| 1 | // Copyright (c) 2018 Kenton Varda and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #pragma once |
| 23 | |
| 24 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 25 | #pragma GCC system_header |
| 26 | #endif |
| 27 | |
| 28 | #include "common.h" |
| 29 | #include "tuple.h" |
| 30 | #include "vector.h" |
| 31 | #include "function.h" |
| 32 | |
| 33 | #if _MSC_VER |
| 34 | // Need _ReadWriteBarrier |
| 35 | #if _MSC_VER < 1910 |
| 36 | #include <intrin.h> |
| 37 | #else |
| 38 | #include <intrin0.h> |
| 39 | #endif |
| 40 | #endif |
| 41 | |
| 42 | namespace kj { |
| 43 | |
| 44 | namespace _ { // private |
| 45 | |
| 46 | template <typename Inner, typename Mapping> |
| 47 | class MappedIterable; |
| 48 | template <typename Row> |
| 49 | class TableMapping; |
| 50 | template <typename Row, typename Inner> |
| 51 | using TableIterable = MappedIterable<Inner, TableMapping<Row>>; |
| 52 | |
| 53 | } // namespace _ (private) |
| 54 | |
| 55 | template <typename Row, typename... Indexes> |
| 56 | class Table { |
| 57 | // A table with one or more indexes. This is the KJ alternative to map, set, unordered_map, and |
| 58 | // unordered_set. |
| 59 | // |
| 60 | // Unlike a traditional map, which explicitly stores key/value pairs, a Table simply stores |
| 61 | // "rows" of arbitrary type, and then lets the application specify how these should be indexed. |
| 62 | // Rows could be indexed on a specific struct field, or they could be indexed based on a computed |
| 63 | // property. An index could be hash-based or tree-based. Multiple indexes are supported, making |
| 64 | // it easy to construct a "bimap". |
| 65 | // |
| 66 | // The table has deterministic iteration order based on the sequence of insertions and deletions. |
| 67 | // In the case of only insertions, the iteration order is the order of insertion. If deletions |
| 68 | // occur, then the current last row is moved to occupy the deleted slot. This determinism is |
| 69 | // intended to be reliable for the purpose of testing, etc. |
| 70 | // |
| 71 | // Each index is a class that looks like: |
| 72 | // |
| 73 | // class Index { |
| 74 | // public: |
| 75 | // void reserve(size_t size); |
| 76 | // // Called when Table::reserve() is called. |
| 77 | // |
| 78 | // SearchParam& keyForRow(const Row& row) const; |
| 79 | // // Given a row, return a value appropriate to pass as SearchParams to the other functions. |
| 80 | // |
| 81 | // // In all function calls below, `SearchPrams` refers to whatever parameters the index |
| 82 | // // supports for looking up a row in the table. |
| 83 | // |
| 84 | // template <typename... SearchParams> |
| 85 | // kj::Maybe<size_t> insert(kj::ArrayPtr<const Row> table, size_t pos, SearchParams&&...); |
| 86 | // // Called to indicate that we're about to insert a new row which will match the given |
| 87 | // // search parameters, and will be located at the given position. If this index disallows |
| 88 | // // duplicates and some other matching row already exists, then insert() returns the index |
| 89 | // // of that row without modifying the index. If the row does not exist, then insert() |
| 90 | // // updates the index to note that the new row is located at `pos`. Note that `table[pos]` |
| 91 | // // may not be valid yet at the time of this call; the index must go on the search params |
| 92 | // // alone. |
| 93 | // // |
| 94 | // // Insert may throw an exception, in which case the table will roll back insertion. |
| 95 | // |
| 96 | // template <typename... SearchParams> |
| 97 | // void erase(kj::ArrayPtr<const Row> table, size_t pos, SearchParams&&...); |
| 98 | // // Called to indicate that the index must remove references to row number `pos`. The |
| 99 | // // index must not attempt to access table[pos] directly -- in fact, `pos` may be equal to |
| 100 | // // `table.size()`, i.e., may be out-of-bounds (this happens when rolling back a failed |
| 101 | // // insertion). Instead, the index can use the search params to search for the row -- they |
| 102 | // // will either be the same as the params passed to insert(), or will be a single value of |
| 103 | // // type `Row&`. |
| 104 | // // |
| 105 | // // erase() called immediately after a successful insert() must not throw an exception, as |
| 106 | // // it may be called during unwind. |
| 107 | // |
| 108 | // template <typename... SearchParams> |
| 109 | // void move(kj::ArrayPtr<const Row> table, size_t oldPos, size_t newPos, SearchParams&&...); |
| 110 | // // Called when a row is about to be moved from `oldPos` to `newPos` in the table. The |
| 111 | // // index should update it to the new location. Neither `table[oldPos]` nor `table[newPos]` |
| 112 | // // is valid during the call -- use the search params to find the row. Before this call |
| 113 | // // `oldPos` is indexed and `newPos` is not -- after the call, the opposite is true. |
| 114 | // // |
| 115 | // // This should never throw; if it does the table may be corrupted. |
| 116 | // |
| 117 | // class Iterator; // Behaves like a C++ iterator over size_t values. |
| 118 | // class Iterable; // Has begin() and end() methods returning iterators. |
| 119 | // |
| 120 | // template <typename... SearchParams> |
| 121 | // Maybe<size_t> find(kj::ArrayPtr<const Row> table, SearchParams&&...) const; |
| 122 | // // Optional. Implements Table::find<Index>(...). |
| 123 | // |
| 124 | // template <typename... SearchParams> |
| 125 | // Iterable range(kj::ArrayPtr<const Row> table, SearchParams&&...) const; |
| 126 | // // Optional. Implements Table::range<Index>(...). |
| 127 | // |
| 128 | // Iterator begin() const; |
| 129 | // Iterator end() const; |
| 130 | // // Optional. Implements Table::ordered<Index>(). |
| 131 | // }; |
| 132 | |
| 133 | public: |
| 134 | Table(); |
| 135 | Table(Indexes&&... indexes); |
| 136 | |
| 137 | void reserve(size_t size); |
| 138 | // Pre-allocates space for a table of the given size. Normally a Table grows by re-allocating |
| 139 | // its backing array whenever more space is needed. Reserving in advance avoids redundantly |
| 140 | // re-allocating as the table grows. |
| 141 | |
| 142 | size_t size() const; |
| 143 | size_t capacity() const; |
| 144 | |
| 145 | void clear(); |
| 146 | |
| 147 | Row* begin(); |
| 148 | Row* end(); |
| 149 | const Row* begin() const; |
| 150 | const Row* end() const; |
| 151 | |
| 152 | Row& insert(Row&& row); |
| 153 | Row& insert(const Row& row); |
| 154 | // Inserts a new row. Throws an exception if this would violate the uniqueness constraints of any |
| 155 | // of the indexes. |
| 156 | |
| 157 | template <typename Collection> |
| 158 | void insertAll(Collection&& collection); |
| 159 | template <typename Collection> |
| 160 | void insertAll(Collection& collection); |
| 161 | // Given an iterable collection of Rows, inserts all of them into this table. If the input is |
| 162 | // an rvalue, the rows will be moved rather than copied. |
| 163 | // |
| 164 | // If an insertion throws (e.g. because it violates a uniqueness constraint of some index), |
| 165 | // subsequent insertions do not occur, but previous insertions remain inserted. |
| 166 | |
| 167 | template <typename UpdateFunc> |
| 168 | Row& upsert(Row&& row, UpdateFunc&& update); |
| 169 | template <typename UpdateFunc> |
| 170 | Row& upsert(const Row& row, UpdateFunc&& update); |
| 171 | // Tries to insert a new row. However, if a duplicate already exists (according to some index), |
| 172 | // then update(Row& existingRow, Row&& newRow) is called to modify the existing row. |
| 173 | |
| 174 | template <typename Index, typename... Params> |
| 175 | kj::Maybe<Row&> find(Params&&... params); |
| 176 | template <typename Index, typename... Params> |
| 177 | kj::Maybe<const Row&> find(Params&&... params) const; |
| 178 | // Using the given index, search for a matching row. What parameters are accepted depends on the |
| 179 | // index. Not all indexes support this method -- "multimap" indexes may support only range(). |
| 180 | |
| 181 | template <typename Index, typename... Params, typename Func> |
| 182 | Row& findOrCreate(Params&&... params, Func&& createFunc); |
| 183 | // Like find(), but if the row doesn't exist, call a function to create it. createFunc() must |
| 184 | // return `Row` or something that implicitly converts to `Row`. |
| 185 | // |
| 186 | // NOTE: C++ doesn't actually properly support inferring types of a parameter pack at the |
| 187 | // beginning of an argument list, but we define a hack to support it below. Don't worry about |
| 188 | // it. |
| 189 | |
| 190 | template <typename Index, typename... Params> |
| 191 | auto range(Params&&... params); |
