| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #pragma once |
| 4 | |
| 5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
| 6 | |
| 7 | #include "Math/BsVector3.h" |
| 8 | #include "Math/BsMatrix3.h" |
| 9 | #include "Math/BsVector4.h" |
| 10 | #include "Math/BsPlane.h" |
| 11 | |
| 12 | namespace bs |
| 13 | { |
| 14 | /** @addtogroup Math |
| 15 | * @{ |
| 16 | */ |
| 17 | |
| 18 | /** Class representing a 4x4 matrix, in row major format. */ |
| 19 | class BS_UTILITY_EXPORT Matrix4 |
| 20 | { |
| 21 | public: |
| 22 | Matrix4() = default; |
| 23 | constexpr Matrix4(const Matrix4&) = default; |
| 24 | constexpr Matrix4& operator=(const Matrix4&) = default; |
| 25 | |
| 26 | constexpr Matrix4(BS_ZERO) |
| 27 | :m{ {0.0f, 0.0f, 0.0f, 0.0f}, |
| 28 | {0.0f, 0.0f, 0.0f, 0.0f}, |
| 29 | {0.0f, 0.0f, 0.0f, 0.0f}, |
| 30 | {0.0f, 0.0f, 0.0f, 0.0f} } |
| 31 | { } |
| 32 | |
| 33 | constexpr Matrix4(BS_IDENTITY) |
| 34 | :m{ {1.0f, 0.0f, 0.0f, 0.0f}, |
| 35 | {0.0f, 1.0f, 0.0f, 0.0f}, |
| 36 | {0.0f, 0.0f, 1.0f, 0.0f}, |
| 37 | {0.0f, 0.0f, 0.0f, 1.0f} } |
| 38 | { } |
| 39 | |
| 40 | constexpr Matrix4( |
| 41 | float m00, float m01, float m02, float m03, |
| 42 | float m10, float m11, float m12, float m13, |
| 43 | float m20, float m21, float m22, float m23, |
| 44 | float m30, float m31, float m32, float m33) |
| 45 | :m{ {m00, m01, m02, m03}, |
| 46 | {m10, m11, m12, m13}, |
| 47 | {m20, m21, m22, m23}, |
| 48 | {m30, m31, m32, m33} } |
| 49 | { } |
| 50 | |
| 51 | /** Creates a 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix. */ |
| 52 | constexpr explicit Matrix4(const Matrix3& mat3) |
| 53 | :m{ {mat3.m[0][0], mat3.m[0][1], mat3.m[0][2], 0.0f}, |
| 54 | {mat3.m[1][0], mat3.m[1][1], mat3.m[1][2], 0.0f}, |
| 55 | {mat3.m[2][0], mat3.m[2][1], mat3.m[2][2], 0.0f}, |
| 56 | {0.0f, 0.0f, 0.0f, 1.0f} } |
| 57 | { } |
| 58 | |
| 59 | /** Swaps the contents of this matrix with another. */ |
| 60 | void swap(Matrix4& other) |
| 61 | { |
| 62 | std::swap(m[0][0], other.m[0][0]); |
| 63 | std::swap(m[0][1], other.m[0][1]); |
| 64 | std::swap(m[0][2], other.m[0][2]); |
| 65 | std::swap(m[0][3], other.m[0][3]); |
| 66 | std::swap(m[1][0], other.m[1][0]); |
| 67 | std::swap(m[1][1], other.m[1][1]); |
| 68 | std::swap(m[1][2], other.m[1][2]); |
| 69 | std::swap(m[1][3], other.m[1][3]); |
| 70 | std::swap(m[2][0], other.m[2][0]); |
| 71 | std::swap(m[2][1], other.m[2][1]); |
| 72 | std::swap(m[2][2], other.m[2][2]); |
| 73 | std::swap(m[2][3], other.m[2][3]); |
| 74 | std::swap(m[3][0], other.m[3][0]); |
| 75 | std::swap(m[3][1], other.m[3][1]); |
| 76 | std::swap(m[3][2], other.m[3][2]); |
| 77 | std::swap(m[3][3], other.m[3][3]); |
| 78 | } |
| 79 | |
| 80 | /** Returns a row of the matrix. */ |
| 81 | Vector4& operator[] (UINT32 row) |
| 82 | { |
| 83 | assert(row < 4); |
| 84 | |
| 85 | return *(Vector4*)m[row]; |
| 86 | } |
| 87 | |
