| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Code Generator Common: XX |
| 9 | XX Methods common to all architectures and register allocation strategies XX |
| 10 | XX XX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 13 | */ |
| 14 | |
| 15 | // TODO-Cleanup: There are additional methods in CodeGen*.cpp that are almost |
| 16 | // identical, and which should probably be moved here. |
| 17 | |
| 18 | #include "jitpch.h" |
| 19 | #ifdef _MSC_VER |
| 20 | #pragma hdrstop |
| 21 | #endif |
| 22 | #include "codegen.h" |
| 23 | |
| 24 | #include "gcinfo.h" |
| 25 | #include "emit.h" |
| 26 | |
| 27 | #ifndef JIT32_GCENCODER |
| 28 | #include "gcinfoencoder.h" |
| 29 | #endif |
| 30 | |
| 31 | /*****************************************************************************/ |
| 32 | |
| 33 | const BYTE genTypeSizes[] = { |
| 34 | #define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) sz, |
| 35 | #include "typelist.h" |
| 36 | #undef DEF_TP |
| 37 | }; |
| 38 | |
| 39 | const BYTE genTypeAlignments[] = { |
| 40 | #define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) al, |
| 41 | #include "typelist.h" |
| 42 | #undef DEF_TP |
| 43 | }; |
| 44 | |
| 45 | const BYTE genTypeStSzs[] = { |
| 46 | #define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) st, |
| 47 | #include "typelist.h" |
| 48 | #undef DEF_TP |
| 49 | }; |
| 50 | |
| 51 | const BYTE genActualTypes[] = { |
| 52 | #define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) jitType, |
| 53 | #include "typelist.h" |
| 54 | #undef DEF_TP |
| 55 | }; |
| 56 | |
| 57 | void CodeGenInterface::setFramePointerRequiredEH(bool value) |
| 58 | { |
| 59 | m_cgFramePointerRequired = value; |
| 60 | |
| 61 | #ifndef JIT32_GCENCODER |
| 62 | if (value) |
| 63 | { |
| 64 | // EnumGcRefs will only enumerate slots in aborted frames |
| 65 | // if they are fully-interruptible. So if we have a catch |
| 66 | // or finally that will keep frame-vars alive, we need to |
| 67 | // force fully-interruptible. |
| 68 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 69 | |
| 70 | #ifdef DEBUG |
| 71 | if (verbose) |
| 72 | { |
| 73 | printf("Method has EH, marking method as fully interruptible\n" ); |
| 74 | } |
| 75 | #endif |
| 76 | |
| 77 | m_cgInterruptible = true; |
| 78 | } |
| 79 | #endif // JIT32_GCENCODER |
| 80 | } |
| 81 | |
| 82 | /*****************************************************************************/ |
| 83 | CodeGenInterface* getCodeGenerator(Compiler* comp) |
| 84 | { |
| 85 | return new (comp, CMK_Codegen) CodeGen(comp); |
| 86 | } |
| 87 | |
| 88 | // CodeGen constructor |
| 89 | CodeGenInterface::CodeGenInterface(Compiler* theCompiler) |
| 90 | : gcInfo(theCompiler), regSet(theCompiler, gcInfo), compiler(theCompiler), treeLifeUpdater(nullptr) |
| 91 | { |
| 92 | } |
| 93 | |
| 94 | /*****************************************************************************/ |
| 95 | |
| 96 | CodeGen::CodeGen(Compiler* theCompiler) : CodeGenInterface(theCompiler) |
| 97 | { |
| 98 | #if defined(_TARGET_XARCH_) |
| 99 | negBitmaskFlt = nullptr; |
| 100 | negBitmaskDbl = nullptr; |
| 101 | absBitmaskFlt = nullptr; |
| 102 | absBitmaskDbl = nullptr; |
| 103 | u8ToDblBitmask = nullptr; |
| 104 | #endif // defined(_TARGET_XARCH_) |
| 105 | |
| 106 | #if defined(FEATURE_PUT_STRUCT_ARG_STK) && !defined(_TARGET_X86_) |
| 107 | m_stkArgVarNum = BAD_VAR_NUM; |
| 108 | #endif |
| 109 | |
| 110 | #if defined(UNIX_X86_ABI) |
| 111 | curNestedAlignment = 0; |
| 112 | maxNestedAlignment = 0; |
| 113 | #endif |
| 114 | |
| 115 | gcInfo.regSet = ®Set; |
| 116 | m_cgEmitter = new (compiler->getAllocator()) emitter(); |
| 117 | m_cgEmitter->codeGen = this; |
| 118 | m_cgEmitter->gcInfo = &gcInfo; |
| 119 | |
| 120 | #ifdef DEBUG |
| 121 | setVerbose(compiler->verbose); |
| 122 | #endif // DEBUG |
| 123 | |
| 124 | regSet.tmpInit(); |
| 125 | |
| 126 | instInit(); |
| 127 | |
| 128 | #ifdef LATE_DISASM |
| 129 | getDisAssembler().disInit(compiler); |
| 130 | #endif |
| 131 | |
| 132 | #ifdef DEBUG |
| 133 | genTempLiveChg = true; |
| 134 | genTrnslLocalVarCount = 0; |
| 135 | |
| 136 | // Shouldn't be used before it is set in genFnProlog() |
| 137 | compiler->compCalleeRegsPushed = UninitializedWord<unsigned>(compiler); |
| 138 | |
| 139 | #if defined(_TARGET_XARCH_) |
| 140 | // Shouldn't be used before it is set in genFnProlog() |
| 141 | compiler->compCalleeFPRegsSavedMask = (regMaskTP)-1; |
| 142 | #endif // defined(_TARGET_XARCH_) |
| 143 | #endif // DEBUG |
| 144 | |
| 145 | #ifdef _TARGET_AMD64_ |
| 146 | // This will be set before final frame layout. |
| 147 | compiler->compVSQuirkStackPaddingNeeded = 0; |
| 148 | |
| 149 | // Set to true if we perform the Quirk that fixes the PPP issue |
| 150 | compiler->compQuirkForPPPflag = false; |
| 151 | #endif // _TARGET_AMD64_ |
| 152 | |
| 153 | // Initialize the IP-mapping logic. |
| 154 | compiler->genIPmappingList = nullptr; |
| 155 | compiler->genIPmappingLast = nullptr; |
| 156 | compiler->genCallSite2ILOffsetMap = nullptr; |
| 157 | |
| 158 | /* Assume that we not fully interruptible */ |
| 159 | |
| 160 | genInterruptible = false; |
| 161 | #ifdef _TARGET_ARMARCH_ |
| 162 | hasTailCalls = false; |
| 163 | #endif // _TARGET_ARMARCH_ |
| 164 | #ifdef DEBUG |
| 165 | genInterruptibleUsed = false; |
| 166 | genCurDispOffset = (unsigned)-1; |
| 167 | #endif |
| 168 | } |
| 169 | |
| 170 | void CodeGenInterface::genMarkTreeInReg(GenTree* tree, regNumber reg) |
| 171 | { |
| 172 | tree->gtRegNum = reg; |
| 173 | } |
| 174 | |
| 175 | #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 176 | |
| 177 | //--------------------------------------------------------------------- |
| 178 | // genTotalFrameSize - return the "total" size of the stack frame, including local size |
| 179 | // and callee-saved register size. There are a few things "missing" depending on the |
| 180 | // platform. The function genCallerSPtoInitialSPdelta() includes those things. |
| 181 | // |
| 182 | // For ARM, this doesn't include the prespilled registers. |
| 183 | // |
| 184 | // For x86, this doesn't include the frame pointer if codeGen->isFramePointerUsed() is true. |
| 185 | // It also doesn't include the pushed return address. |
| 186 | // |
| 187 | // Return value: |
| 188 | // Frame size |
| 189 | |
| 190 | int CodeGenInterface::genTotalFrameSize() |
| 191 | { |
| 192 | assert(!IsUninitialized(compiler->compCalleeRegsPushed)); |
| 193 | |
| 194 | int totalFrameSize = compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize; |
| 195 | |
| 196 | assert(totalFrameSize >= 0); |
| 197 | return totalFrameSize; |
| 198 | } |
| 199 | |
| 200 | //--------------------------------------------------------------------- |
| 201 | // genSPtoFPdelta - return the offset from SP to the frame pointer. |
| 202 | // This number is going to be positive, since SP must be at the lowest |
| 203 | // address. |
| 204 | // |
| 205 | // There must be a frame pointer to call this function! |
| 206 | |
| 207 | int CodeGenInterface::genSPtoFPdelta() |
| 208 | { |
| 209 | assert(isFramePointerUsed()); |
| 210 | |
| 211 | int delta; |
| 212 | |
| 213 | delta = -genCallerSPtoInitialSPdelta() + genCallerSPtoFPdelta(); |
| 214 | |
| 215 | assert(delta >= 0); |
| 216 | return delta; |
| 217 | } |
| 218 | |
| 219 | //--------------------------------------------------------------------- |
| 220 | // genCallerSPtoFPdelta - return the offset from Caller-SP to the frame pointer. |