| 192 | template <typename Index, typename... Params> |
| 193 | auto range(Params&&... params) const; |
| 194 | // Using the given index, look up a range of values, returning an iterable. What parameters are |
| 195 | // accepted depends on the index. Not all indexes support this method (in particular, unique |
| 196 | // indexes normally don't). |
| 197 | |
| 198 | template <typename Index> |
| 199 | _::TableIterable<Row, Index&> ordered(); |
| 200 | template <typename Index> |
| 201 | _::TableIterable<const Row, const Index&> ordered() const; |
| 202 | // Returns an iterable over the whole table ordered using the given index. Not all indexes |
| 203 | // support this method. |
| 204 | |
| 205 | template <typename Index, typename... Params> |
| 206 | bool eraseMatch(Params&&... params); |
| 207 | // Erase the row that would be matched by `find<Index>(params)`. Returns true if there was a |
| 208 | // match. |
| 209 | |
| 210 | template <typename Index, typename... Params> |
| 211 | size_t eraseRange(Params&&... params); |
| 212 | // Erase the row that would be matched by `range<Index>(params)`. Returns the number of |
| 213 | // elements erased. |
| 214 | |
| 215 | void erase(Row& row); |
| 216 | // Erase the given row. |
| 217 | // |
| 218 | // WARNING: This invalidates all iterators, so you can't iterate over rows and erase them this |
| 219 | // way. Use `eraseAll()` for that. |
| 220 | |
| 221 | Row release(Row& row); |
| 222 | // Remove the given row from the table and return it in one operation. |
| 223 | // |
| 224 | // WARNING: This invalidates all iterators, so you can't iterate over rows and release them this |
| 225 | // way. |
| 226 | |
| 227 | template <typename Predicate, typename = decltype(instance<Predicate>()(instance<Row&>()))> |
| 228 | size_t eraseAll(Predicate&& predicate); |
| 229 | // Erase all rows for which predicate(row) returns true. This scans over the entire table. |
| 230 | |
| 231 | template <typename Collection, typename = decltype(instance<Collection>().begin()), bool = true> |
| 232 | size_t eraseAll(Collection&& collection); |
| 233 | // Erase all rows in the given iterable collection of rows. This carefully marks rows for |
| 234 | // deletion in a first pass then deletes them in a second. |
| 235 | |
| 236 | template <size_t index = 0, typename... Params> |
| 237 | kj::Maybe<Row&> find(Params&&... params); |
| 238 | template <size_t index = 0, typename... Params> |
| 239 | kj::Maybe<const Row&> find(Params&&... params) const; |
| 240 | template <size_t index = 0, typename... Params, typename Func> |
| 241 | Row& findOrCreate(Params&&... params, Func&& createFunc); |
| 242 | template <size_t index = 0, typename... Params> |
| 243 | auto range(Params&&... params); |
| 244 | template <size_t index = 0, typename... Params> |
| 245 | auto range(Params&&... params) const; |
| 246 | template <size_t index = 0> |
| 247 | _::TableIterable<Row, TypeOfIndex<index, Tuple<Indexes...>>&> ordered(); |
| 248 | template <size_t index = 0> |
| 249 | _::TableIterable<const Row, const TypeOfIndex<index, Tuple<Indexes...>>&> ordered() const; |
| 250 | template <size_t index = 0, typename... Params> |
| 251 | bool eraseMatch(Params&&... params); |
| 252 | template <size_t index = 0, typename... Params> |
| 253 | size_t eraseRange(Params&&... params); |
| 254 | // Methods which take an index type as a template parameter can also take an index number. This |
| 255 | // is useful particularly when you have multiple indexes of the same type but different runtime |
| 256 | // properties. Additionally, you can omit the template parameter altogether to use the first |
| 257 | // index. |
| 258 | |
| 259 | template <size_t index = 0> |
| 260 | void verify(); |
| 261 | // Checks the integrity of indexes, throwing an exception if there are any problems. This is |
| 262 | // intended to be called within the unit test for an index. |
| 263 | |
| 264 | template <typename Index, typename First, typename... Rest> |
| 265 | Row& findOrCreate(First&& first, Rest&&... rest); |
| 266 | template <size_t index = 0, typename First, typename... Rest> |
| 267 | Row& findOrCreate(First&& first, Rest&&... rest); |
| 268 | // HACK: A parameter pack can only be inferred if it lives at the end of the argument list, so |
| 269 | // the findOrCreate() definitions from earlier won't actually work. These ones will, but we |
| 270 | // have to do some annoying things inside to regroup the arguments. |
| 271 | |
| 272 | private: |
| 273 | Vector<Row> rows; |
| 274 | Tuple<Indexes...> indexes; |
| 275 | |
| 276 | template <size_t index = 0, bool final = (index >= sizeof...(Indexes))> |
| 277 | class Impl; |
| 278 | template <typename Func, typename... Params> |
| 279 | class FindOrCreateImpl; |
| 280 | |
| 281 | template <typename ParamsTuple, typename... Params> |
| 282 | struct FindOrCreateHack; |
| 283 | |
| 284 | void eraseImpl(size_t pos); |
| 285 | template <typename Collection> |
| 286 | size_t eraseAllImpl(Collection&& collection); |
| 287 | }; |
| 288 | |
| 289 | template <typename Callbacks> |
| 290 | class HashIndex; |
| 291 | // A Table index based on a hash table. |
| 292 | // |
| 293 | // This implementation: |
| 294 | // * Is based on linear probing, not chaining. It is important to use a high-quality hash function. |
| 295 | // Use the KJ hashing library if possible. |
| 296 | // * Is limited to tables of 2^30 rows or less, mainly to allow for tighter packing with 32-bit |
| 297 | // integers instead of 64-bit. |
| 298 | // * Caches hash codes so that each table row need only be hashed once, and never checks equality |
| 299 | // unless hash codes have already been determined to be equal. |
| 300 | // |
| 301 | // The `Callbacks` type defines how to compute hash codes and equality. It should be defined like: |
| 302 | // |
| 303 | // class Callbacks { |
| 304 | // public: |
| 305 | // // In this interface, `SearchParams...` means whatever parameters you want to support in |
| 306 | // // a call to table.find(...). By overloading the calls to support various inputs, you can |
| 307 | // // affect what table.find(...) accepts. |
| 308 | // |
| 309 | // SearchParam& keyForRow(const Row& row); |
| 310 | // // Given a row of the table, return the SearchParams that might be passed to the other |
| 311 | // // methods to match this row. |
| 312 | // |
| 313 | // bool matches(const Row&, SearchParams&&...) const; |
| 314 | // // Returns true if the row on the left matches thes search params on the right. |
| 315 | // |
| 316 | // uint hashCode(SearchParams&&...) const; |
| 317 | // // Computes the hash code of the given search params. Matching rows (as determined by |
| 318 | // // matches()) must have the same hash code. Non-matching rows should have different hash |
| 319 | // // codes, to the maximum extent possible. Non-matching rows with the same hash code hurt |
| 320 | // // performance. |
| 321 | // }; |
| 322 | // |
| 323 | // If your `Callbacks` type has dynamic state, you may pass its constructor parameters as the |
| 324 | // constructor parameters to `HashIndex`. |
| 325 | |
| 326 | template <typename Callbacks> |
| 327 | class TreeIndex; |
| 328 | // A Table index based on a B-tree. |
| 329 | // |
| 330 | // This allows sorted iteration over rows. |
| 331 | // |
| 332 | // The `Callbacks` type defines how to compare rows. It should be defined like: |
| 333 | // |
| 334 | // class Callbacks { |
| 335 | // public: |
| 336 | // // In this interface, `SearchParams...` means whatever parameters you want to support in |
| 337 | // // a call to table.find(...). By overloading the calls to support various inputs, you can |
| 338 | // // affect what table.find(...) accepts. |
| 339 | // |
| 340 | // SearchParam& keyForRow(const Row& row); |
| 341 | // // Given a row of the table, return the SearchParams that might be passed to the other |
| 342 | // // methods to match this row. |
| 343 | // |
| 344 | // bool isBefore(const Row&, SearchParams&&...) const; |
| 345 | // // Returns true if the row on the left comes before the search params on the right. |
| 346 | // |
| 347 | // bool matches(const Row&, SearchParams&&...) const; |
| 348 | // // Returns true if the row "matches" the search params. |
| 349 | // }; |
| 350 | |
| 351 | // ======================================================================================= |
| 352 | // inline implementation details |
| 353 | |
| 354 | namespace _ { // private |
| 355 | |
| 356 | KJ_NORETURN(void throwDuplicateTableRow()); |
| 357 | |
| 358 | template <typename Dst, typename Src, typename = decltype(instance<Src>().size())> |