| 88 | /** Returns a row of the matrix. */ |
| 89 | const Vector4& operator[] (UINT32 row) const |
| 90 | { |
| 91 | assert(row < 4); |
| 92 | |
| 93 | return *(Vector4*)m[row]; |
| 94 | } |
| 95 | |
| 96 | Matrix4 operator* (const Matrix4 &rhs) const |
| 97 | { |
| 98 | Matrix4 r; |
| 99 | |
| 100 | r.m[0][0] = m[0][0] * rhs.m[0][0] + m[0][1] * rhs.m[1][0] + m[0][2] * rhs.m[2][0] + m[0][3] * rhs.m[3][0]; |
| 101 | r.m[0][1] = m[0][0] * rhs.m[0][1] + m[0][1] * rhs.m[1][1] + m[0][2] * rhs.m[2][1] + m[0][3] * rhs.m[3][1]; |
| 102 | r.m[0][2] = m[0][0] * rhs.m[0][2] + m[0][1] * rhs.m[1][2] + m[0][2] * rhs.m[2][2] + m[0][3] * rhs.m[3][2]; |
| 103 | r.m[0][3] = m[0][0] * rhs.m[0][3] + m[0][1] * rhs.m[1][3] + m[0][2] * rhs.m[2][3] + m[0][3] * rhs.m[3][3]; |
| 104 | |
| 105 | r.m[1][0] = m[1][0] * rhs.m[0][0] + m[1][1] * rhs.m[1][0] + m[1][2] * rhs.m[2][0] + m[1][3] * rhs.m[3][0]; |
| 106 | r.m[1][1] = m[1][0] * rhs.m[0][1] + m[1][1] * rhs.m[1][1] + m[1][2] * rhs.m[2][1] + m[1][3] * rhs.m[3][1]; |
| 107 | r.m[1][2] = m[1][0] * rhs.m[0][2] + m[1][1] * rhs.m[1][2] + m[1][2] * rhs.m[2][2] + m[1][3] * rhs.m[3][2]; |
| 108 | r.m[1][3] = m[1][0] * rhs.m[0][3] + m[1][1] * rhs.m[1][3] + m[1][2] * rhs.m[2][3] + m[1][3] * rhs.m[3][3]; |
| 109 | |
| 110 | r.m[2][0] = m[2][0] * rhs.m[0][0] + m[2][1] * rhs.m[1][0] + m[2][2] * rhs.m[2][0] + m[2][3] * rhs.m[3][0]; |
| 111 | r.m[2][1] = m[2][0] * rhs.m[0][1] + m[2][1] * rhs.m[1][1] + m[2][2] * rhs.m[2][1] + m[2][3] * rhs.m[3][1]; |
| 112 | r.m[2][2] = m[2][0] * rhs.m[0][2] + m[2][1] * rhs.m[1][2] + m[2][2] * rhs.m[2][2] + m[2][3] * rhs.m[3][2]; |
| 113 | r.m[2][3] = m[2][0] * rhs.m[0][3] + m[2][1] * rhs.m[1][3] + m[2][2] * rhs.m[2][3] + m[2][3] * rhs.m[3][3]; |
| 114 | |
| 115 | r.m[3][0] = m[3][0] * rhs.m[0][0] + m[3][1] * rhs.m[1][0] + m[3][2] * rhs.m[2][0] + m[3][3] * rhs.m[3][0]; |
| 116 | r.m[3][1] = m[3][0] * rhs.m[0][1] + m[3][1] * rhs.m[1][1] + m[3][2] * rhs.m[2][1] + m[3][3] * rhs.m[3][1]; |
| 117 | r.m[3][2] = m[3][0] * rhs.m[0][2] + m[3][1] * rhs.m[1][2] + m[3][2] * rhs.m[2][2] + m[3][3] * rhs.m[3][2]; |
| 118 | r.m[3][3] = m[3][0] * rhs.m[0][3] + m[3][1] * rhs.m[1][3] + m[3][2] * rhs.m[2][3] + m[3][3] * rhs.m[3][3]; |
| 119 | |
| 120 | return r; |
| 121 | } |
| 122 | |
| 123 | Matrix4 operator+ (const Matrix4 &rhs) const |
| 124 | { |
| 125 | Matrix4 r; |
| 126 | |
| 127 | r.m[0][0] = m[0][0] + rhs.m[0][0]; |
| 128 | r.m[0][1] = m[0][1] + rhs.m[0][1]; |
| 129 | r.m[0][2] = m[0][2] + rhs.m[0][2]; |
| 130 | r.m[0][3] = m[0][3] + rhs.m[0][3]; |
| 131 | |
| 132 | r.m[1][0] = m[1][0] + rhs.m[1][0]; |
| 133 | r.m[1][1] = m[1][1] + rhs.m[1][1]; |
| 134 | r.m[1][2] = m[1][2] + rhs.m[1][2]; |
| 135 | r.m[1][3] = m[1][3] + rhs.m[1][3]; |
| 136 | |
| 137 | r.m[2][0] = m[2][0] + rhs.m[2][0]; |
| 138 | r.m[2][1] = m[2][1] + rhs.m[2][1]; |
| 139 | r.m[2][2] = m[2][2] + rhs.m[2][2]; |
| 140 | r.m[2][3] = m[2][3] + rhs.m[2][3]; |
