| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "rose_build_anchored.h" |
| 30 | |
| 31 | #include "grey.h" |
| 32 | #include "rose_build_impl.h" |
| 33 | #include "rose_build_matchers.h" |
| 34 | #include "rose_internal.h" |
| 35 | #include "ue2common.h" |
| 36 | #include "nfa/dfa_min.h" |
| 37 | #include "nfa/mcclellancompile.h" |
| 38 | #include "nfa/mcclellancompile_util.h" |
| 39 | #include "nfa/nfa_build_util.h" |
| 40 | #include "nfa/rdfa_merge.h" |
| 41 | #include "nfagraph/ng_holder.h" |
| 42 | #include "nfagraph/ng_repeat.h" |
| 43 | #include "nfagraph/ng_util.h" |
| 44 | #include "nfagraph/ng_mcclellan_internal.h" |
| 45 | #include "util/alloc.h" |
| 46 | #include "util/bitfield.h" |
| 47 | #include "util/charreach.h" |
| 48 | #include "util/compile_context.h" |
| 49 | #include "util/compile_error.h" |
| 50 | #include "util/container.h" |
| 51 | #include "util/determinise.h" |
| 52 | #include "util/flat_containers.h" |
| 53 | #include "util/graph_range.h" |
| 54 | #include "util/make_unique.h" |
| 55 | #include "util/order_check.h" |
| 56 | #include "util/ue2string.h" |
| 57 | #include "util/unordered.h" |
| 58 | #include "util/verify_types.h" |
| 59 | |
| 60 | #include <map> |
| 61 | #include <queue> |
| 62 | #include <set> |
| 63 | #include <vector> |
| 64 | |
| 65 | using namespace std; |
| 66 | |
| 67 | namespace ue2 { |
| 68 | |
| 69 | #define ANCHORED_NFA_STATE_LIMIT 512 |
| 70 | #define MAX_DFA_STATES 16000 |
| 71 | #define DFA_PAIR_MERGE_THRESHOLD 5000 |
| 72 | #define MAX_SMALL_START_REACH 4 |
| 73 | |
| 74 | #define INIT_STATE (DEAD_STATE + 1) |
| 75 | |
| 76 | #define NO_FRAG_ID (~0U) |
| 77 | |
| 78 | // Adds a vertex with the given reach. |
| 79 | static |
| 80 | NFAVertex add_vertex(NGHolder &h, const CharReach &cr) { |
| 81 | NFAVertex v = add_vertex(h); |
| 82 | h[v].char_reach = cr; |
| 83 | return v; |
| 84 | } |
| 85 | |
| 86 | static |
| 87 | void add_edges(const set<NFAVertex> &parents, NFAVertex v, NGHolder &h) { |
| 88 | for (auto p : parents) { |
| 89 | add_edge(p, v, h); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | static |
| 94 | set<NFAVertex> addDotsToGraph(NGHolder &h, NFAVertex start, u32 min, u32 max, |
| 95 | const CharReach &cr) { |
| 96 | DEBUG_PRINTF("adding [%u, %u] to graph\n" , min, max); |
| 97 | u32 i = 0; |
| 98 | set<NFAVertex> curr; |
| 99 | curr.insert(start); |
| 100 | for (; i < min; i++) { |
| 101 | NFAVertex next = add_vertex(h, cr); |
| 102 | add_edges(curr, next, h); |
| 103 | curr.clear(); |
| 104 | curr.insert(next); |
| 105 | } |
| 106 | |
| 107 | assert(max != ROSE_BOUND_INF); |
| 108 | |
| 109 | set<NFAVertex> orig = curr; |
| 110 | for (; i < max; i++) { |
| 111 | NFAVertex next = add_vertex(h, cr); |
| 112 | add_edges(curr, next, h); |
| 113 | curr.clear(); |
| 114 | curr.insert(next); |
| 115 | curr.insert(orig.begin(), orig.end()); |
| 116 | } |
| 117 | |
| 118 | return curr; |
| 119 | } |
| 120 | |
| 121 | static |
| 122 | NFAVertex addToGraph(NGHolder &h, const set<NFAVertex> &curr, |
| 123 | const ue2_literal &s) { |
| 124 | DEBUG_PRINTF("adding %s to graph\n" , dumpString(s).c_str()); |
| 125 | assert(!s.empty()); |
| 126 | |
| 127 | ue2_literal::const_iterator it = s.begin(); |
| 128 | NFAVertex u = add_vertex(h, *it); |
| 129 | add_edges(curr, u, h); |
| 130 | |
| 131 | for (++it; it != s.end(); ++it) { |
| 132 | NFAVertex next = add_vertex(h, *it); |
| 133 | add_edge(u, next, h); |
| 134 | u = next; |
| 135 | } |
| 136 | |
| 137 | return u; |
| 138 | } |
| 139 | |
| 140 | static |
| 141 | void mergeAnchoredDfas(vector<unique_ptr<raw_dfa>> &dfas, |
| 142 | const RoseBuildImpl &build) { |
| 143 | // First, group our DFAs into "small start" and "big start" sets. |
| 144 | vector<unique_ptr<raw_dfa>> small_starts, big_starts; |
| 145 | for (auto &rdfa : dfas) { |
