| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Resolve special assert vertices. |
| 31 | * |
| 32 | * The assert resolution algorithm proceeds by iterating over those edges with |
| 33 | * assertion flags, considering source and target vertices of each edge. If a |
| 34 | * vertex has a superset of the reachability demanded by the assertion on the |
| 35 | * edge, it is split into alternatives providing the word and non-word paths |
| 36 | * through that vertex. |
| 37 | * |
| 38 | * A great deal of the complexity in the resolveAsserts pass is devoted to |
| 39 | * handling these assertions when the UCP flag is specified (meaning \\w and \\W |
| 40 | * are implemented with Unicode properties, rather than their ASCII |
| 41 | * interpretation) and the prefiltering flag is also used. Complete, |
| 42 | * non-prefiltering UCP support is not available yet. |
| 43 | */ |
| 44 | #include "ng_asserts.h" |
| 45 | |
| 46 | #include "ng.h" |
| 47 | #include "ng_prune.h" |
| 48 | #include "ng_redundancy.h" |
| 49 | #include "ng_util.h" |
| 50 | #include "compiler/compiler.h" |
| 51 | #include "parser/position.h" // for POS flags |
| 52 | #include "util/bitutils.h" // for findAndClearLSB_32 |
| 53 | #include "util/boundary_reports.h" |
| 54 | #include "util/container.h" |
| 55 | #include "util/compile_context.h" |
| 56 | #include "util/compile_error.h" |
| 57 | #include "util/graph_range.h" |
| 58 | #include "util/report_manager.h" |
| 59 | #include "util/unicode_def.h" |
| 60 | |
| 61 | #include <queue> |
| 62 | |
| 63 | using namespace std; |
| 64 | |
| 65 | namespace ue2 { |
| 66 | |
| 67 | /** \brief Hard limit on the maximum number of vertices we'll clone before we |
| 68 | * throw up our hands and report 'Pattern too large.' */ |
| 69 | static const size_t MAX_CLONED_VERTICES = 2048; |
| 70 | |
| 71 | /** \brief The definition of \\w, since we use it everywhere in here. */ |
| 72 | static const CharReach CHARREACH_WORD(CharReach('a', 'z') | |
| 73 | CharReach('A', 'Z') | CharReach('0', '9') | CharReach('_')); |
| 74 | |
| 75 | /** \brief \\W is the inverse of \\w */ |
| 76 | static const CharReach CHARREACH_NONWORD(~CHARREACH_WORD); |
| 77 | |
| 78 | /** \brief Prefiltering definition of \\w for UCP mode. |
| 79 | * |
| 80 | * Includes all high bytes as to capture all non-ASCII, however depending on |
| 81 | * direction only continuers or starters are strictly required - as the input |
| 82 | * is well-formed, this laxness will not cost us. */ |
| 83 | static const CharReach CHARREACH_WORD_UCP_PRE(CHARREACH_WORD |
| 84 | | CharReach(128, 255)); |
| 85 | |
| 86 | /** \brief Prefiltering definition of \\W for UCP Mode. |
| 87 | * |
| 88 | * (non-word already includes high bytes) */ |
| 89 | static const CharReach CHARREACH_NONWORD_UCP_PRE(CHARREACH_NONWORD); |
| 90 | |
| 91 | /** \brief Find all the edges with assertion flags. */ |
| 92 | static |
