1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #include "Math/BsMatrix4.h" |
4 | |
5 | #include "Math/BsVector3.h" |
6 | #include "Math/BsMatrix3.h" |
7 | #include "Math/BsQuaternion.h" |
8 | |
9 | namespace bs |
10 | { |
11 | const Matrix4 Matrix4::ZERO{BS_ZERO()}; |
12 | const Matrix4 Matrix4::IDENTITY{BS_IDENTITY()}; |
13 | |
14 | static float MINOR(const Matrix4& m, const UINT32 r0, const UINT32 r1, const UINT32 r2, |
15 | const UINT32 c0, const UINT32 c1, const UINT32 c2) |
16 | { |
17 | return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) - |
18 | m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) + |
19 | m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]); |
20 | } |
21 | |
22 | Matrix4 Matrix4::adjoint() const |
23 | { |
24 | return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3), |
25 | -MINOR(*this, 0, 2, 3, 1, 2, 3), |
26 | MINOR(*this, 0, 1, 3, 1, 2, 3), |
27 | -MINOR(*this, 0, 1, 2, 1, 2, 3), |
28 | |
29 | -MINOR(*this, 1, 2, 3, 0, 2, 3), |
30 | MINOR(*this, 0, 2, 3, 0, 2, 3), |
31 | -MINOR(*this, 0, 1, 3, 0, 2, 3), |
32 | MINOR(*this, 0, 1, 2, 0, 2, 3), |
33 | |
34 | MINOR(*this, 1, 2, 3, 0, 1, 3), |
35 | -MINOR(*this, 0, 2, 3, 0, 1, 3), |
36 | MINOR(*this, 0, 1, 3, 0, 1, 3), |
37 | -MINOR(*this, 0, 1, 2, 0, 1, 3), |
38 | |
39 | -MINOR(*this, 1, 2, 3, 0, 1, 2), |
40 | MINOR(*this, 0, 2, 3, 0, 1, 2), |
41 | -MINOR(*this, 0, 1, 3, 0, 1, 2), |
42 | MINOR(*this, 0, 1, 2, 0, 1, 2)); |
43 | } |
44 | |
45 | float Matrix4::determinant() const |
46 | { |
47 | return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) - |
48 | m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) + |
49 | m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) - |
50 | m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2); |
51 | } |
52 | |
53 | float Matrix4::determinant3x3() const |
54 | { |
55 | float cofactor00 = m[1][1] * m[2][2] - m[1][2] * m[2][1]; |
56 | float cofactor10 = m[1][2] * m[2][0] - m[1][0] * m[2][2]; |
57 | float cofactor20 = m[1][0] * m[2][1] - m[1][1] * m[2][0]; |
58 | |
59 | float det = m[0][0] * cofactor00 + m[0][1] * cofactor10 + m[0][2] * cofactor20; |
60 | |
61 | return det; |
62 | } |
63 | |
64 | Matrix4 Matrix4::inverse() const |
65 | { |
66 | float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3]; |
67 | float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3]; |
68 | float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3]; |
69 | float m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3]; |
70 | |
71 | float v0 = m20 * m31 - m21 * m30; |
72 | float v1 = m20 * m32 - m22 * m30; |
73 | float v2 = m20 * m33 - m23 * m30; |
74 | float v3 = m21 * m32 - m22 * m31; |
75 | float v4 = m21 * m33 - m23 * m31; |
76 | float v5 = m22 * m33 - m23 * m32; |
77 | |
78 | float t00 = + (v5 * m11 - v4 * m12 + v3 * m13); |
79 | float t10 = - (v5 * m10 - v2 * m12 + v1 * m13); |
80 | float t20 = + (v4 * m10 - v2 * m11 + v0 * m13); |
81 | float t30 = - (v3 * m10 - v1 * m11 + v0 * m12); |
82 | |
83 | float invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03); |
84 | |
85 | float d00 = t00 * invDet; |
86 | float d10 = t10 * invDet; |
87 | float d20 = t20 * invDet; |
88 | float d30 = t30 * invDet; |
89 | |
90 | float d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
91 | float d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
92 | float d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
93 | float d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