| 146 | u32 start_size = mcclellanStartReachSize(rdfa.get()); |
| 147 | if (start_size <= MAX_SMALL_START_REACH) { |
| 148 | small_starts.push_back(move(rdfa)); |
| 149 | } else { |
| 150 | big_starts.push_back(move(rdfa)); |
| 151 | } |
| 152 | } |
| 153 | dfas.clear(); |
| 154 | |
| 155 | DEBUG_PRINTF("%zu dfas with small starts, %zu dfas with big starts\n" , |
| 156 | small_starts.size(), big_starts.size()); |
| 157 | mergeDfas(small_starts, MAX_DFA_STATES, nullptr, build.cc.grey); |
| 158 | mergeDfas(big_starts, MAX_DFA_STATES, nullptr, build.cc.grey); |
| 159 | |
| 160 | // Rehome our groups into one vector. |
| 161 | for (auto &rdfa : small_starts) { |
| 162 | dfas.push_back(move(rdfa)); |
| 163 | } |
| 164 | for (auto &rdfa : big_starts) { |
| 165 | dfas.push_back(move(rdfa)); |
| 166 | } |
| 167 | |
| 168 | // Final test: if we've built two DFAs here that are small enough, we can |
| 169 | // try to merge them. |
| 170 | if (dfas.size() == 2) { |
| 171 | size_t total_states = dfas[0]->states.size() + dfas[1]->states.size(); |
| 172 | if (total_states < DFA_PAIR_MERGE_THRESHOLD) { |
| 173 | DEBUG_PRINTF("doing small pair merge\n" ); |
| 174 | mergeDfas(dfas, MAX_DFA_STATES, nullptr, build.cc.grey); |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | static |
| 180 | void remapAnchoredReports(raw_dfa &rdfa, const vector<u32> &frag_map) { |
| 181 | for (dstate &ds : rdfa.states) { |
| 182 | assert(ds.reports_eod.empty()); // Not used in anchored matcher. |
| 183 | if (ds.reports.empty()) { |
| 184 | continue; |
| 185 | } |
| 186 | |
| 187 | flat_set<ReportID> new_reports; |
| 188 | for (auto id : ds.reports) { |
| 189 | assert(id < frag_map.size()); |
| 190 | new_reports.insert(frag_map[id]); |
| 191 | } |
| 192 | ds.reports = std::move(new_reports); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | * \brief Replaces the report ids currently in the dfas (rose graph literal |
| 198 | * ids) with the fragment id for each literal. |
| 199 | */ |
| 200 | static |
| 201 | void remapAnchoredReports(RoseBuildImpl &build, const vector<u32> &frag_map) { |
| 202 | for (auto &m : build.anchored_nfas) { |
| 203 | for (auto &rdfa : m.second) { |
| 204 | assert(rdfa); |
| 205 | remapAnchoredReports(*rdfa, frag_map); |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * Returns mapping from literal ids to fragment ids. |
| 212 | */ |
| 213 | static |
| 214 | vector<u32> reverseFragMap(const RoseBuildImpl &build, |
| 215 | const vector<LitFragment> &fragments) { |
| 216 | vector<u32> rev(build.literal_info.size(), NO_FRAG_ID); |
| 217 | for (const auto &f : fragments) { |
| 218 | for (u32 lit_id : f.lit_ids) { |
| 219 | assert(lit_id < rev.size()); |
| 220 | rev[lit_id] = f.fragment_id; |
| 221 | } |
| 222 | } |
| 223 | return rev; |
| 224 | } |
| 225 | |
| 226 | /** |
| 227 | * \brief Replace the reports (which are literal final_ids) in the given |
| 228 | * raw_dfa with program offsets. |
| 229 | */ |
| 230 | static |
| 231 | void remapIdsToPrograms(const vector<LitFragment> &fragments, raw_dfa &rdfa) { |
| 232 | for (dstate &ds : rdfa.states) { |
| 233 | assert(ds.reports_eod.empty()); // Not used in anchored matcher. |
| 234 | if (ds.reports.empty()) { |
| 235 | continue; |
| 236 | } |
| 237 | |
| 238 | flat_set<ReportID> new_reports; |
| 239 | for (auto fragment_id : ds.reports) { |
| 240 | const auto &frag = fragments.at(fragment_id); |
| 241 | new_reports.insert(frag.lit_program_offset); |
| 242 | } |
| 243 | ds.reports = std::move(new_reports); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | static |
| 248 | unique_ptr<NGHolder> populate_holder(const simple_anchored_info &sai, |
| 249 | const flat_set<u32> &exit_ids) { |
| 250 | DEBUG_PRINTF("populating holder for ^.{%u,%u}%s\n" , sai.min_bound, |
