| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief NFA acceleration analysis code. |
| 31 | */ |
| 32 | #include "ng_limex_accel.h" |
| 33 | |
| 34 | #include "ng_holder.h" |
| 35 | #include "ng_misc_opt.h" |
| 36 | #include "ng_util.h" |
| 37 | #include "ue2common.h" |
| 38 | |
| 39 | #include "nfa/accel.h" |
| 40 | |
| 41 | #include "util/bitutils.h" // for CASE_CLEAR |
| 42 | #include "util/charreach.h" |
| 43 | #include "util/compile_context.h" |
| 44 | #include "util/container.h" |
| 45 | #include "util/dump_charclass.h" |
| 46 | #include "util/graph_range.h" |
| 47 | #include "util/small_vector.h" |
| 48 | #include "util/target_info.h" |
| 49 | |
| 50 | #include <algorithm> |
| 51 | #include <map> |
| 52 | |
| 53 | #include <boost/range/adaptor/map.hpp> |
| 54 | |
| 55 | using namespace std; |
| 56 | using boost::adaptors::map_keys; |
| 57 | |
| 58 | namespace ue2 { |
| 59 | |
| 60 | #define WIDE_FRIEND_MIN 200 |
| 61 | |
| 62 | static |
| 63 | void findAccelFriendGeneration(const NGHolder &g, const CharReach &cr, |
| 64 | const flat_set<NFAVertex> &cands, |
| 65 | const flat_set<NFAVertex> &preds, |
| 66 | flat_set<NFAVertex> *next_cands, |
| 67 | flat_set<NFAVertex> *next_preds, |
| 68 | flat_set<NFAVertex> *friends) { |
| 69 | for (auto v : cands) { |
| 70 | if (contains(preds, v)) { |
| 71 | continue; |
| 72 | } |
| 73 | |
| 74 | const CharReach &acr = g[v].char_reach; |
| 75 | DEBUG_PRINTF("checking %zu\n" , g[v].index); |
| 76 | |
| 77 | if (acr.count() < WIDE_FRIEND_MIN || !acr.isSubsetOf(cr)) { |
| 78 | DEBUG_PRINTF("bad reach %zu\n" , acr.count()); |
| 79 | continue; |
| 80 | } |
| 81 | |
| 82 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 83 | if (!contains(preds, u)) { |
| 84 | DEBUG_PRINTF("bad pred\n" ); |
| 85 | goto next_cand; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | next_preds->insert(v); |
| 90 | insert(next_cands, adjacent_vertices(v, g)); |
| 91 | |
| 92 | DEBUG_PRINTF("%zu is a friend indeed\n" , g[v].index); |
| 93 | friends->insert(v); |
| 94 | next_cand:; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | void findAccelFriends(const NGHolder &g, NFAVertex v, |
| 99 | const map<NFAVertex, BoundedRepeatSummary> &br_cyclic, |
| 100 | u32 offset, flat_set<NFAVertex> *friends) { |
| 101 | /* A friend of an accel state is a successor state which can only be on when |
| 102 | * the accel is on. This requires that it has a subset of the accel state's |
| 103 | * preds and a charreach which is a subset of the accel state. |
| 104 | * |
| 105 | * A friend can be safely ignored when accelerating provided there is |
| 106 | * sufficient back-off. A friend is useful if it has a wide reach. |
| 107 | */ |
| 108 | |
| 109 | /* BR cyclic states which may go stale cannot have friends as they may |
| 110 | * suddenly turn off leading their so-called friends stranded and alone. |
| 111 | * TODO: restrict to only stale going BR cyclics |
| 112 | */ |
| 113 | if (contains(br_cyclic, v) && !br_cyclic.at(v).unbounded()) { |
| 114 | return; |
| 115 | } |
| 116 | |
| 117 | u32 friend_depth = offset + 1; |
| 118 | |
| 119 | flat_set<NFAVertex> preds; |
| 120 | insert(&preds, inv_adjacent_vertices(v, g)); |
| 121 | const CharReach &cr = g[v].char_reach; |
| 122 | |
| 123 | flat_set<NFAVertex> cands; |
| 124 | insert(&cands, adjacent_vertices(v, g)); |
| 125 | |
| 126 | flat_set<NFAVertex> next_preds; |
| 127 | flat_set<NFAVertex> next_cands; |
| 128 | for (u32 i = 0; i < friend_depth; i++) { |