| 359 | inline void tryReserveSize(Dst& dst, Src&& src) { dst.reserve(dst.size() + src.size()); } |
| 360 | template <typename... Params> |
| 361 | inline void tryReserveSize(Params&&...) {} |
| 362 | // If `src` has a `.size()` method, call dst.reserve(dst.size() + src.size()). |
| 363 | // Otherwise, do nothing. |
| 364 | |
| 365 | template <typename Inner, class Mapping> |
| 366 | class MappedIterator: private Mapping { |
| 367 | // An iterator that wraps some other iterator and maps the values through a mapping function. |
| 368 | // The type `Mapping` must define a method `map()` which performs this mapping. |
| 369 | // |
| 370 | // TODO(cleanup): This seems generally useful. Should we put it somewhere resuable? |
| 371 | |
| 372 | public: |
| 373 | template <typename... Params> |
| 374 | MappedIterator(Inner inner, Params&&... params) |
| 375 | : Mapping(kj::fwd<Params>(params)...), inner(inner) {} |
| 376 | |
| 377 | inline auto operator->() const { return &Mapping::map(*inner); } |
| 378 | inline decltype(auto) operator* () const { return Mapping::map(*inner); } |
| 379 | inline decltype(auto) operator[](size_t index) const { return Mapping::map(inner[index]); } |
| 380 | inline MappedIterator& operator++() { ++inner; return *this; } |
| 381 | inline MappedIterator operator++(int) { return MappedIterator(inner++, *this); } |
| 382 | inline MappedIterator& operator--() { --inner; return *this; } |
| 383 | inline MappedIterator operator--(int) { return MappedIterator(inner--, *this); } |
| 384 | inline MappedIterator& operator+=(ptrdiff_t amount) { inner += amount; return *this; } |
| 385 | inline MappedIterator& operator-=(ptrdiff_t amount) { inner -= amount; return *this; } |
| 386 | inline MappedIterator operator+ (ptrdiff_t amount) const { |
| 387 | return MappedIterator(inner + amount, *this); |
| 388 | } |
| 389 | inline MappedIterator operator- (ptrdiff_t amount) const { |
| 390 | return MappedIterator(inner - amount, *this); |
| 391 | } |
| 392 | inline ptrdiff_t operator- (const MappedIterator& other) const { return inner - other.inner; } |
| 393 | |
| 394 | inline bool operator==(const MappedIterator& other) const { return inner == other.inner; } |
| 395 | inline bool operator!=(const MappedIterator& other) const { return inner != other.inner; } |
| 396 | inline bool operator<=(const MappedIterator& other) const { return inner <= other.inner; } |
| 397 | inline bool operator>=(const MappedIterator& other) const { return inner >= other.inner; } |
| 398 | inline bool operator< (const MappedIterator& other) const { return inner < other.inner; } |
| 399 | inline bool operator> (const MappedIterator& other) const { return inner > other.inner; } |
| 400 | |
| 401 | private: |
| 402 | Inner inner; |
| 403 | }; |
| 404 | |
| 405 | template <typename Inner, typename Mapping> |
| 406 | class MappedIterable: private Mapping { |
| 407 | // An iterable that wraps some other iterable and maps the values through a mapping function. |
| 408 | // The type `Mapping` must define a method `map()` which performs this mapping. |
| 409 | // |
| 410 | // TODO(cleanup): This seems generally useful. Should we put it somewhere resuable? |
| 411 | |
| 412 | public: |
| 413 | template <typename... Params> |
| 414 | MappedIterable(Inner inner, Params&&... params) |
| 415 | : Mapping(kj::fwd<Params>(params)...), inner(inner) {} |
| 416 | |
| 417 | typedef Decay<decltype(instance<Inner>().begin())> InnerIterator; |
| 418 | typedef MappedIterator<InnerIterator, Mapping> Iterator; |
| 419 | typedef Decay<decltype(instance<const Inner>().begin())> InnerConstIterator; |
| 420 | typedef MappedIterator<InnerConstIterator, Mapping> ConstIterator; |
| 421 | |
| 422 | inline Iterator begin() { return { inner.begin(), (Mapping&)*this }; } |
| 423 | inline Iterator end() { return { inner.end(), (Mapping&)*this }; } |
| 424 | inline ConstIterator begin() const { return { inner.begin(), (const Mapping&)*this }; } |
| 425 | inline ConstIterator end() const { return { inner.end(), (const Mapping&)*this }; } |
| 426 | |
| 427 | private: |
| 428 | Inner inner; |
| 429 | }; |
| 430 | |
| 431 | template <typename Row> |
| 432 | class TableMapping { |
| 433 | public: |
| 434 | TableMapping(Row* table): table(table) {} |
| 435 | Row& map(size_t i) const { return table[i]; } |
| 436 | |
| 437 | private: |
| 438 | Row* table; |
| 439 | }; |
| 440 | |
| 441 | template <typename Row> |
| 442 | class TableUnmapping { |
| 443 | public: |
| 444 | TableUnmapping(Row* table): table(table) {} |
| 445 | size_t map(Row& row) const { return &row - table; } |
| 446 | size_t map(Row* row) const { return row - table; } |
| 447 | |
| 448 | private: |
| 449 | Row* table; |
| 450 | }; |
| 451 | |
| 452 | } // namespace _ (private) |
| 453 | |
| 454 | template <typename Row, typename... Indexes> |
| 455 | template <size_t index> |
| 456 | class Table<Row, Indexes...>::Impl<index, false> { |
| 457 | public: |
| 458 | static void reserve(Table<Row, Indexes...>& table, size_t size) { |
| 459 | get<index>(table.indexes).reserve(size); |
| 460 | Impl<index + 1>::reserve(table, size); |
| 461 | } |
| 462 | |
| 463 | static void clear(Table<Row, Indexes...>& table) { |
| 464 | get<index>(table.indexes).clear(); |
| 465 | Impl<index + 1>::clear(table); |
| 466 | } |
| 467 | |
| 468 | static kj::Maybe<size_t> insert(Table<Row, Indexes...>& table, size_t pos, Row& row, uint skip) { |
| 469 | if (skip == index) { |
| 470 | return Impl<index + 1>::insert(table, pos, row, skip); |
| 471 | } |
| 472 | auto& indexObj = get<index>(table.indexes); |
| 473 | KJ_IF_MAYBE(existing, indexObj.insert(table.rows.asPtr(), pos, indexObj.keyForRow(row))) { |
| 474 | return *existing; |
| 475 | } |
| 476 | |
| 477 | bool success = false; |
| 478 | KJ_DEFER(if (!success) { |
| 479 | indexObj.erase(table.rows.asPtr(), pos, indexObj.keyForRow(row)); |
| 480 | }); |
| 481 | auto result = Impl<index + 1>::insert(table, pos, row, skip); |
| 482 | success = result == nullptr; |
| 483 | return result; |
| 484 | } |
| 485 | |
| 486 | static void erase(Table<Row, Indexes...>& table, size_t pos, Row& row) { |
| 487 | auto& indexObj = get<index>(table.indexes); |
| 488 | indexObj.erase(table.rows.asPtr(), pos, indexObj.keyForRow(row)); |
| 489 | Impl<index + 1>::erase(table, pos, row); |
| 490 | } |
| 491 | |
| 492 | static void move(Table<Row, Indexes...>& table, size_t oldPos, size_t newPos, Row& row) { |
| 493 | auto& indexObj = get<index>(table.indexes); |
| 494 | indexObj.move(table.rows.asPtr(), oldPos, newPos, indexObj.keyForRow(row)); |
| 495 | Impl<index + 1>::move(table, oldPos, newPos, row); |
| 496 | } |
| 497 | }; |
| 498 | |
| 499 | template <typename Row, typename... Indexes> |
| 500 | template <size_t index> |
| 501 | class Table<Row, Indexes...>::Impl<index, true> { |
| 502 | public: |
| 503 | static void reserve(Table<Row, Indexes...>& table, size_t size) {} |
| 504 | static void clear(Table<Row, Indexes...>& table) {} |
| 505 | static kj::Maybe<size_t> insert(Table<Row, Indexes...>& table, size_t pos, Row& row, uint skip) { |
| 506 | return nullptr; |
| 507 | } |
| 508 | static void erase(Table<Row, Indexes...>& table, size_t pos, Row& row) {} |
| 509 | static void move(Table<Row, Indexes...>& table, size_t oldPos, size_t newPos, Row& row) {} |
| 510 | }; |
| 511 | |
| 512 | template <typename Row, typename... Indexes> |
| 513 | Table<Row, Indexes...>::Table() {} |
| 514 | |
| 515 | template <typename Row, typename... Indexes> |
| 516 | Table<Row, Indexes...>::Table(Indexes&&... indexes) |
| 517 | : indexes(tuple(kj::fwd<Indexes&&>(indexes)...)) {} |
| 518 | |
| 519 | template <typename Row, typename... Indexes> |
| 520 | void Table<Row, Indexes...>::reserve(size_t size) { |
| 521 | rows.reserve(size); |
| 522 | Impl<>::reserve(*this, size); |
| 523 | } |
| 524 | |
| 525 | template <typename Row, typename... Indexes> |
| 526 | size_t Table<Row, Indexes...>::size() const { |
| 527 | return rows.size(); |
| 528 | } |
| 529 | template <typename Row, typename... Indexes> |
| 530 | void Table<Row, Indexes...>::clear() { |
| 531 | Impl<>::clear(*this); |
| 532 | rows.clear(); |
| 533 | } |
| 534 | template <typename Row, typename... Indexes> |
| 535 | size_t Table<Row, Indexes...>::capacity() const { |
| 536 | return rows.capacity(); |
| 537 | } |
| 538 | |
| 539 | template <typename Row, typename... Indexes> |
| 540 | Row* Table<Row, Indexes...>::begin() { |
| 541 | return rows.begin(); |
| 542 | } |
| 543 | template <typename Row, typename... Indexes> |
| 544 | Row* Table<Row, Indexes...>::end() { |
| 545 | return rows.end(); |
| 546 | } |
| 547 | template <typename Row, typename... Indexes> |
| 548 | const Row* Table<Row, Indexes...>::begin() const { |
