| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "GUI/BsGUILayoutX.h" |
| 4 | #include "GUI/BsGUIElement.h" |
| 5 | #include "GUI/BsGUISpace.h" |
| 6 | #include "Math/BsMath.h" |
| 7 | #include "Math/BsVector2I.h" |
| 8 | #include "Profiling/BsProfilerCPU.h" |
| 9 | |
| 10 | namespace bs |
| 11 | { |
| 12 | GUILayoutX::GUILayoutX(const GUIDimensions& dimensions) |
| 13 | : GUILayout(dimensions) |
| 14 | { } |
| 15 | |
| 16 | LayoutSizeRange GUILayoutX::_calculateLayoutSizeRange() const |
| 17 | { |
| 18 | Vector2I optimalSize; |
| 19 | Vector2I minSize; |
| 20 | for (auto& child : mChildren) |
| 21 | { |
| 22 | if (!child->_isActive()) |
| 23 | continue; |
| 24 | |
| 25 | LayoutSizeRange sizeRange = child->_calculateLayoutSizeRange(); |
| 26 | |
| 27 | if (child->_getType() == GUIElementBase::Type::FixedSpace) |
| 28 | sizeRange.optimal.y = sizeRange.min.y = 0; |
| 29 | |
| 30 | UINT32 paddingX = child->_getPadding().left + child->_getPadding().right; |
| 31 | UINT32 paddingY = child->_getPadding().top + child->_getPadding().bottom; |
| 32 | |
| 33 | optimalSize.x += sizeRange.optimal.x + paddingX; |
| 34 | optimalSize.y = std::max((UINT32)optimalSize.y, sizeRange.optimal.y + paddingY); |
| 35 | |
| 36 | minSize.x += sizeRange.min.x + paddingX; |
| 37 | minSize.y = std::max((UINT32)minSize.y, sizeRange.min.y + paddingY); |
| 38 | } |
| 39 | |
| 40 | LayoutSizeRange sizeRange = _getDimensions().calculateSizeRange(optimalSize); |
| 41 | sizeRange.min.x = std::max(sizeRange.min.x, minSize.x); |
| 42 | sizeRange.min.y = std::max(sizeRange.min.y, minSize.y); |
| 43 | |
| 44 | return sizeRange; |
| 45 | } |
| 46 | |
| 47 | void GUILayoutX::_updateOptimalLayoutSizes() |
| 48 | { |
| 49 | // Update all children first, otherwise we can't determine our own optimal size |
| 50 | GUIElementBase::_updateOptimalLayoutSizes(); |
| 51 | |
| 52 | if(mChildren.size() != mChildSizeRanges.size()) |
| 53 | mChildSizeRanges.resize(mChildren.size()); |
| 54 | |
| 55 | Vector2I optimalSize; |
| 56 | Vector2I minSize; |
| 57 | |
| 58 | UINT32 childIdx = 0; |
| 59 | for(auto& child : mChildren) |
| 60 | { |
| 61 | LayoutSizeRange& childSizeRange = mChildSizeRanges[childIdx]; |
| 62 | |
| 63 | if (child->_isActive()) |
| 64 | { |
| 65 | childSizeRange = child->_getLayoutSizeRange(); |
| 66 | if (child->_getType() == GUIElementBase::Type::FixedSpace) |
| 67 | { |
| 68 | childSizeRange.optimal.y = 0; |
| 69 | childSizeRange.min.y = 0; |
| 70 | } |
| 71 | |
| 72 | UINT32 paddingX = child->_getPadding().left + child->_getPadding().right; |
| 73 | UINT32 paddingY = child->_getPadding().top + child->_getPadding().bottom; |
| 74 | |
| 75 | optimalSize.x += childSizeRange.optimal.x + paddingX; |
| 76 | optimalSize.y = std::max((UINT32)optimalSize.y, childSizeRange.optimal.y + paddingY); |
| 77 | |
| 78 | minSize.x += childSizeRange.min.x + paddingX; |
| 79 | minSize.y = std::max((UINT32)minSize.y, childSizeRange.min.y + paddingY); |
| 80 | } |
| 81 | else |
| 82 | childSizeRange = LayoutSizeRange(); |
| 83 | |
| 84 | childIdx++; |
| 85 | } |
| 86 | |