| 251 | sai.max_bound, dumpString(sai.literal).c_str()); |
| 252 | auto h_ptr = make_unique<NGHolder>(); |
| 253 | NGHolder &h = *h_ptr; |
| 254 | auto ends = addDotsToGraph(h, h.start, sai.min_bound, sai.max_bound, |
| 255 | CharReach::dot()); |
| 256 | NFAVertex v = addToGraph(h, ends, sai.literal); |
| 257 | add_edge(v, h.accept, h); |
| 258 | h[v].reports.insert(exit_ids.begin(), exit_ids.end()); |
| 259 | return h_ptr; |
| 260 | } |
| 261 | |
| 262 | u32 anchoredStateSize(const anchored_matcher_info &atable) { |
| 263 | const struct anchored_matcher_info *curr = &atable; |
| 264 | |
| 265 | // Walk the list until we find the last element; total state size will be |
| 266 | // that engine's state offset plus its state requirement. |
| 267 | while (curr->next_offset) { |
| 268 | curr = (const anchored_matcher_info *) |
| 269 | ((const char *)curr + curr->next_offset); |
| 270 | } |
| 271 | |
| 272 | const NFA *nfa = (const NFA *)((const char *)curr + sizeof(*curr)); |
| 273 | return curr->state_offset + nfa->streamStateSize; |
| 274 | } |
| 275 | |
| 276 | namespace { |
| 277 | |
| 278 | using nfa_state_set = bitfield<ANCHORED_NFA_STATE_LIMIT>; |
| 279 | |
| 280 | struct Holder_StateSet { |
| 281 | Holder_StateSet() : wdelay(0) {} |
| 282 | |
| 283 | nfa_state_set wrap_state; |
| 284 | u32 wdelay; |
| 285 | |
| 286 | bool operator==(const Holder_StateSet &b) const { |
| 287 | return wdelay == b.wdelay && wrap_state == b.wrap_state; |
| 288 | } |
| 289 | |
| 290 | size_t hash() const { |
| 291 | return hash_all(wrap_state, wdelay); |
| 292 | } |
| 293 | }; |
| 294 | |
| 295 | class Automaton_Holder { |
| 296 | public: |
| 297 | using StateSet = Holder_StateSet; |
| 298 | using StateMap = ue2_unordered_map<StateSet, dstate_id_t>; |
| 299 | |
| 300 | explicit Automaton_Holder(const NGHolder &g_in) : g(g_in) { |
| 301 | for (auto v : vertices_range(g)) { |
| 302 | vertexToIndex[v] = indexToVertex.size(); |
| 303 | indexToVertex.push_back(v); |
| 304 | } |
| 305 | |
| 306 | assert(indexToVertex.size() <= ANCHORED_NFA_STATE_LIMIT); |
| 307 | |
| 308 | DEBUG_PRINTF("%zu states\n" , indexToVertex.size()); |
| 309 | init.wdelay = 0; |
| 310 | init.wrap_state.set(vertexToIndex[g.start]); |
| 311 | |
| 312 | DEBUG_PRINTF("init wdelay %u\n" , init.wdelay); |
| 313 | |
| 314 | calculateAlphabet(); |
| 315 | cr_by_index = populateCR(g, indexToVertex, alpha); |
| 316 | } |
| 317 | |
| 318 | private: |
| 319 | void calculateAlphabet() { |
| 320 | vector<CharReach> esets(1, CharReach::dot()); |
| 321 | |
| 322 | for (auto v : indexToVertex) { |
| 323 | const CharReach &cr = g[v].char_reach; |
| 324 | |
| 325 | for (size_t i = 0; i < esets.size(); i++) { |
| 326 | if (esets[i].count() == 1) { |
| 327 | continue; |
| 328 | } |
| 329 | |
| 330 | CharReach t = cr & esets[i]; |
| 331 | |
| 332 | if (t.any() && t != esets[i]) { |
| 333 | esets[i] &= ~t; |
| 334 | esets.push_back(t); |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | alphasize = buildAlphabetFromEquivSets(esets, alpha, unalpha); |
| 340 | } |
| 341 | |
| 342 | public: |
| 343 | void transition(const StateSet &in, StateSet *next) { |
| 344 | /* track the dfa state, reset nfa states */ |
| 345 | u32 wdelay = in.wdelay ? in.wdelay - 1 : 0; |
| 346 | |
| 347 | for (symbol_t s = 0; s < alphasize; s++) { |
| 348 | next[s].wrap_state.reset(); |
| 349 | next[s].wdelay = wdelay; |
| 350 | } |
| 351 | |
| 352 | nfa_state_set succ; |
| 353 | |
| 354 | if (wdelay != in.wdelay) { |
| 355 | DEBUG_PRINTF("enabling start\n" ); |
| 356 | succ.set(vertexToIndex[g.startDs]); |
| 357 | } |
| 358 | |
| 359 | for (size_t i = in.wrap_state.find_first(); i != nfa_state_set::npos; |
| 360 | i = in.wrap_state.find_next(i)) { |
| 361 | NFAVertex v = indexToVertex[i]; |
| 362 | for (auto w : adjacent_vertices_range(v, g)) { |