| 549 | return rows.begin(); |
| 550 | } |
| 551 | template <typename Row, typename... Indexes> |
| 552 | const Row* Table<Row, Indexes...>::end() const { |
| 553 | return rows.end(); |
| 554 | } |
| 555 | |
| 556 | template <typename Row, typename... Indexes> |
| 557 | Row& Table<Row, Indexes...>::insert(Row&& row) { |
| 558 | KJ_IF_MAYBE(existing, Impl<>::insert(*this, rows.size(), row, kj::maxValue)) { |
| 559 | _::throwDuplicateTableRow(); |
| 560 | } else { |
| 561 | return rows.add(kj::mv(row)); |
| 562 | } |
| 563 | } |
| 564 | template <typename Row, typename... Indexes> |
| 565 | Row& Table<Row, Indexes...>::insert(const Row& row) { |
| 566 | return insert(kj::cp(row)); |
| 567 | } |
| 568 | |
| 569 | template <typename Row, typename... Indexes> |
| 570 | template <typename Collection> |
| 571 | void Table<Row, Indexes...>::insertAll(Collection&& collection) { |
| 572 | _::tryReserveSize(*this, collection); |
| 573 | for (auto& row: collection) { |
| 574 | insert(kj::mv(row)); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | template <typename Row, typename... Indexes> |
| 579 | template <typename Collection> |
| 580 | void Table<Row, Indexes...>::insertAll(Collection& collection) { |
| 581 | _::tryReserveSize(*this, collection); |
| 582 | for (auto& row: collection) { |
| 583 | insert(row); |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | template <typename Row, typename... Indexes> |
| 588 | template <typename UpdateFunc> |
| 589 | Row& Table<Row, Indexes...>::upsert(Row&& row, UpdateFunc&& update) { |
| 590 | KJ_IF_MAYBE(existing, Impl<>::insert(*this, rows.size(), row, kj::maxValue)) { |
| 591 | update(rows[*existing], kj::mv(row)); |
| 592 | return rows[*existing]; |
| 593 | } else { |
| 594 | return rows.add(kj::mv(row)); |
| 595 | } |
| 596 | } |
| 597 | template <typename Row, typename... Indexes> |
| 598 | template <typename UpdateFunc> |
| 599 | Row& Table<Row, Indexes...>::upsert(const Row& row, UpdateFunc&& update) { |
| 600 | return upsert(kj::cp(row), kj::fwd<UpdateFunc>(update)); |
| 601 | } |
| 602 | |
| 603 | template <typename Row, typename... Indexes> |
| 604 | template <typename Index, typename... Params> |
| 605 | kj::Maybe<Row&> Table<Row, Indexes...>::find(Params&&... params) { |
| 606 | return find<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...); |
| 607 | } |
| 608 | template <typename Row, typename... Indexes> |
| 609 | template <size_t index, typename... Params> |
| 610 | kj::Maybe<Row&> Table<Row, Indexes...>::find(Params&&... params) { |
| 611 | KJ_IF_MAYBE(pos, get<index>(indexes).find(rows.asPtr(), kj::fwd<Params>(params)...)) { |
| 612 | return rows[*pos]; |
| 613 | } else { |
| 614 | return nullptr; |
| 615 | } |
| 616 | } |
| 617 | template <typename Row, typename... Indexes> |
| 618 | template <typename Index, typename... Params> |
| 619 | kj::Maybe<const Row&> Table<Row, Indexes...>::find(Params&&... params) const { |
| 620 | return find<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...); |
| 621 | } |
| 622 | template <typename Row, typename... Indexes> |
| 623 | template <size_t index, typename... Params> |
| 624 | kj::Maybe<const Row&> Table<Row, Indexes...>::find(Params&&... params) const { |
| 625 | KJ_IF_MAYBE(pos, get<index>(indexes).find(rows.asPtr(), kj::fwd<Params>(params)...)) { |
| 626 | return rows[*pos]; |
| 627 | } else { |
| 628 | return nullptr; |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | template <typename Row, typename... Indexes> |
| 633 | template <typename Func, typename... Params> |
| 634 | class Table<Row, Indexes...>::FindOrCreateImpl { |
| 635 | public: |
| 636 | template <size_t index> |
| 637 | static Row& apply(Table<Row, Indexes...>& table, Params&&... params, Func&& createFunc) { |
| 638 | auto pos = table.rows.size(); |
| 639 | KJ_IF_MAYBE(existing, get<index>(table.indexes).insert(table.rows.asPtr(), pos, params...)) { |
| 640 | return table.rows[*existing]; |
| 641 | } else { |
| 642 | bool success = false; |
| 643 | auto& newRow = table.rows.add(createFunc()); |
| 644 | KJ_DEFER({ |
| 645 | if (!success) { |
| 646 | table.rows.removeLast(); |
| 647 | get<index>(table.indexes).erase(table.rows.asPtr(), pos, params...); |
| 648 | } |
| 649 | }); |
| 650 | if (Table<Row, Indexes...>::template Impl<>::insert(table, pos, newRow, index) == nullptr) { |
| 651 | success = true; |
| 652 | } else { |
| 653 | _::throwDuplicateTableRow(); |
| 654 | } |
| 655 | return newRow; |
| 656 | } |
| 657 | } |
| 658 | }; |
| 659 | |
| 660 | template <typename Row, typename... Indexes> |
| 661 | template <typename... T, typename U, typename V, typename... W> |
| 662 | struct Table<Row, Indexes...>::FindOrCreateHack<_::Tuple<T...>, U, V, W...> |
| 663 | : public FindOrCreateHack<_::Tuple<T..., U>, V, W...> {}; |
| 664 | template <typename Row, typename... Indexes> |
| 665 | template <typename... T, typename U> |
| 666 | struct Table<Row, Indexes...>::FindOrCreateHack<_::Tuple<T...>, U> |
| 667 | : public FindOrCreateImpl<U, T...> {}; |
| 668 | // This awful hack works around C++'s lack of support for parameter packs anywhere other than at |
| 669 | // the end of an argument list. We accumulate all of the types except for the last one into a |
| 670 | // Tuple, then forward to FindOrCreateImpl with the last parameter as the Func. |
| 671 | |
| 672 | template <typename Row, typename... Indexes> |
| 673 | template <typename Index, typename First, typename... Rest> |
| 674 | Row& Table<Row, Indexes...>::findOrCreate(First&& first, Rest&&... rest) { |
| 675 | return findOrCreate<indexOfType<Index, Tuple<Indexes...>>()>( |
| 676 | kj::fwd<First>(first), kj::fwd<Rest>(rest)...); |
| 677 | } |
| 678 | template <typename Row, typename... Indexes> |
| 679 | template <size_t index, typename First, typename... Rest> |
| 680 | Row& Table<Row, Indexes...>::findOrCreate(First&& first, Rest&&... rest) { |
| 681 | return FindOrCreateHack<_::Tuple<>, First, Rest...>::template apply<index>( |
| 682 | *this, kj::fwd<First>(first), kj::fwd<Rest>(rest)...); |
| 683 | } |
| 684 | |
| 685 | template <typename Row, typename... Indexes> |
| 686 | template <typename Index, typename... Params> |
| 687 | auto Table<Row, Indexes...>::range(Params&&... params) { |
| 688 | return range<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...); |
| 689 | } |
| 690 | template <typename Row, typename... Indexes> |
| 691 | template <size_t index, typename... Params> |
| 692 | auto Table<Row, Indexes...>::range(Params&&... params) { |
| 693 | auto inner = get<index>(indexes).range(rows.asPtr(), kj::fwd<Params>(params)...); |
| 694 | return _::TableIterable<Row, decltype(inner)>(kj::mv(inner), rows.begin()); |
| 695 | } |
| 696 | template <typename Row, typename... Indexes> |
| 697 | template <typename Index, typename... Params> |
| 698 | auto Table<Row, Indexes...>::range(Params&&... params) const { |
| 699 | return range<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...); |
| 700 | } |
| 701 | template <typename Row, typename... Indexes> |
| 702 | template <size_t index, typename... Params> |
| 703 | auto Table<Row, Indexes...>::range(Params&&... params) const { |
| 704 | auto inner = get<index>(indexes).range(rows.asPtr(), kj::fwd<Params>(params)...); |
| 705 | return _::TableIterable<const Row, decltype(inner)>(kj::mv(inner), rows.begin()); |
| 706 | } |
| 707 | |
| 708 | template <typename Row, typename... Indexes> |
| 709 | template <typename Index> |
| 710 | _::TableIterable<Row, Index&> Table<Row, Indexes...>::ordered() { |
| 711 | return ordered<indexOfType<Index, Tuple<Indexes...>>()>(); |
| 712 | } |
| 713 | template <typename Row, typename... Indexes> |
| 714 | template <size_t index> |
| 715 | _::TableIterable<Row, TypeOfIndex<index, Tuple<Indexes...>>&> Table<Row, Indexes...>::ordered() { |
| 716 | return { get<index>(indexes), rows.begin() }; |
| 717 | } |
| 718 | template <typename Row, typename... Indexes> |
| 719 | template <typename Index> |
| 720 | _::TableIterable<const Row, const Index&> Table<Row, Indexes...>::ordered() const { |
| 721 | return ordered<indexOfType<Index, Tuple<Indexes...>>()>(); |
| 722 | } |
| 723 | template <typename Row, typename... Indexes> |
| 724 | template <size_t index> |
| 725 | _::TableIterable<const Row, const TypeOfIndex<index, Tuple<Indexes...>>&> |
| 726 | Table<Row, Indexes...>::ordered() const { |
| 727 | return { get<index>(indexes), rows.begin() }; |
| 728 | } |
| 729 | |
| 730 | template <typename Row, typename... Indexes> |
| 731 | template <typename Index, typename... Params> |
| 732 | bool Table<Row, Indexes...>::eraseMatch(Params&&... params) { |
