| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * \file |
| 31 | * \brief Propagate extended parameters to vertex reports and reduce graph if |
| 32 | * possible. |
| 33 | * |
| 34 | * This code handles the propagation of the extension parameters specified by |
| 35 | * the user with the \ref hs_expr_ext structure into the reports on the graph's |
| 36 | * vertices. |
| 37 | * |
| 38 | * There are also some analyses that prune edges that cannot contribute to a |
| 39 | * match given these constraints, or transform the graph in order to make a |
| 40 | * constraint implicit. |
| 41 | */ |
| 42 | |
| 43 | #include "ng_extparam.h" |
| 44 | |
| 45 | #include "ng.h" |
| 46 | #include "ng_depth.h" |
| 47 | #include "ng_dump.h" |
| 48 | #include "ng_prune.h" |
| 49 | #include "ng_reports.h" |
| 50 | #include "ng_som_util.h" |
| 51 | #include "ng_width.h" |
| 52 | #include "ng_util.h" |
| 53 | #include "ue2common.h" |
| 54 | #include "compiler/compiler.h" |
| 55 | #include "parser/position.h" |
| 56 | #include "util/compile_context.h" |
| 57 | #include "util/compile_error.h" |
| 58 | #include "util/container.h" |
| 59 | #include "util/graph.h" |
| 60 | #include "util/graph_range.h" |
| 61 | |
| 62 | #include <sstream> |
| 63 | #include <string> |
| 64 | |
| 65 | using namespace std; |
| 66 | |
| 67 | namespace ue2 { |
| 68 | |
| 69 | static const u32 MAX_MAXOFFSET_TO_ANCHOR = 2000; |
| 70 | static const u32 MAX_MINLENGTH_TO_CONVERT = 2000; |
| 71 | |
| 72 | /** True if all the given reports have the same extparam bounds. */ |
| 73 | template<typename Container> |
| 74 | bool hasSameBounds(const Container &reports, const ReportManager &rm) { |
| 75 | assert(!reports.empty()); |
| 76 | |
| 77 | const auto &first = rm.getReport(*reports.begin()); |
| 78 | for (auto id : reports) { |
| 79 | const auto &report = rm.getReport(id); |
| 80 | if (report.minOffset != first.minOffset || |
| 81 | report.maxOffset != first.maxOffset || |
| 82 | report.minLength != first.minLength) { |
| 83 | return false; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | /** |
| 91 | * \brief Find the (min, max) offset adjustment for the reports on a given |
| 92 | * vertex. |
| 93 | */ |
| 94 | static |
| 95 | pair<s32,s32> getMinMaxOffsetAdjust(const ReportManager &rm, |
| 96 | const NGHolder &g, NFAVertex v) { |
| 97 | s32 minAdj = 0, maxAdj = 0; |
| 98 | const auto &reports = g[v].reports; |
| 99 | for (auto ri = reports.begin(), re = reports.end(); ri != re; ++ri) { |
| 100 | const Report &ir = rm.getReport(*ri); |
| 101 | if (ri == reports.begin()) { |
| 102 | minAdj = ir.offsetAdjust; |
| 103 | maxAdj = ir.offsetAdjust; |
| 104 | } else { |
| 105 | minAdj = min(minAdj, ir.offsetAdjust); |
| 106 | maxAdj = max(maxAdj, ir.offsetAdjust); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | return make_pair(minAdj, maxAdj); |
| 111 | } |
| 112 | |
| 113 | /** \brief Find the (min, max) length of any match for the given holder. */ |
| 114 | static |
| 115 | DepthMinMax findMatchLengths(const ReportManager &rm, const NGHolder &g) { |
| 116 | DepthMinMax match_depths; |
| 117 | |
| 118 | vector<DepthMinMax> depths = getDistancesFromSOM(g); |
| 119 | |
| 120 | pair<s32, s32> adj; |
| 121 | |
| 122 | for (auto v : inv_adjacent_vertices_range(g.accept, g)) { |
| 123 | u32 idx = g[v].index; |
| 124 | DepthMinMax d = depths[idx]; // copy |
| 125 | adj = getMinMaxOffsetAdjust(rm, g, v); |
| 126 | DEBUG_PRINTF("vertex %u: depths=%s, adj=[%d,%d]\n" , idx, |
| 127 | d.str().c_str(), adj.first, adj.second); |
| 128 | d.min += adj.first; |
| 129 | d.max += adj.second; |
| 130 | match_depths = unionDepthMinMax(match_depths, d); |
| 131 | } |
| 132 | |
| 133 | for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) { |
| 134 | if (v == g.accept) { |
| 135 | continue; |
| 136 | } |
| 137 | u32 idx = g[v].index; |
| 138 | DepthMinMax d = depths[idx]; // copy |
| 139 | adj = getMinMaxOffsetAdjust(rm, g, v); |
| 140 | DEBUG_PRINTF("vertex %u: depths=%s, adj=[%d,%d]\n" , idx, |
| 141 | d.str().c_str(), adj.first, adj.second); |
| 142 | d.min += adj.first; |
| 143 | d.max += adj.second; |
| 144 | match_depths = unionDepthMinMax(match_depths, d); |
| 145 | } |
| 146 | |
| 147 | DEBUG_PRINTF("match_depths=%s\n" , match_depths.str().c_str()); |
| 148 | |
