| 1 | /* |
| 2 | * Copyright (c) 2008-2015, NVIDIA CORPORATION. All rights reserved. |
| 3 | * |
| 4 | * NVIDIA CORPORATION and its licensors retain all intellectual property |
| 5 | * and proprietary rights in and to this software, related documentation |
| 6 | * and any modifications thereto. Any use, reproduction, disclosure or |
| 7 | * distribution of this software and related documentation without an express |
| 8 | * license agreement from NVIDIA CORPORATION is strictly prohibited. |
| 9 | */ |
| 10 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 11 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 12 | |
| 13 | |
| 14 | #ifndef PX_PHYSICS_NX_ARTICULATION_JOINT |
| 15 | #define PX_PHYSICS_NX_ARTICULATION_JOINT |
| 16 | /** \addtogroup physics |
| 17 | @{ */ |
| 18 | |
| 19 | #include "PxPhysXConfig.h" |
| 20 | #include "common/PxBase.h" |
| 21 | |
| 22 | #ifndef PX_DOXYGEN |
| 23 | namespace physx |
| 24 | { |
| 25 | #endif |
| 26 | |
| 27 | /** |
| 28 | \brief The type of joint drive to use for the articulation joint. |
| 29 | |
| 30 | Two drive models are currently supported. in the TARGET model, the drive spring displacement will be determined |
| 31 | as the rotation vector from the relative quaternion beetween child and parent, and the target quaternion. |
| 32 | |
| 33 | In the ERROR model, the drive spring displacement will be taken directly from the imaginary part of the relative |
| 34 | quaternion. This drive model requires more computation on the part of the application, but allows driving the joing |
| 35 | with a spring displacement that is more than a complete rotation. |
| 36 | |
| 37 | @see PxArticulationJoint |
| 38 | */ |
| 39 | |
| 40 | struct PxArticulationJointDriveType |
| 41 | { |
| 42 | enum Enum |
| 43 | { |
| 44 | eTARGET = 0, // use the quaternion as the drive target |
| 45 | eERROR = 1 // use the vector part of the quaternion as the drive error. |
| 46 | }; |
| 47 | }; |
| 48 | |
| 49 | |
| 50 | /** |
| 51 | \brief a joint between two links in an articulation. |
| 52 | |
| 53 | The joint model is very similar to a PxSphericalJoint with swing and twist limits, |
| 54 | and an implicit drive model. |
| 55 | |
| 56 | @see PxArticulation PxArticulationLink |
| 57 | */ |
| 58 | |
| 59 | class PxArticulationJoint : public PxBase |
| 60 | { |
| 61 | public: |
| 62 | |
| 63 | /** |
| 64 | \brief set the joint pose in the parent frame |
| 65 | |
| 66 | \param[in] pose the joint pose in the parent frame |
| 67 | <b>Default:</b> the identity matrix |
| 68 | |
| 69 | @see getParentPose() |
| 70 | */ |
| 71 | |
| 72 | virtual void setParentPose(const PxTransform& pose) = 0; |
| 73 | |
| 74 | /** |
| 75 | \brief get the joint pose in the parent frame |
| 76 | |
| 77 | \return the joint pose in the parent frame |
| 78 | |
| 79 | @see setParentPose() |
| 80 | */ |
| 81 | |
| 82 | virtual PxTransform getParentPose() const = 0; |
| 83 | |
| 84 | |
| 85 | /** |
| 86 | \brief set the joint pose in the child frame |
| 87 | |
| 88 | \param[in] pose the joint pose in the child frame |
| 89 | <b>Default:</b> the identity matrix |
| 90 | |
| 91 | @see getChildPose() |
| 92 | */ |
| 93 | |
| 94 | virtual void setChildPose(const PxTransform& pose) = 0; |
| 95 | |
| 96 | /** |
| 97 | \brief get the joint pose in the child frame |
| 98 | |
| 99 | \return the joint pose in the child frame |
| 100 | |
| 101 | @see setChildPose() |
| 102 | */ |
| 103 | virtual PxTransform getChildPose() const = 0; |
| 104 | |
| 105 | |
| 106 | /** |
| 107 | \brief set the target drive |
| 108 | |
| 109 | This is the target position for the joint drive, measured in the parent constraint frame. |
| 110 | |
| 111 | \param[in] orientation the target orientation for the joint |
| 112 | <b>Range:</b> a unit quaternion |
| 113 | <b>Default:</b> the identity quaternion |
| 114 | |
| 115 | @see getTargetOrientation() |
| 116 | */ |
