC_PARAM_DECL) { |
| 1029 | PROTOBUF_MUSTTAIL return SingularEnum<uint8_t, field_layout::kTvEnum>( |
| 1030 | PROTOBUF_TC_PARAM_PASS); |
| 1031 | } |
| 1032 | const char* TcParser::FastEvS2(PROTOBUF_TC_PARAM_DECL) { |
| 1033 | PROTOBUF_MUSTTAIL return SingularEnum<uint16_t, field_layout::kTvEnum>( |
| 1034 | PROTOBUF_TC_PARAM_PASS); |
| 1035 | } |
| 1036 | |
| 1037 | template <typename TagType, uint16_t xform_val> |
| 1038 | PROTOBUF_ALWAYS_INLINE const char* TcParser::RepeatedEnum( |
| 1039 | PROTOBUF_TC_PARAM_DECL) { |
| 1040 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 1041 | InvertPacked<WireFormatLite::WIRETYPE_VARINT>(data); |
| 1042 | if (data.coded_tag<TagType>() == 0) { |
| 1043 | // Packed parsing is handled by generated fallback. |
| 1044 | PROTOBUF_MUSTTAIL return FastUnknownEnumFallback(PROTOBUF_TC_PARAM_PASS); |
| 1045 | } else { |
| 1046 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1047 | } |
| 1048 | } |
| 1049 | auto& field = RefAt<RepeatedField<int32_t>>(x: msg, offset: data.offset()); |
| 1050 | auto expected_tag = UnalignedLoad<TagType>(ptr); |
| 1051 | const TcParseTableBase::FieldAux aux = *table->field_aux(idx: data.aux_idx()); |
| 1052 | do { |
| 1053 | const char* ptr2 = ptr; // save for unknown enum case |
| 1054 | ptr += sizeof(TagType); |
| 1055 | uint64_t tmp; |
| 1056 | ptr = ParseVarint(p: ptr, value: &tmp); |
| 1057 | if (ptr == nullptr) { |
| 1058 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1059 | } |
| 1060 | if (PROTOBUF_PREDICT_FALSE( |
| 1061 | !EnumIsValidAux(static_cast<int32_t>(tmp), xform_val, aux))) { |
| 1062 | // We can avoid duplicate work in MiniParse by directly calling |
| 1063 | // table->fallback. |
| 1064 | ptr = ptr2; |
| 1065 | PROTOBUF_MUSTTAIL return FastUnknownEnumFallback(PROTOBUF_TC_PARAM_PASS); |
| 1066 | } |
| 1067 | field.Add(value: static_cast<int32_t>(tmp)); |
| 1068 | if (!ctx->DataAvailable(ptr)) { |
| 1069 | break; |
| 1070 | } |
| 1071 | } while (UnalignedLoad<TagType>(ptr) == expected_tag); |
| 1072 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1073 | } |
| 1074 | |
| 1075 | const char* TcParser::FastErR1(PROTOBUF_TC_PARAM_DECL) { |
| 1076 | PROTOBUF_MUSTTAIL return RepeatedEnum<uint8_t, field_layout::kTvRange>( |
| 1077 | PROTOBUF_TC_PARAM_PASS); |
| 1078 | } |
| 1079 | const char* TcParser::FastErR2(PROTOBUF_TC_PARAM_DECL) { |
| 1080 | PROTOBUF_MUSTTAIL return RepeatedEnum<uint16_t, field_layout::kTvRange>( |
| 1081 | PROTOBUF_TC_PARAM_PASS); |
| 1082 | } |
| 1083 | const char* TcParser::FastEvR1(PROTOBUF_TC_PARAM_DECL) { |
| 1084 | PROTOBUF_MUSTTAIL return RepeatedEnum<uint8_t, field_layout::kTvEnum>( |
| 1085 | PROTOBUF_TC_PARAM_PASS); |
| 1086 | } |
| 1087 | const char* TcParser::FastEvR2(PROTOBUF_TC_PARAM_DECL) { |
| 1088 | PROTOBUF_MUSTTAIL return RepeatedEnum<uint16_t, field_layout::kTvEnum>( |
| 1089 | PROTOBUF_TC_PARAM_PASS); |
| 1090 | } |
| 1091 | |
| 1092 | ////////////////////////////////////////////////////////////////////////////// |
| 1093 | // String/bytes fields |
| 1094 | ////////////////////////////////////////////////////////////////////////////// |
| 1095 | |
| 1096 | // Defined in wire_format_lite.cc |
| 1097 | void PrintUTF8ErrorLog(StringPiece message_name, |
| 1098 | StringPiece field_name, const char* operation_str, |
| 1099 | bool emit_stacktrace); |
| 1100 | |
| 1101 | void TcParser::ReportFastUtf8Error(uint32_t decoded_tag, |
| 1102 | const TcParseTableBase* table) { |
| 1103 | uint32_t field_num = decoded_tag >> 3; |
| 1104 | const auto* entry = FindFieldEntry(table, field_num); |
| 1105 | PrintUTF8ErrorLog(message_name: MessageName(table), field_name: FieldName(table, field_entry: entry), operation_str: "parsing" , |
| 1106 | emit_stacktrace: false); |
| 1107 | } |
| 1108 | |
| 1109 | namespace { |
| 1110 | |
| 1111 | PROTOBUF_NOINLINE |
| 1112 | const char* SingularStringParserFallback(ArenaStringPtr* s, const char* ptr, |
| 1113 | EpsCopyInputStream* stream) { |
| 1114 | int size = ReadSize(pp: &ptr); |
| 1115 | if (!ptr) return nullptr; |
| 1116 | return stream->ReadString(ptr, size, s: s->MutableNoCopy(arena: nullptr)); |
| 1117 | } |
| 1118 | |
| 1119 | } // namespace |
| 1120 | |
| 1121 | template <typename TagType, TcParser::Utf8Type utf8> |
| 1122 | PROTOBUF_ALWAYS_INLINE const char* TcParser::SingularString( |
| 1123 | PROTOBUF_TC_PARAM_DECL) { |
| 1124 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 1125 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1126 | } |
| 1127 | auto saved_tag = UnalignedLoad<TagType>(ptr); |
| 1128 | ptr += sizeof(TagType); |