| 221 | // This number is going to be negative, since the Caller-SP is at a higher |
| 222 | // address than the frame pointer. |
| 223 | // |
| 224 | // There must be a frame pointer to call this function! |
| 225 | |
| 226 | int CodeGenInterface::genCallerSPtoFPdelta() |
| 227 | { |
| 228 | assert(isFramePointerUsed()); |
| 229 | int callerSPtoFPdelta = 0; |
| 230 | |
| 231 | #if defined(_TARGET_ARM_) |
| 232 | // On ARM, we first push the prespill registers, then store LR, then R11 (FP), and point R11 at the saved R11. |
| 233 | callerSPtoFPdelta -= genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES; |
| 234 | callerSPtoFPdelta -= 2 * REGSIZE_BYTES; |
| 235 | #elif defined(_TARGET_X86_) |
| 236 | // Thanks to ebp chaining, the difference between ebp-based addresses |
| 237 | // and caller-SP-relative addresses is just the 2 pointers: |
| 238 | // return address |
| 239 | // pushed ebp |
| 240 | callerSPtoFPdelta -= 2 * REGSIZE_BYTES; |
| 241 | #else |
| 242 | #error "Unknown _TARGET_" |
| 243 | #endif // _TARGET_* |
| 244 | |
| 245 | assert(callerSPtoFPdelta <= 0); |
| 246 | return callerSPtoFPdelta; |
| 247 | } |
| 248 | |
| 249 | //--------------------------------------------------------------------- |
| 250 | // genCallerSPtoInitialSPdelta - return the offset from Caller-SP to Initial SP. |
| 251 | // |
| 252 | // This number will be negative. |
| 253 | |
| 254 | int CodeGenInterface::genCallerSPtoInitialSPdelta() |
| 255 | { |
| 256 | int callerSPtoSPdelta = 0; |
| 257 | |
| 258 | #if defined(_TARGET_ARM_) |
| 259 | callerSPtoSPdelta -= genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES; |
| 260 | callerSPtoSPdelta -= genTotalFrameSize(); |
| 261 | #elif defined(_TARGET_X86_) |
| 262 | callerSPtoSPdelta -= genTotalFrameSize(); |
| 263 | callerSPtoSPdelta -= REGSIZE_BYTES; // caller-pushed return address |
| 264 | |
| 265 | // compCalleeRegsPushed does not account for the frame pointer |
| 266 | // TODO-Cleanup: shouldn't this be part of genTotalFrameSize? |
| 267 | if (isFramePointerUsed()) |
| 268 | { |
| 269 | callerSPtoSPdelta -= REGSIZE_BYTES; |
| 270 | } |
| 271 | #else |
| 272 | #error "Unknown _TARGET_" |
| 273 | #endif // _TARGET_* |
| 274 | |
| 275 | assert(callerSPtoSPdelta <= 0); |
| 276 | return callerSPtoSPdelta; |
| 277 | } |
| 278 | |
| 279 | #endif // defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 280 | |
| 281 | /***************************************************************************** |
| 282 | * Should we round simple operations (assignments, arithmetic operations, etc.) |
| 283 | */ |
| 284 | |
| 285 | // inline |
| 286 | // static |
| 287 | bool CodeGen::genShouldRoundFP() |
| 288 | { |
| 289 | RoundLevel roundLevel = getRoundFloatLevel(); |
| 290 | |
| 291 | switch (roundLevel) |
| 292 | { |
| 293 | case ROUND_NEVER: |
| 294 | case ROUND_CMP_CONST: |
| 295 | case ROUND_CMP: |
| 296 | return false; |
| 297 | |
| 298 | default: |
| 299 | assert(roundLevel == ROUND_ALWAYS); |
| 300 | return true; |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | /***************************************************************************** |
| 305 | * |
| 306 | * Initialize some global variables. |
| 307 | */ |
| 308 | |
| 309 | void CodeGen::genPrepForCompiler() |
| 310 | { |
| 311 | treeLifeUpdater = new (compiler, CMK_bitset) TreeLifeUpdater<true>(compiler); |
| 312 | |
| 313 | /* Figure out which non-register variables hold pointers */ |
| 314 | |
| 315 | VarSetOps::AssignNoCopy(compiler, gcInfo.gcTrkStkPtrLcls, VarSetOps::MakeEmpty(compiler)); |
| 316 | |
| 317 | // Also, initialize gcTrkStkPtrLcls to include all tracked variables that do not fully live |
| 318 | // in a register (i.e. they live on the stack for all or part of their lifetime). |
| 319 | // Note that lvRegister indicates that a lclVar is in a register for its entire lifetime. |
| 320 | |
| 321 | unsigned varNum; |
| 322 | LclVarDsc* varDsc; |
| 323 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++) |
| 324 | { |
| 325 | if (varDsc->lvTracked || varDsc->lvIsRegCandidate()) |
| 326 | { |
| 327 | if (!varDsc->lvRegister && compiler->lvaIsGCTracked(varDsc)) |
| 328 | { |
| 329 | VarSetOps::AddElemD(compiler, gcInfo.gcTrkStkPtrLcls, varDsc->lvVarIndex); |
| 330 | } |
| 331 | } |
| 332 | } |
| 333 | VarSetOps::AssignNoCopy(compiler, genLastLiveSet, VarSetOps::MakeEmpty(compiler)); |
| 334 | genLastLiveMask = RBM_NONE; |
| 335 | #ifdef DEBUG |
| 336 | compiler->fgBBcountAtCodegen = compiler->fgBBcount; |
| 337 | #endif |
| 338 | } |
| 339 | |
| 340 | /***************************************************************************** |
| 341 | * To report exception handling information to the VM, we need the size of the exception |
| 342 | * handling regions. To compute that, we need to emit labels for the beginning block of |
| 343 | * an EH region, and the block that immediately follows a region. Go through the EH |
| 344 | * table and mark all these blocks with BBF_HAS_LABEL to make this happen. |
| 345 | * |
| 346 | * The beginning blocks of the EH regions already should have this flag set. |
| 347 | * |
| 348 | * No blocks should be added or removed after this. |
| 349 | * |
| 350 | * This code is closely couple with genReportEH() in the sense that any block |
| 351 | * that this procedure has determined it needs to have a label has to be selected |
| 352 | * using the same logic both here and in genReportEH(), so basically any time there is |
| 353 | * a change in the way we handle EH reporting, we have to keep the logic of these two |
| 354 | * methods 'in sync'. |
| 355 | */ |
| 356 | |
| 357 | void CodeGen::genPrepForEHCodegen() |
| 358 | { |
| 359 | assert(!compiler->fgSafeBasicBlockCreation); |
| 360 | |
| 361 | EHblkDsc* HBtab; |
| 362 | EHblkDsc* HBtabEnd; |
| 363 | |
| 364 | bool anyFinallys = false; |
| 365 | |
| 366 | for (HBtab = compiler->compHndBBtab, HBtabEnd = compiler->compHndBBtab + compiler->compHndBBtabCount; |
| 367 | HBtab < HBtabEnd; HBtab++) |
| 368 | { |
| 369 | assert(HBtab->ebdTryBeg->bbFlags & BBF_HAS_LABEL); |
| 370 | assert(HBtab->ebdHndBeg->bbFlags & BBF_HAS_LABEL); |
| 371 | |
| 372 | if (HBtab->ebdTryLast->bbNext != nullptr) |
| 373 | { |
| 374 | HBtab->ebdTryLast->bbNext->bbFlags |= BBF_HAS_LABEL; |
| 375 | } |
| 376 | |
| 377 | if (HBtab->ebdHndLast->bbNext != nullptr) |
| 378 | { |
| 379 | HBtab->ebdHndLast->bbNext->bbFlags |= BBF_HAS_LABEL; |
| 380 | } |
| 381 | |
| 382 | if (HBtab->HasFilter()) |
| 383 | { |
| 384 | assert(HBtab->ebdFilter->bbFlags & BBF_HAS_LABEL); |
| 385 | // The block after the last block of the filter is |
| 386 | // the handler begin block, which we already asserted |
| 387 | // has BBF_HAS_LABEL set. |
| 388 | } |
| 389 | |
| 390 | #if FEATURE_EH_CALLFINALLY_THUNKS |
| 391 | if (HBtab->HasFinallyHandler()) |
| 392 | { |
| 393 | anyFinallys = true; |
| 394 | } |
| 395 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
| 396 | } |
| 397 | |
| 398 | #if FEATURE_EH_CALLFINALLY_THUNKS |
| 399 | if (anyFinallys) |
| 400 | { |
| 401 | for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext) |
| 402 | { |
| 403 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
| 404 | { |
| 405 | BasicBlock* bbToLabel = block->bbNext; |
| 406 | if (block->isBBCallAlwaysPair()) |
| 407 | { |
| 408 | bbToLabel = bbToLabel->bbNext; // skip the BBJ_ALWAYS |
| 409 | } |
| 410 | if (bbToLabel != nullptr) |
| 411 | { |
| 412 | bbToLabel->bbFlags |= BBF_HAS_LABEL; |
| 413 | } |