| 129 | findAccelFriendGeneration(g, cr, cands, preds, &next_cands, &next_preds, |
| 130 | friends); |
| 131 | preds.insert(next_preds.begin(), next_preds.end()); |
| 132 | next_preds.clear(); |
| 133 | cands.swap(next_cands); |
| 134 | next_cands.clear(); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | static |
| 139 | void findPaths(const NGHolder &g, NFAVertex v, |
| 140 | const vector<CharReach> &refined_cr, |
| 141 | vector<vector<CharReach>> *paths, |
| 142 | const flat_set<NFAVertex> &forbidden, u32 depth) { |
| 143 | static const u32 MAGIC_TOO_WIDE_NUMBER = 16; |
| 144 | if (!depth) { |
| 145 | paths->push_back({}); |
| 146 | return; |
| 147 | } |
| 148 | if (v == g.accept || v == g.acceptEod) { |
| 149 | paths->push_back({}); |
| 150 | if (!generates_callbacks(g) || v == g.acceptEod) { |
| 151 | paths->back().push_back(CharReach()); /* red tape options */ |
| 152 | } |
| 153 | return; |
| 154 | } |
| 155 | |
| 156 | /* for the escape 'literals' we want to use the minimal cr so we |
| 157 | * can be more selective */ |
| 158 | const CharReach &cr = refined_cr[g[v].index]; |
| 159 | |
| 160 | if (out_degree(v, g) >= MAGIC_TOO_WIDE_NUMBER |
| 161 | || hasSelfLoop(v, g)) { |
| 162 | /* give up on pushing past this point */ |
| 163 | paths->push_back({cr}); |
| 164 | return; |
| 165 | } |
| 166 | |
| 167 | vector<vector<CharReach>> curr; |
| 168 | for (auto w : adjacent_vertices_range(v, g)) { |
| 169 | if (contains(forbidden, w)) { |
| 170 | /* path has looped back to one of the active+boring acceleration |
| 171 | * states. We can ignore this path if we have sufficient back- |
| 172 | * off. */ |
| 173 | paths->push_back({CharReach()}); |
| 174 | continue; |
| 175 | } |
| 176 | |
| 177 | u32 new_depth = depth - 1; |
| 178 | do { |
| 179 | curr.clear(); |
| 180 | findPaths(g, w, refined_cr, &curr, forbidden, new_depth); |
| 181 | } while (new_depth-- && curr.size() >= MAGIC_TOO_WIDE_NUMBER); |
| 182 | |
| 183 | for (auto &c : curr) { |
| 184 | c.push_back(cr); |
| 185 | paths->push_back(std::move(c)); |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | namespace { |
| 191 | struct SAccelScheme { |
| 192 | SAccelScheme(CharReach cr_in, u32 offset_in) |
| 193 | : cr(std::move(cr_in)), offset(offset_in) { |
| 194 | assert(offset <= MAX_ACCEL_DEPTH); |
| 195 | } |
| 196 | |
| 197 | SAccelScheme() {} |
| 198 | |
| 199 | bool operator<(const SAccelScheme &b) const { |
| 200 | const SAccelScheme &a = *this; |
| 201 | |
| 202 | const size_t a_count = cr.count(), b_count = b.cr.count(); |
| 203 | if (a_count != b_count) { |
| 204 | return a_count < b_count; |
| 205 | } |
| 206 | |
| 207 | /* TODO: give bonus if one is a 'caseless' character */ |
| 208 | ORDER_CHECK(offset); |
| 209 | ORDER_CHECK(cr); |
| 210 | return false; |
| 211 | } |
| 212 | |
| 213 | CharReach cr = CharReach::dot(); |
| 214 | u32 offset = MAX_ACCEL_DEPTH + 1; |
| 215 | }; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * \brief Limit on the number of (recursive) calls to findBestInternal(). |
| 220 | */ |
| 221 | static constexpr size_t MAX_FINDBEST_CALLS = 1000000; |
| 222 | |
| 223 | static |
| 224 | void findBestInternal(vector<vector<CharReach>>::const_iterator pb, |
| 225 | vector<vector<CharReach>>::const_iterator pe, |
| 226 | size_t *num_calls, const SAccelScheme &curr, |
| 227 | SAccelScheme *best) { |
| 228 | assert(curr.offset <= MAX_ACCEL_DEPTH); |
| 229 | |
| 230 | if (++(*num_calls) > MAX_FINDBEST_CALLS) { |