| 149 | assert(match_depths.min.is_reachable()); |
| 150 | assert(match_depths.max.is_reachable()); |
| 151 | return match_depths; |
| 152 | } |
| 153 | |
| 154 | template<typename Function> |
| 155 | void replaceReports(NGHolder &g, NFAVertex accept, flat_set<NFAVertex> &seen, |
| 156 | Function func) { |
| 157 | for (auto v : inv_adjacent_vertices_range(accept, g)) { |
| 158 | if (v == g.accept) { |
| 159 | // Don't operate on accept: the accept->acceptEod edge is stylised. |
| 160 | assert(accept == g.acceptEod); |
| 161 | assert(g[v].reports.empty()); |
| 162 | continue; |
| 163 | } |
| 164 | |
| 165 | if (!seen.insert(v).second) { |
| 166 | continue; // We have already processed v. |
| 167 | } |
| 168 | |
| 169 | auto &reports = g[v].reports; |
| 170 | if (reports.empty()) { |
| 171 | continue; |
| 172 | } |
| 173 | decltype(g[v].reports) new_reports; |
| 174 | for (auto id : g[v].reports) { |
| 175 | new_reports.insert(func(v, id)); |
| 176 | } |
| 177 | reports = std::move(new_reports); |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | /** |
| 182 | * Generic function for replacing all the reports in the graph. |
| 183 | * |
| 184 | * Pass this a function that takes a vertex and a ReportID returns another |
| 185 | * ReportID (or the same one) to replace it with. |
| 186 | */ |
| 187 | template<typename Function> |
| 188 | void replaceReports(NGHolder &g, Function func) { |
| 189 | flat_set<NFAVertex> seen; |
| 190 | replaceReports(g, g.accept, seen, func); |
| 191 | replaceReports(g, g.acceptEod, seen, func); |
| 192 | } |
| 193 | |
| 194 | /** \brief Replace the graph's reports with new reports that specify bounds. */ |
| 195 | static |
| 196 | void updateReportBounds(ReportManager &rm, NGHolder &g, |
| 197 | const ExpressionInfo &expr) { |
| 198 | DEBUG_PRINTF("updating report bounds\n" ); |
| 199 | replaceReports(g, [&](NFAVertex, ReportID id) { |
| 200 | Report report = rm.getReport(id); // make a copy |
| 201 | assert(!report.hasBounds()); |
| 202 | |
| 203 | // Note that we need to cope with offset adjustment here. |
| 204 | |
| 205 | report.minOffset = expr.min_offset - report.offsetAdjust; |
| 206 | if (expr.max_offset == MAX_OFFSET) { |
| 207 | report.maxOffset = MAX_OFFSET; |
| 208 | } else { |
| 209 | report.maxOffset = expr.max_offset - report.offsetAdjust; |
| 210 | } |
| 211 | assert(report.maxOffset >= report.minOffset); |
| 212 | |
| 213 | report.minLength = expr.min_length; |
| 214 | if (expr.min_length && !expr.som) { |
| 215 | report.quashSom = true; |
| 216 | } |
| 217 | |
| 218 | DEBUG_PRINTF("id %u -> min_offset=%llu, max_offset=%llu, " |
| 219 | "min_length=%llu\n" , id, report.minOffset, |
| 220 | report.maxOffset, report.minLength); |
| 221 | |
| 222 | return rm.getInternalId(report); |
| 223 | }); |
| 224 | } |
| 225 | |
| 226 | static |
| 227 | bool hasVirtualStarts(const NGHolder &g) { |
| 228 | for (auto v : adjacent_vertices_range(g.start, g)) { |
| 229 | if (g[v].assert_flags & POS_FLAG_VIRTUAL_START) { |
| 230 | return true; |
| 231 | } |
| 232 | } |
| 233 | return false; |
| 234 | } |
| 235 | |
| 236 | /** Set the min_length param for all reports to zero. */ |
| 237 | static |
| 238 | void clearMinLengthParam(NGHolder &g, ReportManager &rm) { |
| 239 | DEBUG_PRINTF("clearing min length\n" ); |
| 240 | replaceReports(g, [&rm](NFAVertex, ReportID id) { |
| 241 | const auto &report = rm.getReport(id); |
| 242 | if (report.minLength) { |
| 243 | Report new_report = report; |
| 244 | new_report.minLength = 0; |
| 245 | return rm.getInternalId(new_report); |
| 246 | } |
| 247 | return id; |
| 248 | }); |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * Set the min_offset param to zero and the max_offset param to MAX_OFFSET for |
| 253 | * all reports. |
| 254 | */ |
| 255 | static |
| 256 | void clearOffsetParams(NGHolder &g, ReportManager &rm) { |
| 257 | DEBUG_PRINTF("clearing min and max offset\n" ); |
| 258 | replaceReports(g, [&rm](NFAVertex, ReportID id) { |
| 259 | const auto &report = rm.getReport(id); |
| 260 | if (report.minLength) { |
| 261 | Report new_report = report; |
| 262 | new_report.minOffset = 0; |
| 263 | new_report.maxOffset = MAX_OFFSET; |
| 264 | return rm.getInternalId(new_report); |
| 265 | } |
| 266 | return id; |
| 267 | }); |
| 268 | } |
| 269 | |
| 270 | /** |