| 363 | if (!contains(vertexToIndex, w) |
| 364 | || w == g.accept || w == g.acceptEod) { |
| 365 | continue; |
| 366 | } |
| 367 | |
| 368 | if (w == g.startDs) { |
| 369 | continue; |
| 370 | } |
| 371 | |
| 372 | succ.set(vertexToIndex[w]); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | for (size_t j = succ.find_first(); j != nfa_state_set::npos; |
| 377 | j = succ.find_next(j)) { |
| 378 | const CharReach &cr = cr_by_index[j]; |
| 379 | for (size_t s = cr.find_first(); s != CharReach::npos; |
| 380 | s = cr.find_next(s)) { |
| 381 | next[s].wrap_state.set(j); /* pre alpha'ed */ |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | next[alpha[TOP]] = in; |
| 386 | } |
| 387 | |
| 388 | const vector<StateSet> initial() { |
| 389 | return {init}; |
| 390 | } |
| 391 | |
| 392 | void reports(const StateSet &in, flat_set<ReportID> &rv) { |
| 393 | rv.clear(); |
| 394 | for (size_t i = in.wrap_state.find_first(); i != nfa_state_set::npos; |
| 395 | i = in.wrap_state.find_next(i)) { |
| 396 | NFAVertex v = indexToVertex[i]; |
| 397 | if (edge(v, g.accept, g).second) { |
| 398 | assert(!g[v].reports.empty()); |
| 399 | insert(&rv, g[v].reports); |
| 400 | } else { |
| 401 | assert(g[v].reports.empty()); |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | void reportsEod(const StateSet &, flat_set<ReportID> &r) { |
| 407 | r.clear(); |
| 408 | } |
| 409 | |
| 410 | static bool canPrune(const flat_set<ReportID> &) { |
| 411 | /* used by ng_ to prune states after highlander accepts */ |
| 412 | return false; |
| 413 | } |
| 414 | |
| 415 | private: |
| 416 | const NGHolder &g; |
| 417 | unordered_map<NFAVertex, u32> vertexToIndex; |
| 418 | vector<NFAVertex> indexToVertex; |
| 419 | vector<CharReach> cr_by_index; |
| 420 | StateSet init; |
| 421 | public: |
| 422 | StateSet dead; |
| 423 | array<u16, ALPHABET_SIZE> alpha; |
| 424 | array<u16, ALPHABET_SIZE> unalpha; |
| 425 | u16 alphasize; |
| 426 | }; |
| 427 | |
| 428 | } // namespace |
| 429 | |
| 430 | static |
| 431 | bool check_dupe(const raw_dfa &rdfa, |
| 432 | const vector<unique_ptr<raw_dfa>> &existing, ReportID *remap) { |
| 433 | if (!remap) { |
| 434 | DEBUG_PRINTF("no remap\n" ); |
| 435 | return false; |
| 436 | } |
| 437 | |
| 438 | set<ReportID> rdfa_reports; |
| 439 | for (const auto &ds : rdfa.states) { |
| 440 | rdfa_reports.insert(ds.reports.begin(), ds.reports.end()); |
| 441 | } |
| 442 | if (rdfa_reports.size() != 1) { |
| 443 | return false; /* too complicated for now would need mapping TODO */ |
| 444 | } |
| 445 | |
| 446 | for (const auto &e_rdfa : existing) { |
| 447 | assert(e_rdfa); |
| 448 | const raw_dfa &b = *e_rdfa; |
| 449 | |
| 450 | if (rdfa.start_anchored != b.start_anchored || |
| 451 | rdfa.alpha_size != b.alpha_size || |
| 452 | rdfa.states.size() != b.states.size() || |
| 453 | rdfa.alpha_remap != b.alpha_remap) { |
| 454 | continue; |
| 455 | } |
| 456 | |
| 457 | set<ReportID> b_reports; |
| 458 | |
| 459 | for (u32 i = 0; i < b.states.size(); i++) { |
| 460 | assert(b.states[i].reports_eod.empty()); |
| 461 | assert(rdfa.states[i].reports_eod.empty()); |
| 462 | if (rdfa.states[i].reports.size() != b.states[i].reports.size()) { |
| 463 | goto next_dfa; |
| 464 | } |
| 465 | b_reports.insert(b.states[i].reports.begin(), |
| 466 | b.states[i].reports.end()); |
| 467 | |
| 468 | assert(rdfa.states[i].next.size() == b.states[i].next.size()); |
| 469 | if (!equal(rdfa.states[i].next.begin(), rdfa.states[i].next.end(), |
| 470 | b.states[i].next.begin())) { |
| 471 | goto next_dfa; |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | if (b_reports.size() != 1) { |
| 476 | continue; |
| 477 | } |
| 478 | |
| 479 | *remap = *b_reports.begin(); |
| 480 | DEBUG_PRINTF("dupe found remapping to %u\n" , *remap); |
| 481 | return true; |
| 482 | next_dfa:; |