| 87 | mSizeRange = _getDimensions().calculateSizeRange(optimalSize); |
| 88 | mSizeRange.min.x = std::max(mSizeRange.min.x, minSize.x); |
| 89 | mSizeRange.min.y = std::max(mSizeRange.min.y, minSize.y); |
| 90 | } |
| 91 | |
| 92 | void GUILayoutX::_getElementAreas(const Rect2I& layoutArea, Rect2I* elementAreas, UINT32 numElements, |
| 93 | const Vector<LayoutSizeRange>& sizeRanges, const LayoutSizeRange& mySizeRange) const |
| 94 | { |
| 95 | assert(mChildren.size() == numElements); |
| 96 | |
| 97 | UINT32 totalOptimalSize = mySizeRange.optimal.x; |
| 98 | UINT32 totalNonClampedSize = 0; |
| 99 | UINT32 numNonClampedElements = 0; |
| 100 | UINT32 numFlexibleSpaces = 0; |
| 101 | |
| 102 | bool* processedElements = nullptr; |
| 103 | float* elementScaleWeights = nullptr; |
| 104 | |
| 105 | if (mChildren.size() > 0) |
| 106 | { |
| 107 | processedElements = bs_stack_alloc<bool>((UINT32)mChildren.size()); |
| 108 | memset(processedElements, 0, mChildren.size() * sizeof(bool)); |
| 109 | |
| 110 | elementScaleWeights = bs_stack_alloc<float>((UINT32)mChildren.size()); |
| 111 | memset(elementScaleWeights, 0, mChildren.size() * sizeof(float)); |
| 112 | } |
| 113 | |
| 114 | // Set initial sizes, count number of children per type and mark fixed elements as already processed |
| 115 | UINT32 childIdx = 0; |
| 116 | for (auto& child : mChildren) |
| 117 | { |
| 118 | elementAreas[childIdx].width = sizeRanges[childIdx].optimal.x; |
| 119 | |
| 120 | if (child->_getType() == GUIElementBase::Type::FixedSpace) |
| 121 | { |
| 122 | processedElements[childIdx] = true; |
| 123 | } |
| 124 | else if (child->_getType() == GUIElementBase::Type::FlexibleSpace) |
| 125 | { |
| 126 | if (child->_isActive()) |
| 127 | { |
| 128 | numFlexibleSpaces++; |
| 129 | numNonClampedElements++; |
| 130 | } |
| 131 | else |
| 132 | processedElements[childIdx] = true; |
| 133 | } |
| 134 | else |
| 135 | { |
| 136 | const GUIDimensions& dimensions = child->_getDimensions(); |
| 137 | |
| 138 | if (dimensions.fixedWidth()) |
| 139 | processedElements[childIdx] = true; |
| 140 | else |
| 141 | { |
| 142 | if (elementAreas[childIdx].width > 0) |
| 143 | { |
| 144 | numNonClampedElements++; |
| 145 | totalNonClampedSize += elementAreas[childIdx].width; |
| 146 | } |
| 147 | else |
| 148 | processedElements[childIdx] = true; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | childIdx++; |
| 153 | } |
| 154 | |
| 155 | // If there is some room left, calculate flexible space sizes (since they will fill up all that extra room) |
| 156 | if ((UINT32)layoutArea.width > totalOptimalSize) |
| 157 | { |
| 158 | UINT32 = layoutArea.width - totalOptimalSize; |
| 159 | UINT32 remainingSize = extraSize; |
| 160 | |
| 161 | // Flexible spaces always expand to fill up all unused space |
| 162 | if (numFlexibleSpaces > 0) |
| 163 | { |
| 164 | float avgSize = remainingSize / (float)numFlexibleSpaces; |
| 165 | |
| 166 | childIdx = 0; |
| 167 | for (auto& child : mChildren) |
| 168 | { |
| 169 | if (processedElements[childIdx]) |
| 170 | { |
| 171 | childIdx++; |
| 172 | continue; |
