| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Math/BsMatrix4.h" |
| 4 | |
| 5 | #include "Math/BsVector3.h" |
| 6 | #include "Math/BsMatrix3.h" |
| 7 | #include "Math/BsQuaternion.h" |
| 8 | |
| 9 | namespace bs |
| 10 | { |
| 11 | const Matrix4 Matrix4::ZERO{BS_ZERO()}; |
| 12 | const Matrix4 Matrix4::IDENTITY{BS_IDENTITY()}; |
| 13 | |
| 14 | static float MINOR(const Matrix4& m, const UINT32 r0, const UINT32 r1, const UINT32 r2, |
| 15 | const UINT32 c0, const UINT32 c1, const UINT32 c2) |
| 16 | { |
| 17 | return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) - |
| 18 | m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) + |
| 19 | m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]); |
| 20 | } |
| 21 | |
| 22 | Matrix4 Matrix4::adjoint() const |
| 23 | { |
| 24 | return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3), |
| 25 | -MINOR(*this, 0, 2, 3, 1, 2, 3), |
| 26 | MINOR(*this, 0, 1, 3, 1, 2, 3), |
| 27 | -MINOR(*this, 0, 1, 2, 1, 2, 3), |
| 28 | |
| 29 | -MINOR(*this, 1, 2, 3, 0, 2, 3), |
| 30 | MINOR(*this, 0, 2, 3, 0, 2, 3), |
| 31 | -MINOR(*this, 0, 1, 3, 0, 2, 3), |
| 32 | MINOR(*this, 0, 1, 2, 0, 2, 3), |
| 33 | |
| 34 | MINOR(*this, 1, 2, 3, 0, 1, 3), |
| 35 | -MINOR(*this, 0, 2, 3, 0, 1, 3), |
| 36 | MINOR(*this, 0, 1, 3, 0, 1, 3), |
| 37 | -MINOR(*this, 0, 1, 2, 0, 1, 3), |
| 38 | |
| 39 | -MINOR(*this, 1, 2, 3, 0, 1, 2), |
| 40 | MINOR(*this, 0, 2, 3, 0, 1, 2), |
| 41 | -MINOR(*this, 0, 1, 3, 0, 1, 2), |
| 42 | MINOR(*this, 0, 1, 2, 0, 1, 2)); |
| 43 | } |
| 44 | |
| 45 | float Matrix4::determinant() const |
| 46 | { |
| 47 | return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) - |
| 48 | m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) + |
| 49 | m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) - |
| 50 | m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2); |
| 51 | } |
| 52 | |
| 53 | float Matrix4::determinant3x3() const |
| 54 | { |
| 55 | float cofactor00 = m[1][1] * m[2][2] - m[1][2] * m[2][1]; |
| 56 | float cofactor10 = m[1][2] * m[2][0] - m[1][0] * m[2][2]; |
| 57 | float cofactor20 = m[1][0] * m[2][1] - m[1][1] * m[2][0]; |
| 58 | |
| 59 | float det = m[0][0] * cofactor00 + m[0][1] * cofactor10 + m[0][2] * cofactor20; |
| 60 | |
| 61 | return det; |
| 62 | } |
| 63 | |
| 64 | Matrix4 Matrix4::inverse() const |
| 65 | { |
| 66 | float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3]; |
| 67 | float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3]; |
| 68 | float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3]; |
| 69 | float m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3]; |
| 70 | |
| 71 | float v0 = m20 * m31 - m21 * m30; |
| 72 | float v1 = m20 * m32 - m22 * m30; |
| 73 | float v2 = m20 * m33 - m23 * m30; |
| 74 | float v3 = m21 * m32 - m22 * m31; |
| 75 | float v4 = m21 * m33 - m23 * m31; |
| 76 | float v5 = m22 * m33 - m23 * m32; |
| 77 | |
| 78 | float t00 = + (v5 * m11 - v4 * m12 + v3 * m13); |
| 79 | float t10 = - (v5 * m10 - v2 * m12 + v1 * m13); |
| 80 | float t20 = + (v4 * m10 - v2 * m11 + v0 * m13); |
| 81 | float t30 = - (v3 * m10 - v1 * m11 + v0 * m12); |
| 82 | |
| 83 | float invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03); |
| 84 | |
| 85 | float d00 = t00 * invDet; |
| 86 | float d10 = t10 * invDet; |
| 87 | float d20 = t20 * invDet; |
| 88 | float d30 = t30 * invDet; |
| 89 | |
| 90 | float d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
| 91 | float d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
| 92 | float d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
| 93 | float d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
| 94 | |
| 95 | v0 = m10 * m31 - m11 * m30; |