| 271 | * If the pattern is unanchored, has a max_offset and has not asked for SOM, we |
| 272 | * can use that knowledge to anchor it which will limit its lifespan. Note that |
| 273 | * we can't use this transformation if there's a min_length, as it's currently |
| 274 | * handled using "sly SOM". |
| 275 | * |
| 276 | * Note that it is possible to handle graphs that have a combination of |
| 277 | * anchored and unanchored paths, but it's too tricky for the moment. |
| 278 | */ |
| 279 | static |
| 280 | bool anchorPatternWithBoundedRepeat(NGHolder &g, ReportManager &rm) { |
| 281 | if (!isFloating(g)) { |
| 282 | return false; |
| 283 | } |
| 284 | |
| 285 | const auto &reports = all_reports(g); |
| 286 | if (reports.empty()) { |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | if (any_of_in(reports, [&](ReportID id) { |
| 291 | const auto &report = rm.getReport(id); |
| 292 | return report.maxOffset == MAX_OFFSET || report.minLength || |
| 293 | report.offsetAdjust; |
| 294 | })) { |
| 295 | return false; |
| 296 | } |
| 297 | |
| 298 | if (!hasSameBounds(reports, rm)) { |
| 299 | DEBUG_PRINTF("mixed report bounds\n" ); |
| 300 | return false; |
| 301 | } |
| 302 | |
| 303 | const depth minWidth = findMinWidth(g); |
| 304 | const depth maxWidth = findMaxWidth(g); |
| 305 | |
| 306 | assert(minWidth <= maxWidth); |
| 307 | assert(maxWidth.is_reachable()); |
| 308 | |
| 309 | const auto &first_report = rm.getReport(*reports.begin()); |
| 310 | const auto min_offset = first_report.minOffset; |
| 311 | const auto max_offset = first_report.maxOffset; |
| 312 | assert(max_offset < MAX_OFFSET); |
| 313 | |
| 314 | DEBUG_PRINTF("widths=[%s,%s], min/max offsets=[%llu,%llu]\n" , |
| 315 | minWidth.str().c_str(), maxWidth.str().c_str(), |
| 316 | min_offset, max_offset); |
| 317 | |
| 318 | if (max_offset > MAX_MAXOFFSET_TO_ANCHOR) { |
| 319 | return false; |
| 320 | } |
| 321 | |
| 322 | if (max_offset < minWidth) { |
| 323 | assert(0); |
| 324 | return false; |
| 325 | } |
| 326 | |
| 327 | // If the pattern has virtual starts, we probably don't want to touch it. |
| 328 | if (hasVirtualStarts(g)) { |
| 329 | DEBUG_PRINTF("virtual starts, bailing\n" ); |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | // Similarly, bail if the pattern is vacuous. TODO: this could be done, we |
| 334 | // would just need to be a little careful with reports. |
| 335 | if (isVacuous(g)) { |
| 336 | DEBUG_PRINTF("vacuous, bailing\n" ); |
| 337 | return false; |
| 338 | } |
| 339 | |
| 340 | u32 min_bound, max_bound; |
| 341 | if (maxWidth.is_infinite()) { |
| 342 | min_bound = 0; |
| 343 | max_bound = max_offset - minWidth; |
| 344 | } else { |
| 345 | min_bound = min_offset > maxWidth ? min_offset - maxWidth : 0; |
| 346 | max_bound = max_offset - minWidth; |
| 347 | } |
| 348 | |
| 349 | DEBUG_PRINTF("prepending ^.{%u,%u}\n" , min_bound, max_bound); |
| 350 | |
| 351 | vector<NFAVertex> initials; |
| 352 | for (auto v : adjacent_vertices_range(g.startDs, g)) { |
| 353 | if (v == g.startDs) { |
| 354 | continue; |
| 355 | } |
| 356 | initials.push_back(v); |
| 357 | } |
| 358 | if (initials.empty()) { |
| 359 | DEBUG_PRINTF("no initial vertices\n" ); |
| 360 | return false; |
| 361 | } |
| 362 | |
| 363 | // Wire up 'min_offset' mandatory dots from anchored start. |
| 364 | NFAVertex u = g.start; |
| 365 | for (u32 i = 0; i < min_bound; i++) { |
| 366 | NFAVertex v = add_vertex(g); |
| 367 | g[v].char_reach.setall(); |
| 368 | add_edge(u, v, g); |
| 369 | u = v; |
| 370 | } |
| 371 | |
| 372 | NFAVertex head = u; |
| 373 | |
| 374 | // Wire up optional dots for (max_offset - min_offset). |
| 375 | for (u32 i = 0; i < max_bound - min_bound; i++) { |
| 376 | NFAVertex v = add_vertex(g); |
| 377 | g[v].char_reach.setall(); |
| 378 | if (head != u) { |
| 379 | add_edge(head, v, g); |
| 380 | } |
| 381 | add_edge(u, v, g); |
| 382 | u = v; |
| 383 | } |
| 384 | |
| 385 | // Remove edges from starts and wire both head and u to our initials. |
| 386 | for (auto v : initials) { |
| 387 | remove_edge(g.startDs, v, g); |
| 388 | remove_edge(g.start, v, g); |
| 389 | |
| 390 | if (head != u) { |
| 391 | add_edge(head, v, g); |
| 392 | } |
| 393 | add_edge(u, v, g); |
| 394 | } |
| 395 | |
| 396 | renumber_vertices(g); |
| 397 | renumber_edges(g); |
| 398 | |