| 231 | DEBUG_PRINTF("hit num_calls limit %zu\n" , *num_calls); |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | DEBUG_PRINTF("paths left %zu\n" , pe - pb); |
| 236 | if (pb == pe) { |
| 237 | if (curr < *best) { |
| 238 | *best = curr; |
| 239 | DEBUG_PRINTF("new best: count=%zu, class=%s, offset=%u\n" , |
| 240 | best->cr.count(), describeClass(best->cr).c_str(), |
| 241 | best->offset); |
| 242 | } |
| 243 | return; |
| 244 | } |
| 245 | |
| 246 | DEBUG_PRINTF("p len %zu\n" , pb->end() - pb->begin()); |
| 247 | |
| 248 | small_vector<SAccelScheme, 10> priority_path; |
| 249 | priority_path.reserve(pb->size()); |
| 250 | u32 i = 0; |
| 251 | for (auto p = pb->begin(); p != pb->end(); ++p, i++) { |
| 252 | SAccelScheme as(*p | curr.cr, max(i, curr.offset)); |
| 253 | if (*best < as) { |
| 254 | DEBUG_PRINTF("worse\n" ); |
| 255 | continue; |
| 256 | } |
| 257 | priority_path.push_back(move(as)); |
| 258 | } |
| 259 | |
| 260 | sort(priority_path.begin(), priority_path.end()); |
| 261 | for (auto it = priority_path.begin(); it != priority_path.end(); ++it) { |
| 262 | auto jt = next(it); |
| 263 | for (; jt != priority_path.end(); ++jt) { |
| 264 | if (!it->cr.isSubsetOf(jt->cr)) { |
| 265 | break; |
| 266 | } |
| 267 | } |
| 268 | priority_path.erase(next(it), jt); |
| 269 | DEBUG_PRINTF("||%zu\n" , it->cr.count()); |
| 270 | } |
| 271 | DEBUG_PRINTF("---\n" ); |
| 272 | |
| 273 | for (const SAccelScheme &in : priority_path) { |
| 274 | DEBUG_PRINTF("in: count %zu\n" , in.cr.count()); |
| 275 | if (*best < in) { |
| 276 | DEBUG_PRINTF("worse\n" ); |
| 277 | continue; |
| 278 | } |
| 279 | findBestInternal(pb + 1, pe, num_calls, in, best); |
| 280 | |
| 281 | if (curr.cr == best->cr) { |
| 282 | return; /* could only get better by offset */ |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | static |
| 288 | SAccelScheme findBest(const vector<vector<CharReach>> &paths, |
| 289 | const CharReach &terminating) { |
| 290 | SAccelScheme curr(terminating, 0U); |
| 291 | SAccelScheme best; |
| 292 | size_t num_calls = 0; |
| 293 | findBestInternal(paths.begin(), paths.end(), &num_calls, curr, &best); |
| 294 | DEBUG_PRINTF("findBest completed, num_calls=%zu\n" , num_calls); |
| 295 | DEBUG_PRINTF("selected scheme: count=%zu, class=%s, offset=%u\n" , |
| 296 | best.cr.count(), describeClass(best.cr).c_str(), best.offset); |
| 297 | return best; |
| 298 | } |
| 299 | |
| 300 | namespace { |
| 301 | struct DAccelScheme { |
| 302 | DAccelScheme(CharReach cr_in, u32 offset_in) |
| 303 | : double_cr(std::move(cr_in)), double_offset(offset_in) { |
| 304 | assert(double_offset <= MAX_ACCEL_DEPTH); |
| 305 | } |
| 306 | |
| 307 | bool operator<(const DAccelScheme &b) const { |
| 308 | const DAccelScheme &a = *this; |
| 309 | |
| 310 | size_t a_dcount = a.double_cr.count(); |
| 311 | size_t b_dcount = b.double_cr.count(); |
| 312 | |
| 313 | assert(!a.double_byte.empty() || a_dcount || a.double_offset); |
| 314 | assert(!b.double_byte.empty() || b_dcount || b.double_offset); |
| 315 | |
| 316 | if (a_dcount != b_dcount) { |
| 317 | return a_dcount < b_dcount; |
| 318 | } |
| 319 | |
| 320 | if (!a_dcount) { |
| 321 | bool cd_a = buildDvermMask(a.double_byte); |
| 322 | bool cd_b = buildDvermMask(b.double_byte); |
| 323 | if (cd_a != cd_b) { |
| 324 | return cd_a > cd_b; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | ORDER_CHECK(double_byte.size()); |
| 329 | ORDER_CHECK(double_offset); |
| 330 | |
| 331 | /* TODO: give bonus if one is a 'caseless' character */ |