| 414 | } // block is BBJ_CALLFINALLY |
| 415 | } // for each block |
| 416 | } // if (anyFinallys) |
| 417 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
| 418 | } |
| 419 | |
| 420 | void CodeGenInterface::genUpdateLife(GenTree* tree) |
| 421 | { |
| 422 | treeLifeUpdater->UpdateLife(tree); |
| 423 | } |
| 424 | |
| 425 | void CodeGenInterface::genUpdateLife(VARSET_VALARG_TP newLife) |
| 426 | { |
| 427 | compiler->compUpdateLife</*ForCodeGen*/ true>(newLife); |
| 428 | } |
| 429 | |
| 430 | // Return the register mask for the given register variable |
| 431 | // inline |
| 432 | regMaskTP CodeGenInterface::genGetRegMask(const LclVarDsc* varDsc) |
| 433 | { |
| 434 | regMaskTP regMask = RBM_NONE; |
| 435 | |
| 436 | assert(varDsc->lvIsInReg()); |
| 437 | |
| 438 | if (varTypeIsFloating(varDsc->TypeGet())) |
| 439 | { |
| 440 | regMask = genRegMaskFloat(varDsc->lvRegNum, varDsc->TypeGet()); |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | regMask = genRegMask(varDsc->lvRegNum); |
| 445 | } |
| 446 | return regMask; |
| 447 | } |
| 448 | |
| 449 | // Return the register mask for the given lclVar or regVar tree node |
| 450 | // inline |
| 451 | regMaskTP CodeGenInterface::genGetRegMask(GenTree* tree) |
| 452 | { |
| 453 | assert(tree->gtOper == GT_LCL_VAR); |
| 454 | |
| 455 | regMaskTP regMask = RBM_NONE; |
| 456 | const LclVarDsc* varDsc = compiler->lvaTable + tree->gtLclVarCommon.gtLclNum; |
| 457 | if (varDsc->lvPromoted) |
| 458 | { |
| 459 | for (unsigned i = varDsc->lvFieldLclStart; i < varDsc->lvFieldLclStart + varDsc->lvFieldCnt; ++i) |
| 460 | { |
| 461 | noway_assert(compiler->lvaTable[i].lvIsStructField); |
| 462 | if (compiler->lvaTable[i].lvIsInReg()) |
| 463 | { |
| 464 | regMask |= genGetRegMask(&compiler->lvaTable[i]); |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | else if (varDsc->lvIsInReg()) |
| 469 | { |
| 470 | regMask = genGetRegMask(varDsc); |
| 471 | } |
| 472 | return regMask; |
| 473 | } |
| 474 | |
| 475 | // The given lclVar is either going live (being born) or dying. |
| 476 | // It might be both going live and dying (that is, it is a dead store) under MinOpts. |
| 477 | // Update regSet.rsMaskVars accordingly. |
| 478 | // inline |
| 479 | void CodeGenInterface::genUpdateRegLife(const LclVarDsc* varDsc, bool isBorn, bool isDying DEBUGARG(GenTree* tree)) |
| 480 | { |
| 481 | regMaskTP regMask = genGetRegMask(varDsc); |
| 482 | |
| 483 | #ifdef DEBUG |
| 484 | if (compiler->verbose) |
| 485 | { |
| 486 | printf("\t\t\t\t\t\t\tV%02u in reg " , (varDsc - compiler->lvaTable)); |
| 487 | varDsc->PrintVarReg(); |
| 488 | printf(" is becoming %s " , (isDying) ? "dead" : "live" ); |
| 489 | Compiler::printTreeID(tree); |
| 490 | printf("\n" ); |
| 491 | } |
| 492 | #endif // DEBUG |
| 493 | |
| 494 | if (isDying) |
| 495 | { |
| 496 | // We'd like to be able to assert the following, however if we are walking |
| 497 | // through a qmark/colon tree, we may encounter multiple last-use nodes. |
| 498 | // assert((regSet.rsMaskVars & regMask) == regMask); |
| 499 | regSet.RemoveMaskVars(regMask); |
| 500 | } |
| 501 | else |
| 502 | { |
| 503 | assert((regSet.rsMaskVars & regMask) == 0); |
| 504 | regSet.AddMaskVars(regMask); |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | //---------------------------------------------------------------------- |
| 509 | // compHelperCallKillSet: Gets a register mask that represents the kill set for a helper call. |
| 510 | // Not all JIT Helper calls follow the standard ABI on the target architecture. |
| 511 | // |
| 512 | // TODO-CQ: Currently this list is incomplete (not all helpers calls are |
| 513 | // enumerated) and not 100% accurate (some killsets are bigger than |
| 514 | // what they really are). |
| 515 | // There's some work to be done in several places in the JIT to |
| 516 | // accurately track the registers that are getting killed by |
| 517 | // helper calls: |
| 518 | // a) LSRA needs several changes to accomodate more precise killsets |
| 519 | // for every helper call it sees (both explicitly [easy] and |
| 520 | // implicitly [hard]) |
| 521 | // b) Currently for AMD64, when we generate code for a helper call |
| 522 | // we're independently over-pessimizing the killsets of the call |
| 523 | // (independently from LSRA) and this needs changes |
| 524 | // both in CodeGenAmd64.cpp and emitx86.cpp. |
| 525 | // |
| 526 | // The best solution for this problem would be to try to centralize |
| 527 | // the killset information in a single place but then make the |
| 528 | // corresponding changes so every code generation phase is in sync |
| 529 | // about this. |
| 530 | // |
| 531 | // The interim solution is to only add known helper calls that don't |
| 532 | // follow the AMD64 ABI and actually trash registers that are supposed to be non-volatile. |
| 533 | // |
| 534 | // Arguments: |
| 535 | // helper - The helper being inquired about |
| 536 | // |
| 537 | // Return Value: |
| 538 | // Mask of register kills -- registers whose values are no longer guaranteed to be the same. |
| 539 | // |
| 540 | regMaskTP Compiler::compHelperCallKillSet(CorInfoHelpFunc helper) |
| 541 | { |
| 542 | switch (helper) |
| 543 | { |
| 544 | case CORINFO_HELP_ASSIGN_BYREF: |
| 545 | #if defined(_TARGET_AMD64_) |
| 546 | return RBM_RSI | RBM_RDI | RBM_CALLEE_TRASH_NOGC; |
| 547 | #elif defined(_TARGET_ARMARCH_) |
| 548 | return RBM_CALLEE_TRASH_WRITEBARRIER_BYREF; |
| 549 | #elif defined(_TARGET_X86_) |
| 550 | return RBM_ESI | RBM_EDI | RBM_ECX; |
| 551 | #else |
| 552 | NYI("Model kill set for CORINFO_HELP_ASSIGN_BYREF on target arch" ); |
| 553 | return RBM_CALLEE_TRASH; |
| 554 | #endif |
| 555 | |
| 556 | #if defined(_TARGET_ARMARCH_) |
| 557 | case CORINFO_HELP_ASSIGN_REF: |
| 558 | case CORINFO_HELP_CHECKED_ASSIGN_REF: |
| 559 | return RBM_CALLEE_TRASH_WRITEBARRIER; |
| 560 | #endif |
| 561 | |
| 562 | case CORINFO_HELP_PROF_FCN_ENTER: |
| 563 | #ifdef RBM_PROFILER_ENTER_TRASH |
| 564 | return RBM_PROFILER_ENTER_TRASH; |
| 565 | #else |
| 566 | NYI("Model kill set for CORINFO_HELP_PROF_FCN_ENTER on target arch" ); |
| 567 | #endif |
| 568 | |
| 569 | case CORINFO_HELP_PROF_FCN_LEAVE: |
| 570 | #ifdef RBM_PROFILER_LEAVE_TRASH |
| 571 | return RBM_PROFILER_LEAVE_TRASH; |
| 572 | #else |
| 573 | NYI("Model kill set for CORINFO_HELP_PROF_FCN_LEAVE on target arch" ); |
| 574 | #endif |
| 575 | |
| 576 | case CORINFO_HELP_PROF_FCN_TAILCALL: |
| 577 | #ifdef RBM_PROFILER_TAILCALL_TRASH |
| 578 | return RBM_PROFILER_TAILCALL_TRASH; |
| 579 | #else |
| 580 | NYI("Model kill set for CORINFO_HELP_PROF_FCN_TAILCALL on target arch" ); |
| 581 | #endif |
| 582 | |
| 583 | #ifdef _TARGET_X86_ |
| 584 | case CORINFO_HELP_ASSIGN_REF_EAX: |
| 585 | case CORINFO_HELP_ASSIGN_REF_ECX: |
| 586 | case CORINFO_HELP_ASSIGN_REF_EBX: |
| 587 | case CORINFO_HELP_ASSIGN_REF_EBP: |
| 588 | case CORINFO_HELP_ASSIGN_REF_ESI: |
| 589 | case CORINFO_HELP_ASSIGN_REF_EDI: |
| 590 | |
| 591 | case CORINFO_HELP_CHECKED_ASSIGN_REF_EAX: |
| 592 | case CORINFO_HELP_CHECKED_ASSIGN_REF_ECX: |
| 593 | case CORINFO_HELP_CHECKED_ASSIGN_REF_EBX: |
| 594 | case CORINFO_HELP_CHECKED_ASSIGN_REF_EBP: |
| 595 | case CORINFO_HELP_CHECKED_ASSIGN_REF_ESI: |
| 596 | case CORINFO_HELP_CHECKED_ASSIGN_REF_EDI: |
| 597 | return RBM_EDX; |
| 598 | |
| 599 | #ifdef FEATURE_USE_ASM_GC_WRITE_BARRIERS |
| 600 | case CORINFO_HELP_ASSIGN_REF: |
| 601 | case CORINFO_HELP_CHECKED_ASSIGN_REF: |
| 602 | return RBM_EAX | RBM_EDX; |