| 399 | if (minWidth == maxWidth) { |
| 400 | // For a fixed width pattern, we can retire the offsets as |
| 401 | // they are implicit in the graph now. |
| 402 | clearOffsetParams(g, rm); |
| 403 | } |
| 404 | |
| 405 | clearReports(g); |
| 406 | return true; |
| 407 | } |
| 408 | |
| 409 | static |
| 410 | NFAVertex findSingleCyclic(const NGHolder &g) { |
| 411 | NFAVertex v = NGHolder::null_vertex(); |
| 412 | for (const auto &e : edges_range(g)) { |
| 413 | if (source(e, g) == target(e, g)) { |
| 414 | if (source(e, g) == g.startDs) { |
| 415 | continue; |
| 416 | } |
| 417 | if (v != NGHolder::null_vertex()) { |
| 418 | // More than one cyclic vertex. |
| 419 | return NGHolder::null_vertex(); |
| 420 | } |
| 421 | v = source(e, g); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | if (v != NGHolder::null_vertex()) { |
| 426 | DEBUG_PRINTF("cyclic is %zu\n" , g[v].index); |
| 427 | assert(!is_special(v, g)); |
| 428 | } |
| 429 | return v; |
| 430 | } |
| 431 | |
| 432 | static |
| 433 | bool hasOffsetAdjust(const ReportManager &rm, NGHolder &g, |
| 434 | int *adjust) { |
| 435 | const auto &reports = all_reports(g); |
| 436 | if (reports.empty()) { |
| 437 | assert(0); |
| 438 | return false; |
| 439 | } |
| 440 | |
| 441 | int offsetAdjust = rm.getReport(*reports.begin()).offsetAdjust; |
| 442 | for (auto report : reports) { |
| 443 | const Report &ir = rm.getReport(report); |
| 444 | if (ir.offsetAdjust != offsetAdjust) { |
| 445 | DEBUG_PRINTF("different adjusts!\n" ); |
| 446 | return false; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | *adjust = offsetAdjust; |
| 451 | return true; |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * If the pattern has a min_length and is of "ratchet" form with one unbounded |
| 456 | * repeat, that repeat can become a bounded repeat. |
| 457 | * |
| 458 | * /foo.*bar/{min_length=100} --> /foo.{94,}bar/ |
| 459 | */ |
| 460 | static |
| 461 | bool transformMinLengthToRepeat(NGHolder &g, ReportManager &rm) { |
| 462 | const auto &reports = all_reports(g); |
| 463 | |
| 464 | if (reports.empty()) { |
| 465 | return false; |
| 466 | } |
| 467 | |
| 468 | if (!hasSameBounds(reports, rm)) { |
| 469 | DEBUG_PRINTF("mixed report bounds\n" ); |
| 470 | return false; |
| 471 | } |
| 472 | |
| 473 | const auto &min_length = rm.getReport(*reports.begin()).minLength; |
| 474 | if (!min_length || min_length > MAX_MINLENGTH_TO_CONVERT) { |
| 475 | return false; |
| 476 | } |
| 477 | |
| 478 | // If the pattern has virtual starts, we probably don't want to touch it. |
| 479 | if (hasVirtualStarts(g)) { |
| 480 | DEBUG_PRINTF("virtual starts, bailing\n" ); |
| 481 | return false; |
| 482 | } |
| 483 | |
| 484 | // The graph must contain a single cyclic vertex (other than startDs), and |
| 485 | // that vertex can have one pred and one successor. |
| 486 | NFAVertex cyclic = findSingleCyclic(g); |
| 487 | if (cyclic == NGHolder::null_vertex()) { |
| 488 | return false; |
| 489 | } |
| 490 | |
| 491 | NGHolder::adjacency_iterator ai, ae; |
| 492 | tie(ai, ae) = adjacent_vertices(g.start, g); |
| 493 | if (*ai == g.startDs) { |
| 494 | ++ai; |
| 495 | } |
| 496 | NFAVertex v = *ai; |
| 497 | if (++ai != ae) { |
| 498 | DEBUG_PRINTF("more than one initial vertex\n" ); |
| 499 | return false; |
| 500 | } |
| 501 | |
| 502 | u32 width = 0; |
| 503 | |
| 504 | // Walk from the start vertex to the cyclic state and ensure we have a |
| 505 | // chain of vertices. |
| 506 | while (v != cyclic) { |
| 507 | DEBUG_PRINTF("vertex %zu\n" , g[v].index); |
| 508 | width++; |
| 509 | auto succ = succs(v, g); |
| 510 | if (contains(succ, cyclic)) { |
| 511 | if (succ.size() == 1) { |
| 512 | v = cyclic; |
| 513 | } else if (succ.size() == 2) { |
| 514 | // Cyclic and jump edge. |
| 515 | succ.erase(cyclic); |
| 516 | NFAVertex v2 = *succ.begin(); |
| 517 | if (!edge(cyclic, v2, g).second) { |
| 518 | DEBUG_PRINTF("bad form\n" ); |
| 519 | return false; |
| 520 | } |
| 521 | v = cyclic; |
| 522 | } else { |
| 523 | DEBUG_PRINTF("bad form\n" ); |
| 524 | return false; |
| 525 | } |
| 526 | } else { |
| 527 | if (succ.size() != 1) { |
| 528 | DEBUG_PRINTF("bad form\n" ); |
| 529 | return false; |
| 530 | } |
| 531 | v = *succ.begin(); |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | // Check the cyclic state is A-OK. |