| 483 | } |
| 484 | |
| 485 | return false; |
| 486 | } |
| 487 | |
| 488 | static |
| 489 | bool check_dupe_simple(const RoseBuildImpl &build, u32 min_bound, u32 max_bound, |
| 490 | const ue2_literal &lit, ReportID *remap) { |
| 491 | if (!remap) { |
| 492 | DEBUG_PRINTF("no remap\n" ); |
| 493 | return false; |
| 494 | } |
| 495 | |
| 496 | simple_anchored_info sai(min_bound, max_bound, lit); |
| 497 | if (contains(build.anchored_simple, sai)) { |
| 498 | *remap = *build.anchored_simple.at(sai).begin(); |
| 499 | return true; |
| 500 | } |
| 501 | |
| 502 | return false; |
| 503 | } |
| 504 | |
| 505 | static |
| 506 | NFAVertex (const NGHolder &h, ue2_literal *lit) { |
| 507 | vector<NFAVertex> lit_verts; |
| 508 | NFAVertex v = h.accept; |
| 509 | while ((v = getSoleSourceVertex(h, v))) { |
| 510 | const CharReach &cr = h[v].char_reach; |
| 511 | if (cr.count() > 1 && !cr.isCaselessChar()) { |
| 512 | break; |
| 513 | } |
| 514 | lit_verts.push_back(v); |
| 515 | } |
| 516 | |
| 517 | if (lit_verts.empty()) { |
| 518 | return NGHolder::null_vertex(); |
| 519 | } |
| 520 | |
| 521 | bool nocase = false; |
| 522 | bool case_set = false; |
| 523 | |
| 524 | for (auto it = lit_verts.rbegin(), ite = lit_verts.rend(); it != ite; |
| 525 | ++it) { |
| 526 | const CharReach &cr = h[*it].char_reach; |
| 527 | if (cr.isAlpha()) { |
| 528 | bool cr_nocase = cr.count() != 1; |
| 529 | if (case_set && cr_nocase != nocase) { |
| 530 | return NGHolder::null_vertex(); |
| 531 | } |
| 532 | |
| 533 | case_set = true; |
| 534 | nocase = cr_nocase; |
| 535 | lit->push_back(cr.find_first(), nocase); |
| 536 | } else { |
| 537 | lit->push_back(cr.find_first(), false); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | return lit_verts.back(); |
| 542 | } |
| 543 | |
| 544 | static |
| 545 | bool isSimple(const NGHolder &h, u32 *min_bound, u32 *max_bound, |
| 546 | ue2_literal *lit, u32 *report) { |
| 547 | assert(!proper_out_degree(h.startDs, h)); |
| 548 | assert(in_degree(h.acceptEod, h) == 1); |
| 549 | |
| 550 | DEBUG_PRINTF("looking for simple case\n" ); |
| 551 | NFAVertex lit_head = extractLiteral(h, lit); |
| 552 | |
| 553 | if (lit_head == NGHolder::null_vertex()) { |
| 554 | DEBUG_PRINTF("no literal found\n" ); |
| 555 | return false; |
| 556 | } |
| 557 | |
| 558 | const auto &reps = h[*inv_adjacent_vertices(h.accept, h).first].reports; |
| 559 | |
| 560 | if (reps.size() != 1) { |
| 561 | return false; |
| 562 | } |
| 563 | *report = *reps.begin(); |
| 564 | |
| 565 | assert(!lit->empty()); |
| 566 | |
| 567 | set<NFAVertex> rep_exits; |
| 568 | |
| 569 | /* lit should only be connected to dot vertices */ |
| 570 | for (auto u : inv_adjacent_vertices_range(lit_head, h)) { |
| 571 | DEBUG_PRINTF("checking %zu\n" , h[u].index); |
| 572 | if (!h[u].char_reach.all()) { |
| 573 | return false; |
| 574 | } |
| 575 | |
| 576 | if (u != h.start) { |
| 577 | rep_exits.insert(u); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | if (rep_exits.empty()) { |
| 582 | DEBUG_PRINTF("direct anchored\n" ); |
| 583 | assert(edge(h.start, lit_head, h).second); |
| 584 | *min_bound = 0; |
| 585 | *max_bound = 0; |
| 586 | return true; |
| 587 | } |
| 588 | |
| 589 | NFAVertex key = *rep_exits.begin(); |
| 590 | |
| 591 | // Special-case the check for '^.foo' or '^.?foo'. |
| 592 | if (rep_exits.size() == 1 && edge(h.start, key, h).second && |
| 593 | out_degree(key, h) == 1) { |
| 594 | DEBUG_PRINTF("one exit\n" ); |
| 595 | assert(edge(h.start, h.startDs, h).second); |
| 596 | size_t num_enters = out_degree(h.start, h); |
| 597 | if (num_enters == 2) { |
| 598 | DEBUG_PRINTF("^.{1,1} prefix\n" ); |
| 599 | *min_bound = 1; |
| 600 | *max_bound = 1; |
| 601 | return true; |
| 602 | } |
| 603 | if (num_enters == 3 && edge(h.start, lit_head, h).second) { |