| 733 | return eraseMatch<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...); |
| 734 | } |
| 735 | template <typename Row, typename... Indexes> |
| 736 | template <size_t index, typename... Params> |
| 737 | bool Table<Row, Indexes...>::eraseMatch(Params&&... params) { |
| 738 | KJ_IF_MAYBE(pos, get<index>(indexes).find(rows.asPtr(), kj::fwd<Params>(params)...)) { |
| 739 | eraseImpl(*pos); |
| 740 | return true; |
| 741 | } else { |
| 742 | return false; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | template <typename Row, typename... Indexes> |
| 747 | template <typename Index, typename... Params> |
| 748 | size_t Table<Row, Indexes...>::eraseRange(Params&&... params) { |
| 749 | return eraseRange<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...); |
| 750 | } |
| 751 | template <typename Row, typename... Indexes> |
| 752 | template <size_t index, typename... Params> |
| 753 | size_t Table<Row, Indexes...>::eraseRange(Params&&... params) { |
| 754 | return eraseAllImpl(get<index>(indexes).range(rows.asPtr(), kj::fwd<Params>(params)...)); |
| 755 | } |
| 756 | |
| 757 | template <typename Row, typename... Indexes> |
| 758 | template <size_t index> |
| 759 | void Table<Row, Indexes...>::verify() { |
| 760 | get<index>(indexes).verify(rows.asPtr()); |
| 761 | } |
| 762 | |
| 763 | template <typename Row, typename... Indexes> |
| 764 | void Table<Row, Indexes...>::erase(Row& row) { |
| 765 | KJ_IREQUIRE(&row >= rows.begin() && &row < rows.end(), "row is not a member of this table" ); |
| 766 | eraseImpl(&row - rows.begin()); |
| 767 | } |
| 768 | template <typename Row, typename... Indexes> |
| 769 | void Table<Row, Indexes...>::eraseImpl(size_t pos) { |
| 770 | Impl<>::erase(*this, pos, rows[pos]); |
| 771 | size_t back = rows.size() - 1; |
| 772 | if (pos != back) { |
| 773 | Impl<>::move(*this, back, pos, rows[back]); |
| 774 | rows[pos] = kj::mv(rows[back]); |
| 775 | } |
| 776 | rows.removeLast(); |
| 777 | } |
| 778 | |
| 779 | template <typename Row, typename... Indexes> |
| 780 | Row Table<Row, Indexes...>::release(Row& row) { |
| 781 | KJ_IREQUIRE(&row >= rows.begin() && &row < rows.end(), "row is not a member of this table" ); |
| 782 | size_t pos = &row - rows.begin(); |
| 783 | Impl<>::erase(*this, pos, row); |
| 784 | Row result = kj::mv(row); |
| 785 | size_t back = rows.size() - 1; |
| 786 | if (pos != back) { |
| 787 | Impl<>::move(*this, back, pos, rows[back]); |
| 788 | row = kj::mv(rows[back]); |
| 789 | } |
| 790 | rows.removeLast(); |
| 791 | return result; |
| 792 | } |
| 793 | |
| 794 | template <typename Row, typename... Indexes> |
| 795 | template <typename Predicate, typename> |
| 796 | size_t Table<Row, Indexes...>::eraseAll(Predicate&& predicate) { |
| 797 | size_t count = 0; |
| 798 | for (size_t i = 0; i < rows.size();) { |
| 799 | if (predicate(rows[i])) { |
| 800 | eraseImpl(i); |
| 801 | ++count; |
| 802 | // eraseImpl() replaces the erased row with the last row, so don't increment i here; repeat |
| 803 | // with the same i. |
| 804 | } else { |
| 805 | ++i; |
| 806 | } |
| 807 | } |
| 808 | return count; |
| 809 | } |
| 810 | |
| 811 | template <typename Row, typename... Indexes> |
| 812 | template <typename Collection, typename, bool> |
| 813 | size_t Table<Row, Indexes...>::eraseAll(Collection&& collection) { |
| 814 | return eraseAllImpl(_::MappedIterable<Collection&, _::TableUnmapping<Row>>( |
| 815 | collection, rows.begin())); |
| 816 | } |
| 817 | |
| 818 | template <typename Row, typename... Indexes> |
| 819 | template <typename Collection> |
| 820 | size_t Table<Row, Indexes...>::eraseAllImpl(Collection&& collection) { |
| 821 | // We need to transform the collection of row numbers into a sequence of erasures, accounting |
| 822 | // for the fact that each erasure re-positions the last row into its slot. |
| 823 | Vector<size_t> erased; |
| 824 | _::tryReserveSize(erased, collection); |
| 825 | for (size_t pos: collection) { |
| 826 | while (pos >= rows.size() - erased.size()) { |
| 827 | // Oops, the next item to be erased is already scheduled to be moved to a different location |
| 828 | // due to a previous erasure. Figure out where it will be at this point. |
| 829 | size_t erasureNumber = rows.size() - pos - 1; |
| 830 | pos = erased[erasureNumber]; |
| 831 | } |
| 832 | erased.add(pos); |
| 833 | } |
| 834 | |
| 835 | // Now we can execute the sequence of erasures. |
| 836 | for (size_t pos: erased) { |
| 837 | eraseImpl(pos); |
| 838 | } |
| 839 | |
| 840 | return erased.size(); |
| 841 | } |
| 842 | |
| 843 | // ----------------------------------------------------------------------------- |
| 844 | // Hash table index |
| 845 | |
| 846 | namespace _ { // private |
| 847 | |
| 848 | void logHashTableInconsistency(); |
| 849 | |
| 850 | struct HashBucket { |
| 851 | uint hash; |
| 852 | uint value; |
| 853 | |
| 854 | HashBucket() = default; |
| 855 | HashBucket(uint hash, uint pos) |
| 856 | : hash(hash), value(pos + 2) {} |
| 857 | |
| 858 | inline bool isEmpty() const { return value == 0; } |
| 859 | inline bool isErased() const { return value == 1; } |
| 860 | inline bool isOccupied() const { return value >= 2; } |
| 861 | template <typename Row> |
| 862 | inline Row& getRow(ArrayPtr<Row> table) const { return table[getPos()]; } |
| 863 | template <typename Row> |
| 864 | inline const Row& getRow(ArrayPtr<const Row> table) const { return table[getPos()]; } |
| 865 | inline bool isPos(uint pos) const { return pos + 2 == value; } |
| 866 | inline uint getPos() const { |
| 867 | KJ_IASSERT(value >= 2); |
| 868 | return value - 2; |
| 869 | } |
| 870 | inline void setEmpty() { value = 0; } |
| 871 | inline void setErased() { value = 1; } |
| 872 | inline void setPos(uint pos) { value = pos + 2; } |
| 873 | }; |
| 874 | |
| 875 | inline size_t probeHash(const kj::Array<HashBucket>& buckets, size_t i) { |
| 876 | // TODO(perf): Is linear probing OK or should we do something fancier? |
| 877 | if (++i == buckets.size()) { |
| 878 | return 0; |
| 879 | } else { |
| 880 | return i; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | kj::Array<HashBucket> rehash(kj::ArrayPtr<const HashBucket> oldBuckets, size_t targetSize); |
| 885 | |
| 886 | uint chooseBucket(uint hash, uint count); |
| 887 | |
| 888 | } // namespace _ (private) |
| 889 | |
| 890 | template <typename Callbacks> |
| 891 | class HashIndex { |
| 892 | public: |
| 893 | HashIndex() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY |
| 894 | template <typename... Params> |
| 895 | HashIndex(Params&&... params): cb(kj::fwd<Params>(params)...) {} |
| 896 | |
| 897 | void reserve(size_t size) { |
| 898 | if (buckets.size() < size * 2) { |
| 899 | rehash(size); |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | void clear() { |
| 904 | erasedCount = 0; |
| 905 | memset(buckets.begin(), 0, buckets.asBytes().size()); |
| 906 | } |
| 907 | |
| 908 | template <typename Row> |
| 909 | decltype(auto) keyForRow(Row&& row) const { |
| 910 | return cb.keyForRow(kj::fwd<Row>(row)); |
| 911 | } |
| 912 | |
| 913 | template <typename Row, typename... Params> |
| 914 | kj::Maybe<size_t> insert(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) { |
| 915 | if (buckets.size() * 2 < (table.size() + 1 + erasedCount) * 3) { |
| 916 | // Load factor is more than 2/3, let's rehash. |
| 917 | rehash(kj::max(buckets.size() * 2, (table.size() + 1) * 2)); |
| 918 | } |
| 919 | |
| 920 | uint hashCode = cb.hashCode(params...); |
| 921 | Maybe<_::HashBucket&> erasedSlot; |
| 922 | for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) { |
| 923 | auto& bucket = buckets[i]; |
| 924 | if (bucket.isEmpty()) { |
| 925 | // no duplicates found |
| 926 | KJ_IF_MAYBE(s, erasedSlot) { |
| 927 | --erasedCount; |
| 928 | *s = { hashCode, uint(pos) }; |
| 929 | } else { |
| 930 | bucket = { hashCode, uint(pos) }; |
| 931 | } |
| 932 | return nullptr; |
| 933 | } else if (bucket.isErased()) { |
| 934 | // We can fill in the erased slot. However, we have to keep searching to make sure there |
| 935 | // are no duplicates before we do that. |
| 936 | if (erasedSlot == nullptr) { |
| 937 | erasedSlot = bucket; |
| 938 | } |
| 939 | } else if (bucket.hash == hashCode && |
| 940 | cb.matches(bucket.getRow(table), params...)) { |
| 941 | // duplicate row |
| 942 | return size_t(bucket.getPos()); |
| 943 | } |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | template <typename Row, typename... Params> |
| 948 | void erase(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) { |
| 949 | uint hashCode = cb.hashCode(params...); |
| 950 | for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) { |
| 951 | auto& bucket = buckets[i]; |
| 952 | if (bucket.isPos(pos)) { |