| 536 | v = getSoleDestVertex(g, cyclic); |
| 537 | if (v == NGHolder::null_vertex()) { |
| 538 | DEBUG_PRINTF("cyclic has more than one successor\n" ); |
| 539 | return false; |
| 540 | } |
| 541 | |
| 542 | // Walk from the cyclic state to an accept and ensure we have a chain of |
| 543 | // vertices. |
| 544 | while (!is_any_accept(v, g)) { |
| 545 | DEBUG_PRINTF("vertex %zu\n" , g[v].index); |
| 546 | width++; |
| 547 | auto succ = succs(v, g); |
| 548 | if (succ.size() != 1) { |
| 549 | DEBUG_PRINTF("bad form\n" ); |
| 550 | return false; |
| 551 | } |
| 552 | v = *succ.begin(); |
| 553 | } |
| 554 | |
| 555 | int offsetAdjust = 0; |
| 556 | if (!hasOffsetAdjust(rm, g, &offsetAdjust)) { |
| 557 | return false; |
| 558 | } |
| 559 | DEBUG_PRINTF("adjusting width by %d\n" , offsetAdjust); |
| 560 | width += offsetAdjust; |
| 561 | |
| 562 | DEBUG_PRINTF("width=%u, vertex %zu is cyclic\n" , width, |
| 563 | g[cyclic].index); |
| 564 | |
| 565 | if (width >= min_length) { |
| 566 | DEBUG_PRINTF("min_length=%llu is guaranteed, as width=%u\n" , |
| 567 | min_length, width); |
| 568 | clearMinLengthParam(g, rm); |
| 569 | return true; |
| 570 | } |
| 571 | |
| 572 | vector<NFAVertex> preds; |
| 573 | vector<NFAEdge> dead; |
| 574 | for (auto u : inv_adjacent_vertices_range(cyclic, g)) { |
| 575 | DEBUG_PRINTF("pred %zu\n" , g[u].index); |
| 576 | if (u == cyclic) { |
| 577 | continue; |
| 578 | } |
| 579 | preds.push_back(u); |
| 580 | |
| 581 | // We want to delete the out-edges of each predecessor, but need to |
| 582 | // make sure we don't delete the startDs self loop. |
| 583 | for (const auto &e : out_edges_range(u, g)) { |
| 584 | if (target(e, g) != g.startDs) { |
| 585 | dead.push_back(e); |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | remove_edges(dead, g); |
| 591 | |
| 592 | assert(!preds.empty()); |
| 593 | |
| 594 | const CharReach &cr = g[cyclic].char_reach; |
| 595 | |
| 596 | for (u32 i = 0; i < min_length - width - 1; ++i) { |
| 597 | v = add_vertex(g); |
| 598 | g[v].char_reach = cr; |
| 599 | |
| 600 | for (auto u : preds) { |
| 601 | add_edge(u, v, g); |
| 602 | } |
| 603 | preds.clear(); |
| 604 | preds.push_back(v); |
| 605 | } |
| 606 | assert(!preds.empty()); |
| 607 | for (auto u : preds) { |
| 608 | add_edge(u, cyclic, g); |
| 609 | } |
| 610 | |
| 611 | renumber_vertices(g); |
| 612 | renumber_edges(g); |
| 613 | clearMinLengthParam(g, rm); |
| 614 | clearReports(g); |
| 615 | return true; |
| 616 | } |
| 617 | |
| 618 | static |
| 619 | bool hasExtParams(const ExpressionInfo &expr) { |
| 620 | if (expr.min_length != 0) { |
| 621 | return true; |
| 622 | } |
| 623 | if (expr.min_offset != 0) { |
| 624 | return true; |
| 625 | } |
| 626 | if (expr.max_offset != MAX_OFFSET) { |
| 627 | return true; |
| 628 | } |
| 629 | return false; |
| 630 | } |
| 631 | |
| 632 | static |
| 633 | const depth& maxDistToAccept(const NFAVertexBidiDepth &d) { |
| 634 | if (d.toAccept.max.is_unreachable()) { |
| 635 | return d.toAcceptEod.max; |
| 636 | } else if (d.toAcceptEod.max.is_unreachable()) { |
| 637 | return d.toAccept.max; |
| 638 | } |
| 639 | return max(d.toAccept.max, d.toAcceptEod.max); |
| 640 | } |
| 641 | |
| 642 | static |
| 643 | const depth& minDistFromStart(const NFAVertexBidiDepth &d) { |
| 644 | return min(d.fromStartDotStar.min, d.fromStart.min); |
| 645 | } |
| 646 | |
| 647 | static |
| 648 | const depth& minDistToAccept(const NFAVertexBidiDepth &d) { |
| 649 | return min(d.toAccept.min, d.toAcceptEod.min); |
| 650 | } |
| 651 | |
| 652 | static |
| 653 | bool isEdgePrunable(const NGHolder &g, const Report &report, |
| 654 | const vector<NFAVertexBidiDepth> &depths, |
| 655 | const NFAEdge &e) { |
| 656 | const NFAVertex u = source(e, g); |
| 657 | const NFAVertex v = target(e, g); |
| 658 | |
| 659 | DEBUG_PRINTF("edge (%zu,%zu)\n" , g[u].index, g[v].index); |
| 660 | |
| 661 | // Leave our special-to-special edges alone. |
| 662 | if (is_special(u, g) && is_special(v, g)) { |
| 663 | DEBUG_PRINTF("ignoring special-to-special\n" ); |
| 664 | return false; |
| 665 | } |
| 666 | |
| 667 | // We must be careful around start: we don't want to remove (start, v) if |
| 668 | // (startDs, v) exists as well, since later code will assume the presence |
| 669 | // of both edges, but other cases are OK. |