| 332 | ORDER_CHECK(double_byte); |
| 333 | ORDER_CHECK(double_cr); |
| 334 | |
| 335 | return false; |
| 336 | } |
| 337 | |
| 338 | flat_set<pair<u8, u8>> double_byte; |
| 339 | CharReach double_cr; |
| 340 | u32 double_offset = 0; |
| 341 | }; |
| 342 | } |
| 343 | |
| 344 | static |
| 345 | DAccelScheme make_double_accel(DAccelScheme as, CharReach cr_1, |
| 346 | const CharReach &cr_2_in, u32 offset_in) { |
| 347 | cr_1 &= ~as.double_cr; |
| 348 | CharReach cr_2 = cr_2_in & ~as.double_cr; |
| 349 | u32 offset = offset_in; |
| 350 | |
| 351 | if (cr_1.none()) { |
| 352 | DEBUG_PRINTF("empty first element\n" ); |
| 353 | ENSURE_AT_LEAST(&as.double_offset, offset); |
| 354 | return as; |
| 355 | } |
| 356 | |
| 357 | if (cr_2_in != cr_2 || cr_2.none()) { |
| 358 | offset = offset_in + 1; |
| 359 | } |
| 360 | |
| 361 | size_t two_count = cr_1.count() * cr_2.count(); |
| 362 | |
| 363 | DEBUG_PRINTF("will generate raw %zu pairs\n" , two_count); |
| 364 | |
| 365 | if (!two_count) { |
| 366 | DEBUG_PRINTF("empty element\n" ); |
| 367 | ENSURE_AT_LEAST(&as.double_offset, offset); |
| 368 | return as; |
| 369 | } |
| 370 | |
| 371 | if (two_count > DOUBLE_SHUFTI_LIMIT) { |
| 372 | if (cr_2.count() < cr_1.count()) { |
| 373 | as.double_cr |= cr_2; |
| 374 | offset = offset_in + 1; |
| 375 | } else { |
| 376 | as.double_cr |= cr_1; |
| 377 | } |
| 378 | } else { |
| 379 | for (auto i = cr_1.find_first(); i != CharReach::npos; |
| 380 | i = cr_1.find_next(i)) { |
| 381 | for (auto j = cr_2.find_first(); j != CharReach::npos; |
| 382 | j = cr_2.find_next(j)) { |
| 383 | as.double_byte.emplace(i, j); |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | ENSURE_AT_LEAST(&as.double_offset, offset); |
| 389 | DEBUG_PRINTF("construct da %zu pairs, %zu singles, offset %u\n" , |
| 390 | as.double_byte.size(), as.double_cr.count(), as.double_offset); |
| 391 | return as; |
| 392 | } |
| 393 | |
| 394 | static |
| 395 | void findDoubleBest(vector<vector<CharReach> >::const_iterator pb, |
| 396 | vector<vector<CharReach> >::const_iterator pe, |
| 397 | const DAccelScheme &curr, DAccelScheme *best) { |
| 398 | assert(curr.double_offset <= MAX_ACCEL_DEPTH); |
| 399 | DEBUG_PRINTF("paths left %zu\n" , pe - pb); |
| 400 | DEBUG_PRINTF("current base: %zu pairs, %zu singles, offset %u\n" , |
| 401 | curr.double_byte.size(), curr.double_cr.count(), |
| 402 | curr.double_offset); |
| 403 | if (pb == pe) { |
| 404 | if (curr < *best) { |
| 405 | *best = curr; |
| 406 | DEBUG_PRINTF("new best: %zu pairs, %zu singles, offset %u\n" , |
| 407 | best->double_byte.size(), best->double_cr.count(), |
| 408 | best->double_offset); |
| 409 | } |
| 410 | return; |
| 411 | } |
| 412 | |
| 413 | DEBUG_PRINTF("p len %zu\n" , pb->end() - pb->begin()); |
| 414 | |
| 415 | small_vector<DAccelScheme, 10> priority_path; |
| 416 | priority_path.reserve(pb->size()); |
| 417 | u32 i = 0; |
| 418 | for (auto p = pb->begin(); p != pb->end() && next(p) != pb->end(); |
| 419 | ++p, i++) { |
| 420 | DAccelScheme as = make_double_accel(curr, *p, *next(p), i); |
| 421 | if (*best < as) { |
| 422 | DEBUG_PRINTF("worse\n" ); |
| 423 | continue; |
| 424 | } |
| 425 | priority_path.push_back(move(as)); |
| 426 | } |
| 427 | |
| 428 | sort(priority_path.begin(), priority_path.end()); |
| 429 | DEBUG_PRINTF("%zu candidates for this path\n" , priority_path.size()); |
| 430 | DEBUG_PRINTF("input best: %zu pairs, %zu singles, offset %u\n" , |
| 431 | best->double_byte.size(), best->double_cr.count(), |