| 1129 | hasbits |= (uint64_t{1} << data.hasbit_idx()); |
| 1130 | auto& field = RefAt<ArenaStringPtr>(x: msg, offset: data.offset()); |
| 1131 | auto arena = ctx->data().arena; |
| 1132 | if (arena) { |
| 1133 | ptr = ctx->ReadArenaString(ptr, s: &field, arena); |
| 1134 | } else { |
| 1135 | ptr = SingularStringParserFallback(s: &field, ptr, stream: ctx); |
| 1136 | } |
| 1137 | if (ptr == nullptr) return Error(PROTOBUF_TC_PARAM_PASS); |
| 1138 | switch (utf8) { |
| 1139 | case kNoUtf8: |
| 1140 | #ifdef NDEBUG |
| 1141 | case kUtf8ValidateOnly: |
| 1142 | #endif |
| 1143 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1144 | default: |
| 1145 | if (PROTOBUF_PREDICT_TRUE(IsStructurallyValidUTF8(field.Get()))) { |
| 1146 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1147 | } |
| 1148 | ReportFastUtf8Error(decoded_tag: FastDecodeTag(saved_tag), table); |
| 1149 | return utf8 == kUtf8 ? Error(PROTOBUF_TC_PARAM_PASS) |
| 1150 | : ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | const char* TcParser::FastBS1(PROTOBUF_TC_PARAM_DECL) { |
| 1155 | PROTOBUF_MUSTTAIL return SingularString<uint8_t, kNoUtf8>( |
| 1156 | PROTOBUF_TC_PARAM_PASS); |
| 1157 | } |
| 1158 | const char* TcParser::FastBS2(PROTOBUF_TC_PARAM_DECL) { |
| 1159 | PROTOBUF_MUSTTAIL return SingularString<uint16_t, kNoUtf8>( |
| 1160 | PROTOBUF_TC_PARAM_PASS); |
| 1161 | } |
| 1162 | const char* TcParser::FastSS1(PROTOBUF_TC_PARAM_DECL) { |
| 1163 | PROTOBUF_MUSTTAIL return SingularString<uint8_t, kUtf8ValidateOnly>( |
| 1164 | PROTOBUF_TC_PARAM_PASS); |
| 1165 | } |
| 1166 | const char* TcParser::FastSS2(PROTOBUF_TC_PARAM_DECL) { |
| 1167 | PROTOBUF_MUSTTAIL return SingularString<uint16_t, kUtf8ValidateOnly>( |
| 1168 | PROTOBUF_TC_PARAM_PASS); |
| 1169 | } |
| 1170 | const char* TcParser::FastUS1(PROTOBUF_TC_PARAM_DECL) { |
| 1171 | PROTOBUF_MUSTTAIL return SingularString<uint8_t, kUtf8>( |
| 1172 | PROTOBUF_TC_PARAM_PASS); |
| 1173 | } |
| 1174 | const char* TcParser::FastUS2(PROTOBUF_TC_PARAM_DECL) { |
| 1175 | PROTOBUF_MUSTTAIL return SingularString<uint16_t, kUtf8>( |
| 1176 | PROTOBUF_TC_PARAM_PASS); |
| 1177 | } |
| 1178 | |
| 1179 | // Inlined string variants: |
| 1180 | |
| 1181 | const char* TcParser::FastBiS1(PROTOBUF_TC_PARAM_DECL) { |
| 1182 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1183 | } |
| 1184 | const char* TcParser::FastBiS2(PROTOBUF_TC_PARAM_DECL) { |
| 1185 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1186 | } |
| 1187 | const char* TcParser::FastSiS1(PROTOBUF_TC_PARAM_DECL) { |
| 1188 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1189 | } |
| 1190 | const char* TcParser::FastSiS2(PROTOBUF_TC_PARAM_DECL) { |
| 1191 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1192 | } |
| 1193 | const char* TcParser::FastUiS1(PROTOBUF_TC_PARAM_DECL) { |
| 1194 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1195 | } |
| 1196 | const char* TcParser::FastUiS2(PROTOBUF_TC_PARAM_DECL) { |
| 1197 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1198 | } |
| 1199 | |
| 1200 | template <typename TagType, TcParser::Utf8Type utf8> |
| 1201 | PROTOBUF_ALWAYS_INLINE const char* TcParser::RepeatedString( |
| 1202 | PROTOBUF_TC_PARAM_DECL) { |
| 1203 | if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) { |
| 1204 | PROTOBUF_MUSTTAIL return MiniParse(PROTOBUF_TC_PARAM_PASS); |
| 1205 | } |
| 1206 | auto expected_tag = UnalignedLoad<TagType>(ptr); |
| 1207 | auto& field = RefAt<RepeatedPtrField<std::string>>(x: msg, offset: data.offset()); |
| 1208 | do { |
| 1209 | ptr += sizeof(TagType); |
| 1210 | std::string* str = field.Add(); |
| 1211 | ptr = InlineGreedyStringParser(s: str, ptr, ctx); |
| 1212 | if (ptr == nullptr) { |
| 1213 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1214 | } |
| 1215 | switch (utf8) { |
| 1216 | case kNoUtf8: |
| 1217 | #ifdef NDEBUG |
| 1218 | case kUtf8ValidateOnly: |
| 1219 | #endif |
| 1220 | break; |
| 1221 | default: |
| 1222 | if (PROTOBUF_PREDICT_TRUE(IsStructurallyValidUTF8(*str))) { |
| 1223 | break; |
| 1224 | } |
| 1225 | ReportFastUtf8Error(decoded_tag: FastDecodeTag(expected_tag), table); |
| 1226 | if (utf8 == kUtf8) return Error(PROTOBUF_TC_PARAM_PASS); |
| 1227 | break; |
| 1228 | } |
| 1229 | if (!ctx->DataAvailable(ptr)) break; |
| 1230 | } while (UnalignedLoad<TagType>(ptr) == expected_tag); |
| 1231 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1232 | } |
| 1233 | |
| 1234 | const char* TcParser::FastBR1(PROTOBUF_TC_PARAM_DECL) { |
| 1235 | PROTOBUF_MUSTTAIL return RepeatedString<uint8_t, kNoUtf8>( |