| 93 | vector<NFAEdge> getAsserts(const NGHolder &g) { |
| 94 | vector<NFAEdge> out; |
| 95 | for (const auto &e : edges_range(g)) { |
| 96 | if (g[e].assert_flags) { |
| 97 | out.push_back(e); |
| 98 | } |
| 99 | } |
| 100 | return out; |
| 101 | } |
| 102 | |
| 103 | static |
| 104 | void addToSplit(const NGHolder &g, NFAVertex v, map<u32, NFAVertex> *to_split) { |
| 105 | DEBUG_PRINTF("%zu needs splitting\n" , g[v].index); |
| 106 | to_split->emplace(g[v].index, v); |
| 107 | } |
| 108 | |
| 109 | /** \brief Find vertices that need to be split due to an assertion edge. |
| 110 | * |
| 111 | * A vertex needs to be split if has an edge to/from it with an assert with a |
| 112 | * restriction on the relevant end. */ |
| 113 | static |
| 114 | void findSplitters(const NGHolder &g, const vector<NFAEdge> &asserts, |
| 115 | map<u32, NFAVertex> *to_split, |
| 116 | map<u32, NFAVertex> *to_split_ucp) { |
| 117 | for (const auto &e : asserts) { |
| 118 | NFAVertex u = source(e, g); |
| 119 | NFAVertex v = target(e, g); |
| 120 | u32 flags = g[e].assert_flags; |
| 121 | assert(flags); |
| 122 | |
| 123 | const CharReach &u_cr = g[u].char_reach; |
| 124 | const CharReach &v_cr = g[v].char_reach; |
| 125 | |
| 126 | bool ucp_assert = flags & UCP_ASSERT_FLAGS; |
| 127 | bool normal_assert = flags & NON_UCP_ASSERT_FLAGS; |
| 128 | /* In reality, an expression can only be entirely ucp or not ucp */ |
| 129 | assert(ucp_assert != normal_assert); |
| 130 | |
| 131 | if (normal_assert) { |
| 132 | /* assume any flag results in us have to split if the vertex is not |
| 133 | * a subset of word or completely disjoint from it. We could be more |
| 134 | * nuanced if flags is a disjunction of multiple assertions. */ |
| 135 | if (!u_cr.isSubsetOf(CHARREACH_WORD) |
| 136 | && !u_cr.isSubsetOf(CHARREACH_NONWORD) |
| 137 | && u != g.start) { /* start is always considered a nonword */ |
| 138 | addToSplit(g, u, to_split); |
| 139 | } |
| 140 | |
| 141 | if (!v_cr.isSubsetOf(CHARREACH_WORD) |
| 142 | && !v_cr.isSubsetOf(CHARREACH_NONWORD) |
| 143 | && v != g.accept /* accept require special handling, done on a |
| 144 | * per edge basis in resolve asserts |
| 145 | */ |
| 146 | && v != g.acceptEod) { /* eod is always considered a nonword */ |
| 147 | addToSplit(g, v, to_split); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | if (ucp_assert) { |
| 152 | /* note: the ucp prefilter crs overlap - requires a bit more care */ |
| 153 | if (u == g.start) { /* start never needs to be split, |
| 154 | * treat nonword */ |
| 155 | } else if (flags & POS_FLAG_ASSERT_WORD_TO_ANY_UCP) { |
| 156 | if (!u_cr.isSubsetOf(CHARREACH_WORD_UCP_PRE) |
| 157 | && !u_cr.isSubsetOf(~CHARREACH_WORD_UCP_PRE)) { |
| 158 | addToSplit(g, u, to_split_ucp); |
| 159 | } |
| 160 | } else { |
| 161 | assert(flags & POS_FLAG_ASSERT_NONWORD_TO_ANY_UCP); |
| 162 | if (!u_cr.isSubsetOf(CHARREACH_NONWORD_UCP_PRE) |