| 670 | if (u == g.start && edge(g.startDs, v, g).second) { |
| 671 | DEBUG_PRINTF("ignoring unanchored start edge\n" ); |
| 672 | return false; |
| 673 | } |
| 674 | |
| 675 | u32 u_idx = g[u].index; |
| 676 | u32 v_idx = g[v].index; |
| 677 | assert(u_idx < depths.size() && v_idx < depths.size()); |
| 678 | |
| 679 | const NFAVertexBidiDepth &du = depths.at(u_idx); |
| 680 | const NFAVertexBidiDepth &dv = depths.at(v_idx); |
| 681 | |
| 682 | if (report.minOffset) { |
| 683 | depth max_offset = maxDistFromStartOfData(du) + maxDistToAccept(dv); |
| 684 | if (max_offset.is_finite() && max_offset < report.minOffset) { |
| 685 | DEBUG_PRINTF("max_offset=%s too small\n" , max_offset.str().c_str()); |
| 686 | return true; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | if (report.maxOffset != MAX_OFFSET) { |
| 691 | depth min_offset = minDistFromStart(du) + minDistToAccept(dv); |
| 692 | assert(min_offset.is_finite()); |
| 693 | |
| 694 | if (min_offset > report.maxOffset) { |
| 695 | DEBUG_PRINTF("min_offset=%s too large\n" , min_offset.str().c_str()); |
| 696 | return true; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | if (report.minLength && is_any_accept(v, g)) { |
| 701 | // Simple take on min_length. If we're an edge to accept and our max |
| 702 | // dist from start is too small, we can be pruned. |
| 703 | const depth &width = maxDistFromInit(du); |
| 704 | if (width.is_finite() && width < report.minLength) { |
| 705 | DEBUG_PRINTF("max width %s from start too small for min_length\n" , |
| 706 | width.str().c_str()); |
| 707 | return true; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | return false; |
| 712 | } |
| 713 | |
| 714 | static |
| 715 | void pruneExtUnreachable(NGHolder &g, const ReportManager &rm) { |
| 716 | const auto &reports = all_reports(g); |
| 717 | if (reports.empty()) { |
| 718 | return; |
| 719 | } |
| 720 | |
| 721 | if (!hasSameBounds(reports, rm)) { |
| 722 | DEBUG_PRINTF("report bounds vary\n" ); |
| 723 | return; |
| 724 | } |
| 725 | |
| 726 | const auto &report = rm.getReport(*reports.begin()); |
| 727 | |
| 728 | auto depths = calcBidiDepths(g); |
| 729 | |
| 730 | vector<NFAEdge> dead; |
| 731 | |
| 732 | for (const auto &e : edges_range(g)) { |
| 733 | if (isEdgePrunable(g, report, depths, e)) { |
| 734 | DEBUG_PRINTF("pruning\n" ); |
| 735 | dead.push_back(e); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | if (dead.empty()) { |
| 740 | return; |
| 741 | } |
| 742 | |
| 743 | remove_edges(dead, g); |
| 744 | pruneUseless(g); |
| 745 | clearReports(g); |
| 746 | } |
| 747 | |
| 748 | /** |
| 749 | * Remove vacuous edges in graphs where the min_offset or min_length |
| 750 | * constraints dictate that they can never produce a match. |
| 751 | */ |
| 752 | static |
| 753 | void pruneVacuousEdges(NGHolder &g, const ReportManager &rm) { |
| 754 | vector<NFAEdge> dead; |
| 755 | |
| 756 | auto has_min_offset = [&](NFAVertex v) { |
| 757 | assert(!g[v].reports.empty()); // must be reporter |
| 758 | return all_of_in(g[v].reports, [&](ReportID id) { |
| 759 | return rm.getReport(id).minOffset > 0; |
| 760 | }); |
| 761 | }; |
| 762 | |
| 763 | auto has_min_length = [&](NFAVertex v) { |
| 764 | assert(!g[v].reports.empty()); // must be reporter |
| 765 | return all_of_in(g[v].reports, [&](ReportID id) { |
| 766 | return rm.getReport(id).minLength > 0; |
| 767 | }); |
| 768 | }; |
| 769 | |
| 770 | for (const auto &e : edges_range(g)) { |
| 771 | const NFAVertex u = source(e, g); |
| 772 | const NFAVertex v = target(e, g); |
| 773 | |
| 774 | // Special case: Crudely remove vacuous edges from start in graphs with |
| 775 | // a min_offset. |
| 776 | if (u == g.start && is_any_accept(v, g) && has_min_offset(u)) { |
| 777 | DEBUG_PRINTF("vacuous edge in graph with min_offset!\n" ); |
| 778 | dead.push_back(e); |
| 779 | continue; |
| 780 | } |
| 781 | |
| 782 | // If a min_length is set, vacuous edges can be removed. |
| 783 | if (is_any_start(u, g) && is_any_accept(v, g) && has_min_length(u)) { |
| 784 | DEBUG_PRINTF("vacuous edge in graph with min_length!\n" ); |
| 785 | dead.push_back(e); |
| 786 | continue; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (dead.empty()) { |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | DEBUG_PRINTF("removing %zu vacuous edges\n" , dead.size()); |