| 953 | // found it |
| 954 | ++erasedCount; |
| 955 | bucket.setErased(); |
| 956 | return; |
| 957 | } else if (bucket.isEmpty()) { |
| 958 | // can't find the bucket, something is very wrong |
| 959 | _::logHashTableInconsistency(); |
| 960 | return; |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | template <typename Row, typename... Params> |
| 966 | void move(kj::ArrayPtr<Row> table, size_t oldPos, size_t newPos, Params&&... params) { |
| 967 | uint hashCode = cb.hashCode(params...); |
| 968 | for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) { |
| 969 | auto& bucket = buckets[i]; |
| 970 | if (bucket.isPos(oldPos)) { |
| 971 | // found it |
| 972 | bucket.setPos(newPos); |
| 973 | return; |
| 974 | } else if (bucket.isEmpty()) { |
| 975 | // can't find the bucket, something is very wrong |
| 976 | _::logHashTableInconsistency(); |
| 977 | return; |
| 978 | } |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | template <typename Row, typename... Params> |
| 983 | Maybe<size_t> find(kj::ArrayPtr<Row> table, Params&&... params) const { |
| 984 | if (buckets.size() == 0) return nullptr; |
| 985 | |
| 986 | uint hashCode = cb.hashCode(params...); |
| 987 | for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) { |
| 988 | auto& bucket = buckets[i]; |
| 989 | if (bucket.isEmpty()) { |
| 990 | // not found. |
| 991 | return nullptr; |
| 992 | } else if (bucket.isErased()) { |
| 993 | // skip, keep searching |
| 994 | } else if (bucket.hash == hashCode && |
| 995 | cb.matches(bucket.getRow(table), params...)) { |
| 996 | // found |
| 997 | return size_t(bucket.getPos()); |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | // No begin() nor end() because hash tables are not usefully ordered. |
| 1003 | |
| 1004 | private: |
| 1005 | Callbacks cb; |
| 1006 | size_t erasedCount = 0; |
| 1007 | Array<_::HashBucket> buckets; |
| 1008 | |
| 1009 | void rehash(size_t targetSize) { |
| 1010 | buckets = _::rehash(buckets, targetSize); |
| 1011 | } |
| 1012 | }; |
| 1013 | |
| 1014 | // ----------------------------------------------------------------------------- |
| 1015 | // BTree index |
| 1016 | |
| 1017 | namespace _ { // private |
| 1018 | |
| 1019 | KJ_ALWAYS_INLINE(void compilerBarrier()); |
| 1020 | void compilerBarrier() { |
| 1021 | // Make sure that reads occurring before this call cannot be re-ordered to happen after |
| 1022 | // writes that occur after this call. We need this in a couple places below to prevent C++ |
| 1023 | // strict aliasing rules from breaking things. |
| 1024 | #if _MSC_VER |
| 1025 | _ReadWriteBarrier(); |
| 1026 | #else |
| 1027 | __asm__ __volatile__("" : : :"memory" ); |
| 1028 | #endif |
| 1029 | } |
| 1030 | |
| 1031 | template <typename T> |
| 1032 | inline void acopy(T* to, T* from, size_t size) { memcpy(to, from, size * sizeof(T)); } |
| 1033 | template <typename T> |
| 1034 | inline void amove(T* to, T* from, size_t size) { memmove(to, from, size * sizeof(T)); } |
| 1035 | template <typename T> |
| 1036 | inline void azero(T* ptr, size_t size) { memset(ptr, 0, size * sizeof(T)); } |
| 1037 | // memcpy/memmove/memset variants that count size in elements, not bytes. |
| 1038 | // |
| 1039 | // TODO(cleanup): These are generally useful, put them somewhere. |
| 1040 | |
| 1041 | class BTreeImpl { |
| 1042 | public: |
| 1043 | class Iterator; |
| 1044 | class MaybeUint; |
| 1045 | struct NodeUnion; |
| 1046 | struct Leaf; |
| 1047 | struct Parent; |
| 1048 | struct Freelisted; |
| 1049 | |
| 1050 | class SearchKey { |
| 1051 | // Passed to methods that need to search the tree. This class allows most of the B-tree |
| 1052 | // implementation to be kept out of templates, avoiding code bloat, at the cost of some |
| 1053 | // performance trade-off. In order to lessen the performance cost of virtual calls, we design |
| 1054 | // this interface so that it only needs to be called once per tree node, rather than once per |
| 1055 | // comparison. |
| 1056 | |
| 1057 | public: |
| 1058 | virtual uint search(const Parent& parent) const = 0; |
| 1059 | virtual uint search(const Leaf& leaf) const = 0; |
| 1060 | // Binary search for the first key/row in the parent/leaf that is equal to or comes after the |
| 1061 | // search key. |
| 1062 | |
| 1063 | virtual bool isAfter(uint rowIndex) const = 0; |
| 1064 | // Returns true if the key comes after the value in the given row. |
| 1065 | }; |
| 1066 | |
| 1067 | BTreeImpl(); |
| 1068 | ~BTreeImpl() noexcept(false); |
| 1069 | |
| 1070 | void logInconsistency() const; |
| 1071 | |
| 1072 | void reserve(size_t size); |
| 1073 | |
| 1074 | void clear(); |
| 1075 | |
| 1076 | Iterator begin() const; |
| 1077 | Iterator end() const; |
| 1078 | |
| 1079 | Iterator search(const SearchKey& searchKey) const; |
| 1080 | // Find the "first" row (in sorted order) for which searchKey.isAfter(rowNumber) returns true. |
| 1081 | |
| 1082 | Iterator insert(const SearchKey& searchKey); |
| 1083 | // Like search() but ensures that there is room in the leaf node to insert a new row. |
| 1084 | |
| 1085 | void erase(uint row, const SearchKey& searchKey); |
| 1086 | // Erase the given row number from the tree. searchKey.isAfter() returns true for the given row |
| 1087 | // and all rows after it. |
| 1088 | |
| 1089 | void renumber(uint oldRow, uint newRow, const SearchKey& searchKey); |
| 1090 | // Renumber the given row from oldRow to newRow. searchKey.isAfter() returns true for oldRow and |
| 1091 | // all rows after it. (It will not be called on newRow.) |
| 1092 | |
| 1093 | void verify(size_t size, FunctionParam<bool(uint, uint)>); |
| 1094 | |
| 1095 | private: |
| 1096 | NodeUnion* tree; // allocated with aligned_alloc aligned to cache lines |
| 1097 | uint treeCapacity; |
| 1098 | uint height; // height of *parent* tree -- does not include the leaf level |
| 1099 | uint freelistHead; |
| 1100 | uint freelistSize; |
| 1101 | uint beginLeaf; |
| 1102 | uint endLeaf; |
| 1103 | void growTree(uint minCapacity = 0); |
| 1104 | |
| 1105 | template <typename T> |
| 1106 | struct AllocResult; |
| 1107 | |
| 1108 | template <typename T> |
| 1109 | inline AllocResult<T> alloc(); |
| 1110 | inline void free(uint pos); |
| 1111 | |
| 1112 | inline uint split(Parent& src, uint srcPos, Parent& dst, uint dstPos); |
| 1113 | inline uint split(Leaf& dst, uint dstPos, Leaf& src, uint srcPos); |
| 1114 | inline void merge(Parent& dst, uint dstPos, uint pivot, Parent& src); |
| 1115 | inline void merge(Leaf& dst, uint dstPos, uint pivot, Leaf& src); |
| 1116 | inline void move(Parent& dst, uint dstPos, Parent& src); |
| 1117 | inline void move(Leaf& dst, uint dstPos, Leaf& src); |
| 1118 | inline void rotateLeft( |
| 1119 | Parent& left, Parent& right, Parent& parent, uint indexInParent, MaybeUint*& fixup); |
| 1120 | inline void rotateLeft( |
| 1121 | Leaf& left, Leaf& right, Parent& parent, uint indexInParent, MaybeUint*& fixup); |
| 1122 | inline void rotateRight(Parent& left, Parent& right, Parent& parent, uint indexInParent); |
| 1123 | inline void rotateRight(Leaf& left, Leaf& right, Parent& parent, uint indexInParent); |
| 1124 | |
| 1125 | template <typename Node> |
| 1126 | inline Node& insertHelper(const SearchKey& searchKey, |
| 1127 | Node& node, Parent* parent, uint indexInParent, uint pos); |
| 1128 | |
| 1129 | template <typename Node> |
| 1130 | inline Node& eraseHelper( |
| 1131 | Node& node, Parent* parent, uint indexInParent, uint pos, MaybeUint*& fixup); |
| 1132 | |
| 1133 | size_t verifyNode(size_t size, FunctionParam<bool(uint, uint)>&, |
| 1134 | uint pos, uint height, MaybeUint maxRow); |
| 1135 | |
| 1136 | static const NodeUnion EMPTY_NODE; |
| 1137 | }; |
| 1138 | |
| 1139 | class BTreeImpl::MaybeUint { |
| 1140 | // A nullable uint, using the value zero to mean null and shifting all other values up by 1. |
| 1141 | public: |
| 1142 | MaybeUint() = default; |
| 1143 | inline MaybeUint(uint i): i(i - 1) {} |
| 1144 | inline MaybeUint(decltype(nullptr)): i(0) {} |
| 1145 | |
| 1146 | inline bool operator==(decltype(nullptr)) const { return i == 0; } |
| 1147 | inline bool operator==(uint j) const { return i == j + 1; } |
| 1148 | inline bool operator==(const MaybeUint& other) const { return i == other.i; } |
| 1149 | inline bool operator!=(decltype(nullptr)) const { return i != 0; } |
| 1150 | inline bool operator!=(uint j) const { return i != j + 1; } |
| 1151 | inline bool operator!=(const MaybeUint& other) const { return i != other.i; } |
| 1152 | |
| 1153 | inline MaybeUint& operator=(decltype(nullptr)) { i = 0; return *this; } |
| 1154 | inline MaybeUint& operator=(uint j) { i = j + 1; return *this; } |
| 1155 | |