| 432 | best->double_offset); |
| 433 | |
| 434 | for (const DAccelScheme &in : priority_path) { |
| 435 | DEBUG_PRINTF("in: %zu pairs, %zu singles, offset %u\n" , |
| 436 | in.double_byte.size(), in.double_cr.count(), |
| 437 | in.double_offset); |
| 438 | if (*best < in) { |
| 439 | DEBUG_PRINTF("worse\n" ); |
| 440 | continue; |
| 441 | } |
| 442 | findDoubleBest(pb + 1, pe, in, best); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | #ifdef DEBUG |
| 447 | static |
| 448 | void dumpPaths(const vector<vector<CharReach>> &paths) { |
| 449 | for (const auto &path : paths) { |
| 450 | DEBUG_PRINTF("path: [" ); |
| 451 | for (const auto &cr : path) { |
| 452 | printf(" [" ); |
| 453 | describeClass(stdout, cr, 20, CC_OUT_TEXT); |
| 454 | printf("]" ); |
| 455 | } |
| 456 | printf(" ]\n" ); |
| 457 | } |
| 458 | } |
| 459 | #endif |
| 460 | |
| 461 | static |
| 462 | void blowoutPathsLessStrictSegment(vector<vector<CharReach> > &paths) { |
| 463 | /* paths segments which are a superset of an earlier segment should never be |
| 464 | * picked as an acceleration segment -> to improve processing just replace |
| 465 | * with dot */ |
| 466 | for (auto &p : paths) { |
| 467 | for (auto it = p.begin(); it != p.end(); ++it) { |
| 468 | for (auto jt = next(it); jt != p.end(); ++jt) { |
| 469 | if (it->isSubsetOf(*jt)) { |
| 470 | *jt = CharReach::dot(); |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | static |
| 478 | void unifyPathsLastSegment(vector<vector<CharReach> > &paths) { |
| 479 | /* try to unify paths which only differ in the last segment */ |
| 480 | for (vector<vector<CharReach> >::iterator p = paths.begin(); |
| 481 | p != paths.end() && p + 1 != paths.end();) { |
| 482 | vector<CharReach> &a = *p; |
| 483 | vector<CharReach> &b = *(p + 1); |
| 484 | |
| 485 | if (a.size() != b.size()) { |
| 486 | ++p; |
| 487 | continue; |
| 488 | } |
| 489 | |
| 490 | u32 i = 0; |
| 491 | for (; i < a.size() - 1; i++) { |
| 492 | if (a[i] != b[i]) { |
| 493 | break; |
| 494 | } |
| 495 | } |
| 496 | if (i == a.size() - 1) { |
| 497 | /* we can unify these paths */ |
| 498 | a[i] |= b[i]; |
| 499 | paths.erase(p + 1); |
| 500 | } else { |
| 501 | ++p; |
| 502 | } |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | static |
| 507 | void improvePaths(vector<vector<CharReach> > &paths) { |
| 508 | #ifdef DEBUG |
| 509 | DEBUG_PRINTF("orig paths\n" ); |
| 510 | dumpPaths(paths); |
| 511 | #endif |
| 512 | blowoutPathsLessStrictSegment(paths); |
| 513 | |
| 514 | sort(paths.begin(), paths.end()); |
| 515 | |
| 516 | unifyPathsLastSegment(paths); |
| 517 | |
| 518 | #ifdef DEBUG |
| 519 | DEBUG_PRINTF("opt paths\n" ); |
| 520 | dumpPaths(paths); |
| 521 | #endif |
| 522 | } |
| 523 | |
| 524 | #define MAX_DOUBLE_ACCEL_PATHS 10 |
| 525 | |
| 526 | static |
| 527 | DAccelScheme findBestDoubleAccelScheme(vector<vector<CharReach> > paths, |
| 528 | const CharReach &terminating) { |
| 529 | DEBUG_PRINTF("looking for double accel, %zu terminating symbols\n" , |
| 530 | terminating.count()); |
| 531 | unifyPathsLastSegment(paths); |
| 532 | |
| 533 | #ifdef DEBUG |
| 534 | DEBUG_PRINTF("paths:\n" ); |
| 535 | dumpPaths(paths); |
| 536 | #endif |
| 537 | |
| 538 | /* if there are too many paths, shorten the paths to reduce the number of |
| 539 | * distinct paths we have to consider */ |
| 540 | while (paths.size() > MAX_DOUBLE_ACCEL_PATHS) { |
| 541 | for (auto &p : paths) { |
| 542 | if (p.empty()) { |