| 795 | remove_edges(dead, g); |
| 796 | pruneUseless(g); |
| 797 | clearReports(g); |
| 798 | } |
| 799 | |
| 800 | static |
| 801 | void pruneUnmatchable(NGHolder &g, const vector<DepthMinMax> &depths, |
| 802 | const ReportManager &rm, NFAVertex accept) { |
| 803 | vector<NFAEdge> dead; |
| 804 | |
| 805 | for (const auto &e : in_edges_range(accept, g)) { |
| 806 | NFAVertex v = source(e, g); |
| 807 | if (v == g.accept) { |
| 808 | assert(accept == g.acceptEod); // stylised edge |
| 809 | continue; |
| 810 | } |
| 811 | |
| 812 | if (!hasSameBounds(g[v].reports, rm)) { |
| 813 | continue; |
| 814 | } |
| 815 | const auto &report = rm.getReport(*g[v].reports.begin()); |
| 816 | |
| 817 | u32 idx = g[v].index; |
| 818 | DepthMinMax d = depths[idx]; // copy |
| 819 | pair<s32, s32> adj = getMinMaxOffsetAdjust(rm, g, v); |
| 820 | DEBUG_PRINTF("vertex %u: depths=%s, adj=[%d,%d]\n" , idx, |
| 821 | d.str().c_str(), adj.first, adj.second); |
| 822 | d.min += adj.first; |
| 823 | d.max += adj.second; |
| 824 | |
| 825 | if (d.max.is_finite() && d.max < report.minLength) { |
| 826 | DEBUG_PRINTF("prune, max match length %s < min_length=%llu\n" , |
| 827 | d.max.str().c_str(), report.minLength); |
| 828 | dead.push_back(e); |
| 829 | continue; |
| 830 | } |
| 831 | |
| 832 | if (report.maxOffset != MAX_OFFSET && d.min > report.maxOffset) { |
| 833 | DEBUG_PRINTF("prune, min match length %s > max_offset=%llu\n" , |
| 834 | d.min.str().c_str(), report.maxOffset); |
| 835 | dead.push_back(e); |
| 836 | continue; |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | remove_edges(dead, g); |
| 841 | } |
| 842 | |
| 843 | /** |
| 844 | * Remove edges to accepts that can never produce a match long enough to |
| 845 | * satisfy our min_length and max_offset constraints. |
| 846 | */ |
| 847 | static |
| 848 | void pruneUnmatchable(NGHolder &g, const ReportManager &rm) { |
| 849 | if (!any_of_in(all_reports(g), [&](ReportID id) { |
| 850 | return rm.getReport(id).minLength > 0; |
| 851 | })) { |
| 852 | return; |
| 853 | } |
| 854 | |
| 855 | vector<DepthMinMax> depths = getDistancesFromSOM(g); |
| 856 | |
| 857 | pruneUnmatchable(g, depths, rm, g.accept); |
| 858 | pruneUnmatchable(g, depths, rm, g.acceptEod); |
| 859 | |
| 860 | pruneUseless(g); |
| 861 | clearReports(g); |
| 862 | } |
| 863 | |
| 864 | static |
| 865 | bool hasOffsetAdjustments(const ReportManager &rm, const NGHolder &g) { |
| 866 | return any_of_in(all_reports(g), [&rm](ReportID id) { |
| 867 | return rm.getReport(id).offsetAdjust != 0; |
| 868 | }); |
| 869 | } |
| 870 | |
| 871 | void propagateExtendedParams(NGHolder &g, ExpressionInfo &expr, |
| 872 | ReportManager &rm) { |
| 873 | if (!hasExtParams(expr)) { |
| 874 | return; |
| 875 | } |
| 876 | |
| 877 | depth minWidth = findMinWidth(g); |
| 878 | depth maxWidth = findMaxWidth(g); |
| 879 | bool is_anchored = !has_proper_successor(g.startDs, g) |
| 880 | && out_degree(g.start, g); |
| 881 | |
| 882 | DepthMinMax match_depths = findMatchLengths(rm, g); |
| 883 | DEBUG_PRINTF("match depths %s\n" , match_depths.str().c_str()); |
| 884 | |
| 885 | if (is_anchored && maxWidth.is_finite() && expr.min_offset > maxWidth) { |
| 886 | ostringstream oss; |
| 887 | oss << "Expression is anchored and cannot satisfy min_offset=" |
| 888 | << expr.min_offset << " as it can only produce matches of length " |
| 889 | << maxWidth << " bytes at most." ; |
| 890 | throw CompileError(expr.index, oss.str()); |
| 891 | } |
| 892 | |
| 893 | if (minWidth > expr.max_offset) { |
| 894 | ostringstream oss; |
| 895 | oss << "Expression has max_offset=" << expr.max_offset |
| 896 | << " but requires " << minWidth << " bytes to match." ; |
| 897 | throw CompileError(expr.index, oss.str()); |
| 898 | } |
| 899 | |
| 900 | if (maxWidth.is_finite() && match_depths.max < expr.min_length) { |
| 901 | ostringstream oss; |
| 902 | oss << "Expression has min_length=" << expr.min_length << " but can " |
| 903 | "only produce matches of length " << match_depths.max << |
| 904 | " bytes at most." ; |
| 905 | throw CompileError(expr.index, oss.str()); |
| 906 | } |
| 907 | |
| 908 | if (expr.min_length && expr.min_length <= match_depths.min) { |
| 909 | DEBUG_PRINTF("min_length=%llu constraint is unnecessary\n" , |
| 910 | expr.min_length); |