| 173 | } |
| 174 | |
| 175 | UINT32 = std::min((UINT32)Math::ceilToInt(avgSize), remainingSize); |
| 176 | UINT32 elementWidth = elementAreas[childIdx].width + extraWidth; |
| 177 | |
| 178 | // Clamp if needed |
| 179 | if (child->_getType() == GUIElementBase::Type::FlexibleSpace) |
| 180 | { |
| 181 | processedElements[childIdx] = true; |
| 182 | numNonClampedElements--; |
| 183 | elementAreas[childIdx].width = elementWidth; |
| 184 | |
| 185 | remainingSize = (UINT32)std::max(0, (INT32)remainingSize - (INT32)extraWidth); |
| 186 | } |
| 187 | |
| 188 | childIdx++; |
| 189 | } |
| 190 | |
| 191 | totalOptimalSize = layoutArea.width; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | // Determine weight scale for every element. When scaling elements up/down they will be scaled based on this weight. |
| 196 | // Weight is to ensure all elements are scaled fairly, so elements that are large will get effected more than smaller elements. |
| 197 | childIdx = 0; |
| 198 | float invOptimalSize = 1.0f / totalNonClampedSize; |
| 199 | UINT32 childCount = (UINT32)mChildren.size(); |
| 200 | for (UINT32 i = 0; i < childCount; i++) |
| 201 | { |
| 202 | if (processedElements[childIdx]) |
| 203 | { |
| 204 | childIdx++; |
| 205 | continue; |
| 206 | } |
| 207 | |
| 208 | elementScaleWeights[childIdx] = invOptimalSize * elementAreas[childIdx].width; |
| 209 | |
| 210 | childIdx++; |
| 211 | } |
| 212 | |
| 213 | // Our optimal size is larger than maximum allowed, so we need to reduce size of some elements |
| 214 | if (totalOptimalSize > (UINT32)layoutArea.width) |
| 215 | { |
| 216 | UINT32 = totalOptimalSize - layoutArea.width; |
| 217 | UINT32 remainingSize = extraSize; |
| 218 | |
| 219 | // Iterate until we reduce everything so it fits, while maintaining |
| 220 | // equal average sizes using the weights we calculated earlier |
| 221 | while (remainingSize > 0 && numNonClampedElements > 0) |
| 222 | { |
| 223 | UINT32 totalRemainingSize = remainingSize; |
| 224 | |
| 225 | childIdx = 0; |
| 226 | for (auto& child : mChildren) |
| 227 | { |
| 228 | if (processedElements[childIdx]) |
| 229 | { |
| 230 | childIdx++; |
| 231 | continue; |
| 232 | } |
| 233 | |
| 234 | float avgSize = totalRemainingSize * elementScaleWeights[childIdx]; |
| 235 | |
| 236 | UINT32 = std::min((UINT32)Math::ceilToInt(avgSize), remainingSize); |
| 237 | UINT32 elementWidth = (UINT32)std::max(0, (INT32)elementAreas[childIdx].width - (INT32)extraWidth); |
| 238 | |
| 239 | // Clamp if needed |
| 240 | switch (child->_getType()) |
| 241 | { |
| 242 | case GUIElementBase::Type::FlexibleSpace: |
| 243 | elementAreas[childIdx].width = 0; |
| 244 | processedElements[childIdx] = true; |
| 245 | numNonClampedElements--; |
| 246 | break; |
| 247 | case GUIElementBase::Type::Element: |
| 248 | case GUIElementBase::Type::Layout: |
| 249 | case GUIElementBase::Type::Panel: |
| 250 | { |
| 251 | const LayoutSizeRange& childSizeRange = sizeRanges[childIdx]; |
| 252 | |
| 253 | if (elementWidth == 0) |
| 254 | { |
| 255 | processedElements[childIdx] = true; |