| 141 | |
| 142 | r.m[3][0] = m[3][0] + rhs.m[3][0]; |
| 143 | r.m[3][1] = m[3][1] + rhs.m[3][1]; |
| 144 | r.m[3][2] = m[3][2] + rhs.m[3][2]; |
| 145 | r.m[3][3] = m[3][3] + rhs.m[3][3]; |
| 146 | |
| 147 | return r; |
| 148 | } |
| 149 | |
| 150 | Matrix4 operator- (const Matrix4 &rhs) const |
| 151 | { |
| 152 | Matrix4 r; |
| 153 | r.m[0][0] = m[0][0] - rhs.m[0][0]; |
| 154 | r.m[0][1] = m[0][1] - rhs.m[0][1]; |
| 155 | r.m[0][2] = m[0][2] - rhs.m[0][2]; |
| 156 | r.m[0][3] = m[0][3] - rhs.m[0][3]; |
| 157 | |
| 158 | r.m[1][0] = m[1][0] - rhs.m[1][0]; |
| 159 | r.m[1][1] = m[1][1] - rhs.m[1][1]; |
| 160 | r.m[1][2] = m[1][2] - rhs.m[1][2]; |
| 161 | r.m[1][3] = m[1][3] - rhs.m[1][3]; |
| 162 | |
| 163 | r.m[2][0] = m[2][0] - rhs.m[2][0]; |
| 164 | r.m[2][1] = m[2][1] - rhs.m[2][1]; |
| 165 | r.m[2][2] = m[2][2] - rhs.m[2][2]; |
| 166 | r.m[2][3] = m[2][3] - rhs.m[2][3]; |
| 167 | |
| 168 | r.m[3][0] = m[3][0] - rhs.m[3][0]; |
| 169 | r.m[3][1] = m[3][1] - rhs.m[3][1]; |
| 170 | r.m[3][2] = m[3][2] - rhs.m[3][2]; |
| 171 | r.m[3][3] = m[3][3] - rhs.m[3][3]; |
| 172 | |
| 173 | return r; |
| 174 | } |
| 175 | |
| 176 | inline bool operator== (const Matrix4& rhs) const |
| 177 | { |
| 178 | if (m[0][0] != rhs.m[0][0] || m[0][1] != rhs.m[0][1] || m[0][2] != rhs.m[0][2] || m[0][3] != rhs.m[0][3] || |
| 179 | m[1][0] != rhs.m[1][0] || m[1][1] != rhs.m[1][1] || m[1][2] != rhs.m[1][2] || m[1][3] != rhs.m[1][3] || |
| 180 | m[2][0] != rhs.m[2][0] || m[2][1] != rhs.m[2][1] || m[2][2] != rhs.m[2][2] || m[2][3] != rhs.m[2][3] || |
| 181 | m[3][0] != rhs.m[3][0] || m[3][1] != rhs.m[3][1] || m[3][2] != rhs.m[3][2] || m[3][3] != rhs.m[3][3]) |
| 182 | { |
| 183 | return false; |
| 184 | } |
| 185 | |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | inline bool operator!= (const Matrix4& rhs) const |
| 190 | { |
| 191 | return !operator==(rhs); |
| 192 | } |
| 193 | |
| 194 | Matrix4 operator*(float rhs) const |
| 195 | { |
| 196 | return Matrix4(rhs*m[0][0], rhs*m[0][1], rhs*m[0][2], rhs*m[0][3], |
| 197 | rhs*m[1][0], rhs*m[1][1], rhs*m[1][2], rhs*m[1][3], |
| 198 | rhs*m[2][0], rhs*m[2][1], rhs*m[2][2], rhs*m[2][3], |
| 199 | rhs*m[3][0], rhs*m[3][1], rhs*m[3][2], rhs*m[3][3]); |
| 200 | } |
| 201 | |
| 202 | /** Returns the specified column of the matrix, ignoring the last row. */ |
| 203 | Vector3 getColumn(UINT32 col) const |
| 204 | { |
| 205 | assert(col < 4); |
| 206 | |
| 207 | return Vector3(m[0][col], m[1][col], m[2][col]); |
| 208 | } |
| 209 | |
| 210 | /** Returns the specified column of the matrix. */ |
| 211 | Vector4 getColumn4D(UINT32 col) const |
| 212 | { |
| 213 | assert(col < 4); |
| 214 | |
| 215 | return Vector4(m[0][col], m[1][col], m[2][col], m[3][col]); |
| 216 | } |
| 217 | |
| 218 | /** Returns a transpose of the matrix (switched columns and rows). */ |
| 219 | Matrix4 transpose() const |
| 220 | { |