| 1236 | PROTOBUF_TC_PARAM_PASS); |
| 1237 | } |
| 1238 | const char* TcParser::FastBR2(PROTOBUF_TC_PARAM_DECL) { |
| 1239 | PROTOBUF_MUSTTAIL return RepeatedString<uint16_t, kNoUtf8>( |
| 1240 | PROTOBUF_TC_PARAM_PASS); |
| 1241 | } |
| 1242 | const char* TcParser::FastSR1(PROTOBUF_TC_PARAM_DECL) { |
| 1243 | PROTOBUF_MUSTTAIL return RepeatedString<uint8_t, kUtf8ValidateOnly>( |
| 1244 | PROTOBUF_TC_PARAM_PASS); |
| 1245 | } |
| 1246 | const char* TcParser::FastSR2(PROTOBUF_TC_PARAM_DECL) { |
| 1247 | PROTOBUF_MUSTTAIL return RepeatedString<uint16_t, kUtf8ValidateOnly>( |
| 1248 | PROTOBUF_TC_PARAM_PASS); |
| 1249 | } |
| 1250 | const char* TcParser::FastUR1(PROTOBUF_TC_PARAM_DECL) { |
| 1251 | PROTOBUF_MUSTTAIL return RepeatedString<uint8_t, kUtf8>( |
| 1252 | PROTOBUF_TC_PARAM_PASS); |
| 1253 | } |
| 1254 | const char* TcParser::FastUR2(PROTOBUF_TC_PARAM_DECL) { |
| 1255 | PROTOBUF_MUSTTAIL return RepeatedString<uint16_t, kUtf8>( |
| 1256 | PROTOBUF_TC_PARAM_PASS); |
| 1257 | } |
| 1258 | |
| 1259 | ////////////////////////////////////////////////////////////////////////////// |
| 1260 | // Mini parsing |
| 1261 | ////////////////////////////////////////////////////////////////////////////// |
| 1262 | |
| 1263 | namespace { |
| 1264 | inline void SetHas(const TcParseTableBase* table, const FieldEntry& entry, |
| 1265 | MessageLite* msg, uint64_t& hasbits) { |
| 1266 | int32_t has_idx = entry.has_idx; |
| 1267 | if (has_idx < 32) { |
| 1268 | hasbits |= uint64_t{1} << has_idx; |
| 1269 | } else { |
| 1270 | auto* hasblocks = &TcParser::RefAt<uint32_t>(x: msg, offset: table->has_bits_offset); |
| 1271 | #if defined(__x86_64__) && defined(__GNUC__) |
| 1272 | asm("bts %1, %0\n" : "+m" (*hasblocks) : "r" (has_idx)); |
| 1273 | #else |
| 1274 | auto& hasblock = hasblocks[has_idx / 32]; |
| 1275 | hasblock |= uint32_t{1} << (has_idx % 32); |
| 1276 | #endif |
| 1277 | } |
| 1278 | } |
| 1279 | } // namespace |
| 1280 | |
| 1281 | // Destroys any existing oneof union member (if necessary). Returns true if the |
| 1282 | // caller is responsible for initializing the object, or false if the field |
| 1283 | // already has the desired case. |
| 1284 | bool TcParser::ChangeOneof(const TcParseTableBase* table, |
| 1285 | const TcParseTableBase::FieldEntry& entry, |
| 1286 | uint32_t field_num, ParseContext* ctx, |
| 1287 | MessageLite* msg) { |
| 1288 | // The _oneof_case_ array offset is stored in the first aux entry. |
| 1289 | uint32_t oneof_case_offset = table->field_aux(idx: 0u)->offset; |
| 1290 | // The _oneof_case_ array index is stored in the has-bit index. |
| 1291 | uint32_t* oneof_case = |
| 1292 | &TcParser::RefAt<uint32_t>(x: msg, offset: oneof_case_offset) + entry.has_idx; |
| 1293 | uint32_t current_case = *oneof_case; |
| 1294 | *oneof_case = field_num; |
| 1295 | |
| 1296 | if (current_case == 0) { |
| 1297 | // If the member is empty, we don't have anything to clear. Caller is |
| 1298 | // responsible for creating a new member object. |
| 1299 | return true; |
| 1300 | } |
| 1301 | if (current_case == field_num) { |
| 1302 | // If the member is already active, then it should be merged. We're done. |
| 1303 | return false; |
| 1304 | } |
| 1305 | // Look up the value that is already stored, and dispose of it if necessary. |
| 1306 | const FieldEntry* current_entry = FindFieldEntry(table, field_num: current_case); |
| 1307 | uint16_t current_kind = current_entry->type_card & field_layout::kFkMask; |
| 1308 | uint16_t current_rep = current_entry->type_card & field_layout::kRepMask; |
| 1309 | if (current_kind == field_layout::kFkString) { |
| 1310 | switch (current_rep) { |
| 1311 | case field_layout::kRepAString: { |
| 1312 | auto& field = RefAt<ArenaStringPtr>(x: msg, offset: current_entry->offset); |
| 1313 | field.Destroy(); |
| 1314 | break; |
| 1315 | } |
| 1316 | case field_layout::kRepSString: |
| 1317 | case field_layout::kRepIString: |
| 1318 | default: |
| 1319 | GOOGLE_LOG(DFATAL) << "string rep not handled: " |
| 1320 | << (current_rep >> field_layout::kRepShift); |
| 1321 | return true; |
| 1322 | } |
| 1323 | } else if (current_kind == field_layout::kFkMessage) { |
| 1324 | switch (current_rep) { |
| 1325 | case field_layout::kRepMessage: |
| 1326 | case field_layout::kRepGroup: |
| 1327 | case field_layout::kRepIWeak: { |
| 1328 | auto& field = RefAt<MessageLite*>(x: msg, offset: current_entry->offset); |
| 1329 | if (!ctx->data().arena) { |
| 1330 | delete field; |
| 1331 | } |
| 1332 | break; |
| 1333 | } |
| 1334 | default: |
| 1335 | GOOGLE_LOG(DFATAL) << "message rep not handled: " |