| 256 | numNonClampedElements--; |
| 257 | } |
| 258 | else if (childSizeRange.min.x > 0 && (INT32)elementWidth < childSizeRange.min.x) |
| 259 | { |
| 260 | elementWidth = childSizeRange.min.x; |
| 261 | |
| 262 | processedElements[childIdx] = true; |
| 263 | numNonClampedElements--; |
| 264 | } |
| 265 | |
| 266 | extraWidth = elementAreas[childIdx].width - elementWidth; |
| 267 | elementAreas[childIdx].width = elementWidth; |
| 268 | remainingSize = (UINT32)std::max(0, (INT32)remainingSize - (INT32)extraWidth); |
| 269 | } |
| 270 | break; |
| 271 | case GUIElementBase::Type::FixedSpace: |
| 272 | break; |
| 273 | } |
| 274 | |
| 275 | childIdx++; |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | else // We are smaller than the allowed maximum, so try to expand some elements |
| 280 | { |
| 281 | UINT32 = layoutArea.width - totalOptimalSize; |
| 282 | UINT32 remainingSize = extraSize; |
| 283 | |
| 284 | // Iterate until we reduce everything so it fits, while maintaining |
| 285 | // equal average sizes using the weights we calculated earlier |
| 286 | while (remainingSize > 0 && numNonClampedElements > 0) |
| 287 | { |
| 288 | UINT32 totalRemainingSize = remainingSize; |
| 289 | |
| 290 | childIdx = 0; |
| 291 | for (auto& child : mChildren) |
| 292 | { |
| 293 | if (processedElements[childIdx]) |
| 294 | { |
| 295 | childIdx++; |
| 296 | continue; |
| 297 | } |
| 298 | |
| 299 | float avgSize = totalRemainingSize * elementScaleWeights[childIdx]; |
| 300 | UINT32 = std::min((UINT32)Math::ceilToInt(avgSize), remainingSize); |
| 301 | UINT32 elementWidth = elementAreas[childIdx].width + extraWidth; |
| 302 | |
| 303 | // Clamp if needed |
| 304 | switch (child->_getType()) |
| 305 | { |
| 306 | case GUIElementBase::Type::FlexibleSpace: |
| 307 | processedElements[childIdx] = true; |
| 308 | numNonClampedElements--; |
| 309 | break; |
| 310 | case GUIElementBase::Type::Element: |
| 311 | case GUIElementBase::Type::Layout: |
| 312 | case GUIElementBase::Type::Panel: |
| 313 | { |
| 314 | const LayoutSizeRange& childSizeRange = sizeRanges[childIdx]; |
| 315 | |
| 316 | if (elementWidth == 0) |
| 317 | { |
| 318 | processedElements[childIdx] = true; |
| 319 | numNonClampedElements--; |
| 320 | } |
| 321 | else if (childSizeRange.max.x > 0 && (INT32)elementWidth > childSizeRange.max.x) |
| 322 | { |
| 323 | elementWidth = childSizeRange.max.x; |
| 324 | |
| 325 | processedElements[childIdx] = true; |
| 326 | numNonClampedElements--; |
| 327 | } |
| 328 | |
| 329 | extraWidth = elementWidth - elementAreas[childIdx].width; |
| 330 | elementAreas[childIdx].width = elementWidth; |
| 331 | remainingSize = (UINT32)std::max(0, (INT32)remainingSize - (INT32)extraWidth); |
| 332 | } |
| 333 | break; |
| 334 | case GUIElementBase::Type::FixedSpace: |
| 335 | break; |
| 336 | } |
| 337 | |
| 338 | childIdx++; |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | // Compute offsets and height |
| 344 | UINT32 xOffset = 0; |
| 345 | childIdx = 0; |
| 346 | |
| 347 | for (auto& child : mChildren) |
| 348 | { |