| 96 | v1 = m10 * m32 - m12 * m30; |
| 97 | v2 = m10 * m33 - m13 * m30; |
| 98 | v3 = m11 * m32 - m12 * m31; |
| 99 | v4 = m11 * m33 - m13 * m31; |
| 100 | v5 = m12 * m33 - m13 * m32; |
| 101 | |
| 102 | float d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
| 103 | float d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
| 104 | float d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
| 105 | float d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
| 106 | |
| 107 | v0 = m21 * m10 - m20 * m11; |
| 108 | v1 = m22 * m10 - m20 * m12; |
| 109 | v2 = m23 * m10 - m20 * m13; |
| 110 | v3 = m22 * m11 - m21 * m12; |
| 111 | v4 = m23 * m11 - m21 * m13; |
| 112 | v5 = m23 * m12 - m22 * m13; |
| 113 | |
| 114 | float d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
| 115 | float d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
| 116 | float d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
| 117 | float d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
| 118 | |
| 119 | return Matrix4( |
| 120 | d00, d01, d02, d03, |
| 121 | d10, d11, d12, d13, |
| 122 | d20, d21, d22, d23, |
| 123 | d30, d31, d32, d33); |
| 124 | } |
| 125 | |
| 126 | Matrix4 Matrix4::inverseAffine() const |
| 127 | { |
| 128 | float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2]; |
| 129 | float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2]; |
| 130 | |
| 131 | float t00 = m22 * m11 - m21 * m12; |
| 132 | float t10 = m20 * m12 - m22 * m10; |
| 133 | float t20 = m21 * m10 - m20 * m11; |
| 134 | |
| 135 | float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2]; |
| 136 | |
| 137 | float invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20); |
| 138 | |
| 139 | t00 *= invDet; t10 *= invDet; t20 *= invDet; |
| 140 | |
| 141 | m00 *= invDet; m01 *= invDet; m02 *= invDet; |
| 142 | |
| 143 | float r00 = t00; |
| 144 | float r01 = m02 * m21 - m01 * m22; |
| 145 | float r02 = m01 * m12 - m02 * m11; |
| 146 | |
| 147 | float r10 = t10; |
| 148 | float r11 = m00 * m22 - m02 * m20; |
| 149 | float r12 = m02 * m10 - m00 * m12; |
| 150 | |
| 151 | float r20 = t20; |
| 152 | float r21 = m01 * m20 - m00 * m21; |
| 153 | float r22 = m00 * m11 - m01 * m10; |
| 154 | |
| 155 | float m03 = m[0][3], m13 = m[1][3], m23 = m[2][3]; |
| 156 | |
| 157 | float r03 = - (r00 * m03 + r01 * m13 + r02 * m23); |
| 158 | float r13 = - (r10 * m03 + r11 * m13 + r12 * m23); |
| 159 | float r23 = - (r20 * m03 + r21 * m13 + r22 * m23); |
| 160 | |
| 161 | return Matrix4( |
| 162 | r00, r01, r02, r03, |
| 163 | r10, r11, r12, r13, |
| 164 | r20, r21, r22, r23, |
| 165 | 0, 0, 0, 1); |
| 166 | } |
| 167 | |
| 168 | void Matrix4::setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
| 169 | { |
| 170 | Matrix3 rot3x3; |
| 171 | rotation.toRotationMatrix(rot3x3); |
| 172 | |
| 173 | m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = translation.x; |
| 174 | m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = translation.y; |
| 175 | m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = translation.z; |
| 176 | |
| 177 | // No projection term |
| 178 | m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1; |
| 179 | } |
| 180 | |
| 181 | void Matrix4::setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
| 182 | { |
| 183 | // Invert the parameters |
| 184 | Vector3 invTranslate = -translation; |
| 185 | Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z); |
| 186 | Quaternion invRot = rotation.inverse(); |
| 187 | |
| 188 | // Because we're inverting, order is translation, rotation, scale |
| 189 | // So make translation relative to scale & rotation |
| 190 | invTranslate = invRot.rotate(invTranslate); |