| 163 | && !u_cr.isSubsetOf(~CHARREACH_NONWORD_UCP_PRE)) { |
| 164 | addToSplit(g, u, to_split_ucp); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | if (v == g.acceptEod /* eod is always considered a nonword */ |
| 169 | || v == g.accept) { /* accept require special handling, done on |
| 170 | * a per edge basis in resolve asserts */ |
| 171 | } else if (flags & POS_FLAG_ASSERT_ANY_TO_WORD_UCP) { |
| 172 | if (!v_cr.isSubsetOf(CHARREACH_WORD_UCP_PRE) |
| 173 | && !v_cr.isSubsetOf(~CHARREACH_WORD_UCP_PRE)) { |
| 174 | addToSplit(g, v, to_split_ucp); |
| 175 | } |
| 176 | } else { |
| 177 | assert(flags & POS_FLAG_ASSERT_ANY_TO_NONWORD_UCP); |
| 178 | if (!v_cr.isSubsetOf(CHARREACH_NONWORD_UCP_PRE) |
| 179 | && !v_cr.isSubsetOf(~CHARREACH_NONWORD_UCP_PRE)) { |
| 180 | addToSplit(g, v, to_split_ucp); |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | static |
| 188 | void setReportId(ReportManager &rm, NGHolder &g, const ExpressionInfo &expr, |
| 189 | NFAVertex v, s32 adj) { |
| 190 | // Don't try and set the report ID of a special vertex. |
| 191 | assert(!is_special(v, g)); |
| 192 | |
| 193 | // If there's a report set already, we're replacing it. |
| 194 | g[v].reports.clear(); |
| 195 | |
| 196 | Report ir = rm.getBasicInternalReport(expr, adj); |
| 197 | |
| 198 | g[v].reports.insert(rm.getInternalId(ir)); |
| 199 | DEBUG_PRINTF("set report id for vertex %zu, adj %d\n" , g[v].index, adj); |
| 200 | } |
| 201 | |
| 202 | static |
| 203 | NFAVertex makeClone(ReportManager &rm, NGHolder &g, const ExpressionInfo &expr, |
| 204 | NFAVertex v, const CharReach &cr_mask) { |
| 205 | NFAVertex clone = clone_vertex(g, v); |
| 206 | g[clone].char_reach &= cr_mask; |
| 207 | clone_out_edges(g, v, clone); |
| 208 | clone_in_edges(g, v, clone); |
| 209 | |
| 210 | if (v == g.startDs) { |
| 211 | if (expr.utf8) { |
| 212 | g[clone].char_reach &= ~UTF_START_CR; |
| 213 | } |
| 214 | |
| 215 | DEBUG_PRINTF("marked as virt\n" ); |
| 216 | g[clone].assert_flags = POS_FLAG_VIRTUAL_START; |
| 217 | |
| 218 | setReportId(rm, g, expr, clone, 0); |
| 219 | } |
| 220 | |
| 221 | return clone; |
| 222 | } |
| 223 | |
| 224 | static |
| 225 | void splitVertex(ReportManager &rm, NGHolder &g, const ExpressionInfo &expr, |
| 226 | NFAVertex v, bool ucp) { |
| 227 | assert(v != g.start); |
| 228 | assert(v != g.accept); |
| 229 | assert(v != g.acceptEod); |
| 230 | DEBUG_PRINTF("partitioning vertex %zu ucp:%d\n" , g[v].index, (int)ucp); |
| 231 | |
| 232 | CharReach cr_word = ucp ? CHARREACH_WORD_UCP_PRE : CHARREACH_WORD; |
| 233 | CharReach cr_nonword = ucp ? CHARREACH_NONWORD_UCP_PRE : CHARREACH_NONWORD; |
| 234 | |
| 235 | auto has_no_assert = [&g](const NFAEdge &e) { return !g[e].assert_flags; }; |
| 236 | |
| 237 | // Split v into word/nonword vertices with only asserting out-edges. |
| 238 | NFAVertex w_out = makeClone(rm, g, expr, v, cr_word); |