| 603 | #endif // FEATURE_USE_ASM_GC_WRITE_BARRIERS |
| 604 | #endif |
| 605 | |
| 606 | case CORINFO_HELP_STOP_FOR_GC: |
| 607 | return RBM_STOP_FOR_GC_TRASH; |
| 608 | |
| 609 | case CORINFO_HELP_INIT_PINVOKE_FRAME: |
| 610 | return RBM_INIT_PINVOKE_FRAME_TRASH; |
| 611 | |
| 612 | default: |
| 613 | return RBM_CALLEE_TRASH; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | //---------------------------------------------------------------------- |
| 618 | // compNoGCHelperCallKillSet: Gets a register mask that represents the set of registers that no longer |
| 619 | // contain GC or byref pointers, for "NO GC" helper calls. This is used by the emitter when determining |
| 620 | // what registers to remove from the current live GC/byref sets (and thus what to report as dead in the |
| 621 | // GC info). Note that for the CORINFO_HELP_ASSIGN_BYREF helper, in particular, the kill set reported by |
| 622 | // compHelperCallKillSet() doesn't match this kill set. compHelperCallKillSet() reports the dst/src |
| 623 | // address registers as killed for liveness purposes, since their values change. However, they still are |
| 624 | // valid byref pointers after the call, so the dst/src address registers are NOT reported as killed here. |
| 625 | // |
| 626 | // Note: This list may not be complete and defaults to the default RBM_CALLEE_TRASH_NOGC registers. |
| 627 | // |
| 628 | // Arguments: |
| 629 | // helper - The helper being inquired about |
| 630 | // |
| 631 | // Return Value: |
| 632 | // Mask of GC register kills |
| 633 | // |
| 634 | regMaskTP Compiler::compNoGCHelperCallKillSet(CorInfoHelpFunc helper) |
| 635 | { |
| 636 | assert(emitter::emitNoGChelper(helper)); |
| 637 | |
| 638 | switch (helper) |
| 639 | { |
| 640 | case CORINFO_HELP_ASSIGN_BYREF: |
| 641 | #if defined(_TARGET_X86_) |
| 642 | // This helper only trashes ECX. |
| 643 | return RBM_ECX; |
| 644 | #elif defined(_TARGET_AMD64_) |
| 645 | // This uses and defs RDI and RSI. |
| 646 | return RBM_CALLEE_TRASH_NOGC & ~(RBM_RDI | RBM_RSI); |
| 647 | #elif defined(_TARGET_ARMARCH_) |
| 648 | return RBM_CALLEE_GCTRASH_WRITEBARRIER_BYREF; |
| 649 | #else |
| 650 | assert(!"unknown arch" ); |
| 651 | #endif |
| 652 | |
| 653 | #if defined(_TARGET_XARCH_) |
| 654 | case CORINFO_HELP_PROF_FCN_ENTER: |
| 655 | return RBM_PROFILER_ENTER_TRASH; |
| 656 | |
| 657 | case CORINFO_HELP_PROF_FCN_LEAVE: |
| 658 | return RBM_PROFILER_LEAVE_TRASH; |
| 659 | |
| 660 | case CORINFO_HELP_PROF_FCN_TAILCALL: |
| 661 | return RBM_PROFILER_TAILCALL_TRASH; |
| 662 | #endif // defined(_TARGET_XARCH_) |
| 663 | |
| 664 | #if defined(_TARGET_ARMARCH_) |
| 665 | case CORINFO_HELP_ASSIGN_REF: |
| 666 | case CORINFO_HELP_CHECKED_ASSIGN_REF: |
| 667 | return RBM_CALLEE_GCTRASH_WRITEBARRIER; |
| 668 | case CORINFO_HELP_PROF_FCN_LEAVE: |
| 669 | // In case of Leave profiler callback, we need to preserve liveness of REG_PROFILER_RET_SCRATCH on ARMARCH. |
| 670 | return RBM_CALLEE_TRASH_NOGC & ~RBM_PROFILER_RET_SCRATCH; |
| 671 | #endif |
| 672 | |
| 673 | #if defined(_TARGET_X86_) |
| 674 | case CORINFO_HELP_INIT_PINVOKE_FRAME: |
| 675 | return RBM_INIT_PINVOKE_FRAME_TRASH; |
| 676 | #endif // defined(_TARGET_X86_) |
| 677 | |
| 678 | default: |
| 679 | return RBM_CALLEE_TRASH_NOGC; |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | template <bool ForCodeGen> |
| 684 | void Compiler::compChangeLife(VARSET_VALARG_TP newLife) |
| 685 | { |
| 686 | LclVarDsc* varDsc; |
| 687 | |
| 688 | #ifdef DEBUG |
| 689 | if (verbose) |
| 690 | { |
| 691 | printf("Change life %s " , VarSetOps::ToString(this, compCurLife)); |
| 692 | dumpConvertedVarSet(this, compCurLife); |
| 693 | printf(" -> %s " , VarSetOps::ToString(this, newLife)); |
| 694 | dumpConvertedVarSet(this, newLife); |
| 695 | printf("\n" ); |
| 696 | } |
| 697 | #endif // DEBUG |
| 698 | |
| 699 | /* We should only be called when the live set has actually changed */ |
| 700 | |
| 701 | noway_assert(!VarSetOps::Equal(this, compCurLife, newLife)); |
| 702 | |
| 703 | if (!ForCodeGen) |
| 704 | { |
| 705 | VarSetOps::Assign(this, compCurLife, newLife); |
| 706 | return; |
| 707 | } |
| 708 | |
| 709 | /* Figure out which variables are becoming live/dead at this point */ |
| 710 | |
| 711 | // deadSet = compCurLife - newLife |
| 712 | VARSET_TP deadSet(VarSetOps::Diff(this, compCurLife, newLife)); |
| 713 | |
| 714 | // bornSet = newLife - compCurLife |
| 715 | VARSET_TP bornSet(VarSetOps::Diff(this, newLife, compCurLife)); |
| 716 | |
| 717 | /* Can't simultaneously become live and dead at the same time */ |
| 718 | |
| 719 | // (deadSet UNION bornSet) != EMPTY |
| 720 | noway_assert(!VarSetOps::IsEmptyUnion(this, deadSet, bornSet)); |
| 721 | // (deadSet INTERSECTION bornSet) == EMPTY |
| 722 | noway_assert(VarSetOps::IsEmptyIntersection(this, deadSet, bornSet)); |
| 723 | |
| 724 | VarSetOps::Assign(this, compCurLife, newLife); |
| 725 | |
| 726 | // Handle the dying vars first, then the newly live vars. |
| 727 | // This is because, in the RyuJIT backend case, they may occupy registers that |
| 728 | // will be occupied by another var that is newly live. |
| 729 | VarSetOps::Iter deadIter(this, deadSet); |
| 730 | unsigned deadVarIndex = 0; |
| 731 | while (deadIter.NextElem(&deadVarIndex)) |
| 732 | { |
| 733 | unsigned varNum = lvaTrackedToVarNum[deadVarIndex]; |
| 734 | varDsc = lvaTable + varNum; |
| 735 | bool isGCRef = (varDsc->TypeGet() == TYP_REF); |
| 736 | bool isByRef = (varDsc->TypeGet() == TYP_BYREF); |
| 737 | |
| 738 | if (varDsc->lvIsInReg()) |
| 739 | { |
| 740 | // TODO-Cleanup: Move the code from compUpdateLifeVar to genUpdateRegLife that updates the |
| 741 | // gc sets |
| 742 | regMaskTP regMask = varDsc->lvRegMask(); |
| 743 | if (isGCRef) |
| 744 | { |
| 745 | codeGen->gcInfo.gcRegGCrefSetCur &= ~regMask; |
| 746 | } |
| 747 | else if (isByRef) |
| 748 | { |
| 749 | codeGen->gcInfo.gcRegByrefSetCur &= ~regMask; |
| 750 | } |
| 751 | codeGen->genUpdateRegLife(varDsc, false /*isBorn*/, true /*isDying*/ DEBUGARG(nullptr)); |
| 752 | } |
| 753 | // This isn't in a register, so update the gcVarPtrSetCur. |
| 754 | else if (isGCRef || isByRef) |
| 755 | { |
| 756 | VarSetOps::RemoveElemD(this, codeGen->gcInfo.gcVarPtrSetCur, deadVarIndex); |
| 757 | JITDUMP("\t\t\t\t\t\t\tV%02u becoming dead\n" , varNum); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | VarSetOps::Iter bornIter(this, bornSet); |
| 762 | unsigned bornVarIndex = 0; |
| 763 | while (bornIter.NextElem(&bornVarIndex)) |
| 764 | { |
| 765 | unsigned varNum = lvaTrackedToVarNum[bornVarIndex]; |
| 766 | varDsc = lvaTable + varNum; |
| 767 | bool isGCRef = (varDsc->TypeGet() == TYP_REF); |
| 768 | bool isByRef = (varDsc->TypeGet() == TYP_BYREF); |
| 769 | |
| 770 | if (varDsc->lvIsInReg()) |
| 771 | { |
| 772 | #ifdef DEBUG |
| 773 | if (VarSetOps::IsMember(this, codeGen->gcInfo.gcVarPtrSetCur, bornVarIndex)) |
| 774 | { |
| 775 | JITDUMP("\t\t\t\t\t\t\tRemoving V%02u from gcVarPtrSetCur\n" , varNum); |
| 776 | } |
| 777 | #endif // DEBUG |
| 778 | VarSetOps::RemoveElemD(this, codeGen->gcInfo.gcVarPtrSetCur, bornVarIndex); |
| 779 | codeGen->genUpdateRegLife(varDsc, true /*isBorn*/, false /*isDying*/ DEBUGARG(nullptr)); |
| 780 | regMaskTP regMask = varDsc->lvRegMask(); |
| 781 | if (isGCRef) |
| 782 | { |
| 783 | codeGen->gcInfo.gcRegGCrefSetCur |= regMask; |
| 784 | } |
| 785 | else if (isByRef) |
| 786 | { |
| 787 | codeGen->gcInfo.gcRegByrefSetCur |= regMask; |