| 543 | return DAccelScheme(terminating, 0U); |
| 544 | } |
| 545 | p.pop_back(); |
| 546 | } |
| 547 | unifyPathsLastSegment(paths); |
| 548 | } |
| 549 | |
| 550 | if (paths.empty()) { |
| 551 | return DAccelScheme(terminating, 0U); |
| 552 | } |
| 553 | |
| 554 | DAccelScheme curr(terminating, 0U); |
| 555 | DAccelScheme best(CharReach::dot(), 0U); |
| 556 | findDoubleBest(paths.begin(), paths.end(), curr, &best); |
| 557 | DEBUG_PRINTF("da %zu pairs, %zu singles\n" , best.double_byte.size(), |
| 558 | best.double_cr.count()); |
| 559 | return best; |
| 560 | } |
| 561 | |
| 562 | #define MAX_EXPLORE_PATHS 40 |
| 563 | |
| 564 | AccelScheme findBestAccelScheme(vector<vector<CharReach>> paths, |
| 565 | const CharReach &terminating, |
| 566 | bool look_for_double_byte) { |
| 567 | AccelScheme rv; |
| 568 | if (look_for_double_byte) { |
| 569 | DAccelScheme da = findBestDoubleAccelScheme(paths, terminating); |
| 570 | if (da.double_byte.size() <= DOUBLE_SHUFTI_LIMIT) { |
| 571 | rv.double_byte = std::move(da.double_byte); |
| 572 | rv.double_cr = move(da.double_cr); |
| 573 | rv.double_offset = da.double_offset; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | improvePaths(paths); |
| 578 | |
| 579 | DEBUG_PRINTF("we have %zu paths\n" , paths.size()); |
| 580 | if (paths.size() > MAX_EXPLORE_PATHS) { |
| 581 | return rv; /* too many paths to explore */ |
| 582 | } |
| 583 | |
| 584 | /* if we were smart we would do something netflowy on the paths to find the |
| 585 | * best cut. But we aren't, so we will just brute force it. |
| 586 | */ |
| 587 | SAccelScheme best = findBest(paths, terminating); |
| 588 | |
| 589 | /* find best is a bit lazy in terms of minimising the offset, see if we can |
| 590 | * make it better. need to find the min max offset that we need.*/ |
| 591 | u32 offset = 0; |
| 592 | for (const auto &path : paths) { |
| 593 | u32 i = 0; |
| 594 | for (const auto &cr : path) { |
| 595 | if (cr.isSubsetOf(best.cr)) { |
| 596 | break; |
| 597 | } |
| 598 | i++; |
| 599 | } |
| 600 | offset = MAX(offset, i); |
| 601 | } |
| 602 | assert(offset <= best.offset); |
| 603 | best.offset = offset; |
| 604 | |
| 605 | rv.offset = best.offset; |
| 606 | rv.cr = best.cr; |
| 607 | if (rv.cr.count() < rv.double_cr.count()) { |
| 608 | rv.double_byte.clear(); |
| 609 | } |
| 610 | |
| 611 | return rv; |
| 612 | } |
| 613 | |
| 614 | AccelScheme nfaFindAccel(const NGHolder &g, const vector<NFAVertex> &verts, |
| 615 | const vector<CharReach> &refined_cr, |
| 616 | const map<NFAVertex, BoundedRepeatSummary> &br_cyclic, |
| 617 | bool allow_wide, bool look_for_double_byte) { |
| 618 | CharReach terminating; |
| 619 | for (auto v : verts) { |
| 620 | if (!hasSelfLoop(v, g)) { |
| 621 | DEBUG_PRINTF("no self loop\n" ); |
| 622 | return AccelScheme(); /* invalid scheme */ |
| 623 | } |
| 624 | |
| 625 | // check that this state is reachable on most characters |
| 626 | terminating |= ~g[v].char_reach; |
| 627 | } |
| 628 | |
| 629 | DEBUG_PRINTF("set vertex has %zu stop chars\n" , terminating.count()); |
| 630 | size_t limit = allow_wide ? ACCEL_MAX_FLOATING_STOP_CHAR |
| 631 | : ACCEL_MAX_STOP_CHAR; |
| 632 | if (terminating.count() > limit) { |
| 633 | return AccelScheme(); /* invalid scheme */ |
| 634 | } |
| 635 | |
| 636 | vector<vector<CharReach>> paths; |
| 637 | flat_set<NFAVertex> ignore_vert_set(verts.begin(), verts.end()); |
| 638 | |
| 639 | /* Note: we can not in general (TODO: ignore when possible) ignore entries |