| 239 | NFAVertex nw_out = makeClone(rm, g, expr, v, cr_nonword); |
| 240 | remove_out_edge_if(w_out, has_no_assert, g); |
| 241 | remove_out_edge_if(nw_out, has_no_assert, g); |
| 242 | |
| 243 | // Split v into word/nonword vertices with only asserting in-edges. |
| 244 | NFAVertex w_in = makeClone(rm, g, expr, v, cr_word); |
| 245 | NFAVertex nw_in = makeClone(rm, g, expr, v, cr_nonword); |
| 246 | remove_in_edge_if(w_in, has_no_assert, g); |
| 247 | remove_in_edge_if(nw_in, has_no_assert, g); |
| 248 | |
| 249 | // Prune edges with asserts from original v. |
| 250 | auto has_assert = [&g](const NFAEdge &e) { return g[e].assert_flags; }; |
| 251 | remove_in_edge_if(v, has_assert, g); |
| 252 | remove_out_edge_if(v, has_assert, g); |
| 253 | } |
| 254 | |
| 255 | static |
| 256 | void resolveEdges(ReportManager &rm, NGHolder &g, const ExpressionInfo &expr, |
| 257 | set<NFAEdge> *dead) { |
| 258 | for (const auto &e : edges_range(g)) { |
| 259 | u32 flags = g[e].assert_flags; |
| 260 | if (!flags) { |
| 261 | continue; |
| 262 | } |
| 263 | |
| 264 | NFAVertex u = source(e, g); |
| 265 | NFAVertex v = target(e, g); |
| 266 | |
| 267 | assert(u != g.startDs); |
| 268 | |
| 269 | const CharReach &u_cr = g[u].char_reach; |
| 270 | const CharReach &v_cr = g[v].char_reach; |
| 271 | |
| 272 | bool impassable = true; |
| 273 | bool ucp = flags & UCP_ASSERT_FLAGS; |
| 274 | DEBUG_PRINTF("resolving edge %zu->%zu (flags=0x%x, ucp=%d)\n" , |
| 275 | g[u].index, g[v].index, flags, (int)ucp); |
| 276 | while (flags && impassable) { |
| 277 | u32 flag = 1U << findAndClearLSB_32(&flags); |
| 278 | switch (flag) { |
| 279 | case POS_FLAG_ASSERT_NONWORD_TO_NONWORD: |
| 280 | case POS_FLAG_ASSERT_NONWORD_TO_WORD: |
| 281 | if ((u_cr & CHARREACH_NONWORD).none() && u != g.start) { |
| 282 | continue; |
| 283 | } |
| 284 | break; |
| 285 | case POS_FLAG_ASSERT_WORD_TO_NONWORD: |
| 286 | case POS_FLAG_ASSERT_WORD_TO_WORD: |
| 287 | if ((u_cr & CHARREACH_WORD).none() || u == g.start) { |
| 288 | continue; |
| 289 | } |
| 290 | break; |
| 291 | case POS_FLAG_ASSERT_NONWORD_TO_NONWORD_UCP: |
| 292 | case POS_FLAG_ASSERT_NONWORD_TO_WORD_UCP: |
| 293 | if ((u_cr & ~CHARREACH_NONWORD_UCP_PRE).any() && u != g.start) { |
| 294 | continue; |
| 295 | } |
| 296 | break; |
| 297 | case POS_FLAG_ASSERT_WORD_TO_NONWORD_UCP: |
| 298 | case POS_FLAG_ASSERT_WORD_TO_WORD_UCP: |
| 299 | if ((u_cr & ~CHARREACH_WORD_UCP_PRE).any() || u == g.start) { |
| 300 | continue; |
| 301 | } |
| 302 | break; |
| 303 | default: |
| 304 | assert(0); |
| 305 | } |
| 306 | |
| 307 | if (v == g.accept) { |
| 308 | /* accept special will need to be treated specially later */ |
| 309 | impassable = false; |
| 310 | continue; |
| 311 | } |
| 312 | |
| 313 | switch (flag) { |
| 314 | case POS_FLAG_ASSERT_NONWORD_TO_NONWORD: |
| 315 | case POS_FLAG_ASSERT_WORD_TO_NONWORD: |
| 316 | if ((v_cr & CHARREACH_NONWORD).none() && v != g.acceptEod) { |