| 221 | return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0], |
| 222 | m[0][1], m[1][1], m[2][1], m[3][1], |
| 223 | m[0][2], m[1][2], m[2][2], m[3][2], |
| 224 | m[0][3], m[1][3], m[2][3], m[3][3]); |
| 225 | } |
| 226 | |
| 227 | /** Assigns the vector to a column of the matrix. */ |
| 228 | void setColumn(UINT32 idx, const Vector4& column) |
| 229 | { |
| 230 | m[0][idx] = column.x; |
| 231 | m[1][idx] = column.y; |
| 232 | m[2][idx] = column.z; |
| 233 | m[3][idx] = column.w; |
| 234 | } |
| 235 | |
| 236 | /** Assigns the vector to a row of the matrix. */ |
| 237 | void setRow(UINT32 idx, const Vector4& column) |
| 238 | { |
| 239 | m[idx][0] = column.x; |
| 240 | m[idx][1] = column.y; |
| 241 | m[idx][2] = column.z; |
| 242 | m[idx][3] = column.w; |
| 243 | } |
| 244 | |
| 245 | /** Returns the rotation/scaling part of the matrix as a 3x3 matrix. */ |
| 246 | Matrix3 get3x3() const |
| 247 | { |
| 248 | Matrix3 m3x3; |
| 249 | m3x3.m[0][0] = m[0][0]; |
| 250 | m3x3.m[0][1] = m[0][1]; |
| 251 | m3x3.m[0][2] = m[0][2]; |
| 252 | m3x3.m[1][0] = m[1][0]; |
| 253 | m3x3.m[1][1] = m[1][1]; |
| 254 | m3x3.m[1][2] = m[1][2]; |
| 255 | m3x3.m[2][0] = m[2][0]; |
| 256 | m3x3.m[2][1] = m[2][1]; |
| 257 | m3x3.m[2][2] = m[2][2]; |
| 258 | |
| 259 | return m3x3; |
| 260 | } |
| 261 | |
| 262 | /** Calculates the adjoint of the matrix. */ |
| 263 | Matrix4 adjoint() const; |
| 264 | |
| 265 | /** Calculates the determinant of the matrix. */ |
| 266 | float determinant() const; |
| 267 | |
| 268 | /** Calculates the determinant of the 3x3 sub-matrix. */ |
| 269 | float determinant3x3() const; |
| 270 | |
| 271 | /** Calculates the inverse of the matrix. */ |
| 272 | Matrix4 inverse() const; |
| 273 | |
| 274 | /** |
| 275 | * Creates a matrix from translation, rotation and scale. |
| 276 | * |
| 277 | * @note The transformation are applied in scale->rotation->translation order. |
| 278 | */ |
| 279 | void setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale); |
| 280 | |
| 281 | /** |
| 282 | * Creates a matrix from inverse translation, rotation and scale. |
| 283 | * |
| 284 | * @note This is cheaper than setTRS() and then performing inverse(). |
| 285 | */ |
| 286 | void setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale); |
| 287 | |
| 288 | /** |
| 289 | * Decompose a Matrix4 to translation, rotation and scale. |
| 290 | * |
| 291 | * @note |
| 292 | * This method is unable to decompose all types of matrices, in particular these are the limitations: |
| 293 | * - Only translation, rotation and scale transforms are supported |
| 294 | * - Plain TRS matrices (that aren't composed with other matrices) can always be decomposed |
| 295 | * - Composed TRS matrices can be decomposed ONLY if the scaling factor is uniform |
| 296 | */ |
| 297 | void decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const; |
| 298 | |