94 | |
95 | v0 = m10 * m31 - m11 * m30; |
96 | v1 = m10 * m32 - m12 * m30; |
97 | v2 = m10 * m33 - m13 * m30; |
98 | v3 = m11 * m32 - m12 * m31; |
99 | v4 = m11 * m33 - m13 * m31; |
100 | v5 = m12 * m33 - m13 * m32; |
101 | |
102 | float d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
103 | float d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
104 | float d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
105 | float d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
106 | |
107 | v0 = m21 * m10 - m20 * m11; |
108 | v1 = m22 * m10 - m20 * m12; |
109 | v2 = m23 * m10 - m20 * m13; |
110 | v3 = m22 * m11 - m21 * m12; |
111 | v4 = m23 * m11 - m21 * m13; |
112 | v5 = m23 * m12 - m22 * m13; |
113 | |
114 | float d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
115 | float d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
116 | float d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
117 | float d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
118 | |
119 | return Matrix4( |
120 | d00, d01, d02, d03, |
121 | d10, d11, d12, d13, |
122 | d20, d21, d22, d23, |
123 | d30, d31, d32, d33); |
124 | } |
125 | |
126 | Matrix4 Matrix4::inverseAffine() const |
127 | { |
128 | float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2]; |
129 | float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2]; |
130 | |
131 | float t00 = m22 * m11 - m21 * m12; |
132 | float t10 = m20 * m12 - m22 * m10; |
133 | float t20 = m21 * m10 - m20 * m11; |
134 | |
135 | float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2]; |
136 | |
137 | float invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20); |
138 | |
139 | t00 *= invDet; t10 *= invDet; t20 *= invDet; |
140 | |
141 | m00 *= invDet; m01 *= invDet; m02 *= invDet; |
142 | |
143 | float r00 = t00; |
144 | float r01 = m02 * m21 - m01 * m22; |
145 | float r02 = m01 * m12 - m02 * m11; |
146 | |
147 | float r10 = t10; |
148 | float r11 = m00 * m22 - m02 * m20; |
149 | float r12 = m02 * m10 - m00 * m12; |
150 | |
151 | float r20 = t20; |
152 | float r21 = m01 * m20 - m00 * m21; |
153 | float r22 = m00 * m11 - m01 * m10; |
154 | |
155 | float m03 = m[0][3], m13 = m[1][3], m23 = m[2][3]; |
156 | |
157 | float r03 = - (r00 * m03 + r01 * m13 + r02 * m23); |
158 | float r13 = - (r10 * m03 + r11 * m13 + r12 * m23); |
159 | float r23 = - (r20 * m03 + r21 * m13 + r22 * m23); |
160 | |
161 | return Matrix4( |
162 | r00, r01, r02, r03, |
163 | r10, r11, r12, r13, |
164 | r20, r21, r22, r23, |
165 | 0, 0, 0, 1); |
166 | } |
167 | |
168 | void Matrix4::setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
169 | { |
170 | Matrix3 rot3x3; |
171 | rotation.toRotationMatrix(rot3x3); |
172 | |
173 | m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = translation.x; |
174 | m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = translation.y; |
175 | m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = translation.z; |
176 | |
177 | // No projection term |
178 | m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1; |
179 | } |
180 | |
181 | void Matrix4::setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
182 | { |
183 | // Invert the parameters |
184 | Vector3 invTranslate = -translation; |
185 | Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z); |
186 | Quaternion invRot = rotation.inverse(); |
187 | |
188 | // Because we're inverting, order is translation, rotation, scale |
189 | // So make translation relative to scale & rotation |