| 317 | continue; |
| 318 | } |
| 319 | break; |
| 320 | case POS_FLAG_ASSERT_WORD_TO_WORD: |
| 321 | case POS_FLAG_ASSERT_NONWORD_TO_WORD: |
| 322 | if ((v_cr & CHARREACH_WORD).none() || v == g.acceptEod) { |
| 323 | continue; |
| 324 | } |
| 325 | break; |
| 326 | case POS_FLAG_ASSERT_NONWORD_TO_NONWORD_UCP: |
| 327 | case POS_FLAG_ASSERT_WORD_TO_NONWORD_UCP: |
| 328 | if ((v_cr & ~CHARREACH_NONWORD_UCP_PRE).any() |
| 329 | && v != g.acceptEod) { |
| 330 | continue; |
| 331 | } |
| 332 | break; |
| 333 | case POS_FLAG_ASSERT_WORD_TO_WORD_UCP: |
| 334 | case POS_FLAG_ASSERT_NONWORD_TO_WORD_UCP: |
| 335 | if ((v_cr & ~CHARREACH_WORD_UCP_PRE).any() |
| 336 | || v == g.acceptEod) { |
| 337 | continue; |
| 338 | } |
| 339 | break; |
| 340 | default: |
| 341 | assert(0); |
| 342 | } |
| 343 | impassable = false; |
| 344 | } |
| 345 | |
| 346 | if (impassable) { |
| 347 | dead->insert(e); |
| 348 | } else if (v == g.accept && !ucp) { |
| 349 | bool u_w = (u_cr & CHARREACH_NONWORD).none() && u != g.start; |
| 350 | UNUSED bool u_nw = (u_cr & CHARREACH_WORD).none() || u == g.start; |
| 351 | assert(u_w != u_nw); |
| 352 | bool v_w = false; |
| 353 | bool v_nw = false; |
| 354 | |
| 355 | flags = g[e].assert_flags; |
| 356 | if (u_w) { |
| 357 | v_w = flags & POS_FLAG_ASSERT_WORD_TO_WORD; |
| 358 | v_nw = flags & POS_FLAG_ASSERT_WORD_TO_NONWORD; |
| 359 | } else { |
| 360 | v_w = flags & POS_FLAG_ASSERT_NONWORD_TO_WORD; |
| 361 | v_nw = flags & POS_FLAG_ASSERT_NONWORD_TO_NONWORD; |
| 362 | } |
| 363 | assert(v_w || v_nw); |
| 364 | if (v_w && v_nw) { |
| 365 | /* edge is effectively unconditional */ |
| 366 | g[e].assert_flags = 0; |
| 367 | } else if (v_w) { |
| 368 | /* need to add a word byte */ |
| 369 | NFAVertex vv = add_vertex(g); |
| 370 | setReportId(rm, g, expr, vv, -1); |
| 371 | g[vv].char_reach = CHARREACH_WORD; |
| 372 | add_edge(vv, g.accept, g); |
| 373 | g[e].assert_flags = 0; |
| 374 | add_edge(u, vv, g[e], g); |
| 375 | dead->insert(e); |
| 376 | } else { |
| 377 | /* need to add a non word byte or see eod */ |
| 378 | NFAVertex vv = add_vertex(g); |
| 379 | setReportId(rm, g, expr, vv, -1); |
| 380 | g[vv].char_reach = CHARREACH_NONWORD; |
| 381 | add_edge(vv, g.accept, g); |
| 382 | g[e].assert_flags = 0; |
| 383 | add_edge(u, vv, g[e], g); |
| 384 | /* there may already be a different edge from start to eod if so |
| 385 | * we need to make it unconditional and alive |
| 386 | */ |
| 387 | if (NFAEdge start_eod = edge(u, g.acceptEod, g)) { |
| 388 | g[start_eod].assert_flags = 0; |
| 389 | dead->erase(start_eod); |
| 390 | } else { |
| 391 | add_edge(u, g.acceptEod, g[e], g); |
| 392 | } |
| 393 | dead->insert(e); |
| 394 | } |
| 395 | } else if (v == g.accept && ucp) { |
| 396 | DEBUG_PRINTF("resolving ucp assert to accept\n" ); |
| 397 | assert(u_cr.any()); |
| 398 | bool u_w = (u_cr & CHARREACH_WORD_UCP_PRE).any() |
| 399 | && u != g.start; |