| 1156 | inline uint operator*() const { KJ_IREQUIRE(i != 0); return i - 1; } |
| 1157 | |
| 1158 | template <typename Func> |
| 1159 | inline bool check(Func& func) const { return i != 0 && func(i - 1); } |
| 1160 | // Equivalent to *this != nullptr && func(**this) |
| 1161 | |
| 1162 | private: |
| 1163 | uint i; |
| 1164 | }; |
| 1165 | |
| 1166 | struct BTreeImpl::Leaf { |
| 1167 | uint next; |
| 1168 | uint prev; |
| 1169 | // Pointers to next and previous nodes at the same level, used for fast iteration. |
| 1170 | |
| 1171 | static constexpr size_t NROWS = 14; |
| 1172 | MaybeUint rows[NROWS]; |
| 1173 | // Pointers to table rows, offset by 1 so that 0 is an empty value. |
| 1174 | |
| 1175 | inline bool isFull() const; |
| 1176 | inline bool isMostlyFull() const; |
| 1177 | inline bool isHalfFull() const; |
| 1178 | |
| 1179 | inline void insert(uint i, uint newRow) { |
| 1180 | KJ_IREQUIRE(rows[Leaf::NROWS - 1] == nullptr); // check not full |
| 1181 | |
| 1182 | amove(rows + i + 1, rows + i, Leaf::NROWS - (i + 1)); |
| 1183 | rows[i] = newRow; |
| 1184 | } |
| 1185 | |
| 1186 | inline void erase(uint i) { |
| 1187 | KJ_IREQUIRE(rows[0] != nullptr); // check not empty |
| 1188 | |
| 1189 | amove(rows + i, rows + i + 1, Leaf::NROWS - (i + 1)); |
| 1190 | rows[Leaf::NROWS - 1] = nullptr; |
| 1191 | } |
| 1192 | |
| 1193 | inline uint size() const { |
| 1194 | static_assert(Leaf::NROWS == 14, "logic here needs updating" ); |
| 1195 | |
| 1196 | // Binary search for first empty element in `rows`, or return 14 if no empty elements. We do |
| 1197 | // this in a branch-free manner. Since there are 15 possible results (0 through 14, inclusive), |
| 1198 | // this isn't a perfectly balanced binary search. We carefully choose the split points so that |
| 1199 | // there's no way we'll try to dereference row[14] or later (which would be a buffer overflow). |
| 1200 | uint i = (rows[6] != nullptr) * 7; |
| 1201 | i += (rows[i + 3] != nullptr) * 4; |
| 1202 | i += (rows[i + 1] != nullptr) * 2; |
| 1203 | i += (rows[i ] != nullptr); |
| 1204 | return i; |
| 1205 | } |
| 1206 | |
| 1207 | template <typename Func> |
| 1208 | inline uint binarySearch(Func& predicate) const { |
| 1209 | // Binary search to find first row for which predicate(row) is false. |
| 1210 | |
| 1211 | static_assert(Leaf::NROWS == 14, "logic here needs updating" ); |
| 1212 | |
| 1213 | // See comments in size(). |
| 1214 | uint i = (rows[6].check(predicate)) * 7; |
| 1215 | i += (rows[i + 3].check(predicate)) * 4; |
| 1216 | i += (rows[i + 1].check(predicate)) * 2; |
| 1217 | if (i != 6) { // don't redundantly check row 6 |
| 1218 | i += (rows[i ].check(predicate)); |
| 1219 | } |
| 1220 | return i; |
| 1221 | } |
| 1222 | }; |
| 1223 | |
| 1224 | struct BTreeImpl::Parent { |
| 1225 | uint unused; |
| 1226 | // Not used. May be arbitrarily non-zero due to overlap with Freelisted::nextOffset. |
| 1227 | |
| 1228 | static constexpr size_t NKEYS = 7; |
| 1229 | MaybeUint keys[NKEYS]; |
| 1230 | // Pointers to table rows, offset by 1 so that 0 is an empty value. |
| 1231 | |
| 1232 | static constexpr size_t NCHILDREN = NKEYS + 1; |
| 1233 | uint children[NCHILDREN]; |
| 1234 | // Pointers to children. Not offset because the root is always at position 0, and a pointer |
| 1235 | // to the root would be nonsensical. |
| 1236 | |
| 1237 | inline bool isFull() const; |
| 1238 | inline bool isMostlyFull() const; |
| 1239 | inline bool isHalfFull() const; |
| 1240 | inline void initRoot(uint key, uint leftChild, uint rightChild); |
| 1241 | inline void insertAfter(uint i, uint splitKey, uint child); |
| 1242 | inline void eraseAfter(uint i); |
| 1243 | |
| 1244 | inline uint keyCount() const { |
| 1245 | static_assert(Parent::NKEYS == 7, "logic here needs updating" ); |
| 1246 | |
| 1247 | // Binary search for first empty element in `keys`, or return 7 if no empty elements. We do |
| 1248 | // this in a branch-free manner. Since there are 8 possible results (0 through 7, inclusive), |
| 1249 | // this is a perfectly balanced binary search. |
| 1250 | uint i = (keys[3] != nullptr) * 4; |
| 1251 | i += (keys[i + 1] != nullptr) * 2; |
| 1252 | i += (keys[i ] != nullptr); |
| 1253 | return i; |
| 1254 | } |
| 1255 | |
| 1256 | template <typename Func> |
| 1257 | inline uint binarySearch(Func& predicate) const { |
| 1258 | // Binary search to find first key for which predicate(key) is false. |
| 1259 | |
| 1260 | static_assert(Parent::NKEYS == 7, "logic here needs updating" ); |
| 1261 | |
| 1262 | // See comments in size(). |
| 1263 | uint i = (keys[3].check(predicate)) * 4; |
| 1264 | i += (keys[i + 1].check(predicate)) * 2; |
| 1265 | i += (keys[i ].check(predicate)); |
| 1266 | return i; |
| 1267 | } |
| 1268 | }; |
| 1269 | |
| 1270 | struct BTreeImpl::Freelisted { |
| 1271 | int nextOffset; |
| 1272 | // The next node in the freelist is at: this + 1 + nextOffset |
| 1273 | // |
| 1274 | // Hence, newly-allocated space can initialize this to zero. |
| 1275 | |
| 1276 | uint zero[15]; |
| 1277 | // Freelisted entries are always zero'd. |
| 1278 | }; |
| 1279 | |
| 1280 | struct BTreeImpl::NodeUnion { |
| 1281 | union { |
| 1282 | Freelisted freelist; |
| 1283 | // If this node is in the freelist. |
| 1284 | |
| 1285 | Leaf leaf; |
| 1286 | // If this node is a leaf. |
| 1287 | |
| 1288 | Parent parent; |
| 1289 | // If this node is not a leaf. |
| 1290 | }; |
| 1291 | |
| 1292 | inline operator Leaf&() { return leaf; } |
| 1293 | inline operator Parent&() { return parent; } |
| 1294 | inline operator const Leaf&() const { return leaf; } |
| 1295 | inline operator const Parent&() const { return parent; } |
| 1296 | }; |
| 1297 | |
| 1298 | static_assert(sizeof(BTreeImpl::Parent) == 64, |
| 1299 | "BTreeImpl::Parent should be optimized to fit a cache line" ); |
| 1300 | static_assert(sizeof(BTreeImpl::Leaf) == 64, |
| 1301 | "BTreeImpl::Leaf should be optimized to fit a cache line" ); |
| 1302 | static_assert(sizeof(BTreeImpl::Freelisted) == 64, |
| 1303 | "BTreeImpl::Freelisted should be optimized to fit a cache line" ); |
| 1304 | static_assert(sizeof(BTreeImpl::NodeUnion) == 64, |
| 1305 | "BTreeImpl::NodeUnion should be optimized to fit a cache line" ); |
| 1306 | |
| 1307 | bool BTreeImpl::Leaf::isFull() const { |
| 1308 | return rows[Leaf::NROWS - 1] != nullptr; |
| 1309 | } |
| 1310 | bool BTreeImpl::Leaf::isMostlyFull() const { |
| 1311 | return rows[Leaf::NROWS / 2] != nullptr; |
| 1312 | } |
| 1313 | bool BTreeImpl::Leaf::isHalfFull() const { |
| 1314 | KJ_IASSERT(rows[Leaf::NROWS / 2 - 1] != nullptr); |
| 1315 | return rows[Leaf::NROWS / 2] == nullptr; |
| 1316 | } |
| 1317 | |
| 1318 | bool BTreeImpl::Parent::isFull() const { |
| 1319 | return keys[Parent::NKEYS - 1] != nullptr; |
| 1320 | } |
| 1321 | bool BTreeImpl::Parent::isMostlyFull() const { |
| 1322 | return keys[Parent::NKEYS / 2] != nullptr; |
| 1323 | } |
| 1324 | bool BTreeImpl::Parent::isHalfFull() const { |
| 1325 | KJ_IASSERT(keys[Parent::NKEYS / 2 - 1] != nullptr); |
| 1326 | return keys[Parent::NKEYS / 2] == nullptr; |
| 1327 | } |
| 1328 | |
| 1329 | class BTreeImpl::Iterator { |
| 1330 | public: |
| 1331 | Iterator(const NodeUnion* tree, const Leaf* leaf, uint row) |
| 1332 | : tree(tree), leaf(leaf), row(row) {} |
| 1333 | |
| 1334 | size_t operator*() const { |
| 1335 | KJ_IREQUIRE(row < Leaf::NROWS && leaf->rows[row] != nullptr, |
| 1336 | "tried to dereference end() iterator" ); |
| 1337 | return *leaf->rows[row]; |
| 1338 | } |
| 1339 | |
| 1340 | inline Iterator& operator++() { |
| 1341 | KJ_IREQUIRE(leaf->rows[row] != nullptr, "B-tree iterator overflow" ); |
| 1342 | ++row; |
| 1343 | if (row >= Leaf::NROWS || leaf->rows[row] == nullptr) { |
| 1344 | if (leaf->next == 0) { |
| 1345 | // at end; stay on current leaf |
| 1346 | } else { |
| 1347 | leaf = &tree[leaf->next].leaf; |
| 1348 | row = 0; |
| 1349 | } |
| 1350 | } |
| 1351 | return *this; |
| 1352 | } |
| 1353 | inline Iterator operator++(int) { |
| 1354 | Iterator other = *this; |
| 1355 | ++*this; |
| 1356 | return other; |
| 1357 | } |
| 1358 | |
| 1359 | inline Iterator& operator--() { |
| 1360 | if (row == 0) { |
| 1361 | KJ_IREQUIRE(leaf->prev != 0, "B-tree iterator underflow" ); |
| 1362 | leaf = &tree[leaf->prev].leaf; |
| 1363 | row = leaf->size() - 1; |
| 1364 | } else { |
| 1365 | --row; |
| 1366 | } |
| 1367 | return *this; |
| 1368 | } |
| 1369 | inline Iterator operator--(int) { |
| 1370 | Iterator other = *this; |
| 1371 | --*this; |
| 1372 | return other; |
| 1373 | } |
| 1374 | |
| 1375 | inline bool operator==(const Iterator& other) const { |
| 1376 | return leaf == other.leaf && row == other.row; |
| 1377 | } |