| 604 | DEBUG_PRINTF("^.{0,1} prefix\n" ); |
| 605 | *min_bound = 0; |
| 606 | *max_bound = 1; |
| 607 | return true; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | vector<GraphRepeatInfo> repeats; |
| 612 | findRepeats(h, 2, &repeats); |
| 613 | |
| 614 | vector<GraphRepeatInfo>::const_iterator it; |
| 615 | for (it = repeats.begin(); it != repeats.end(); ++it) { |
| 616 | DEBUG_PRINTF("checking.. %zu verts\n" , it->vertices.size()); |
| 617 | if (find(it->vertices.begin(), it->vertices.end(), key) |
| 618 | != it->vertices.end()) { |
| 619 | break; |
| 620 | } |
| 621 | } |
| 622 | if (it == repeats.end()) { |
| 623 | DEBUG_PRINTF("no repeat found\n" ); |
| 624 | return false; |
| 625 | } |
| 626 | |
| 627 | set<NFAVertex> rep_verts; |
| 628 | insert(&rep_verts, it->vertices); |
| 629 | if (!is_subset_of(rep_exits, rep_verts)) { |
| 630 | DEBUG_PRINTF("bad exit check\n" ); |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | set<NFAVertex> rep_enters; |
| 635 | insert(&rep_enters, adjacent_vertices(h.start, h)); |
| 636 | rep_enters.erase(lit_head); |
| 637 | rep_enters.erase(h.startDs); |
| 638 | |
| 639 | if (!is_subset_of(rep_enters, rep_verts)) { |
| 640 | DEBUG_PRINTF("bad entry check\n" ); |
| 641 | return false; |
| 642 | } |
| 643 | |
| 644 | u32 min_b = it->repeatMin; |
| 645 | if (edge(h.start, lit_head, h).second) { /* jump edge */ |
| 646 | if (min_b != 1) { |
| 647 | DEBUG_PRINTF("jump edge around repeat with min bound\n" ); |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | min_b = 0; |
| 652 | } |
| 653 | *min_bound = min_b; |
| 654 | *max_bound = it->repeatMax; |
| 655 | |
| 656 | DEBUG_PRINTF("repeat %u %u before %s\n" , *min_bound, *max_bound, |
| 657 | dumpString(*lit).c_str()); |
| 658 | return true; |
| 659 | } |
| 660 | |
| 661 | static |
| 662 | int finalise_out(RoseBuildImpl &build, const NGHolder &h, |
| 663 | const Automaton_Holder &autom, unique_ptr<raw_dfa> out_dfa, |
| 664 | ReportID *remap) { |
| 665 | u32 min_bound = ~0U; |
| 666 | u32 max_bound = ~0U; |
| 667 | ue2_literal lit; |
| 668 | u32 simple_report = MO_INVALID_IDX; |
| 669 | if (isSimple(h, &min_bound, &max_bound, &lit, &simple_report)) { |
| 670 | assert(simple_report != MO_INVALID_IDX); |
| 671 | if (check_dupe_simple(build, min_bound, max_bound, lit, remap)) { |
| 672 | DEBUG_PRINTF("found duplicate remapping to %u\n" , *remap); |
| 673 | return ANCHORED_REMAP; |
| 674 | } |
| 675 | DEBUG_PRINTF("add with report %u\n" , simple_report); |
| 676 | build.anchored_simple[simple_anchored_info(min_bound, max_bound, lit)] |
| 677 | .insert(simple_report); |
| 678 | return ANCHORED_SUCCESS; |
| 679 | } |
| 680 | |
| 681 | out_dfa->start_anchored = INIT_STATE; |
| 682 | out_dfa->start_floating = DEAD_STATE; |
| 683 | out_dfa->alpha_size = autom.alphasize; |
| 684 | out_dfa->alpha_remap = autom.alpha; |
| 685 | auto hash = hash_dfa_no_reports(*out_dfa); |
| 686 | if (check_dupe(*out_dfa, build.anchored_nfas[hash], remap)) { |
| 687 | return ANCHORED_REMAP; |
| 688 | } |
| 689 | build.anchored_nfas[hash].push_back(move(out_dfa)); |
| 690 | return ANCHORED_SUCCESS; |
| 691 | } |
| 692 | |
| 693 | static |
| 694 | int addAutomaton(RoseBuildImpl &build, const NGHolder &h, ReportID *remap) { |
| 695 | if (num_vertices(h) > ANCHORED_NFA_STATE_LIMIT) { |
| 696 | DEBUG_PRINTF("autom bad!\n" ); |
| 697 | return ANCHORED_FAIL; |
| 698 | } |
| 699 | |
| 700 | Automaton_Holder autom(h); |
| 701 | |
| 702 | auto out_dfa = ue2::make_unique<raw_dfa>(NFA_OUTFIX_RAW); |
| 703 | if (determinise(autom, out_dfa->states, MAX_DFA_STATES)) { |
| 704 | return finalise_out(build, h, autom, move(out_dfa), remap); |
| 705 | } |
| 706 | |
| 707 | DEBUG_PRINTF("determinise failed\n" ); |
| 708 | return ANCHORED_FAIL; |
| 709 | } |
| 710 | |
| 711 | static |