| 299 | /** Extracts the translation (position) part of the matrix. */ |
| 300 | Vector3 getTranslation() const { return Vector3(m[0][3], m[1][3], m[2][3]); } |
| 301 | |
| 302 | /** |
| 303 | * Check whether or not the matrix is affine matrix. |
| 304 | * |
| 305 | * @note An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), meaning no projective coefficients. |
| 306 | */ |
| 307 | bool isAffine() const |
| 308 | { |
| 309 | return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1; |
| 310 | } |
| 311 | |
| 312 | /** |
| 313 | * Returns the inverse of the affine matrix. |
| 314 | * |
| 315 | * @note Matrix must be affine. |
| 316 | */ |
| 317 | Matrix4 inverseAffine() const; |
| 318 | |
| 319 | /** |
| 320 | * Concatenate two affine matrices. |
| 321 | * |
| 322 | * @note Both matrices must be affine. |
| 323 | */ |
| 324 | Matrix4 concatenateAffine(const Matrix4 &other) const |
| 325 | { |
| 326 | return Matrix4( |
| 327 | m[0][0] * other.m[0][0] + m[0][1] * other.m[1][0] + m[0][2] * other.m[2][0], |
| 328 | m[0][0] * other.m[0][1] + m[0][1] * other.m[1][1] + m[0][2] * other.m[2][1], |
| 329 | m[0][0] * other.m[0][2] + m[0][1] * other.m[1][2] + m[0][2] * other.m[2][2], |
| 330 | m[0][0] * other.m[0][3] + m[0][1] * other.m[1][3] + m[0][2] * other.m[2][3] + m[0][3], |
| 331 | |
| 332 | m[1][0] * other.m[0][0] + m[1][1] * other.m[1][0] + m[1][2] * other.m[2][0], |
| 333 | m[1][0] * other.m[0][1] + m[1][1] * other.m[1][1] + m[1][2] * other.m[2][1], |
| 334 | m[1][0] * other.m[0][2] + m[1][1] * other.m[1][2] + m[1][2] * other.m[2][2], |
| 335 | m[1][0] * other.m[0][3] + m[1][1] * other.m[1][3] + m[1][2] * other.m[2][3] + m[1][3], |
| 336 | |
| 337 | m[2][0] * other.m[0][0] + m[2][1] * other.m[1][0] + m[2][2] * other.m[2][0], |
| 338 | m[2][0] * other.m[0][1] + m[2][1] * other.m[1][1] + m[2][2] * other.m[2][1], |
| 339 | m[2][0] * other.m[0][2] + m[2][1] * other.m[1][2] + m[2][2] * other.m[2][2], |
| 340 | m[2][0] * other.m[0][3] + m[2][1] * other.m[1][3] + m[2][2] * other.m[2][3] + m[2][3], |
| 341 | |
| 342 | 0, 0, 0, 1); |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * Transform a plane by this matrix. |
| 347 | * |
| 348 | * @note Matrix must be affine. |
| 349 | */ |
| 350 | Plane multiplyAffine(const Plane& p) const |
| 351 | { |
| 352 | Vector4 localNormal(p.normal.x, p.normal.y, p.normal.z, 0.0f); |
| 353 | Vector4 localPoint = localNormal * p.d; |
| 354 | localPoint.w = 1.0f; |
| 355 | |
| 356 | Matrix4 itMat = inverse().transpose(); |
| 357 | Vector4 worldNormal = itMat.multiplyAffine(localNormal); |
| 358 | Vector4 worldPoint = multiplyAffine(localPoint); |
| 359 | |
| 360 | float d = worldNormal.dot(worldPoint); |
| 361 | |
| 362 | return Plane(worldNormal.x, worldNormal.y, worldNormal.z, d); |
| 363 | } |
| 364 | |
| 365 | /** |
| 366 | * Transform a 3D point by this matrix. |
| 367 | * |