| 911 | expr.min_length = 0; |
| 912 | } |
| 913 | |
| 914 | if (!hasExtParams(expr)) { |
| 915 | return; |
| 916 | } |
| 917 | |
| 918 | updateReportBounds(rm, g, expr); |
| 919 | } |
| 920 | |
| 921 | /** |
| 922 | * If the pattern is completely anchored and has a min_length set, this can |
| 923 | * be converted to a min_offset. |
| 924 | */ |
| 925 | static |
| 926 | void replaceMinLengthWithOffset(NGHolder &g, ReportManager &rm) { |
| 927 | if (has_proper_successor(g.startDs, g)) { |
| 928 | return; // not wholly anchored |
| 929 | } |
| 930 | |
| 931 | replaceReports(g, [&rm](NFAVertex, ReportID id) { |
| 932 | const auto &report = rm.getReport(id); |
| 933 | if (report.minLength) { |
| 934 | Report new_report = report; |
| 935 | u64a min_len_offset = report.minLength - report.offsetAdjust; |
| 936 | new_report.minOffset = max(report.minOffset, min_len_offset); |
| 937 | new_report.minLength = 0; |
| 938 | return rm.getInternalId(new_report); |
| 939 | } |
| 940 | return id; |
| 941 | }); |
| 942 | } |
| 943 | |
| 944 | /** |
| 945 | * Clear offset bounds on reports that are not needed because they're satisfied |
| 946 | * by vertex depth. |
| 947 | */ |
| 948 | static |
| 949 | void removeUnneededOffsetBounds(NGHolder &g, ReportManager &rm) { |
| 950 | auto depths = calcDepths(g); |
| 951 | |
| 952 | replaceReports(g, [&](NFAVertex v, ReportID id) { |
| 953 | const auto &d = depths.at(g[v].index); |
| 954 | const depth &min_depth = min(d.fromStartDotStar.min, d.fromStart.min); |
| 955 | const depth &max_depth = maxDistFromStartOfData(d); |
| 956 | |
| 957 | DEBUG_PRINTF("vertex %zu has min_depth=%s, max_depth=%s\n" , g[v].index, |
| 958 | min_depth.str().c_str(), max_depth.str().c_str()); |
| 959 | |
| 960 | Report report = rm.getReport(id); // copy |
| 961 | bool modified = false; |
| 962 | if (report.minOffset && !report.offsetAdjust && |
| 963 | report.minOffset <= min_depth) { |
| 964 | report.minOffset = 0; |
| 965 | modified = true; |
| 966 | } |
| 967 | if (report.maxOffset != MAX_OFFSET && max_depth.is_finite() && |
| 968 | report.maxOffset >= max_depth) { |
| 969 | report.maxOffset = MAX_OFFSET; |
| 970 | modified = true; |
| 971 | } |
| 972 | if (modified) { |
| 973 | DEBUG_PRINTF("vertex %zu, changed bounds to [%llu,%llu]\n" , |
| 974 | g[v].index, report.minOffset, report.maxOffset); |
| 975 | return rm.getInternalId(report); |
| 976 | } |
| 977 | |
| 978 | return id; |
| 979 | }); |
| 980 | } |
| 981 | |
| 982 | void reduceExtendedParams(NGHolder &g, ReportManager &rm, som_type som) { |
| 983 | if (!any_of_in(all_reports(g), |
| 984 | [&](ReportID id) { return rm.getReport(id).hasBounds(); })) { |
| 985 | DEBUG_PRINTF("no extparam bounds\n" ); |
| 986 | return; |
| 987 | } |
| 988 | |
| 989 | DEBUG_PRINTF("graph has extparam bounds\n" ); |
| 990 | |
| 991 | pruneVacuousEdges(g, rm); |
| 992 | if (can_never_match(g)) { |
| 993 | return; |
| 994 | } |
| 995 | |
| 996 | pruneUnmatchable(g, rm); |
| 997 | if (can_never_match(g)) { |
| 998 | return; |
| 999 | } |
| 1000 | |
| 1001 | if (!hasOffsetAdjustments(rm, g)) { |
| 1002 | pruneExtUnreachable(g, rm); |
| 1003 | if (can_never_match(g)) { |
| 1004 | return; |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | replaceMinLengthWithOffset(g, rm); |
| 1009 | if (can_never_match(g)) { |
| 1010 | return; |
| 1011 | } |
| 1012 | |
| 1013 | // If the pattern has a min_length and is of "ratchet" form with one |
| 1014 | // unbounded repeat, that repeat can become a bounded repeat. |
| 1015 | // e.g. /foo.*bar/{min_length=100} --> /foo.{94,}bar/ |
| 1016 | transformMinLengthToRepeat(g, rm); |
| 1017 | if (can_never_match(g)) { |
| 1018 | return; |
| 1019 | } |
| 1020 | |
| 1021 | // If the pattern is unanchored, has a max_offset and has not asked for |
| 1022 | // SOM, we can use that knowledge to anchor it which will limit its |
| 1023 | // lifespan. Note that we can't use this transformation if there's a |
| 1024 | // min_length, as it's currently handled using "sly SOM". |
| 1025 | if (som == SOM_NONE) { |
| 1026 | anchorPatternWithBoundedRepeat(g, rm); |
| 1027 | if (can_never_match(g)) { |
| 1028 | return; |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | removeUnneededOffsetBounds(g, rm); |
| 1033 | } |
| 1034 | |
| 1035 | } // namespace ue2 |
| 1036 | |