| 1336 | << (current_rep >> field_layout::kRepShift); |
| 1337 | break; |
| 1338 | } |
| 1339 | } |
| 1340 | return true; |
| 1341 | } |
| 1342 | |
| 1343 | const char* TcParser::MpFixed(PROTOBUF_TC_PARAM_DECL) { |
| 1344 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1345 | const uint16_t type_card = entry.type_card; |
| 1346 | const uint16_t card = type_card & field_layout::kFcMask; |
| 1347 | |
| 1348 | // Check for repeated parsing (wiretype fallback is handled there): |
| 1349 | if (card == field_layout::kFcRepeated) { |
| 1350 | PROTOBUF_MUSTTAIL return MpRepeatedFixed(PROTOBUF_TC_PARAM_PASS); |
| 1351 | } |
| 1352 | // Check for mismatched wiretype: |
| 1353 | const uint16_t rep = type_card & field_layout::kRepMask; |
| 1354 | const uint32_t decoded_wiretype = data.tag() & 7; |
| 1355 | if (rep == field_layout::kRep64Bits) { |
| 1356 | if (decoded_wiretype != WireFormatLite::WIRETYPE_FIXED64) { |
| 1357 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1358 | } |
| 1359 | } else { |
| 1360 | GOOGLE_DCHECK_EQ(rep, static_cast<uint16_t>(field_layout::kRep32Bits)); |
| 1361 | if (decoded_wiretype != WireFormatLite::WIRETYPE_FIXED32) { |
| 1362 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1363 | } |
| 1364 | } |
| 1365 | // Set the field present: |
| 1366 | if (card == field_layout::kFcOptional) { |
| 1367 | SetHas(table, entry, msg, hasbits); |
| 1368 | } else if (card == field_layout::kFcOneof) { |
| 1369 | ChangeOneof(table, entry, field_num: data.tag() >> 3, ctx, msg); |
| 1370 | } |
| 1371 | // Copy the value: |
| 1372 | if (rep == field_layout::kRep64Bits) { |
| 1373 | RefAt<uint64_t>(x: msg, offset: entry.offset) = UnalignedLoad<uint64_t>(p: ptr); |
| 1374 | ptr += sizeof(uint64_t); |
| 1375 | } else { |
| 1376 | RefAt<uint32_t>(x: msg, offset: entry.offset) = UnalignedLoad<uint32_t>(p: ptr); |
| 1377 | ptr += sizeof(uint32_t); |
| 1378 | } |
| 1379 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 1380 | } |
| 1381 | |
| 1382 | const char* TcParser::MpRepeatedFixed(PROTOBUF_TC_PARAM_DECL) { |
| 1383 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1384 | const uint32_t decoded_tag = data.tag(); |
| 1385 | const uint32_t decoded_wiretype = decoded_tag & 7; |
| 1386 | |
| 1387 | // Check for packed repeated fallback: |
| 1388 | if (decoded_wiretype == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1389 | PROTOBUF_MUSTTAIL return MpPackedFixed(PROTOBUF_TC_PARAM_PASS); |
| 1390 | } |
| 1391 | |
| 1392 | const uint16_t type_card = entry.type_card; |
| 1393 | const uint16_t rep = type_card & field_layout::kRepMask; |
| 1394 | if (rep == field_layout::kRep64Bits) { |
| 1395 | if (decoded_wiretype != WireFormatLite::WIRETYPE_FIXED64) { |
| 1396 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1397 | } |
| 1398 | auto& field = RefAt<RepeatedField<uint64_t>>(x: msg, offset: entry.offset); |
| 1399 | constexpr auto size = sizeof(uint64_t); |
| 1400 | const char* ptr2 = ptr; |
| 1401 | uint32_t next_tag; |
| 1402 | do { |
| 1403 | ptr = ptr2; |
| 1404 | *field.Add() = UnalignedLoad<uint64_t>(p: ptr); |
| 1405 | ptr += size; |
| 1406 | if (!ctx->DataAvailable(ptr)) break; |
| 1407 | ptr2 = ReadTag(p: ptr, out: &next_tag); |
| 1408 | } while (next_tag == decoded_tag); |
| 1409 | } else { |
| 1410 | GOOGLE_DCHECK_EQ(rep, static_cast<uint16_t>(field_layout::kRep32Bits)); |
| 1411 | if (decoded_wiretype != WireFormatLite::WIRETYPE_FIXED32) { |
| 1412 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1413 | } |
| 1414 | auto& field = RefAt<RepeatedField<uint32_t>>(x: msg, offset: entry.offset); |
| 1415 | constexpr auto size = sizeof(uint32_t); |
| 1416 | const char* ptr2 = ptr; |
| 1417 | uint32_t next_tag; |
| 1418 | do { |
| 1419 | ptr = ptr2; |
| 1420 | *field.Add() = UnalignedLoad<uint32_t>(p: ptr); |
| 1421 | ptr += size; |
| 1422 | if (!ctx->DataAvailable(ptr)) break; |
| 1423 | ptr2 = ReadTag(p: ptr, out: &next_tag); |
| 1424 | } while (next_tag == decoded_tag); |
| 1425 | } |
| 1426 | |
| 1427 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 1428 | } |
| 1429 | |
| 1430 | const char* TcParser::MpPackedFixed(PROTOBUF_TC_PARAM_DECL) { |
| 1431 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1432 | const uint16_t type_card = entry.type_card; |
| 1433 | const uint32_t decoded_wiretype = data.tag() & 7; |
| 1434 | |
| 1435 | // Check for non-packed repeated fallback: |
| 1436 | if (decoded_wiretype != WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1437 | PROTOBUF_MUSTTAIL return MpRepeatedFixed(PROTOBUF_TC_PARAM_PASS); |