| 1378 | inline bool operator!=(const Iterator& other) const { |
| 1379 | return leaf != other.leaf || row != other.row; |
| 1380 | } |
| 1381 | |
| 1382 | bool isEnd() { |
| 1383 | return row == Leaf::NROWS || leaf->rows[row] == nullptr; |
| 1384 | } |
| 1385 | |
| 1386 | void insert(BTreeImpl& impl, uint newRow) { |
| 1387 | KJ_IASSERT(impl.tree == tree); |
| 1388 | const_cast<Leaf*>(leaf)->insert(row, newRow); |
| 1389 | } |
| 1390 | |
| 1391 | void erase(BTreeImpl& impl) { |
| 1392 | KJ_IASSERT(impl.tree == tree); |
| 1393 | const_cast<Leaf*>(leaf)->erase(row); |
| 1394 | } |
| 1395 | |
| 1396 | void replace(BTreeImpl& impl, uint newRow) { |
| 1397 | KJ_IASSERT(impl.tree == tree); |
| 1398 | const_cast<Leaf*>(leaf)->rows[row] = newRow; |
| 1399 | } |
| 1400 | |
| 1401 | private: |
| 1402 | const NodeUnion* tree; |
| 1403 | const Leaf* leaf; |
| 1404 | uint row; |
| 1405 | }; |
| 1406 | |
| 1407 | template <typename Iterator> |
| 1408 | class IterRange { |
| 1409 | public: |
| 1410 | inline IterRange(Iterator b, Iterator e): b(b), e(e) {} |
| 1411 | |
| 1412 | inline Iterator begin() const { return b; } |
| 1413 | inline Iterator end() const { return e; } |
| 1414 | private: |
| 1415 | Iterator b; |
| 1416 | Iterator e; |
| 1417 | }; |
| 1418 | |
| 1419 | template <typename Iterator> |
| 1420 | inline IterRange<Decay<Iterator>> iterRange(Iterator b, Iterator e) { |
| 1421 | return { b, e }; |
| 1422 | } |
| 1423 | |
| 1424 | inline BTreeImpl::Iterator BTreeImpl::begin() const { |
| 1425 | return { tree, &tree[beginLeaf].leaf, 0 }; |
| 1426 | } |
| 1427 | inline BTreeImpl::Iterator BTreeImpl::end() const { |
| 1428 | auto& leaf = tree[endLeaf].leaf; |
| 1429 | return { tree, &leaf, leaf.size() }; |
| 1430 | } |
| 1431 | |
| 1432 | } // namespace _ (private) |
| 1433 | |
| 1434 | template <typename Callbacks> |
| 1435 | class TreeIndex { |
| 1436 | public: |
| 1437 | TreeIndex() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY |
| 1438 | template <typename... Params> |
| 1439 | TreeIndex(Params&&... params): cb(kj::fwd<Params>(params)...) {} |
| 1440 | |
| 1441 | template <typename Row> |
| 1442 | void verify(kj::ArrayPtr<Row> table) { |
| 1443 | impl.verify(table.size(), [&](uint i, uint j) { |
| 1444 | return cb.isBefore(table[i], table[j]); |
| 1445 | }); |
| 1446 | } |
| 1447 | |
| 1448 | inline void reserve(size_t size) { impl.reserve(size); } |
| 1449 | inline void clear() { impl.clear(); } |
| 1450 | inline auto begin() const { return impl.begin(); } |
| 1451 | inline auto end() const { return impl.end(); } |
| 1452 | |
| 1453 | template <typename Row> |
| 1454 | decltype(auto) keyForRow(Row&& row) const { |
| 1455 | return cb.keyForRow(kj::fwd<Row>(row)); |
| 1456 | } |
| 1457 | |
| 1458 | template <typename Row, typename... Params> |
| 1459 | kj::Maybe<size_t> insert(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) { |
| 1460 | auto iter = impl.insert(searchKey(table, params...)); |
| 1461 | |
| 1462 | if (!iter.isEnd() && cb.matches(table[*iter], params...)) { |
| 1463 | return *iter; |
| 1464 | } else { |
| 1465 | iter.insert(impl, pos); |
| 1466 | return nullptr; |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | template <typename Row, typename... Params> |
| 1471 | void erase(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) { |
| 1472 | impl.erase(pos, searchKey(table, params...)); |
| 1473 | } |
| 1474 | |
| 1475 | template <typename Row, typename... Params> |
| 1476 | void move(kj::ArrayPtr<Row> table, size_t oldPos, size_t newPos, Params&&... params) { |
| 1477 | impl.renumber(oldPos, newPos, searchKey(table, params...)); |
| 1478 | } |
| 1479 | |
| 1480 | template <typename Row, typename... Params> |
| 1481 | Maybe<size_t> find(kj::ArrayPtr<Row> table, Params&&... params) const { |
| 1482 | auto iter = impl.search(searchKey(table, params...)); |
| 1483 | |
| 1484 | if (!iter.isEnd() && cb.matches(table[*iter], params...)) { |
| 1485 | return size_t(*iter); |
| 1486 | } else { |
| 1487 | return nullptr; |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | template <typename Row, typename Begin, typename End> |
| 1492 | _::IterRange<_::BTreeImpl::Iterator> range( |
| 1493 | kj::ArrayPtr<Row> table, Begin&& begin, End&& end) const { |
| 1494 | return { |
| 1495 | impl.search(searchKey(table, begin)), |
| 1496 | impl.search(searchKey(table, end )) |
| 1497 | }; |
| 1498 | } |
| 1499 | |
| 1500 | private: |
| 1501 | Callbacks cb; |
| 1502 | _::BTreeImpl impl; |
| 1503 | |
| 1504 | template <typename Predicate> |
| 1505 | class SearchKeyImpl: public _::BTreeImpl::SearchKey { |
| 1506 | public: |
| 1507 | SearchKeyImpl(Predicate&& predicate) |
| 1508 | : predicate(kj::mv(predicate)) {} |
| 1509 | |
| 1510 | uint search(const _::BTreeImpl::Parent& parent) const override { |
| 1511 | return parent.binarySearch(predicate); |
| 1512 | } |
| 1513 | uint search(const _::BTreeImpl::Leaf& leaf) const override { |
| 1514 | return leaf.binarySearch(predicate); |
| 1515 | } |
| 1516 | bool isAfter(uint rowIndex) const override { |
| 1517 | return predicate(rowIndex); |
| 1518 | } |
| 1519 | |
| 1520 | private: |
| 1521 | Predicate predicate; |
| 1522 | }; |
| 1523 | |
| 1524 | template <typename Row, typename... Params> |
| 1525 | inline auto searchKey(kj::ArrayPtr<Row>& table, Params&... params) const { |
| 1526 | auto predicate = [&](uint i) { return cb.isBefore(table[i], params...); }; |
| 1527 | return SearchKeyImpl<decltype(predicate)>(kj::mv(predicate)); |
| 1528 | } |
| 1529 | }; |
| 1530 | |
| 1531 | // ----------------------------------------------------------------------------- |
| 1532 | // Insertion order index |
| 1533 | |
| 1534 | class InsertionOrderIndex { |
| 1535 | // Table index which allows iterating over elements in order of insertion. This index cannot |
| 1536 | // be used for Table::find(), but can be used for Table::ordered(). |
| 1537 | |
| 1538 | struct Link; |
| 1539 | public: |
| 1540 | InsertionOrderIndex(); |
| 1541 | ~InsertionOrderIndex() noexcept(false); |
| 1542 | |
| 1543 | class Iterator { |
| 1544 | public: |
| 1545 | Iterator(const Link* links, uint pos) |
| 1546 | : links(links), pos(pos) {} |
| 1547 | |
| 1548 | inline size_t operator*() const { |
| 1549 | KJ_IREQUIRE(pos != 0, "can't derefrence end() iterator" ); |
| 1550 | return pos - 1; |
| 1551 | }; |
| 1552 | |
| 1553 | inline Iterator& operator++() { |
| 1554 | pos = links[pos].next; |
| 1555 | return *this; |
| 1556 | } |
| 1557 | inline Iterator operator++(int) { |
| 1558 | Iterator result = *this; |
| 1559 | ++*this; |
| 1560 | return result; |
| 1561 | } |
| 1562 | inline Iterator& operator--() { |
| 1563 | pos = links[pos].prev; |
| 1564 | return *this; |
| 1565 | } |
| 1566 | inline Iterator operator--(int) { |
| 1567 | Iterator result = *this; |
| 1568 | --*this; |
| 1569 | return result; |
| 1570 | } |
| 1571 | |
| 1572 | inline bool operator==(const Iterator& other) const { |
| 1573 | return pos == other.pos; |
| 1574 | } |
| 1575 | inline bool operator!=(const Iterator& other) const { |
| 1576 | return pos != other.pos; |
| 1577 | } |
| 1578 | |
| 1579 | private: |
| 1580 | const Link* links; |
| 1581 | uint pos; |
| 1582 | }; |
| 1583 | |
| 1584 | template <typename Row> |
| 1585 | Row& keyForRow(Row& row) const { return row; } |
| 1586 | |
| 1587 | void reserve(size_t size); |
| 1588 | void clear(); |
| 1589 | inline Iterator begin() const { return Iterator(links, links[0].next); } |
| 1590 | inline Iterator end() const { return Iterator(links, 0); } |
| 1591 | |
| 1592 | template <typename Row> |
| 1593 | kj::Maybe<size_t> insert(kj::ArrayPtr<Row> table, size_t pos, const Row& row) { |
| 1594 | return insertImpl(pos); |
| 1595 | } |
| 1596 | |
| 1597 | template <typename Row> |
| 1598 | void erase(kj::ArrayPtr<Row> table, size_t pos, const Row& row) { |
| 1599 | eraseImpl(pos); |
| 1600 | } |
| 1601 | |
| 1602 | template <typename Row> |
| 1603 | void move(kj::ArrayPtr<Row> table, size_t oldPos, size_t newPos, const Row& row) { |
| 1604 | return moveImpl(oldPos, newPos); |
| 1605 | } |
| 1606 | |
| 1607 | private: |
| 1608 | struct Link { |
| 1609 | uint next; |
| 1610 | uint prev; |
| 1611 | }; |
| 1612 | |
| 1613 | uint capacity; |
| 1614 | Link* links; |
| 1615 | // links[0] is special: links[0].next points to the first link, links[0].prev points to the last. |
| 1616 | // links[n+1] corresponds to row n. |
| 1617 | |
| 1618 | kj::Maybe<size_t> insertImpl(size_t pos); |
| 1619 | void eraseImpl(size_t pos); |
| 1620 | void moveImpl(size_t oldPos, size_t newPos); |
| 1621 | |
| 1622 | static const Link EMPTY_LINK; |
| 1623 | }; |
| 1624 | |
| 1625 | } // namespace kj |
| 1626 | |