| 368 | * @note Matrix must be affine, if it is not use multiply() method. |
| 369 | */ |
| 370 | Vector3 multiplyAffine(const Vector3& v) const |
| 371 | { |
| 372 | return Vector3( |
| 373 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], |
| 374 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3], |
| 375 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]); |
| 376 | } |
| 377 | |
| 378 | /** |
| 379 | * Transform a 4D vector by this matrix. |
| 380 | * |
| 381 | * @note Matrix must be affine, if it is not use multiply() method. |
| 382 | */ |
| 383 | Vector4 multiplyAffine(const Vector4& v) const |
| 384 | { |
| 385 | return Vector4( |
| 386 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
| 387 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
| 388 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
| 389 | v.w); |
| 390 | } |
| 391 | |
| 392 | /** Transform a 3D direction by this matrix. */ |
| 393 | Vector3 multiplyDirection(const Vector3& v) const |
| 394 | { |
| 395 | return Vector3( |
| 396 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z, |
| 397 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z, |
| 398 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z); |
| 399 | } |
| 400 | |
| 401 | /** |
| 402 | * Transform a 3D point by this matrix. |
| 403 | * |
| 404 | * @note |
| 405 | * w component of the vector is assumed to be 1. After transformation all components |
| 406 | * are projected back so that w remains 1. |
| 407 | * @note |
| 408 | * If your matrix doesn't contain projection components use multiplyAffine() method as it is faster. |
| 409 | */ |
| 410 | Vector3 multiply(const Vector3& v) const |
| 411 | { |
| 412 | Vector3 r(BsZero); |
| 413 | |
| 414 | float fInvW = 1.0f / (m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3]); |
| 415 | |
| 416 | r.x = (m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3]) * fInvW; |
| 417 | r.y = (m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3]) * fInvW; |
| 418 | r.z = (m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]) * fInvW; |
| 419 | |
| 420 | return r; |
| 421 | } |
| 422 | |
| 423 | /** |
| 424 | * Transform a 4D vector by this matrix. |
| 425 | * |
| 426 | * @note If your matrix doesn't contain projection components use multiplyAffine() method as it is faster. |
| 427 | */ |
| 428 | Vector4 multiply(const Vector4& v) const |
| 429 | { |
| 430 | return Vector4( |
| 431 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
| 432 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
| 433 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
| 434 | m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w |
| 435 | ); |
| 436 | } |
| 437 | |
| 438 | /** Creates a view matrix and applies optional reflection. */ |
| 439 | void makeView(const Vector3& position, const Quaternion& orientation); |
| 440 | |
| 441 | /** |