| 1438 | } |
| 1439 | |
| 1440 | // Since ctx->ReadPackedFixed does not use TailCall<> or Return<>, sync any |
| 1441 | // pending hasbits now: |
| 1442 | SyncHasbits(msg, hasbits, table); |
| 1443 | |
| 1444 | int size = ReadSize(pp: &ptr); |
| 1445 | uint16_t rep = type_card & field_layout::kRepMask; |
| 1446 | if (rep == field_layout::kRep64Bits) { |
| 1447 | auto& field = RefAt<RepeatedField<uint64_t>>(x: msg, offset: entry.offset); |
| 1448 | ptr = ctx->ReadPackedFixed(ptr, size, out: &field); |
| 1449 | } else { |
| 1450 | GOOGLE_DCHECK_EQ(rep, static_cast<uint16_t>(field_layout::kRep32Bits)); |
| 1451 | auto& field = RefAt<RepeatedField<uint32_t>>(x: msg, offset: entry.offset); |
| 1452 | ptr = ctx->ReadPackedFixed(ptr, size, out: &field); |
| 1453 | } |
| 1454 | |
| 1455 | if (ptr == nullptr) { |
| 1456 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1457 | } |
| 1458 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 1459 | } |
| 1460 | |
| 1461 | const char* TcParser::MpVarint(PROTOBUF_TC_PARAM_DECL) { |
| 1462 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1463 | const uint16_t type_card = entry.type_card; |
| 1464 | const uint16_t card = type_card & field_layout::kFcMask; |
| 1465 | |
| 1466 | // Check for repeated parsing: |
| 1467 | if (card == field_layout::kFcRepeated) { |
| 1468 | PROTOBUF_MUSTTAIL return MpRepeatedVarint(PROTOBUF_TC_PARAM_PASS); |
| 1469 | } |
| 1470 | // Check for wire type mismatch: |
| 1471 | if ((data.tag() & 7) != WireFormatLite::WIRETYPE_VARINT) { |
| 1472 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1473 | } |
| 1474 | const uint16_t xform_val = type_card & field_layout::kTvMask; |
| 1475 | const bool is_zigzag = xform_val == field_layout::kTvZigZag; |
| 1476 | const bool is_validated_enum = xform_val & field_layout::kTvEnum; |
| 1477 | |
| 1478 | // Parse the value: |
| 1479 | const char* ptr2 = ptr; // save for unknown enum case |
| 1480 | uint64_t tmp; |
| 1481 | ptr = ParseVarint(p: ptr, value: &tmp); |
| 1482 | if (ptr == nullptr) return Error(PROTOBUF_TC_PARAM_PASS); |
| 1483 | |
| 1484 | // Transform and/or validate the value |
| 1485 | uint16_t rep = type_card & field_layout::kRepMask; |
| 1486 | if (rep == field_layout::kRep64Bits) { |
| 1487 | if (is_zigzag) { |
| 1488 | tmp = WireFormatLite::ZigZagDecode64(n: tmp); |
| 1489 | } |
| 1490 | } else if (rep == field_layout::kRep32Bits) { |
| 1491 | if (is_validated_enum) { |
| 1492 | if (!EnumIsValidAux(val: tmp, xform_val, aux: *table->field_aux(entry: &entry))) { |
| 1493 | ptr = ptr2; |
| 1494 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1495 | } |
| 1496 | } else if (is_zigzag) { |
| 1497 | tmp = WireFormatLite::ZigZagDecode32(n: static_cast<uint32_t>(tmp)); |
| 1498 | } |
| 1499 | } |
| 1500 | |
| 1501 | // Mark the field as present: |
| 1502 | const bool is_oneof = card == field_layout::kFcOneof; |
| 1503 | if (card == field_layout::kFcOptional) { |
| 1504 | SetHas(table, entry, msg, hasbits); |
| 1505 | } else if (is_oneof) { |
| 1506 | ChangeOneof(table, entry, field_num: data.tag() >> 3, ctx, msg); |
| 1507 | } |
| 1508 | |
| 1509 | if (rep == field_layout::kRep64Bits) { |
| 1510 | RefAt<uint64_t>(x: msg, offset: entry.offset) = tmp; |
| 1511 | } else if (rep == field_layout::kRep32Bits) { |
| 1512 | RefAt<uint32_t>(x: msg, offset: entry.offset) = static_cast<uint32_t>(tmp); |
| 1513 | } else { |
| 1514 | GOOGLE_DCHECK_EQ(rep, static_cast<uint16_t>(field_layout::kRep8Bits)); |
| 1515 | RefAt<bool>(x: msg, offset: entry.offset) = static_cast<bool>(tmp); |
| 1516 | } |
| 1517 | |
| 1518 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 1519 | } |
| 1520 | |
| 1521 | const char* TcParser::MpRepeatedVarint(PROTOBUF_TC_PARAM_DECL) { |
| 1522 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1523 | auto type_card = entry.type_card; |
| 1524 | const uint32_t decoded_tag = data.tag(); |
| 1525 | auto decoded_wiretype = decoded_tag & 7; |
| 1526 | |
| 1527 | // Check for packed repeated fallback: |
| 1528 | if (decoded_wiretype == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1529 | PROTOBUF_MUSTTAIL return MpPackedVarint(PROTOBUF_TC_PARAM_PASS); |
| 1530 | } |
| 1531 | // Check for wire type mismatch: |
| 1532 | if (decoded_wiretype != WireFormatLite::WIRETYPE_VARINT) { |
| 1533 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1534 | } |
| 1535 | uint16_t xform_val = (type_card & field_layout::kTvMask); |
| 1536 | const bool is_zigzag = xform_val == field_layout::kTvZigZag; |
| 1537 | const bool is_validated_enum = xform_val & field_layout::kTvEnum; |