| 400 | bool u_nw = (u_cr & CHARREACH_NONWORD_UCP_PRE).any() |
| 401 | || u == g.start; |
| 402 | assert(u_w || u_nw); |
| 403 | |
| 404 | bool v_w = false; |
| 405 | bool v_nw = false; |
| 406 | |
| 407 | flags = g[e].assert_flags; |
| 408 | if (u_w) { |
| 409 | v_w |= flags & POS_FLAG_ASSERT_WORD_TO_WORD_UCP; |
| 410 | v_nw |= flags & POS_FLAG_ASSERT_WORD_TO_NONWORD_UCP; |
| 411 | } |
| 412 | if (u_nw) { |
| 413 | v_w |= flags & POS_FLAG_ASSERT_NONWORD_TO_WORD_UCP; |
| 414 | v_nw |= flags & POS_FLAG_ASSERT_NONWORD_TO_NONWORD_UCP; |
| 415 | } |
| 416 | assert(v_w || v_nw); |
| 417 | if (v_w && v_nw) { |
| 418 | /* edge is effectively unconditional */ |
| 419 | g[e].assert_flags = 0; |
| 420 | } else if (v_w) { |
| 421 | /* need to add a word byte */ |
| 422 | NFAVertex vv = add_vertex(g); |
| 423 | setReportId(rm, g, expr, vv, -1); |
| 424 | g[vv].char_reach = CHARREACH_WORD_UCP_PRE; |
| 425 | add_edge(vv, g.accept, g); |
| 426 | g[e].assert_flags = 0; |
| 427 | add_edge(u, vv, g[e], g); |
| 428 | dead->insert(e); |
| 429 | } else { |
| 430 | /* need to add a non word byte or see eod */ |
| 431 | NFAVertex vv = add_vertex(g); |
| 432 | setReportId(rm, g, expr, vv, -1); |
| 433 | g[vv].char_reach = CHARREACH_NONWORD_UCP_PRE; |
| 434 | add_edge(vv, g.accept, g); |
| 435 | g[e].assert_flags = 0; |
| 436 | add_edge(u, vv, g[e], g); |
| 437 | /* there may already be a different edge from start to eod if so |
| 438 | * we need to make it unconditional and alive |
| 439 | */ |
| 440 | if (NFAEdge start_eod = edge(u, g.acceptEod, g)) { |
| 441 | g[start_eod].assert_flags = 0; |
| 442 | dead->erase(start_eod); |
| 443 | } else { |
| 444 | add_edge(u, g.acceptEod, g[e], g); |
| 445 | } |
| 446 | dead->insert(e); |
| 447 | } |
| 448 | } else { |
| 449 | /* we can remove the asserts as we have partitioned the vertices |
| 450 | * into w/nw around the assert edges |
| 451 | */ |
| 452 | g[e].assert_flags = 0; |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | void resolveAsserts(ReportManager &rm, NGHolder &g, |
| 458 | const ExpressionInfo &expr) { |
| 459 | vector<NFAEdge> asserts = getAsserts(g); |
| 460 | if (asserts.empty()) { |
| 461 | return; |
| 462 | } |
| 463 | |
| 464 | map<u32, NFAVertex> to_split; /* by index, for determinism */ |
| 465 | map<u32, NFAVertex> to_split_ucp; /* by index, for determinism */ |
| 466 | findSplitters(g, asserts, &to_split, &to_split_ucp); |
| 467 | if (to_split.size() + to_split_ucp.size() > MAX_CLONED_VERTICES) { |
| 468 | throw CompileError(expr.index, "Pattern is too large." ); |
| 469 | } |
| 470 | |
| 471 | for (const auto &m : to_split) { |
| 472 | assert(!contains(to_split_ucp, m.first)); |
| 473 | splitVertex(rm, g, expr, m.second, false); |
| 474 | } |
| 475 | |
| 476 | for (const auto &m : to_split_ucp) { |
| 477 | splitVertex(rm, g, expr, m.second, true); |
| 478 | } |
| 479 | |
| 480 | set<NFAEdge> dead; |