| 788 | } |
| 789 | } |
| 790 | // This isn't in a register, so update the gcVarPtrSetCur |
| 791 | else if (lvaIsGCTracked(varDsc)) |
| 792 | { |
| 793 | VarSetOps::AddElemD(this, codeGen->gcInfo.gcVarPtrSetCur, bornVarIndex); |
| 794 | JITDUMP("\t\t\t\t\t\t\tV%02u becoming live\n" , varNum); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | codeGen->siUpdate(); |
| 799 | } |
| 800 | |
| 801 | // Need an explicit instantiation. |
| 802 | template void Compiler::compChangeLife<true>(VARSET_VALARG_TP newLife); |
| 803 | |
| 804 | /***************************************************************************** |
| 805 | * |
| 806 | * Generate a spill. |
| 807 | */ |
| 808 | void CodeGenInterface::spillReg(var_types type, TempDsc* tmp, regNumber reg) |
| 809 | { |
| 810 | getEmitter()->emitIns_S_R(ins_Store(type), emitActualTypeSize(type), reg, tmp->tdTempNum(), 0); |
| 811 | } |
| 812 | |
| 813 | /***************************************************************************** |
| 814 | * |
| 815 | * Generate a reload. |
| 816 | */ |
| 817 | void CodeGenInterface::reloadReg(var_types type, TempDsc* tmp, regNumber reg) |
| 818 | { |
| 819 | getEmitter()->emitIns_R_S(ins_Load(type), emitActualTypeSize(type), reg, tmp->tdTempNum(), 0); |
| 820 | } |
| 821 | |
| 822 | // inline |
| 823 | regNumber CodeGenInterface::genGetThisArgReg(GenTreeCall* call) const |
| 824 | { |
| 825 | return REG_ARG_0; |
| 826 | } |
| 827 | |
| 828 | //---------------------------------------------------------------------- |
| 829 | // getSpillTempDsc: get the TempDsc corresponding to a spilled tree. |
| 830 | // |
| 831 | // Arguments: |
| 832 | // tree - spilled GenTree node |
| 833 | // |
| 834 | // Return Value: |
| 835 | // TempDsc corresponding to tree |
| 836 | TempDsc* CodeGenInterface::getSpillTempDsc(GenTree* tree) |
| 837 | { |
| 838 | // tree must be in spilled state. |
| 839 | assert((tree->gtFlags & GTF_SPILLED) != 0); |
| 840 | |
| 841 | // Get the tree's SpillDsc. |
| 842 | RegSet::SpillDsc* prevDsc; |
| 843 | RegSet::SpillDsc* spillDsc = regSet.rsGetSpillInfo(tree, tree->gtRegNum, &prevDsc); |
| 844 | assert(spillDsc != nullptr); |
| 845 | |
| 846 | // Get the temp desc. |
| 847 | TempDsc* temp = regSet.rsGetSpillTempWord(tree->gtRegNum, spillDsc, prevDsc); |
| 848 | return temp; |
| 849 | } |
| 850 | |
| 851 | #ifdef _TARGET_XARCH_ |
| 852 | |
| 853 | #ifdef _TARGET_AMD64_ |
| 854 | // Returns relocation type hint for an addr. |
| 855 | // Note that there are no reloc hints on x86. |
| 856 | // |
| 857 | // Arguments |
| 858 | // addr - data address |
| 859 | // |
| 860 | // Returns |
| 861 | // relocation type hint |
| 862 | // |
| 863 | unsigned short CodeGenInterface::genAddrRelocTypeHint(size_t addr) |
| 864 | { |
| 865 | return compiler->eeGetRelocTypeHint((void*)addr); |
| 866 | } |
| 867 | #endif //_TARGET_AMD64_ |
| 868 | |
| 869 | // Return true if an absolute indirect data address can be encoded as IP-relative. |
| 870 | // offset. Note that this method should be used only when the caller knows that |
| 871 | // the address is an icon value that VM has given and there is no GenTree node |
| 872 | // representing it. Otherwise, one should always use FitsInAddrBase(). |
| 873 | // |
| 874 | // Arguments |
| 875 | // addr - an absolute indirect data address |
| 876 | // |
| 877 | // Returns |
| 878 | // true if indir data addr could be encoded as IP-relative offset. |
| 879 | // |
| 880 | bool CodeGenInterface::genDataIndirAddrCanBeEncodedAsPCRelOffset(size_t addr) |
| 881 | { |
| 882 | #ifdef _TARGET_AMD64_ |
| 883 | return genAddrRelocTypeHint(addr) == IMAGE_REL_BASED_REL32; |
| 884 | #else |
| 885 | // x86: PC-relative addressing is available only for control flow instructions (jmp and call) |
| 886 | return false; |
| 887 | #endif |
| 888 | } |
| 889 | |
| 890 | // Return true if an indirect code address can be encoded as IP-relative offset. |
| 891 | // Note that this method should be used only when the caller knows that the |
| 892 | // address is an icon value that VM has given and there is no GenTree node |
| 893 | // representing it. Otherwise, one should always use FitsInAddrBase(). |
| 894 | // |
| 895 | // Arguments |
| 896 | // addr - an absolute indirect code address |
| 897 | // |
| 898 | // Returns |
| 899 | // true if indir code addr could be encoded as IP-relative offset. |
| 900 | // |
| 901 | bool CodeGenInterface::genCodeIndirAddrCanBeEncodedAsPCRelOffset(size_t addr) |
| 902 | { |
| 903 | #ifdef _TARGET_AMD64_ |
| 904 | return genAddrRelocTypeHint(addr) == IMAGE_REL_BASED_REL32; |
| 905 | #else |
| 906 | // x86: PC-relative addressing is available only for control flow instructions (jmp and call) |
| 907 | return true; |
| 908 | #endif |
| 909 | } |
| 910 | |
| 911 | // Return true if an indirect code address can be encoded as 32-bit displacement |
| 912 | // relative to zero. Note that this method should be used only when the caller |
| 913 | // knows that the address is an icon value that VM has given and there is no |
| 914 | // GenTree node representing it. Otherwise, one should always use FitsInAddrBase(). |
| 915 | // |
| 916 | // Arguments |
| 917 | // addr - absolute indirect code address |
| 918 | // |
| 919 | // Returns |
| 920 | // true if absolute indir code addr could be encoded as 32-bit displacement relative to zero. |
| 921 | // |
| 922 | bool CodeGenInterface::genCodeIndirAddrCanBeEncodedAsZeroRelOffset(size_t addr) |
| 923 | { |
| 924 | return GenTreeIntConCommon::FitsInI32((ssize_t)addr); |
| 925 | } |
| 926 | |
| 927 | // Return true if an absolute indirect code address needs a relocation recorded with VM. |
| 928 | // |
| 929 | // Arguments |
| 930 | // addr - an absolute indirect code address |
| 931 | // |
| 932 | // Returns |
| 933 | // true if indir code addr needs a relocation recorded with VM |
| 934 | // |
| 935 | bool CodeGenInterface::genCodeIndirAddrNeedsReloc(size_t addr) |
| 936 | { |
| 937 | // If generating relocatable ngen code, then all code addr should go through relocation |
| 938 | if (compiler->opts.compReloc) |
| 939 | { |
| 940 | return true; |
| 941 | } |
| 942 | |
| 943 | #ifdef _TARGET_AMD64_ |
| 944 | // See if the code indir addr can be encoded as 32-bit displacement relative to zero. |
| 945 | // We don't need a relocation in that case. |
| 946 | if (genCodeIndirAddrCanBeEncodedAsZeroRelOffset(addr)) |
| 947 | { |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | // Else we need a relocation. |
| 952 | return true; |
| 953 | #else //_TARGET_X86_ |
| 954 | // On x86 there is no need to record or ask for relocations during jitting, |
| 955 | // because all addrs fit within 32-bits. |
| 956 | return false; |
| 957 | #endif //_TARGET_X86_ |
| 958 | } |
| 959 | |
| 960 | // Return true if a direct code address needs to be marked as relocatable. |
| 961 | // |
| 962 | // Arguments |
| 963 | // addr - absolute direct code address |
| 964 | // |
| 965 | // Returns |
| 966 | // true if direct code addr needs a relocation recorded with VM |
| 967 | // |
| 968 | bool CodeGenInterface::genCodeAddrNeedsReloc(size_t addr) |
| 969 | { |
| 970 | // If generating relocatable ngen code, then all code addr should go through relocation |
| 971 | if (compiler->opts.compReloc) |
| 972 | { |
| 973 | return true; |
| 974 | } |
| 975 | |
| 976 | #ifdef _TARGET_AMD64_ |
| 977 | // By default all direct code addresses go through relocation so that VM will setup |