| 1538 | |
| 1539 | uint16_t rep = type_card & field_layout::kRepMask; |
| 1540 | if (rep == field_layout::kRep64Bits) { |
| 1541 | auto& field = RefAt<RepeatedField<uint64_t>>(x: msg, offset: entry.offset); |
| 1542 | const char* ptr2 = ptr; |
| 1543 | uint32_t next_tag; |
| 1544 | do { |
| 1545 | uint64_t tmp; |
| 1546 | ptr = ParseVarint(p: ptr2, value: &tmp); |
| 1547 | if (ptr == nullptr) return Error(PROTOBUF_TC_PARAM_PASS); |
| 1548 | field.Add(value: is_zigzag ? WireFormatLite::ZigZagDecode64(n: tmp) : tmp); |
| 1549 | if (!ctx->DataAvailable(ptr)) break; |
| 1550 | ptr2 = ReadTag(p: ptr, out: &next_tag); |
| 1551 | } while (next_tag == decoded_tag); |
| 1552 | } else if (rep == field_layout::kRep32Bits) { |
| 1553 | auto& field = RefAt<RepeatedField<uint32_t>>(x: msg, offset: entry.offset); |
| 1554 | const char* ptr2 = ptr; |
| 1555 | uint32_t next_tag; |
| 1556 | do { |
| 1557 | uint64_t tmp; |
| 1558 | ptr = ParseVarint(p: ptr2, value: &tmp); |
| 1559 | if (ptr == nullptr) return Error(PROTOBUF_TC_PARAM_PASS); |
| 1560 | if (is_validated_enum) { |
| 1561 | if (!EnumIsValidAux(val: tmp, xform_val, aux: *table->field_aux(entry: &entry))) { |
| 1562 | ptr = ptr2; |
| 1563 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1564 | } |
| 1565 | } else if (is_zigzag) { |
| 1566 | tmp = WireFormatLite::ZigZagDecode32(n: tmp); |
| 1567 | } |
| 1568 | field.Add(value: tmp); |
| 1569 | if (!ctx->DataAvailable(ptr)) break; |
| 1570 | ptr2 = ReadTag(p: ptr, out: &next_tag); |
| 1571 | } while (next_tag == decoded_tag); |
| 1572 | } else { |
| 1573 | GOOGLE_DCHECK_EQ(rep, static_cast<uint16_t>(field_layout::kRep8Bits)); |
| 1574 | auto& field = RefAt<RepeatedField<bool>>(x: msg, offset: entry.offset); |
| 1575 | const char* ptr2 = ptr; |
| 1576 | uint32_t next_tag; |
| 1577 | do { |
| 1578 | uint64_t tmp; |
| 1579 | ptr = ParseVarint(p: ptr2, value: &tmp); |
| 1580 | if (ptr == nullptr) return Error(PROTOBUF_TC_PARAM_PASS); |
| 1581 | field.Add(value: static_cast<bool>(tmp)); |
| 1582 | if (!ctx->DataAvailable(ptr)) break; |
| 1583 | ptr2 = ReadTag(p: ptr, out: &next_tag); |
| 1584 | } while (next_tag == decoded_tag); |
| 1585 | } |
| 1586 | |
| 1587 | PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS); |
| 1588 | } |
| 1589 | |
| 1590 | const char* TcParser::MpPackedVarint(PROTOBUF_TC_PARAM_DECL) { |
| 1591 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1592 | auto type_card = entry.type_card; |
| 1593 | auto decoded_wiretype = data.tag() & 7; |
| 1594 | |
| 1595 | // Check for non-packed repeated fallback: |
| 1596 | if (decoded_wiretype != WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1597 | PROTOBUF_MUSTTAIL return MpRepeatedVarint(PROTOBUF_TC_PARAM_PASS); |
| 1598 | } |
| 1599 | uint16_t xform_val = (type_card & field_layout::kTvMask); |
| 1600 | const bool is_zigzag = xform_val == field_layout::kTvZigZag; |
| 1601 | const bool is_validated_enum = xform_val & field_layout::kTvEnum; |
| 1602 | if (is_validated_enum) { |
| 1603 | // TODO(b/206890171): handle enums |
| 1604 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1605 | } |
| 1606 | |
| 1607 | // Since ctx->ReadPackedFixed does not use TailCall<> or Return<>, sync any |
| 1608 | // pending hasbits now: |
| 1609 | SyncHasbits(msg, hasbits, table); |
| 1610 | |
| 1611 | uint16_t rep = type_card & field_layout::kRepMask; |
| 1612 | if (rep == field_layout::kRep64Bits) { |
| 1613 | auto* field = &RefAt<RepeatedField<uint64_t>>(x: msg, offset: entry.offset); |
| 1614 | return ctx->ReadPackedVarint(ptr, add: [field, is_zigzag](uint64_t value) { |
| 1615 | field->Add(value: is_zigzag ? WireFormatLite::ZigZagDecode64(n: value) : value); |
| 1616 | }); |
| 1617 | } else if (rep == field_layout::kRep32Bits) { |
| 1618 | auto* field = &RefAt<RepeatedField<uint32_t>>(x: msg, offset: entry.offset); |
| 1619 | return ctx->ReadPackedVarint(ptr, add: [field, is_zigzag](uint64_t value) { |
| 1620 | field->Add(value: is_zigzag ? WireFormatLite::ZigZagDecode32( |
| 1621 | n: static_cast<uint32_t>(value)) |
| 1622 | : value); |
| 1623 | }); |
| 1624 | } else { |
| 1625 | GOOGLE_DCHECK_EQ(rep, static_cast<uint16_t>(field_layout::kRep8Bits)); |
| 1626 | auto* field = &RefAt<RepeatedField<bool>>(x: msg, offset: entry.offset); |
| 1627 | return ctx->ReadPackedVarint( |
| 1628 | ptr, add: [field](uint64_t value) { field->Add(value); }); |
| 1629 | } |
| 1630 | |
| 1631 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1632 | } |
| 1633 | |
| 1634 | bool TcParser::MpVerifyUtf8(StringPiece wire_bytes, |