190 | invTranslate = invRot.rotate(invTranslate); |
191 | invTranslate *= invScale; |
192 | |
193 | // Next, make a 3x3 rotation matrix |
194 | Matrix3 rot3x3; |
195 | invRot.toRotationMatrix(rot3x3); |
196 | |
197 | // Set up final matrix with scale, rotation and translation |
198 | m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x; |
199 | m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y; |
200 | m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z; |
201 | |
202 | // No projection term |
203 | m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1; |
204 | } |
205 | |
206 | void Matrix4::decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const |
207 | { |
208 | Matrix3 m3x3 = get3x3(); |
209 | |
210 | Matrix3 matQ; |
211 | Vector3 vecU; |
212 | m3x3.QDUDecomposition(matQ, scale, vecU); |
213 | |
214 | rotation = Quaternion(matQ); |
215 | position = Vector3(m[0][3], m[1][3], m[2][3]); |
216 | } |
217 | |
218 | void Matrix4::makeView(const Vector3& position, const Quaternion& orientation) |
219 | { |
220 | // View matrix is: |
221 | // |
222 | // [ Lx Uy Dz Tx ] |
223 | // [ Lx Uy Dz Ty ] |
224 | // [ Lx Uy Dz Tz ] |
225 | // [ 0 0 0 1 ] |
226 | // |
227 | // Where T = -(Transposed(Rot) * Pos) |
228 | |
229 | // This is most efficiently done using 3x3 Matrices |
230 | Matrix3 rot; |
231 | orientation.toRotationMatrix(rot); |
232 | |
233 | // Make the translation relative to new axes |
234 | Matrix3 rotT = rot.transpose(); |
235 | Vector3 trans = (-rotT).multiply(position); |
236 | |
237 | // Make final matrix |
238 | *this = Matrix4(rotT); |
239 | m[0][3] = trans.x; |
240 | m[1][3] = trans.y; |
241 | m[2][3] = trans.z; |
242 | } |
243 | |
244 | void Matrix4::makeProjectionOrtho(float left, float right, float top, |
245 | float bottom, float near, float far) |
246 | { |
247 | // Create a matrix that transforms coordinate to normalized device coordinate in range: |
248 | // Left -1 - Right 1 |
249 | // Bottom -1 - Top 1 |
250 | // Near -1 - Far 1 |
251 | |
252 | float deltaX = right - left; |
253 | float deltaY = bottom - top; |
254 | float deltaZ = far - near; |
255 | |
256 | m[0][0] = 2.0F / deltaX; |
257 | m[0][1] = 0.0f; |
258 | m[0][2] = 0.0f; |
259 | m[0][3] = -(right + left) / deltaX; |
260 | |
261 | m[1][0] = 0.0f; |
262 | m[1][1] = -2.0F / deltaY; |
263 | m[1][2] = 0.0f; |
264 | m[1][3] = (top + bottom) / deltaY; |
265 | |
266 | m[2][0] = 0.0f; |
267 | m[2][1] = 0.0f; |
268 | |
269 | if (far == 0.0f) |
270 | { |
271 | m[2][2] = 1.0f; |
272 | m[2][3] = 0.0f; |
273 | } |
274 | else |
275 | { |
276 | m[2][2] = -2.0F / deltaZ; |
277 | m[2][3] = -(far + near) / deltaZ; |
278 | } |
279 | |
280 | m[3][0] = 0.0f; |
281 | m[3][1] = 0.0f; |
282 | m[3][2] = 0.0f; |
283 | m[3][3] = 1.0f; |
284 | } |
285 | |
286 | Matrix4 Matrix4::translation(const Vector3& translation) |
287 | { |
288 | Matrix4 mat; |
289 | |
290 | mat[0][0] = 1.0f; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = translation.x; |
291 | mat[1][0] = 0.0f; mat[1][1] = 1.0f; mat[1][2] = 0.0f; mat[1][3] = translation.y; |
292 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = 1.0f; mat[2][3] = translation.z; |
293 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f; |
294 | |
295 | return mat; |
296 | } |
297 | |
298 | Matrix4 Matrix4::scaling(const Vector3& scale) |
299 | { |
300 | Matrix4 mat; |
301 | |
302 | mat[0][0] = scale.x; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = 0.0f; |