| 978 | // a jump stub if addr cannot be encoded as pc-relative offset. |
| 979 | return true; |
| 980 | #else //_TARGET_X86_ |
| 981 | // On x86 there is no need for recording relocations during jitting, |
| 982 | // because all addrs fit within 32-bits. |
| 983 | return false; |
| 984 | #endif //_TARGET_X86_ |
| 985 | } |
| 986 | #endif //_TARGET_XARCH_ |
| 987 | |
| 988 | /***************************************************************************** |
| 989 | * |
| 990 | * The following can be used to create basic blocks that serve as labels for |
| 991 | * the emitter. Use with caution - these are not real basic blocks! |
| 992 | * |
| 993 | */ |
| 994 | |
| 995 | // inline |
| 996 | BasicBlock* CodeGen::genCreateTempLabel() |
| 997 | { |
| 998 | #ifdef DEBUG |
| 999 | // These blocks don't affect FP |
| 1000 | compiler->fgSafeBasicBlockCreation = true; |
| 1001 | #endif |
| 1002 | |
| 1003 | BasicBlock* block = compiler->bbNewBasicBlock(BBJ_NONE); |
| 1004 | |
| 1005 | #ifdef DEBUG |
| 1006 | compiler->fgSafeBasicBlockCreation = false; |
| 1007 | #endif |
| 1008 | |
| 1009 | block->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
| 1010 | |
| 1011 | // Use coldness of current block, as this label will |
| 1012 | // be contained in it. |
| 1013 | block->bbFlags |= (compiler->compCurBB->bbFlags & BBF_COLD); |
| 1014 | |
| 1015 | #ifdef DEBUG |
| 1016 | #ifdef UNIX_X86_ABI |
| 1017 | block->bbTgtStkDepth = (genStackLevel - curNestedAlignment) / sizeof(int); |
| 1018 | #else |
| 1019 | block->bbTgtStkDepth = genStackLevel / sizeof(int); |
| 1020 | #endif |
| 1021 | #endif |
| 1022 | return block; |
| 1023 | } |
| 1024 | |
| 1025 | // inline |
| 1026 | void CodeGen::genDefineTempLabel(BasicBlock* label) |
| 1027 | { |
| 1028 | #ifdef DEBUG |
| 1029 | if (compiler->opts.dspCode) |
| 1030 | { |
| 1031 | printf("\n L_M%03u_" FMT_BB ":\n" , Compiler::s_compMethodsCount, label->bbNum); |
| 1032 | } |
| 1033 | #endif |
| 1034 | |
| 1035 | label->bbEmitCookie = |
| 1036 | getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur); |
| 1037 | } |
| 1038 | |
| 1039 | /***************************************************************************** |
| 1040 | * |
| 1041 | * Adjust the stack pointer by the given value; assumes that this follows |
| 1042 | * a call so only callee-saved registers (and registers that may hold a |
| 1043 | * return value) are used at this point. |
| 1044 | */ |
| 1045 | |
| 1046 | void CodeGen::genAdjustSP(target_ssize_t delta) |
| 1047 | { |
| 1048 | #if defined(_TARGET_X86_) && !defined(UNIX_X86_ABI) |
| 1049 | if (delta == sizeof(int)) |
| 1050 | inst_RV(INS_pop, REG_ECX, TYP_INT); |
| 1051 | else |
| 1052 | #endif |
| 1053 | inst_RV_IV(INS_add, REG_SPBASE, delta, EA_PTRSIZE); |
| 1054 | } |
| 1055 | |
| 1056 | //------------------------------------------------------------------------ |
| 1057 | // genAdjustStackLevel: Adjust the stack level, if required, for a throw helper block |
| 1058 | // |
| 1059 | // Arguments: |
| 1060 | // block - The BasicBlock for which we are about to generate code. |
| 1061 | // |
| 1062 | // Assumptions: |
| 1063 | // Must be called just prior to generating code for 'block'. |
| 1064 | // |
| 1065 | // Notes: |
| 1066 | // This only makes an adjustment if !FEATURE_FIXED_OUT_ARGS, if there is no frame pointer, |
| 1067 | // and if 'block' is a throw helper block with a non-zero stack level. |
| 1068 | |
| 1069 | void CodeGen::genAdjustStackLevel(BasicBlock* block) |
| 1070 | { |
| 1071 | #if !FEATURE_FIXED_OUT_ARGS |
| 1072 | // Check for inserted throw blocks and adjust genStackLevel. |
| 1073 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 1074 | |
| 1075 | #if defined(UNIX_X86_ABI) |
| 1076 | if (isFramePointerUsed() && compiler->fgIsThrowHlpBlk(block)) |
| 1077 | { |
| 1078 | // x86/Linux requires stack frames to be 16-byte aligned, but SP may be unaligned |
| 1079 | // at this point if a jump to this block is made in the middle of pushing arugments. |
| 1080 | // |
| 1081 | // Here we restore SP to prevent potential stack alignment issues. |
| 1082 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, -genSPtoFPdelta()); |
| 1083 | } |
| 1084 | #endif |
| 1085 | |
| 1086 | if (!isFramePointerUsed() && compiler->fgIsThrowHlpBlk(block)) |
| 1087 | { |
| 1088 | noway_assert(block->bbFlags & BBF_JMP_TARGET); |
| 1089 | |
| 1090 | SetStackLevel(compiler->fgThrowHlpBlkStkLevel(block) * sizeof(int)); |
| 1091 | |
| 1092 | if (genStackLevel != 0) |
| 1093 | { |
| 1094 | #ifdef _TARGET_X86_ |
| 1095 | getEmitter()->emitMarkStackLvl(genStackLevel); |
| 1096 | inst_RV_IV(INS_add, REG_SPBASE, genStackLevel, EA_PTRSIZE); |
| 1097 | SetStackLevel(0); |
| 1098 | #else // _TARGET_X86_ |
| 1099 | NYI("Need emitMarkStackLvl()" ); |
| 1100 | #endif // _TARGET_X86_ |
| 1101 | } |
| 1102 | } |
| 1103 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 1104 | } |
| 1105 | |
| 1106 | #ifdef _TARGET_ARMARCH_ |
| 1107 | // return size |
| 1108 | // alignmentWB is out param |
| 1109 | unsigned CodeGenInterface::InferOpSizeAlign(GenTree* op, unsigned* alignmentWB) |
| 1110 | { |
| 1111 | unsigned alignment = 0; |
| 1112 | unsigned opSize = 0; |
| 1113 | |
| 1114 | if (op->gtType == TYP_STRUCT || op->OperIsCopyBlkOp()) |
| 1115 | { |
| 1116 | opSize = InferStructOpSizeAlign(op, &alignment); |
| 1117 | } |
| 1118 | else |
| 1119 | { |
| 1120 | alignment = genTypeAlignments[op->TypeGet()]; |
| 1121 | opSize = genTypeSizes[op->TypeGet()]; |
| 1122 | } |
| 1123 | |
| 1124 | assert(opSize != 0); |
| 1125 | assert(alignment != 0); |
| 1126 | |
| 1127 | (*alignmentWB) = alignment; |
| 1128 | return opSize; |
| 1129 | } |
| 1130 | // return size |
| 1131 | // alignmentWB is out param |
| 1132 | unsigned CodeGenInterface::InferStructOpSizeAlign(GenTree* op, unsigned* alignmentWB) |
| 1133 | { |
| 1134 | unsigned alignment = 0; |
| 1135 | unsigned opSize = 0; |
| 1136 | |
| 1137 | while (op->gtOper == GT_COMMA) |
| 1138 | { |
| 1139 | op = op->gtOp.gtOp2; |
| 1140 | } |
| 1141 | |
| 1142 | if (op->gtOper == GT_OBJ) |
| 1143 | { |
| 1144 | CORINFO_CLASS_HANDLE clsHnd = op->AsObj()->gtClass; |
| 1145 | opSize = compiler->info.compCompHnd->getClassSize(clsHnd); |
| 1146 | alignment = roundUp(compiler->info.compCompHnd->getClassAlignmentRequirement(clsHnd), TARGET_POINTER_SIZE); |
| 1147 | } |
| 1148 | else if (op->gtOper == GT_LCL_VAR) |
| 1149 | { |
| 1150 | unsigned varNum = op->gtLclVarCommon.gtLclNum; |
| 1151 | LclVarDsc* varDsc = compiler->lvaTable + varNum; |
| 1152 | assert(varDsc->lvType == TYP_STRUCT); |
| 1153 | opSize = varDsc->lvSize(); |
| 1154 | #ifndef _TARGET_64BIT_ |
| 1155 | if (varDsc->lvStructDoubleAlign) |
| 1156 | { |
| 1157 | alignment = TARGET_POINTER_SIZE * 2; |
| 1158 | } |
| 1159 | else |
| 1160 | #endif // !_TARGET_64BIT_ |
| 1161 | { |
| 1162 | alignment = TARGET_POINTER_SIZE; |
| 1163 | } |
| 1164 | } |
| 1165 | else if (op->OperIsCopyBlkOp()) |
| 1166 | { |
| 1167 | GenTree* op2 = op->gtOp.gtOp2; |
| 1168 | |
| 1169 | if (op2->OperGet() == GT_CNS_INT) |
| 1170 | { |
| 1171 | if (op2->IsIconHandle(GTF_ICON_CLASS_HDL)) |
| 1172 | { |
| 1173 | CORINFO_CLASS_HANDLE clsHnd = (CORINFO_CLASS_HANDLE)op2->gtIntCon.gtIconVal; |
| 1174 | opSize = roundUp(compiler->info.compCompHnd->getClassSize(clsHnd), TARGET_POINTER_SIZE); |
| 1175 | alignment = |
| 1176 | roundUp(compiler->info.compCompHnd->getClassAlignmentRequirement(clsHnd), TARGET_POINTER_SIZE); |
| 1177 | } |
| 1178 | else |
| 1179 | { |