| 712 | void setReports(NGHolder &h, const map<NFAVertex, set<u32>> &reportMap, |
| 713 | const unordered_map<NFAVertex, NFAVertex> &orig_to_copy) { |
| 714 | for (const auto &m : reportMap) { |
| 715 | NFAVertex t = orig_to_copy.at(m.first); |
| 716 | assert(!m.second.empty()); |
| 717 | add_edge(t, h.accept, h); |
| 718 | insert(&h[t].reports, m.second); |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | int addAnchoredNFA(RoseBuildImpl &build, const NGHolder &wrapper, |
| 723 | const map<NFAVertex, set<u32>> &reportMap) { |
| 724 | NGHolder h; |
| 725 | unordered_map<NFAVertex, NFAVertex> orig_to_copy; |
| 726 | cloneHolder(h, wrapper, &orig_to_copy); |
| 727 | clear_in_edges(h.accept, h); |
| 728 | clear_in_edges(h.acceptEod, h); |
| 729 | add_edge(h.accept, h.acceptEod, h); |
| 730 | clearReports(h); |
| 731 | setReports(h, reportMap, orig_to_copy); |
| 732 | |
| 733 | return addAutomaton(build, h, nullptr); |
| 734 | } |
| 735 | |
| 736 | int addToAnchoredMatcher(RoseBuildImpl &build, const NGHolder &anchored, |
| 737 | u32 exit_id, ReportID *remap) { |
| 738 | NGHolder h; |
| 739 | cloneHolder(h, anchored); |
| 740 | clearReports(h); |
| 741 | assert(in_degree(h.acceptEod, h) == 1); |
| 742 | for (auto v : inv_adjacent_vertices_range(h.accept, h)) { |
| 743 | h[v].reports.clear(); |
| 744 | h[v].reports.insert(exit_id); |
| 745 | } |
| 746 | |
| 747 | return addAutomaton(build, h, remap); |
| 748 | } |
| 749 | |
| 750 | static |
| 751 | void buildSimpleDfas(const RoseBuildImpl &build, const vector<u32> &frag_map, |
| 752 | vector<unique_ptr<raw_dfa>> *anchored_dfas) { |
| 753 | /* we should have determinised all of these before so there should be no |
| 754 | * chance of failure. */ |
| 755 | flat_set<u32> exit_ids; |
| 756 | for (const auto &simple : build.anchored_simple) { |
| 757 | exit_ids.clear(); |
| 758 | for (auto lit_id : simple.second) { |
| 759 | assert(lit_id < frag_map.size()); |
| 760 | exit_ids.insert(frag_map[lit_id]); |
| 761 | } |
| 762 | auto h = populate_holder(simple.first, exit_ids); |
| 763 | Automaton_Holder autom(*h); |
| 764 | auto rdfa = ue2::make_unique<raw_dfa>(NFA_OUTFIX_RAW); |
| 765 | UNUSED bool rv = determinise(autom, rdfa->states, MAX_DFA_STATES); |
| 766 | assert(rv); |
| 767 | rdfa->start_anchored = INIT_STATE; |
| 768 | rdfa->start_floating = DEAD_STATE; |
| 769 | rdfa->alpha_size = autom.alphasize; |
| 770 | rdfa->alpha_remap = autom.alpha; |
| 771 | anchored_dfas->push_back(move(rdfa)); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | /** |
| 776 | * Fill the given vector with all of the raw_dfas we need to compile into the |
| 777 | * anchored matcher. Takes ownership of the input structures, clearing them |
| 778 | * from RoseBuildImpl. |
| 779 | */ |
| 780 | static |
| 781 | vector<unique_ptr<raw_dfa>> getAnchoredDfas(RoseBuildImpl &build, |
| 782 | const vector<u32> &frag_map) { |
| 783 | vector<unique_ptr<raw_dfa>> dfas; |
| 784 | |
| 785 | // DFAs that already exist as raw_dfas. |
| 786 | for (auto &anch_dfas : build.anchored_nfas) { |
| 787 | for (auto &rdfa : anch_dfas.second) { |
| 788 | dfas.push_back(move(rdfa)); |
| 789 | } |
| 790 | } |
| 791 | build.anchored_nfas.clear(); |
| 792 | |
| 793 | // DFAs we currently have as simple literals. |
| 794 | if (!build.anchored_simple.empty()) { |
| 795 | buildSimpleDfas(build, frag_map, &dfas); |
| 796 | build.anchored_simple.clear(); |
| 797 | } |
| 798 | |
| 799 | return dfas; |
| 800 | } |
| 801 | |
| 802 | /** |
| 803 | * \brief Builds our anchored DFAs into runtime NFAs. |
| 804 | * |
| 805 | * Constructs a vector of NFA structures and a vector of their start offsets |
| 806 | * (number of dots removed from the prefix) from the raw_dfa structures given. |
| 807 | * |
| 808 | * Note: frees the raw_dfa structures on completion. |
| 809 | * |