| 117 | |
| 118 | virtual void setTargetOrientation(const PxQuat& orientation) = 0; |
| 119 | |
| 120 | /** |
| 121 | \brief get the target drive position |
| 122 | |
| 123 | \return the joint drive target position |
| 124 | |
| 125 | @see setTargetOrientation() |
| 126 | */ |
| 127 | virtual PxQuat getTargetOrientation() const = 0; |
| 128 | |
| 129 | /** |
| 130 | \brief set the target drive velocity |
| 131 | |
| 132 | This is the target velocity for the joint drive, measured in the parent constraint frame |
| 133 | |
| 134 | \param[in] velocity the target velocity for the joint |
| 135 | <b>Default:</b> the zero vector |
| 136 | |
| 137 | @see getTargetVelocity() |
| 138 | */ |
| 139 | virtual void setTargetVelocity(const PxVec3& velocity) = 0; |
| 140 | |
| 141 | /** |
| 142 | \brief get the target drive velocity |
| 143 | |
| 144 | \return the target velocity for the joint |
| 145 | |
| 146 | @see setTargetVelocity() |
| 147 | */ |
| 148 | virtual PxVec3 getTargetVelocity() const = 0; |
| 149 | |
| 150 | |
| 151 | /** |
| 152 | \brief set the drive type |
| 153 | |
| 154 | \param[in] driveType the drive type for the joint |
| 155 | <b>Default:</b> PxArticulationJointDriveType::eTARGET |
| 156 | |
| 157 | @see getDriveType() |
| 158 | */ |
| 159 | virtual void setDriveType(PxArticulationJointDriveType::Enum driveType) = 0; |
| 160 | |
| 161 | /** |
| 162 | \brief get the drive type |
| 163 | |
| 164 | \return the drive type |
| 165 | |
| 166 | @see setDriveType() |
| 167 | */ |
| 168 | virtual PxArticulationJointDriveType::Enum |
| 169 | getDriveType() const = 0; |
| 170 | |
| 171 | |
| 172 | /** |
| 173 | \brief set the drive strength of the joint acceleration spring. |
| 174 | |
| 175 | The acceleration generated by the spring drive is proportional to |
| 176 | this value and the angle between the drive target position and the |
| 177 | current position. |
| 178 | |
| 179 | \param[in] spring the spring strength of the joint |
| 180 | <b>Range:</b> [0, PX_MAX_F32)<br> |
| 181 | <b>Default:</b> 0.0 |
| 182 | |
| 183 | @see getStiffness() |
| 184 | */ |
| 185 | virtual void setStiffness(PxReal spring) = 0; |
| 186 | |
| 187 | /** |
| 188 | \brief get the drive strength of the joint acceleration spring |
| 189 | |
| 190 | \return the spring strength of the joint |
| 191 | |
| 192 | @see setStiffness() |
| 193 | */ |
| 194 | virtual PxReal getStiffness() const = 0; |
| 195 | |
| 196 | |
| 197 | /** |
| 198 | \brief set the damping of the joint acceleration spring |
| 199 | |
| 200 | The acceleration generated by the spring drive is proportional to |
| 201 | this value and the difference between the angular velocity of the |
| 202 | joint and the target drive velocity. |
| 203 | |
| 204 | \param[in] damping the damping of the joint drive |
| 205 | <b>Range:</b> [0, PX_MAX_F32)<br> |
| 206 | <b>Default:</b> 0.0 |
| 207 | |
| 208 | @see getDamping() |
| 209 | */ |
| 210 | virtual void setDamping(PxReal damping) = 0; |
| 211 | |
| 212 | /** |
| 213 | \brief get the damping of the joint acceleration spring |
| 214 | |
| 215 | @see setDamping() |
| 216 | */ |
| 217 | |
| 218 | virtual PxReal getDamping() const = 0; |
| 219 | |
| 220 | /** |
| 221 | \brief set the internal compliance |
| 222 | |
| 223 | Compliance determines the extent to which the joint resists acceleration. |
| 224 | |
| 225 | There are separate values for resistance to accelerations caused by external |
| 226 | forces such as gravity and contact forces, and internal forces generated from |
| 227 | other joints. |
| 228 | |
| 229 | A low compliance means that forces have little effect, a compliance of 1 means |
| 230 | the joint does not resist such forces at all. |
| 231 | |
| 232 | \param[in] compliance the compliance to internal forces |
| 233 | <b> Range: (0, 1]</b> |
| 234 | <b> Default:</b> 0.0 |
| 235 | |
| 236 | @see getInternalCompliance() |