| 1180 | opSize = (unsigned)op2->gtIntCon.gtIconVal; |
| 1181 | GenTree* op1 = op->gtOp.gtOp1; |
| 1182 | assert(op1->OperGet() == GT_LIST); |
| 1183 | GenTree* dstAddr = op1->gtOp.gtOp1; |
| 1184 | if (dstAddr->OperGet() == GT_ADDR) |
| 1185 | { |
| 1186 | InferStructOpSizeAlign(dstAddr->gtOp.gtOp1, &alignment); |
| 1187 | } |
| 1188 | else |
| 1189 | { |
| 1190 | assert(!"Unhandle dstAddr node" ); |
| 1191 | alignment = TARGET_POINTER_SIZE; |
| 1192 | } |
| 1193 | } |
| 1194 | } |
| 1195 | else |
| 1196 | { |
| 1197 | noway_assert(!"Variable sized COPYBLK register arg!" ); |
| 1198 | opSize = 0; |
| 1199 | alignment = TARGET_POINTER_SIZE; |
| 1200 | } |
| 1201 | } |
| 1202 | else if (op->gtOper == GT_MKREFANY) |
| 1203 | { |
| 1204 | opSize = TARGET_POINTER_SIZE * 2; |
| 1205 | alignment = TARGET_POINTER_SIZE; |
| 1206 | } |
| 1207 | else if (op->IsArgPlaceHolderNode()) |
| 1208 | { |
| 1209 | CORINFO_CLASS_HANDLE clsHnd = op->gtArgPlace.gtArgPlaceClsHnd; |
| 1210 | assert(clsHnd != 0); |
| 1211 | opSize = roundUp(compiler->info.compCompHnd->getClassSize(clsHnd), TARGET_POINTER_SIZE); |
| 1212 | alignment = roundUp(compiler->info.compCompHnd->getClassAlignmentRequirement(clsHnd), TARGET_POINTER_SIZE); |
| 1213 | } |
| 1214 | else |
| 1215 | { |
| 1216 | assert(!"Unhandled gtOper" ); |
| 1217 | opSize = TARGET_POINTER_SIZE; |
| 1218 | alignment = TARGET_POINTER_SIZE; |
| 1219 | } |
| 1220 | |
| 1221 | assert(opSize != 0); |
| 1222 | assert(alignment != 0); |
| 1223 | |
| 1224 | (*alignmentWB) = alignment; |
| 1225 | return opSize; |
| 1226 | } |
| 1227 | |
| 1228 | #endif // _TARGET_ARMARCH_ |
| 1229 | |
| 1230 | /***************************************************************************** |
| 1231 | * |
| 1232 | * Take an address expression and try to find the best set of components to |
| 1233 | * form an address mode; returns non-zero if this is successful. |
| 1234 | * |
| 1235 | * TODO-Cleanup: The RyuJIT backend never uses this to actually generate code. |
| 1236 | * Refactor this code so that the underlying analysis can be used in |
| 1237 | * the RyuJIT Backend to do lowering, instead of having to call this method with the |
| 1238 | * option to not generate the code. |
| 1239 | * |
| 1240 | * 'fold' specifies if it is OK to fold the array index which hangs off |
| 1241 | * a GT_NOP node. |
| 1242 | * |
| 1243 | * If successful, the parameters will be set to the following values: |
| 1244 | * |
| 1245 | * *rv1Ptr ... base operand |
| 1246 | * *rv2Ptr ... optional operand |
| 1247 | * *revPtr ... true if rv2 is before rv1 in the evaluation order |
| 1248 | * #if SCALED_ADDR_MODES |
| 1249 | * *mulPtr ... optional multiplier (2/4/8) for rv2 |
| 1250 | * Note that for [reg1 + reg2] and [reg1 + reg2 + icon], *mulPtr == 0. |
| 1251 | * #endif |
| 1252 | * *cnsPtr ... integer constant [optional] |
| 1253 | * |
| 1254 | * IMPORTANT NOTE: This routine doesn't generate any code, it merely |
| 1255 | * identifies the components that might be used to |
| 1256 | * form an address mode later on. |
| 1257 | */ |
| 1258 | |
| 1259 | bool CodeGen::genCreateAddrMode(GenTree* addr, |
| 1260 | bool fold, |
| 1261 | bool* revPtr, |
| 1262 | GenTree** rv1Ptr, |
| 1263 | GenTree** rv2Ptr, |
| 1264 | #if SCALED_ADDR_MODES |
| 1265 | unsigned* mulPtr, |
| 1266 | #endif // SCALED_ADDR_MODES |
| 1267 | ssize_t* cnsPtr) |
| 1268 | { |
| 1269 | /* |
| 1270 | The following indirections are valid address modes on x86/x64: |
| 1271 | |
| 1272 | [ icon] * not handled here |
| 1273 | [reg ] |
| 1274 | [reg + icon] |
| 1275 | [reg1 + reg2 ] |
| 1276 | [reg1 + reg2 + icon] |
| 1277 | [reg1 + 2 * reg2 ] |
| 1278 | [reg1 + 4 * reg2 ] |
| 1279 | [reg1 + 8 * reg2 ] |
| 1280 | [ 2 * reg2 + icon] |
| 1281 | [ 4 * reg2 + icon] |
| 1282 | [ 8 * reg2 + icon] |
| 1283 | [reg1 + 2 * reg2 + icon] |
| 1284 | [reg1 + 4 * reg2 + icon] |
| 1285 | [reg1 + 8 * reg2 + icon] |
| 1286 | |
| 1287 | The following indirections are valid address modes on arm64: |
| 1288 | |
| 1289 | [reg] |
| 1290 | [reg + icon] |
| 1291 | [reg1 + reg2] |
| 1292 | [reg1 + reg2 * natural-scale] |
| 1293 | |
| 1294 | */ |
| 1295 | |
| 1296 | /* All indirect address modes require the address to be an addition */ |
| 1297 | |
| 1298 | if (addr->gtOper != GT_ADD) |
| 1299 | { |
| 1300 | return false; |
| 1301 | } |
| 1302 | |
| 1303 | // Can't use indirect addressing mode as we need to check for overflow. |
| 1304 | // Also, can't use 'lea' as it doesn't set the flags. |
| 1305 | |
| 1306 | if (addr->gtOverflow()) |
| 1307 | { |
| 1308 | return false; |
| 1309 | } |
| 1310 | |
| 1311 | GenTree* rv1 = nullptr; |
| 1312 | GenTree* rv2 = nullptr; |
| 1313 | |
| 1314 | GenTree* op1; |
| 1315 | GenTree* op2; |
| 1316 | |
| 1317 | ssize_t cns; |
| 1318 | #if SCALED_ADDR_MODES |
| 1319 | unsigned mul; |
| 1320 | #endif // SCALED_ADDR_MODES |
| 1321 | |
| 1322 | GenTree* tmp; |
| 1323 | |
| 1324 | /* What order are the sub-operands to be evaluated */ |
| 1325 | |
| 1326 | if (addr->gtFlags & GTF_REVERSE_OPS) |
| 1327 | { |
| 1328 | op1 = addr->gtOp.gtOp2; |
| 1329 | op2 = addr->gtOp.gtOp1; |
| 1330 | } |
| 1331 | else |
| 1332 | { |
| 1333 | op1 = addr->gtOp.gtOp1; |
| 1334 | op2 = addr->gtOp.gtOp2; |
| 1335 | } |
| 1336 | |
| 1337 | bool rev = false; // Is op2 first in the evaluation order? |
| 1338 | |
| 1339 | /* |
| 1340 | A complex address mode can combine the following operands: |
| 1341 | |
| 1342 | op1 ... base address |
| 1343 | op2 ... optional scaled index |
| 1344 | #if SCALED_ADDR_MODES |
| 1345 | mul ... optional multiplier (2/4/8) for op2 |
| 1346 | #endif |
| 1347 | cns ... optional displacement |
| 1348 | |
| 1349 | Here we try to find such a set of operands and arrange for these |
| 1350 | to sit in registers. |
| 1351 | */ |
| 1352 | |
| 1353 | cns = 0; |
| 1354 | #if SCALED_ADDR_MODES |
| 1355 | mul = 0; |
| 1356 | #endif // SCALED_ADDR_MODES |
| 1357 | |
| 1358 | AGAIN: |
| 1359 | /* We come back to 'AGAIN' if we have an add of a constant, and we are folding that |
| 1360 | constant, or we have gone through a GT_NOP or GT_COMMA node. We never come back |
| 1361 | here if we find a scaled index. |
| 1362 | */ |
| 1363 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 1364 | |
| 1365 | #if SCALED_ADDR_MODES |
| 1366 | assert(mul == 0); |
| 1367 | #endif // SCALED_ADDR_MODES |
| 1368 | |
| 1369 | /* Special case: keep constants as 'op2' */ |
| 1370 | |
| 1371 | if (op1->IsCnsIntOrI()) |
| 1372 | { |
| 1373 | // Presumably op2 is assumed to not be a constant (shouldn't happen if we've done constant folding)? |
| 1374 | tmp = op1; |
| 1375 | op1 = op2; |
| 1376 | op2 = tmp; |
| 1377 | } |
| 1378 | |
| 1379 | /* Check for an addition of a constant */ |
| 1380 | |
| 1381 | if (op2->IsIntCnsFitsInI32() && (op2->gtType != TYP_REF) && FitsIn<INT32>(cns + op2->gtIntConCommon.IconValue())) |
| 1382 | { |
| 1383 | /* We're adding a constant */ |
| 1384 | |
| 1385 | cns += op2->gtIntConCommon.IconValue(); |
| 1386 | |
| 1387 | #if defined(_TARGET_ARMARCH_) |
| 1388 | if (cns == 0) |
| 1389 | #endif |
| 1390 | { |
| 1391 | /* Inspect the operand the constant is being added to */ |
| 1392 | |
| 1393 | switch (op1->gtOper) |
| 1394 | { |
| 1395 | case GT_ADD: |
| 1396 | |
| 1397 | if (op1->gtOverflow()) |
| 1398 | { |
| 1399 | break; |
| 1400 | } |
| 1401 | |
| 1402 | op2 = op1->gtOp.gtOp2; |
| 1403 | op1 = op1->gtOp.gtOp1; |
| 1404 | |
| 1405 | goto AGAIN; |
| 1406 | |
| 1407 | #if SCALED_ADDR_MODES && !defined(_TARGET_ARMARCH_) |