| 810 | * \return Total bytes required for the complete anchored matcher. |
| 811 | */ |
| 812 | static |
| 813 | size_t buildNfas(vector<raw_dfa> &anchored_dfas, |
| 814 | vector<bytecode_ptr<NFA>> *nfas, |
| 815 | vector<u32> *start_offset, const CompileContext &cc, |
| 816 | const ReportManager &rm) { |
| 817 | const size_t num_dfas = anchored_dfas.size(); |
| 818 | |
| 819 | nfas->reserve(num_dfas); |
| 820 | start_offset->reserve(num_dfas); |
| 821 | |
| 822 | size_t total_size = 0; |
| 823 | |
| 824 | for (auto &rdfa : anchored_dfas) { |
| 825 | u32 removed_dots = remove_leading_dots(rdfa); |
| 826 | start_offset->push_back(removed_dots); |
| 827 | |
| 828 | minimize_hopcroft(rdfa, cc.grey); |
| 829 | |
| 830 | auto nfa = mcclellanCompile(rdfa, cc, rm, false); |
| 831 | if (!nfa) { |
| 832 | assert(0); |
| 833 | throw std::bad_alloc(); |
| 834 | } |
| 835 | |
| 836 | assert(nfa->length); |
| 837 | total_size += ROUNDUP_CL(sizeof(anchored_matcher_info) + nfa->length); |
| 838 | nfas->push_back(move(nfa)); |
| 839 | } |
| 840 | |
| 841 | // We no longer need to keep the raw_dfa structures around. |
| 842 | anchored_dfas.clear(); |
| 843 | |
| 844 | return total_size; |
| 845 | } |
| 846 | |
| 847 | vector<raw_dfa> buildAnchoredDfas(RoseBuildImpl &build, |
| 848 | const vector<LitFragment> &fragments) { |
| 849 | vector<raw_dfa> dfas; |
| 850 | |
| 851 | if (build.anchored_nfas.empty() && build.anchored_simple.empty()) { |
| 852 | DEBUG_PRINTF("empty\n" ); |
| 853 | return dfas; |
| 854 | } |
| 855 | |
| 856 | const auto frag_map = reverseFragMap(build, fragments); |
| 857 | remapAnchoredReports(build, frag_map); |
| 858 | |
| 859 | auto anch_dfas = getAnchoredDfas(build, frag_map); |
| 860 | mergeAnchoredDfas(anch_dfas, build); |
| 861 | |
| 862 | dfas.reserve(anch_dfas.size()); |
| 863 | for (auto &rdfa : anch_dfas) { |
| 864 | assert(rdfa); |
| 865 | dfas.push_back(move(*rdfa)); |
| 866 | } |
| 867 | return dfas; |
| 868 | } |
| 869 | |
| 870 | bytecode_ptr<anchored_matcher_info> |
| 871 | buildAnchoredMatcher(RoseBuildImpl &build, const vector<LitFragment> &fragments, |
| 872 | vector<raw_dfa> &dfas) { |
| 873 | const CompileContext &cc = build.cc; |
| 874 | |
| 875 | if (dfas.empty()) { |
| 876 | DEBUG_PRINTF("empty\n" ); |
| 877 | return nullptr; |
| 878 | } |
| 879 | |
| 880 | for (auto &rdfa : dfas) { |
| 881 | remapIdsToPrograms(fragments, rdfa); |
| 882 | } |
| 883 | |
| 884 | vector<bytecode_ptr<NFA>> nfas; |
| 885 | vector<u32> start_offset; // start offset for each dfa (dots removed) |
| 886 | size_t total_size = buildNfas(dfas, &nfas, &start_offset, cc, build.rm); |
| 887 | |
| 888 | if (total_size > cc.grey.limitRoseAnchoredSize) { |
| 889 | throw ResourceLimitError(); |
| 890 | } |
| 891 | |
| 892 | auto atable = |
| 893 | make_zeroed_bytecode_ptr<anchored_matcher_info>(total_size, 64); |
| 894 | char *curr = (char *)atable.get(); |
| 895 | |
| 896 | u32 state_offset = 0; |
| 897 | for (size_t i = 0; i < nfas.size(); i++) { |
| 898 | const NFA *nfa = nfas[i].get(); |
| 899 | anchored_matcher_info *ami = (anchored_matcher_info *)curr; |
| 900 | char *prev_curr = curr; |
| 901 | |
| 902 | curr += sizeof(anchored_matcher_info); |
| 903 | |
| 904 | memcpy(curr, nfa, nfa->length); |
| 905 | curr += nfa->length; |
| 906 | curr = ROUNDUP_PTR(curr, 64); |
| 907 | |
| 908 | if (i + 1 == nfas.size()) { |
| 909 | ami->next_offset = 0U; |
| 910 | } else { |
| 911 | ami->next_offset = verify_u32(curr - prev_curr); |
| 912 | } |
| 913 | |
| 914 | ami->state_offset = state_offset; |
| 915 | state_offset += nfa->streamStateSize; |
| 916 | ami->anchoredMinDistance = start_offset[i]; |
| 917 | } |
| 918 | |
| 919 | DEBUG_PRINTF("success %zu\n" , atable.size()); |
| 920 | return atable; |
| 921 | } |
| 922 | |
| 923 | } // namespace ue2 |
| 924 | |