| 237 | */ |
| 238 | |
| 239 | virtual void setInternalCompliance(PxReal compliance) = 0; |
| 240 | |
| 241 | |
| 242 | /** |
| 243 | \brief get the internal compliance |
| 244 | |
| 245 | \return the compliance to internal forces |
| 246 | |
| 247 | @see setInternalCompliance() |
| 248 | */ |
| 249 | virtual PxReal getInternalCompliance() const = 0; |
| 250 | |
| 251 | /** |
| 252 | \brief get the drive external compliance |
| 253 | |
| 254 | Compliance determines the extent to which the joint resists acceleration. |
| 255 | |
| 256 | There are separate values for resistance to accelerations caused by external |
| 257 | forces such as gravity and contact forces, and internal forces generated from |
| 258 | other joints. |
| 259 | |
| 260 | A low compliance means that forces have little effect, a compliance of 1 means |
| 261 | the joint does not resist such forces at all. |
| 262 | |
| 263 | \param[in] compliance the compliance to external forces |
| 264 | <b> Range: (0, 1]</b> |
| 265 | <b> Default:</b> 0.0 |
| 266 | |
| 267 | @see getExternalCompliance() |
| 268 | */ |
| 269 | |
| 270 | virtual void setExternalCompliance(PxReal compliance) = 0; |
| 271 | |
| 272 | /** |
| 273 | \brief get the drive external compliance |
| 274 | |
| 275 | \return the compliance to external forces |
| 276 | |
| 277 | @see setExternalCompliance() |
| 278 | */ |
| 279 | virtual PxReal getExternalCompliance() const = 0; |
| 280 | |
| 281 | |
| 282 | |
| 283 | /** |
| 284 | \brief set the extents of the cone limit. The extents are measured in the frame |
| 285 | of the parent. |
| 286 | |
| 287 | Note that very small or highly elliptical limit cones may result in jitter. |
| 288 | |
| 289 | \param[in] yLimit the allowed extent of rotation around the y-axis |
| 290 | \param[in] zLimit the allowed extent of rotation around the z-axis |
| 291 | <b> Range:</b> ( (0, Pi), (0, Pi) ) |
| 292 | <b> Default:</b> (Pi/4, Pi/4) |
| 293 | */ |
| 294 | |
| 295 | virtual void setSwingLimit(PxReal yLimit, PxReal zLimit) = 0; |
| 296 | |
| 297 | |
| 298 | /** |
| 299 | \brief get the extents for the swing limit cone |
| 300 | |
| 301 | \param[out] yLimit the allowed extent of rotation around the y-axis |
| 302 | \param[out] zLimit the allowed extent of rotation around the z-axis |
| 303 | |
| 304 | @see setSwingLimit() |
| 305 | */ |
| 306 | virtual void getSwingLimit(PxReal &yLimit, PxReal &zLimit) const = 0; |
| 307 | |
| 308 | |
| 309 | |
| 310 | /** |
| 311 | \brief set the tangential spring for the limit cone |
| 312 | <b> Range:</b> ([0, PX_MAX_F32), [0, PX_MAX_F32)) |
| 313 | <b> Default:</b> (0.0, 0.0) |
| 314 | */ |
| 315 | |
| 316 | virtual void setTangentialStiffness(PxReal spring) = 0; |
| 317 | |
| 318 | |
| 319 | /** |
| 320 | \brief get the tangential spring for the swing limit cone |
| 321 | |
| 322 | \return the tangential spring |
| 323 | |
| 324 | @see setTangentialStiffness() |
| 325 | */ |
| 326 | virtual PxReal getTangentialStiffness() const = 0; |
| 327 | |
| 328 | |
| 329 | /** |
| 330 | \brief set the tangential damping for the limit cone |
| 331 | <b> Range:</b> ([0, PX_MAX_F32), [0, PX_MAX_F32)) |
| 332 | <b> Default:</b> (0.0, 0.0) |
| 333 | */ |
| 334 | |
| 335 | virtual void setTangentialDamping(PxReal damping) = 0; |
| 336 | |
| 337 | |
| 338 | /** |
| 339 | \brief get the tangential damping for the swing limit cone |
| 340 | |
| 341 | \return the tangential damping |
| 342 | |
| 343 | @see setTangentialDamping() |
| 344 | */ |
| 345 | virtual PxReal getTangentialDamping() const = 0; |
| 346 | |
| 347 | |
| 348 | /** |
| 349 | \brief set the contact distance for the swing limit |
| 350 | |
| 351 | The contact distance should be less than either limit angle. |
| 352 | |
| 353 | <b> Range:</b> [0, Pi] |
| 354 | <b> Default:</b> 0.05 radians |
| 355 | |
| 356 | @see getSwingLimitContactDistance() |
| 357 | */ |