| 640 | * into the bounded repeat cyclic states as that is when the magic happens |
| 641 | */ |
| 642 | for (auto v : br_cyclic | map_keys) { |
| 643 | /* TODO: can allow if repeatMin <= 1 ? */ |
| 644 | ignore_vert_set.erase(v); |
| 645 | } |
| 646 | |
| 647 | for (auto v : verts) { |
| 648 | for (auto w : adjacent_vertices_range(v, g)) { |
| 649 | if (w != v) { |
| 650 | findPaths(g, w, refined_cr, &paths, ignore_vert_set, |
| 651 | MAX_ACCEL_DEPTH); |
| 652 | } |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* paths built wrong: reverse them */ |
| 657 | for (auto &path : paths) { |
| 658 | reverse(path.begin(), path.end()); |
| 659 | } |
| 660 | |
| 661 | return findBestAccelScheme(std::move(paths), terminating, |
| 662 | look_for_double_byte); |
| 663 | } |
| 664 | |
| 665 | NFAVertex get_sds_or_proxy(const NGHolder &g) { |
| 666 | DEBUG_PRINTF("looking for sds proxy\n" ); |
| 667 | if (proper_out_degree(g.startDs, g)) { |
| 668 | return g.startDs; |
| 669 | } |
| 670 | |
| 671 | NFAVertex v = NGHolder::null_vertex(); |
| 672 | for (auto w : adjacent_vertices_range(g.start, g)) { |
| 673 | if (w != g.startDs) { |
| 674 | if (!v) { |
| 675 | v = w; |
| 676 | } else { |
| 677 | return g.startDs; |
| 678 | } |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | if (!v) { |
| 683 | return g.startDs; |
| 684 | } |
| 685 | |
| 686 | while (true) { |
| 687 | if (hasSelfLoop(v, g)) { |
| 688 | DEBUG_PRINTF("woot %zu\n" , g[v].index); |
| 689 | return v; |
| 690 | } |
| 691 | if (out_degree(v, g) != 1) { |
| 692 | break; |
| 693 | } |
| 694 | NFAVertex u = getSoleDestVertex(g, v); |
| 695 | if (!g[u].char_reach.all()) { |
| 696 | break; |
| 697 | } |
| 698 | v = u; |
| 699 | } |
| 700 | |
| 701 | return g.startDs; |
| 702 | } |
| 703 | |
| 704 | /** \brief Check if vertex \a v is an accelerable state (for a limex NFA). */ |
| 705 | bool nfaCheckAccel(const NGHolder &g, NFAVertex v, |
| 706 | const vector<CharReach> &refined_cr, |
| 707 | const map<NFAVertex, BoundedRepeatSummary> &br_cyclic, |
| 708 | AccelScheme *as, bool allow_wide) { |
| 709 | // For a state to be accelerable, our current criterion is that it be a |
| 710 | // large character class with a self-loop and narrow set of possible other |
| 711 | // successors (i.e. no special successors, union of successor reachability |
| 712 | // is small). |
| 713 | if (!hasSelfLoop(v, g)) { |
| 714 | return false; |
| 715 | } |
| 716 | |
| 717 | // check that this state is reachable on most characters |
| 718 | /* we want to use the maximal reach here (in the graph) */ |
| 719 | CharReach terminating = g[v].char_reach; |
| 720 | terminating.flip(); |
| 721 | |
| 722 | DEBUG_PRINTF("vertex %zu is cyclic and has %zu stop chars%s\n" , |
| 723 | g[v].index, terminating.count(), |
| 724 | allow_wide ? " (w)" : "" ); |
| 725 | |
| 726 | size_t limit = allow_wide ? ACCEL_MAX_FLOATING_STOP_CHAR |
| 727 | : ACCEL_MAX_STOP_CHAR; |
| 728 | if (terminating.count() > limit) { |
| 729 | DEBUG_PRINTF("too leaky\n" ); |
| 730 | return false; |
| 731 | } |
| 732 | |
| 733 | flat_set<NFAVertex> curr, next; |
| 734 | |
| 735 | insert(&curr, adjacent_vertices(v, g)); |
| 736 | curr.erase(v); // erase self-loop |
| 737 | |
| 738 | // We consider offsets of zero through three; this is fairly arbitrary at |
| 739 | // present and could probably be increased (FIXME) |
| 740 | /* WARNING: would/could do horrible things to compile time */ |
| 741 | bool stop = false; |
| 742 | vector<CharReach> depthReach(MAX_ACCEL_DEPTH); |