| 191 | invTranslate *= invScale; |
| 192 | |
| 193 | // Next, make a 3x3 rotation matrix |
| 194 | Matrix3 rot3x3; |
| 195 | invRot.toRotationMatrix(rot3x3); |
| 196 | |
| 197 | // Set up final matrix with scale, rotation and translation |
| 198 | m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x; |
| 199 | m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y; |
| 200 | m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z; |
| 201 | |
| 202 | // No projection term |
| 203 | m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1; |
| 204 | } |
| 205 | |
| 206 | void Matrix4::decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const |
| 207 | { |
| 208 | Matrix3 m3x3 = get3x3(); |
| 209 | |
| 210 | Matrix3 matQ; |
| 211 | Vector3 vecU; |
| 212 | m3x3.QDUDecomposition(matQ, scale, vecU); |
| 213 | |
| 214 | rotation = Quaternion(matQ); |
| 215 | position = Vector3(m[0][3], m[1][3], m[2][3]); |
| 216 | } |
| 217 | |
| 218 | void Matrix4::makeView(const Vector3& position, const Quaternion& orientation) |
| 219 | { |
| 220 | // View matrix is: |
| 221 | // |
| 222 | // [ Lx Uy Dz Tx ] |
| 223 | // [ Lx Uy Dz Ty ] |
| 224 | // [ Lx Uy Dz Tz ] |
| 225 | // [ 0 0 0 1 ] |
| 226 | // |
| 227 | // Where T = -(Transposed(Rot) * Pos) |
| 228 | |
| 229 | // This is most efficiently done using 3x3 Matrices |
| 230 | Matrix3 rot; |
| 231 | orientation.toRotationMatrix(rot); |
| 232 | |
| 233 | // Make the translation relative to new axes |
| 234 | Matrix3 rotT = rot.transpose(); |
| 235 | Vector3 trans = (-rotT).multiply(position); |
| 236 | |
| 237 | // Make final matrix |
| 238 | *this = Matrix4(rotT); |
| 239 | m[0][3] = trans.x; |
| 240 | m[1][3] = trans.y; |
| 241 | m[2][3] = trans.z; |
| 242 | } |
| 243 | |
| 244 | void Matrix4::makeProjectionOrtho(float left, float right, float top, |
| 245 | float bottom, float near, float far) |
| 246 | { |
| 247 | // Create a matrix that transforms coordinate to normalized device coordinate in range: |
| 248 | // Left -1 - Right 1 |
| 249 | // Bottom -1 - Top 1 |
| 250 | // Near -1 - Far 1 |
| 251 | |
| 252 | float deltaX = right - left; |
| 253 | float deltaY = bottom - top; |
| 254 | float deltaZ = far - near; |
| 255 | |
| 256 | m[0][0] = 2.0F / deltaX; |
| 257 | m[0][1] = 0.0f; |
| 258 | m[0][2] = 0.0f; |
| 259 | m[0][3] = -(right + left) / deltaX; |
| 260 | |
| 261 | m[1][0] = 0.0f; |
| 262 | m[1][1] = -2.0F / deltaY; |
| 263 | m[1][2] = 0.0f; |
| 264 | m[1][3] = (top + bottom) / deltaY; |
| 265 | |
| 266 | m[2][0] = 0.0f; |
| 267 | m[2][1] = 0.0f; |
| 268 | |
| 269 | if (far == 0.0f) |
| 270 | { |
| 271 | m[2][2] = 1.0f; |
| 272 | m[2][3] = 0.0f; |
| 273 | } |
| 274 | else |
| 275 | { |
| 276 | m[2][2] = -2.0F / deltaZ; |
| 277 | m[2][3] = -(far + near) / deltaZ; |
| 278 | } |
| 279 | |
| 280 | m[3][0] = 0.0f; |
| 281 | m[3][1] = 0.0f; |
| 282 | m[3][2] = 0.0f; |
| 283 | m[3][3] = 1.0f; |
| 284 | } |
| 285 | |
| 286 | Matrix4 Matrix4::translation(const Vector3& translation) |
| 287 | { |
| 288 | Matrix4 mat; |
| 289 | |
| 290 | mat[0][0] = 1.0f; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = translation.x; |
| 291 | mat[1][0] = 0.0f; mat[1][1] = 1.0f; mat[1][2] = 0.0f; mat[1][3] = translation.y; |
| 292 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = 1.0f; mat[2][3] = translation.z; |
| 293 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f; |
| 294 | |
| 295 | return mat; |
| 296 | } |
| 297 | |
| 298 | Matrix4 Matrix4::scaling(const Vector3& scale) |
| 299 | { |
| 300 | Matrix4 mat; |
| 301 | |
| 302 | mat[0][0] = scale.x; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = 0.0f; |
| 303 | mat[1][0] = 0.0f; mat[1][1] = scale.y; mat[1][2] = 0.0f; mat[1][3] = 0.0f; |