| 358 | |
| 359 | virtual void setSwingLimitContactDistance(PxReal contactDistance) = 0; |
| 360 | |
| 361 | |
| 362 | /** |
| 363 | \brief get the contact distance for the swing limit |
| 364 | |
| 365 | \return the contact distance for the swing limit cone |
| 366 | |
| 367 | @see setSwingLimitContactDistance() |
| 368 | */ |
| 369 | virtual PxReal getSwingLimitContactDistance() const = 0; |
| 370 | |
| 371 | |
| 372 | |
| 373 | /** |
| 374 | \brief set the flag which enables the swing limit |
| 375 | |
| 376 | \param[in] enabled whether the limit is enabled |
| 377 | <b>Default:</b> false |
| 378 | |
| 379 | @see getSwingLimitEnabled() |
| 380 | */ |
| 381 | virtual void setSwingLimitEnabled(bool enabled) = 0; |
| 382 | |
| 383 | /** |
| 384 | \brief get the flag which enables the swing limit |
| 385 | |
| 386 | \return whether the swing limit is enabled |
| 387 | |
| 388 | @see setSwingLimitEnabled() |
| 389 | */ |
| 390 | |
| 391 | virtual bool getSwingLimitEnabled() const = 0; |
| 392 | |
| 393 | |
| 394 | /** |
| 395 | \brief set the bounds of the twistLimit |
| 396 | |
| 397 | \param[in] lower the lower extent of the twist limit |
| 398 | \param[in] upper the upper extent of the twist limit |
| 399 | <b> Range: (-Pi, Pi)</b> |
| 400 | <b> Default:</b> (-Pi/4, Pi/4) |
| 401 | |
| 402 | The lower limit value must be less than the upper limit if the limit is enabled |
| 403 | |
| 404 | @see getTwistLimit() |
| 405 | */ |
| 406 | virtual void setTwistLimit(PxReal lower, PxReal upper) = 0; |
| 407 | |
| 408 | /** |
| 409 | \brief get the bounds of the twistLimit |
| 410 | |
| 411 | \param[out] lower the lower extent of the twist limit |
| 412 | \param[out] upper the upper extent of the twist limit |
| 413 | |
| 414 | @see setTwistLimit() |
| 415 | */ |
| 416 | |
| 417 | virtual void getTwistLimit(PxReal &lower, PxReal &upper) const = 0; |
| 418 | |
| 419 | |
| 420 | /** |
| 421 | \brief set the flag which enables the twist limit |
| 422 | |
| 423 | \param[in] enabled whether the twist limit is enabled |
| 424 | <b>Default:</b> false |
| 425 | |
| 426 | @see getTwistLimitEnabled() |
| 427 | */ |
| 428 | virtual void setTwistLimitEnabled(bool enabled) = 0; |
| 429 | |
| 430 | /** |
| 431 | \brief get the twistLimitEnabled flag |
| 432 | |
| 433 | \return whether the twist limit is enabled |
| 434 | |
| 435 | @see setTwistLimitEnabled() |
| 436 | */ |
| 437 | |
| 438 | virtual bool getTwistLimitEnabled() const = 0; |
| 439 | |
| 440 | |
| 441 | /** |
| 442 | \brief set the contact distance for the swing limit |
| 443 | |
| 444 | The contact distance should be less than half the distance between the upper and lower limits. |
| 445 | |
| 446 | <b> Range:</b> [0, Pi) |
| 447 | <b> Default:</b> 0.05 radians |
| 448 | |
| 449 | @see getTwistLimitContactDistance() |
| 450 | */ |
| 451 | |
| 452 | virtual void setTwistLimitContactDistance(PxReal contactDistance) = 0; |
| 453 | |
| 454 | |
| 455 | /** |
| 456 | \brief get the contact distance for the swing limit |
| 457 | |
| 458 | \return the contact distance for the twist limit |
| 459 | |
| 460 | @see setTwistLimitContactDistance() |
| 461 | */ |
| 462 | virtual PxReal getTwistLimitContactDistance() const = 0; |
| 463 | |
| 464 | virtual const char* getConcreteTypeName() const { return "PxArticulationJoint" ; } |
| 465 | |
| 466 | protected: |
| 467 | PX_INLINE PxArticulationJoint(PxType concreteType, PxBaseFlags baseFlags) : PxBase(concreteType, baseFlags) {} |
| 468 | PX_INLINE PxArticulationJoint(PxBaseFlags baseFlags) : PxBase(baseFlags) {} |
| 469 | virtual ~PxArticulationJoint() {} |
| 470 | virtual bool isKindOf(const char* name) const { return !strcmp("PxArticulationJoint" , name) || PxBase::isKindOf(name); } |
| 471 | }; |
| 472 | |
| 473 | #ifndef PX_DOXYGEN |
| 474 | } // namespace physx |
| 475 | #endif |
| 476 | |
| 477 | /** @} */ |
| 478 | #endif |
| 479 | |