| 743 | unsigned int depth; |
| 744 | for (depth = 0; !stop && depth < MAX_ACCEL_DEPTH; depth++) { |
| 745 | CharReach &cr = depthReach[depth]; |
| 746 | for (auto t : curr) { |
| 747 | if (is_special(t, g)) { |
| 748 | // We've bumped into the edge of the graph, so we should stop |
| 749 | // searching. |
| 750 | // Exception: iff our cyclic state is not a dot, than we can |
| 751 | // safely accelerate towards an EOD accept. |
| 752 | |
| 753 | /* Exception: nfas that don't generate callbacks so accepts are |
| 754 | * fine too */ |
| 755 | if (t == g.accept && !generates_callbacks(g)) { |
| 756 | stop = true; // don't search beyond this depth |
| 757 | continue; |
| 758 | } else if (t == g.accept) { |
| 759 | goto depth_done; |
| 760 | } |
| 761 | |
| 762 | assert(t == g.acceptEod); |
| 763 | stop = true; // don't search beyond this depth |
| 764 | } else { |
| 765 | // Non-special vertex |
| 766 | insert(&next, adjacent_vertices(t, g)); |
| 767 | /* for the escape 'literals' we want to use the minimal cr so we |
| 768 | * can be more selective */ |
| 769 | cr |= refined_cr[g[t].index]; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | cr |= terminating; |
| 774 | DEBUG_PRINTF("depth %u has unioned reach %zu\n" , depth, cr.count()); |
| 775 | |
| 776 | curr.swap(next); |
| 777 | next.clear(); |
| 778 | } |
| 779 | |
| 780 | depth_done: |
| 781 | |
| 782 | if (depth == 0) { |
| 783 | return false; |
| 784 | } |
| 785 | |
| 786 | DEBUG_PRINTF("selecting from depth 0..%u\n" , depth); |
| 787 | |
| 788 | /* Look for the most awesome acceleration evar */ |
| 789 | for (unsigned int i = 0; i < depth; i++) { |
| 790 | if (depthReach[i].none()) { |
| 791 | DEBUG_PRINTF("red tape acceleration engine depth %u\n" , i); |
| 792 | *as = AccelScheme(); |
| 793 | as->offset = i; |
| 794 | as->cr = CharReach(); |
| 795 | return true; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | // First, loop over our depths and see if we have a suitable 2-byte |
| 800 | // caseful vermicelli option: this is the (second) fastest accel we have |
| 801 | if (depth > 1) { |
| 802 | for (unsigned int i = 0; i < (depth - 1); i++) { |
| 803 | const CharReach &cra = depthReach[i]; |
| 804 | const CharReach &crb = depthReach[i + 1]; |
| 805 | if ((cra.count() == 1 && crb.count() == 1) |
| 806 | || (cra.count() == 2 && crb.count() == 2 |
| 807 | && cra.isBit5Insensitive() && crb.isBit5Insensitive())) { |
| 808 | DEBUG_PRINTF("two-byte vermicelli, depth %u\n" , i); |
| 809 | *as = AccelScheme(); |
| 810 | as->offset = i; |
| 811 | return true; |
| 812 | } |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | // Second option: a two-byte shufti (i.e. less than eight 2-byte |
| 817 | // literals) |
| 818 | if (depth > 1) { |
| 819 | for (unsigned int i = 0; i < (depth - 1); i++) { |
| 820 | if (depthReach[i].count() * depthReach[i+1].count() |
| 821 | <= DOUBLE_SHUFTI_LIMIT) { |
| 822 | DEBUG_PRINTF("two-byte shufti, depth %u\n" , i); |
| 823 | *as = AccelScheme(); |
| 824 | as->offset = i; |
| 825 | return true; |
| 826 | } |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | // Look for offset accel schemes verm/shufti; |
| 831 | vector<NFAVertex> verts(1, v); |
| 832 | *as = nfaFindAccel(g, verts, refined_cr, br_cyclic, allow_wide, true); |
| 833 | DEBUG_PRINTF("as width %zu\n" , as->cr.count()); |
| 834 | return as->cr.count() <= ACCEL_MAX_STOP_CHAR || allow_wide; |
| 835 | } |
| 836 | |
| 837 | } // namespace ue2 |
| 838 | |