| 1635 | const TcParseTableBase* table, |
| 1636 | const FieldEntry& entry, uint16_t xform_val) { |
| 1637 | if (xform_val == field_layout::kTvUtf8) { |
| 1638 | if (!IsStructurallyValidUTF8(str: wire_bytes)) { |
| 1639 | PrintUTF8ErrorLog(message_name: MessageName(table), field_name: FieldName(table, field_entry: &entry), operation_str: "parsing" , |
| 1640 | emit_stacktrace: false); |
| 1641 | return false; |
| 1642 | } |
| 1643 | return true; |
| 1644 | } |
| 1645 | #ifndef NDEBUG |
| 1646 | if (xform_val == field_layout::kTvUtf8Debug) { |
| 1647 | if (!IsStructurallyValidUTF8(wire_bytes)) { |
| 1648 | PrintUTF8ErrorLog(MessageName(table), FieldName(table, &entry), "parsing" , |
| 1649 | false); |
| 1650 | } |
| 1651 | } |
| 1652 | #endif // NDEBUG |
| 1653 | return true; |
| 1654 | } |
| 1655 | |
| 1656 | const char* TcParser::MpString(PROTOBUF_TC_PARAM_DECL) { |
| 1657 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1658 | const uint16_t type_card = entry.type_card; |
| 1659 | const uint16_t card = type_card & field_layout::kFcMask; |
| 1660 | const uint32_t decoded_wiretype = data.tag() & 7; |
| 1661 | |
| 1662 | if (decoded_wiretype != WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1663 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1664 | } |
| 1665 | if (card == field_layout::kFcRepeated) { |
| 1666 | PROTOBUF_MUSTTAIL return MpRepeatedString(PROTOBUF_TC_PARAM_PASS); |
| 1667 | } |
| 1668 | const uint16_t xform_val = type_card & field_layout::kTvMask; |
| 1669 | const uint16_t rep = type_card & field_layout::kRepMask; |
| 1670 | if (rep == field_layout::kRepIString) { |
| 1671 | // TODO(b/198211897): support InilnedStringField. |
| 1672 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1673 | } |
| 1674 | |
| 1675 | // Mark the field as present: |
| 1676 | const bool is_oneof = card == field_layout::kFcOneof; |
| 1677 | bool need_init = false; |
| 1678 | if (card == field_layout::kFcOptional) { |
| 1679 | SetHas(table, entry, msg, hasbits); |
| 1680 | } else if (is_oneof) { |
| 1681 | need_init = ChangeOneof(table, entry, field_num: data.tag() >> 3, ctx, msg); |
| 1682 | } |
| 1683 | |
| 1684 | bool is_valid = false; |
| 1685 | Arena* arena = ctx->data().arena; |
| 1686 | switch (rep) { |
| 1687 | case field_layout::kRepAString: { |
| 1688 | auto& field = RefAt<ArenaStringPtr>(x: msg, offset: entry.offset); |
| 1689 | if (need_init) field.InitDefault(); |
| 1690 | if (arena) { |
| 1691 | ptr = ctx->ReadArenaString(ptr, s: &field, arena); |
| 1692 | } else { |
| 1693 | std::string* str = field.MutableNoCopy(arena: nullptr); |
| 1694 | ptr = InlineGreedyStringParser(s: str, ptr, ctx); |
| 1695 | } |
| 1696 | if (!ptr) break; |
| 1697 | is_valid = MpVerifyUtf8(wire_bytes: field.Get(), table, entry, xform_val); |
| 1698 | break; |
| 1699 | } |
| 1700 | |
| 1701 | case field_layout::kRepIString: { |
| 1702 | break; |
| 1703 | } |
| 1704 | } |
| 1705 | |
| 1706 | if (ptr == nullptr || !is_valid) { |
| 1707 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1708 | } |
| 1709 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1710 | } |
| 1711 | |
| 1712 | const char* TcParser::MpRepeatedString(PROTOBUF_TC_PARAM_DECL) { |
| 1713 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1714 | const uint16_t type_card = entry.type_card; |
| 1715 | const uint32_t decoded_tag = data.tag(); |
| 1716 | const uint32_t decoded_wiretype = decoded_tag & 7; |
| 1717 | |
| 1718 | if (decoded_wiretype != WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1719 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1720 | } |
| 1721 | |
| 1722 | const uint16_t rep = type_card & field_layout::kRepMask; |
| 1723 | const uint16_t xform_val = type_card & field_layout::kTvMask; |
| 1724 | switch (rep) { |
| 1725 | case field_layout::kRepSString: { |
| 1726 | auto& field = RefAt<RepeatedPtrField<std::string>>(x: msg, offset: entry.offset); |
| 1727 | const char* ptr2 = ptr; |
| 1728 | uint32_t next_tag; |
| 1729 | do { |
| 1730 | ptr = ptr2; |
| 1731 | std::string* str = field.Add(); |
| 1732 | ptr = InlineGreedyStringParser(s: str, ptr, ctx); |
| 1733 | if (PROTOBUF_PREDICT_FALSE( |
| 1734 | ptr == nullptr || |
| 1735 | !MpVerifyUtf8(*str, table, entry, xform_val))) { |
| 1736 | return Error(PROTOBUF_TC_PARAM_PASS); |
| 1737 | } |
| 1738 | if (!ctx->DataAvailable(ptr)) break; |
| 1739 | ptr2 = ReadTag(p: ptr, out: &next_tag); |
| 1740 | } while (next_tag == decoded_tag); |
| 1741 | break; |
| 1742 | } |
| 1743 | |
| 1744 | #ifndef NDEBUG |
| 1745 | default: |