| 481 | resolveEdges(rm, g, expr, &dead); |
| 482 | |
| 483 | remove_edges(dead, g); |
| 484 | renumber_vertices(g); |
| 485 | pruneUseless(g); |
| 486 | pruneEmptyVertices(g); |
| 487 | |
| 488 | renumber_vertices(g); |
| 489 | renumber_edges(g); |
| 490 | clearReports(g); |
| 491 | } |
| 492 | |
| 493 | void ensureCodePointStart(ReportManager &rm, NGHolder &g, |
| 494 | const ExpressionInfo &expr) { |
| 495 | /* In utf8 mode there is an implicit assertion that we start at codepoint |
| 496 | * boundaries. Assert resolution handles the badness coming from asserts. |
| 497 | * The only other source of trouble is startDs->accept connections. |
| 498 | */ |
| 499 | NFAEdge orig = edge(g.startDs, g.accept, g); |
| 500 | if (expr.utf8 && orig) { |
| 501 | DEBUG_PRINTF("rectifying %u\n" , expr.report); |
| 502 | Report ir = rm.getBasicInternalReport(expr); |
| 503 | ReportID rep = rm.getInternalId(ir); |
| 504 | |
| 505 | NFAVertex v_a = add_vertex(g); |
| 506 | g[v_a].assert_flags = POS_FLAG_VIRTUAL_START; |
| 507 | g[v_a].char_reach = UTF_ASCII_CR; |
| 508 | add_edge(v_a, g.accept, g[orig], g); |
| 509 | |
| 510 | NFAVertex v_2 = add_vertex(g); |
| 511 | g[v_2].assert_flags = POS_FLAG_VIRTUAL_START; |
| 512 | g[v_2].char_reach = CharReach(UTF_TWO_BYTE_MIN, UTF_TWO_BYTE_MAX); |
| 513 | |
| 514 | NFAVertex v_3 = add_vertex(g); |
| 515 | g[v_3].assert_flags = POS_FLAG_VIRTUAL_START; |
| 516 | g[v_3].char_reach = CharReach(UTF_THREE_BYTE_MIN, UTF_THREE_BYTE_MAX); |
| 517 | |
| 518 | NFAVertex v_4 = add_vertex(g); |
| 519 | g[v_4].assert_flags = POS_FLAG_VIRTUAL_START; |
| 520 | g[v_4].char_reach = CharReach(UTF_FOUR_BYTE_MIN, UTF_FOUR_BYTE_MAX); |
| 521 | |
| 522 | NFAVertex v_c = add_vertex(g); |
| 523 | g[v_c].assert_flags = POS_FLAG_VIRTUAL_START; |
| 524 | g[v_c].char_reach = UTF_CONT_CR; |
| 525 | add_edge(v_c, g.accept, g[orig], g); |
| 526 | |
| 527 | add_edge(v_2, v_c, g); |
| 528 | |
| 529 | NFAVertex v_3c = add_vertex(g); |
| 530 | g[v_3c].assert_flags = POS_FLAG_VIRTUAL_START; |
| 531 | g[v_3c].char_reach = UTF_CONT_CR; |
| 532 | add_edge(v_3c, v_c, g); |
| 533 | add_edge(v_3, v_3c, g); |
| 534 | |
| 535 | NFAVertex v_4c = add_vertex(g); |
| 536 | g[v_4c].assert_flags = POS_FLAG_VIRTUAL_START; |
| 537 | g[v_4c].char_reach = UTF_CONT_CR; |
| 538 | add_edge(v_4c, v_3c, g); |
| 539 | add_edge(v_4, v_4c, g); |
| 540 | |
| 541 | g[v_a].reports.insert(rep); |
| 542 | g[v_c].reports.insert(rep); |
| 543 | |
| 544 | add_edge(g.start, v_a, g); |
| 545 | add_edge(g.startDs, v_a, g); |
| 546 | add_edge(g.start, v_2, g); |
| 547 | add_edge(g.startDs, v_2, g); |
| 548 | add_edge(g.start, v_3, g); |
| 549 | add_edge(g.startDs, v_3, g); |
| 550 | add_edge(g.start, v_4, g); |
| 551 | add_edge(g.startDs, v_4, g); |
| 552 | remove_edge(orig, g); |
| 553 | renumber_edges(g); |
| 554 | clearReports(g); |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | } // namespace ue2 |
| 559 | |