| 442 | * Creates an ortographic projection matrix that scales the part of the view bounded by @p left, @p right, |
| 443 | * @p top and @p bottom into [-1, 1] range. If @p far is non-zero the matrix will also transform the depth into |
| 444 | * [-1, 1] range, otherwise it will leave it as-is. |
| 445 | */ |
| 446 | void makeProjectionOrtho(float left, float right, float top, float bottom, float near, float far); |
| 447 | |
| 448 | /** Creates a 4x4 transformation matrix that performs translation. */ |
| 449 | static Matrix4 translation(const Vector3& translation); |
| 450 | |
| 451 | /** Creates a 4x4 transformation matrix that performs scaling. */ |
| 452 | static Matrix4 scaling(const Vector3& scale); |
| 453 | |
| 454 | /** Creates a 4x4 transformation matrix that performs uniform scaling. */ |
| 455 | static Matrix4 scaling(float scale); |
| 456 | |
| 457 | /** Creates a 4x4 transformation matrix that performs rotation. */ |
| 458 | static Matrix4 rotation(const Quaternion& rotation); |
| 459 | |
| 460 | /** |
| 461 | * Creates a 4x4 perspective projection matrix. |
| 462 | * |
| 463 | * @param[in] horzFOV Horizontal field of view. |
| 464 | * @param[in] aspect Aspect ratio. Determines the vertical field of view. |
| 465 | * @param[in] near Distance to the near plane. |
| 466 | * @param[in] far Distance to the far plane. |
| 467 | * @param[in] positiveZ If true the matrix will project geometry as if its looking along the positive Z axis. |
| 468 | * Otherwise it projects along the negative Z axis (default). |
| 469 | */ |
| 470 | static Matrix4 projectionPerspective(const Degree& horzFOV, float aspect, float near, float far, |
| 471 | bool positiveZ = false); |
| 472 | |
| 473 | /** @copydoc makeProjectionOrtho() */ |
| 474 | static Matrix4 projectionOrthographic(float left, float right, float top, float bottom, float near, float far); |
| 475 | |
| 476 | /** Creates a view matrix. */ |
| 477 | static Matrix4 view(const Vector3& position, const Quaternion& orientation); |
| 478 | |
| 479 | /** |
| 480 | * Creates a matrix from translation, rotation and scale. |
| 481 | * |
| 482 | * @note The transformation are applied in scale->rotation->translation order. |
| 483 | */ |
| 484 | static Matrix4 TRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale); |
| 485 | |
| 486 | /** |
| 487 | * Creates a matrix from inverse translation, rotation and scale. |
| 488 | * |
| 489 | * @note This is cheaper than setTRS() and then performing inverse(). |
| 490 | */ |
| 491 | static Matrix4 inverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale); |
| 492 | |
| 493 | static const Matrix4 ZERO; |
| 494 | static const Matrix4 IDENTITY; |
| 495 | |
| 496 | private: |
| 497 | float m[4][4]; |
| 498 | }; |
| 499 | |
| 500 | /** @} */ |
| 501 | |
| 502 | /** @cond SPECIALIZATIONS */ |
| 503 | BS_ALLOW_MEMCPY_SERIALIZATION(Matrix4); |
| 504 | /** @endcond */ |
| 505 | } |
| 506 | |