| 1746 | GOOGLE_LOG(FATAL) << "Unsupported repeated string rep: " << rep; |
| 1747 | break; |
| 1748 | #endif |
| 1749 | } |
| 1750 | |
| 1751 | return ToParseLoop(PROTOBUF_TC_PARAM_PASS); |
| 1752 | } |
| 1753 | |
| 1754 | const char* TcParser::MpMessage(PROTOBUF_TC_PARAM_DECL) { |
| 1755 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1756 | const uint16_t type_card = entry.type_card; |
| 1757 | const uint16_t card = type_card & field_layout::kFcMask; |
| 1758 | |
| 1759 | // Check for repeated parsing: |
| 1760 | if (card == field_layout::kFcRepeated) { |
| 1761 | PROTOBUF_MUSTTAIL return MpRepeatedMessage(PROTOBUF_TC_PARAM_PASS); |
| 1762 | } |
| 1763 | |
| 1764 | const uint32_t decoded_tag = data.tag(); |
| 1765 | const uint32_t decoded_wiretype = decoded_tag & 7; |
| 1766 | const uint16_t rep = type_card & field_layout::kRepMask; |
| 1767 | const bool is_group = rep == field_layout::kRepGroup; |
| 1768 | |
| 1769 | // Validate wiretype: |
| 1770 | switch (rep) { |
| 1771 | case field_layout::kRepMessage: |
| 1772 | if (decoded_wiretype != WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1773 | goto fallback; |
| 1774 | } |
| 1775 | break; |
| 1776 | case field_layout::kRepGroup: |
| 1777 | if (decoded_wiretype != WireFormatLite::WIRETYPE_START_GROUP) { |
| 1778 | goto fallback; |
| 1779 | } |
| 1780 | break; |
| 1781 | default: { |
| 1782 | fallback: |
| 1783 | // Lazy and implicit weak fields are handled by generated code: |
| 1784 | // TODO(b/210762816): support these. |
| 1785 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | const bool is_oneof = card == field_layout::kFcOneof; |
| 1790 | bool need_init = false; |
| 1791 | if (card == field_layout::kFcOptional) { |
| 1792 | SetHas(table, entry, msg, hasbits); |
| 1793 | } else if (is_oneof) { |
| 1794 | need_init = ChangeOneof(table, entry, field_num: data.tag() >> 3, ctx, msg); |
| 1795 | } |
| 1796 | MessageLite*& field = RefAt<MessageLite*>(x: msg, offset: entry.offset); |
| 1797 | if (need_init || field == nullptr) { |
| 1798 | const MessageLite* default_instance = |
| 1799 | table->field_aux(entry: &entry)->message_default; |
| 1800 | field = default_instance->New(arena: ctx->data().arena); |
| 1801 | } |
| 1802 | SyncHasbits(msg, hasbits, table); |
| 1803 | if (is_group) { |
| 1804 | return ctx->ParseGroup(msg: field, ptr, tag: decoded_tag); |
| 1805 | } |
| 1806 | return ctx->ParseMessage(msg: field, ptr); |
| 1807 | } |
| 1808 | |
| 1809 | const char* TcParser::MpRepeatedMessage(PROTOBUF_TC_PARAM_DECL) { |
| 1810 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1811 | const uint16_t type_card = entry.type_card; |
| 1812 | GOOGLE_DCHECK_EQ(type_card & field_layout::kFcMask, |
| 1813 | static_cast<uint16_t>(field_layout::kFcRepeated)); |
| 1814 | const uint32_t decoded_tag = data.tag(); |
| 1815 | const uint32_t decoded_wiretype = decoded_tag & 7; |
| 1816 | const uint16_t rep = type_card & field_layout::kRepMask; |
| 1817 | const bool is_group = rep == field_layout::kRepGroup; |
| 1818 | |
| 1819 | // Validate wiretype: |
| 1820 | switch (rep) { |
| 1821 | case field_layout::kRepMessage: |
| 1822 | if (decoded_wiretype != WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { |
| 1823 | goto fallback; |
| 1824 | } |
| 1825 | break; |
| 1826 | case field_layout::kRepGroup: |
| 1827 | if (decoded_wiretype != WireFormatLite::WIRETYPE_START_GROUP) { |
| 1828 | goto fallback; |
| 1829 | } |
| 1830 | break; |
| 1831 | default: { |
| 1832 | fallback: |
| 1833 | // Lazy and implicit weak fields are handled by generated code: |
| 1834 | // TODO(b/210762816): support these. |
| 1835 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | SyncHasbits(msg, hasbits, table); |
| 1840 | const MessageLite* default_instance = |
| 1841 | table->field_aux(entry: &entry)->message_default; |
| 1842 | auto& field = RefAt<RepeatedPtrFieldBase>(x: msg, offset: entry.offset); |
| 1843 | MessageLite* value = |
| 1844 | field.Add<GenericTypeHandler<MessageLite>>(prototype: default_instance); |
| 1845 | if (is_group) { |
| 1846 | return ctx->ParseGroup(msg: value, ptr, tag: decoded_tag); |
| 1847 | } |
| 1848 | return ctx->ParseMessage(msg: value, ptr); |
| 1849 | } |
| 1850 | |
| 1851 | const char* TcParser::MpMap(PROTOBUF_TC_PARAM_DECL) { |
| 1852 | const auto& entry = RefAt<FieldEntry>(x: table, offset: data.entry_offset()); |
| 1853 | (void)entry; |
| 1854 | PROTOBUF_MUSTTAIL return table->fallback(PROTOBUF_TC_PARAM_PASS); |
| 1855 | } |
| 1856 | |
| 1857 | } // namespace internal |
| 1858 | } // namespace protobuf |
| 1859 | } // namespace google |
| 1860 | |