| 304 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = scale.z; mat[2][3] = 0.0f; |
| 305 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f; |
| 306 | |
| 307 | return mat; |
| 308 | } |
| 309 | |
| 310 | Matrix4 Matrix4::scaling(float scale) |
| 311 | { |
| 312 | Matrix4 mat; |
| 313 | |
| 314 | mat[0][0] = scale; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = 0.0f; |
| 315 | mat[1][0] = 0.0f; mat[1][1] = scale; mat[1][2] = 0.0f; mat[1][3] = 0.0f; |
| 316 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = scale; mat[2][3] = 0.0f; |
| 317 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f; |
| 318 | |
| 319 | return mat; |
| 320 | } |
| 321 | |
| 322 | Matrix4 Matrix4::rotation(const Quaternion& rotation) |
| 323 | { |
| 324 | Matrix3 mat; |
| 325 | rotation.toRotationMatrix(mat); |
| 326 | |
| 327 | return Matrix4(mat); |
| 328 | } |
| 329 | |
| 330 | Matrix4 Matrix4::projectionPerspective(const Degree& horzFOV, float aspect, float near, float far, bool positiveZ) |
| 331 | { |
| 332 | // Note: Duplicate code in Camera, bring it all here eventually |
| 333 | static constexpr float INFINITE_FAR_PLANE_ADJUST = 0.00001f; |
| 334 | |
| 335 | Radian thetaX(horzFOV * 0.5f); |
| 336 | float tanThetaX = Math::tan(thetaX); |
| 337 | float tanThetaY = tanThetaX / aspect; |
| 338 | |
| 339 | float half_w = tanThetaX * near; |
| 340 | float half_h = tanThetaY * near; |
| 341 | |
| 342 | float left = -half_w; |
| 343 | float right = half_w; |
| 344 | float bottom = -half_h; |
| 345 | float top = half_h; |
| 346 | |
| 347 | float inv_w = 1 / (right - left); |
| 348 | float inv_h = 1 / (top - bottom); |
| 349 | float inv_d = 1 / (far - near); |
| 350 | |
| 351 | float A = 2 * near * inv_w; |
| 352 | float B = 2 * near * inv_h; |
| 353 | float C = (right + left) * inv_w; |
| 354 | float D = (top + bottom) * inv_h; |
| 355 | float q, qn; |
| 356 | float sign = positiveZ ? 1.0f : -1.0f; |
| 357 | |
| 358 | if (far == 0) |
| 359 | { |
| 360 | // Infinite far plane |
| 361 | q = INFINITE_FAR_PLANE_ADJUST - 1; |
| 362 | qn = near * (INFINITE_FAR_PLANE_ADJUST - 2); |
| 363 | } |
| 364 | else |
| 365 | { |
| 366 | q = sign * (far + near) * inv_d; |
| 367 | qn = -2.0f * (far * near) * inv_d; |
| 368 | } |
| 369 | |
| 370 | Matrix4 mat; |
| 371 | mat[0][0] = A; mat[0][1] = 0.0f; mat[0][2] = C; mat[0][3] = 0.0f; |
| 372 | mat[1][0] = 0.0f; mat[1][1] = B; mat[1][2] = D; mat[1][3] = 0.0f; |
| 373 | mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = q; mat[2][3] = qn; |
| 374 | mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = sign; mat[3][3] = 0.0f; |
| 375 | |
| 376 | return mat; |
| 377 | } |
| 378 | |
| 379 | Matrix4 Matrix4::projectionOrthographic(float left, float right, float top, float bottom, float near, float far) |
| 380 | { |
| 381 | Matrix4 output; |
| 382 | output.makeProjectionOrtho(left, right, top, bottom, near, far); |
| 383 | |
| 384 | return output; |
| 385 | } |
| 386 | |
| 387 | Matrix4 Matrix4::view(const Vector3& position, const Quaternion& orientation) |
| 388 | { |
| 389 | Matrix4 mat; |
| 390 | mat.makeView(position, orientation); |
| 391 | |
| 392 | return mat; |
| 393 | } |
| 394 | |
| 395 | Matrix4 Matrix4::TRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
| 396 | { |
| 397 | Matrix4 mat; |
| 398 | mat.setTRS(translation, rotation, scale); |
| 399 | |
| 400 | return mat; |
| 401 | } |
| 402 | |
| 403 | Matrix4 Matrix4::inverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale) |
| 404 | { |
| 405 | Matrix4 mat; |
| 406 | mat.setInverseTRS(translation, rotation, scale); |
| 407 | |
| 408 | return mat; |
| 409 | } |
| 410 | } |
| 411 | |