303 | mat[1][0] = 0.0f; mat[1][1] = scale.y; mat[1][2] = 0.0f; mat[1][3] = 0.0f; |
304 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = scale.z; mat[2][3] = 0.0f; |
305 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f; |
306 | |
307 | return mat; |
308 | } |
309 | |
310 | Matrix4 Matrix4::scaling(float scale) |
311 | { |
312 | Matrix4 mat; |
313 | |
314 | mat[0][0] = scale; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = 0.0f; |
315 | mat[1][0] = 0.0f; mat[1][1] = scale; mat[1][2] = 0.0f; mat[1][3] = 0.0f; |
316 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = scale; mat[2][3] = 0.0f; |
317 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f; |
318 | |
319 | return mat; |
320 | } |
321 | |
322 | Matrix4 Matrix4::rotation(const Quaternion& rotation) |
323 | { |
324 | Matrix3 mat; |
325 | rotation.toRotationMatrix(mat); |
326 | |
327 | return Matrix4(mat); |
328 | } |
329 | |
330 | Matrix4 Matrix4::projectionPerspective(const Degree& horzFOV, float aspect, float near, float far, bool positiveZ) |
331 | { |
332 | // Note: Duplicate code in Camera, bring it all here eventually |
333 | static constexpr float INFINITE_FAR_PLANE_ADJUST = 0.00001f; |
334 | |
335 | Radian thetaX(horzFOV * 0.5f); |
336 | float tanThetaX = Math::tan(thetaX); |
337 | float tanThetaY = tanThetaX / aspect; |
338 | |
339 | float half_w = tanThetaX * near; |
340 | float half_h = tanThetaY * near; |
341 | |
342 | float left = -half_w; |
343 | float right = half_w; |
344 | float bottom = -half_h; |
345 | float top = half_h; |
346 | |
347 | float inv_w = 1 / (right - left); |
348 | float inv_h = 1 / (top - bottom); |
349 | float inv_d = 1 / (far - near); |
350 | |
351 | float A = 2 * near * inv_w; |
352 | float B = 2 * near * inv_h; |
353 | float C = (right + left) * inv_w; |
354 | float D = (top + bottom) * inv_h; |
355 | float q, qn; |
356 | float sign = positiveZ ? 1.0f : -1.0f; |
357 | |
358 | if (far == 0) |
359 | { |
360 | // Infinite far plane |
361 | q = INFINITE_FAR_PLANE_ADJUST - 1; |
362 | qn = near * (INFINITE_FAR_PLANE_ADJUST - 2); |
363 | } |
364 | else |
365 | { |
366 | q = sign * (far + near) * inv_d; |
367 | qn = -2.0f * (far * near) * inv_d; |
368 | } |
369 | |
370 | Matrix4 mat; |
371 | mat[0][0] = A; mat[0][1] = 0.0f; mat[0][2] = C; mat[0][3] = 0.0f; |
372 | mat[1][0] = 0.0f; mat[1][1] = B; mat[1][2] = D; mat[1][3] = 0.0f; |
373 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = q; mat[2][3] = qn; |
374 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = sign; mat[3][3] = 0.0f; |
375 | |
376 | return mat; |
377 | } |
378 | |
379 | Matrix4 Matrix4::projectionOrthographic(float left, float right, float top, float bottom, float near, float far) |
380 | { |
381 | Matrix4 output; |
382 | output.makeProjectionOrtho(left, right, top, bottom, near, far); |
383 | |
384 | return output; |
385 | } |
386 | |
387 | Matrix4 Matrix4::view(const Vector3& position, const Quaternion& orientation) |
388 | { |
389 | Matrix4 mat; |
390 | mat.makeView(position, orientation); |
391 | |
392 | return mat; |
393 | } |
394 | |
395 | Matrix4 Matrix4::TRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
396 | { |
397 | Matrix4 mat; |
398 | mat.setTRS(translation, rotation, scale); |
399 | |
400 | return mat; |
401 | } |
402 | |
403 | Matrix4 Matrix4::inverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
404 | { |
405 | Matrix4 mat; |
406 | mat.setInverseTRS(translation, rotation, scale); |
407 | |
408 | return mat; |
409 | } |
410 | } |
411 | |