| 349 | UINT32 elemWidth = elementAreas[childIdx].width; |
| 350 | xOffset += child->_getPadding().left; |
| 351 | |
| 352 | const LayoutSizeRange& sizeRange = sizeRanges[childIdx]; |
| 353 | UINT32 elemHeight = (UINT32)sizeRange.optimal.y; |
| 354 | const GUIDimensions& dimensions = child->_getDimensions(); |
| 355 | if (!dimensions.fixedHeight()) |
| 356 | { |
| 357 | elemHeight = layoutArea.height; |
| 358 | if (sizeRange.min.y > 0 && elemHeight < (UINT32)sizeRange.min.y) |
| 359 | elemHeight = (UINT32)sizeRange.min.y; |
| 360 | |
| 361 | if (sizeRange.max.y > 0 && elemHeight > (UINT32)sizeRange.max.y) |
| 362 | elemHeight = (UINT32)sizeRange.max.y; |
| 363 | } |
| 364 | elementAreas[childIdx].height = elemHeight; |
| 365 | |
| 366 | if (child->_getType() == GUIElementBase::Type::Element) |
| 367 | { |
| 368 | GUIElement* element = static_cast<GUIElement*>(child); |
| 369 | |
| 370 | UINT32 yPadding = element->_getPadding().top + element->_getPadding().bottom; |
| 371 | INT32 yOffset = Math::ceilToInt(((INT32)layoutArea.height - (INT32)(elemHeight + yPadding)) * 0.5f); |
| 372 | yOffset = std::max(0, yOffset); |
| 373 | |
| 374 | elementAreas[childIdx].x = layoutArea.x + xOffset; |
| 375 | elementAreas[childIdx].y = layoutArea.y + yOffset; |
| 376 | } |
| 377 | else |
| 378 | { |
| 379 | elementAreas[childIdx].x = layoutArea.x + xOffset; |
| 380 | elementAreas[childIdx].y = layoutArea.y; |
| 381 | } |
| 382 | |
| 383 | xOffset += elemWidth + child->_getPadding().right; |
| 384 | childIdx++; |
| 385 | } |
| 386 | |
| 387 | if (elementScaleWeights != nullptr) |
| 388 | bs_stack_free(elementScaleWeights); |
| 389 | |
| 390 | if (processedElements != nullptr) |
| 391 | bs_stack_free(processedElements); |
| 392 | } |
| 393 | |
| 394 | void GUILayoutX::_updateLayoutInternal(const GUILayoutData& data) |
| 395 | { |
| 396 | UINT32 numElements = (UINT32)mChildren.size(); |
| 397 | Rect2I* elementAreas = nullptr; |
| 398 | |
| 399 | if (numElements > 0) |
| 400 | elementAreas = bs_stack_new<Rect2I>(numElements); |
| 401 | |
| 402 | _getElementAreas(data.area, elementAreas, numElements, mChildSizeRanges, mSizeRange); |
| 403 | |
| 404 | // Now that we have all the areas, actually assign them |
| 405 | UINT32 childIdx = 0; |
| 406 | |
| 407 | GUILayoutData childData = data; |
| 408 | for(auto& child : mChildren) |
| 409 | { |
| 410 | if (child->_isActive()) |
| 411 | { |
| 412 | childData.area = elementAreas[childIdx]; |
| 413 | childData.clipRect = childData.area; |
| 414 | childData.clipRect.clip(data.clipRect); |
| 415 | |
| 416 | child->_setLayoutData(childData); |
| 417 | child->_updateLayoutInternal(childData); |
| 418 | } |
| 419 | |
| 420 | childIdx++; |
| 421 | } |
| 422 | |
| 423 | if(elementAreas != nullptr) |
| 424 | bs_stack_free(elementAreas); |
| 425 | } |
| 426 | |
| 427 | GUILayoutX* GUILayoutX::create() |
| 428 | { |
| 429 | return bs_new<GUILayoutX>(); |
| 430 | } |
| 431 | |
| 432 | GUILayoutX* GUILayoutX::create(const GUIOptions& options) |
| 433 | { |
| 434 | return bs_new<GUILayoutX>(GUIDimensions::create(options)); |
| 435 | } |
| 436 | } |