| 1408 | // TODO-ARM64-CQ, TODO-ARM-CQ: For now we don't try to create a scaled index. |
| 1409 | case GT_MUL: |
| 1410 | if (op1->gtOverflow()) |
| 1411 | { |
| 1412 | return false; // Need overflow check |
| 1413 | } |
| 1414 | |
| 1415 | __fallthrough; |
| 1416 | |
| 1417 | case GT_LSH: |
| 1418 | |
| 1419 | mul = op1->GetScaledIndex(); |
| 1420 | if (mul) |
| 1421 | { |
| 1422 | /* We can use "[mul*rv2 + icon]" */ |
| 1423 | |
| 1424 | rv1 = nullptr; |
| 1425 | rv2 = op1->gtOp.gtOp1; |
| 1426 | |
| 1427 | goto FOUND_AM; |
| 1428 | } |
| 1429 | break; |
| 1430 | #endif // SCALED_ADDR_MODES && !defined(_TARGET_ARMARCH_) |
| 1431 | |
| 1432 | default: |
| 1433 | break; |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | /* The best we can do is "[rv1 + icon]" */ |
| 1438 | |
| 1439 | rv1 = op1; |
| 1440 | rv2 = nullptr; |
| 1441 | |
| 1442 | goto FOUND_AM; |
| 1443 | } |
| 1444 | |
| 1445 | // op2 is not a constant. So keep on trying. |
| 1446 | |
| 1447 | /* Neither op1 nor op2 are sitting in a register right now */ |
| 1448 | |
| 1449 | switch (op1->gtOper) |
| 1450 | { |
| 1451 | #if !defined(_TARGET_ARMARCH_) |
| 1452 | // TODO-ARM64-CQ, TODO-ARM-CQ: For now we don't try to create a scaled index. |
| 1453 | case GT_ADD: |
| 1454 | |
| 1455 | if (op1->gtOverflow()) |
| 1456 | { |
| 1457 | break; |
| 1458 | } |
| 1459 | |
| 1460 | if (op1->gtOp.gtOp2->IsIntCnsFitsInI32() && FitsIn<INT32>(cns + op1->gtOp.gtOp2->gtIntCon.gtIconVal)) |
| 1461 | { |
| 1462 | cns += op1->gtOp.gtOp2->gtIntCon.gtIconVal; |
| 1463 | op1 = op1->gtOp.gtOp1; |
| 1464 | |
| 1465 | goto AGAIN; |
| 1466 | } |
| 1467 | |
| 1468 | break; |
| 1469 | |
| 1470 | #if SCALED_ADDR_MODES |
| 1471 | |
| 1472 | case GT_MUL: |
| 1473 | |
| 1474 | if (op1->gtOverflow()) |
| 1475 | { |
| 1476 | break; |
| 1477 | } |
| 1478 | |
| 1479 | __fallthrough; |
| 1480 | |
| 1481 | case GT_LSH: |
| 1482 | |
| 1483 | mul = op1->GetScaledIndex(); |
| 1484 | if (mul) |
| 1485 | { |
| 1486 | /* 'op1' is a scaled value */ |
| 1487 | |
| 1488 | rv1 = op2; |
| 1489 | rv2 = op1->gtOp.gtOp1; |
| 1490 | |
| 1491 | int argScale; |
| 1492 | while ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (argScale = rv2->GetScaledIndex()) != 0) |
| 1493 | { |
| 1494 | if (jitIsScaleIndexMul(argScale * mul)) |
| 1495 | { |
| 1496 | mul = mul * argScale; |
| 1497 | rv2 = rv2->gtOp.gtOp1; |
| 1498 | } |
| 1499 | else |
| 1500 | { |
| 1501 | break; |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | noway_assert(rev == false); |
| 1506 | rev = true; |
| 1507 | |
| 1508 | goto FOUND_AM; |
| 1509 | } |
| 1510 | break; |
| 1511 | |
| 1512 | #endif // SCALED_ADDR_MODES |
| 1513 | #endif // !_TARGET_ARMARCH |
| 1514 | |
| 1515 | case GT_NOP: |
| 1516 | |
| 1517 | op1 = op1->gtOp.gtOp1; |
| 1518 | goto AGAIN; |
| 1519 | |
| 1520 | case GT_COMMA: |
| 1521 | |
| 1522 | op1 = op1->gtOp.gtOp2; |
| 1523 | goto AGAIN; |
| 1524 | |
| 1525 | default: |
| 1526 | break; |
| 1527 | } |
| 1528 | |
| 1529 | noway_assert(op2); |
| 1530 | switch (op2->gtOper) |
| 1531 | { |
| 1532 | #if !defined(_TARGET_ARMARCH_) |
| 1533 | // TODO-ARM64-CQ, TODO-ARM-CQ: For now we don't try to create a scaled index. |
| 1534 | case GT_ADD: |
| 1535 | |
| 1536 | if (op2->gtOverflow()) |
| 1537 | { |
| 1538 | break; |
| 1539 | } |
| 1540 | |
| 1541 | if (op2->gtOp.gtOp2->IsIntCnsFitsInI32() && FitsIn<INT32>(cns + op2->gtOp.gtOp2->gtIntCon.gtIconVal)) |
| 1542 | { |
| 1543 | cns += op2->gtOp.gtOp2->gtIntCon.gtIconVal; |
| 1544 | op2 = op2->gtOp.gtOp1; |
| 1545 | |
| 1546 | goto AGAIN; |
| 1547 | } |
| 1548 | |
| 1549 | break; |
| 1550 | |
| 1551 | #if SCALED_ADDR_MODES |
| 1552 | |
| 1553 | case GT_MUL: |
| 1554 | |
| 1555 | if (op2->gtOverflow()) |
| 1556 | { |
| 1557 | break; |
| 1558 | } |
| 1559 | |
| 1560 | __fallthrough; |
| 1561 | |
| 1562 | case GT_LSH: |
| 1563 | |
| 1564 | mul = op2->GetScaledIndex(); |
| 1565 | if (mul) |
| 1566 | { |
| 1567 | // 'op2' is a scaled value...is it's argument also scaled? |
| 1568 | int argScale; |
| 1569 | rv2 = op2->gtOp.gtOp1; |
| 1570 | while ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (argScale = rv2->GetScaledIndex()) != 0) |
| 1571 | { |
| 1572 | if (jitIsScaleIndexMul(argScale * mul)) |
| 1573 | { |
| 1574 | mul = mul * argScale; |
| 1575 | rv2 = rv2->gtOp.gtOp1; |
| 1576 | } |
| 1577 | else |
| 1578 | { |
| 1579 | break; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | rv1 = op1; |
| 1584 | |
| 1585 | goto FOUND_AM; |
| 1586 | } |
| 1587 | break; |
| 1588 | |
| 1589 | #endif // SCALED_ADDR_MODES |
| 1590 | #endif // !_TARGET_ARMARCH |
| 1591 | |
| 1592 | case GT_NOP: |
| 1593 | |
| 1594 | op2 = op2->gtOp.gtOp1; |
| 1595 | goto AGAIN; |
| 1596 | |
| 1597 | case GT_COMMA: |
| 1598 | |
| 1599 | op2 = op2->gtOp.gtOp2; |
| 1600 | goto AGAIN; |
| 1601 | |
| 1602 | default: |
| 1603 | break; |
| 1604 | } |
| 1605 | |
| 1606 | /* The best we can do "[rv1 + rv2]" or "[rv1 + rv2 + cns]" */ |
| 1607 | |
| 1608 | rv1 = op1; |
| 1609 | rv2 = op2; |
| 1610 | #ifdef _TARGET_ARM64_ |
| 1611 | assert(cns == 0); |
| 1612 | #endif |
| 1613 | |
| 1614 | FOUND_AM: |
| 1615 | |
| 1616 | if (rv2) |
| 1617 | { |
| 1618 | /* Make sure a GC address doesn't end up in 'rv2' */ |
| 1619 | |
| 1620 | if (varTypeIsGC(rv2->TypeGet())) |
| 1621 | { |
| 1622 | noway_assert(rv1 && !varTypeIsGC(rv1->TypeGet())); |
| 1623 | |
| 1624 | tmp = rv1; |
| 1625 | rv1 = rv2; |
| 1626 | rv2 = tmp; |
| 1627 | |
| 1628 | rev = !rev; |
| 1629 | } |
| 1630 | |
| 1631 | /* Special case: constant array index (that is range-checked) */ |
| 1632 | |
| 1633 | if (fold) |
| 1634 | { |
| 1635 | ssize_t tmpMul; |
| 1636 | GenTree* index; |
| 1637 | |
| 1638 | if ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (rv2->gtOp.gtOp2->IsCnsIntOrI())) |
| 1639 | { |
| 1640 | /* For valuetype arrays where we can't use the scaled address |
| 1641 | mode, rv2 will point to the scaled index. So we have to do |
| 1642 | more work */ |
| 1643 | |
| 1644 | tmpMul = compiler->optGetArrayRefScaleAndIndex(rv2, &index DEBUGARG(false)); |
| 1645 | if (mul) |
| 1646 | { |
| 1647 | tmpMul *= mul; |
| 1648 | } |
| 1649 | } |
| 1650 | else |
| 1651 | { |
| 1652 | /* May be a simple array. rv2 will points to the actual index */ |
| 1653 | |
| 1654 | index = rv2; |
| 1655 | tmpMul = mul; |
| 1656 | } |
| 1657 | |
| 1658 | /* Get hold of the array index and see if it's a constant */ |
| 1659 | if (index->IsIntCnsFitsInI32()) |
| 1660 | { |
| 1661 | /* Get hold of the index value */ |
| 1662 | ssize_t ixv = index->AsIntConCommon()->IconValue(); |
| 1663 | |
| 1664 | #if SCALED_ADDR_MODES |
| 1665 | /* Scale the index if necessary */ |
| 1666 | if (tmpMul) |
| 1667 | { |
| 1668 | ixv *= tmpMul; |
| 1669 | } |
| 1670 | #endif |
| 1671 | |
| 1672 | if (FitsIn<INT32>(cns + ixv)) |
| 1673 | { |
| 1674 | /* Add the scaled index to the offset value */ |
| 1675 | |
| 1676 | cns += ixv; |
| 1677 | |
| 1678 | #if SCALED_ADDR_MODES |
| 1679 | /* There is no scaled operand any more */ |
| 1680 | mul = 0; |
| 1681 | #endif |
| 1682 | rv2 = nullptr; |
| 1683 | } |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | // We shouldn't have [rv2*1 + cns] - this is equivalent to [rv1 + cns] |
| 1689 | noway_assert(rv1 || mul != 1); |
| 1690 | |
| 1691 | noway_assert(FitsIn<INT32>(cns)); |
| 1692 | |
| 1693 | if (rv1 == nullptr && rv2 == nullptr) |
| 1694 | { |
| 1695 | return false; |
| 1696 | } |
| 1697 | |
| 1698 | /* Success - return the various components to the caller */ |
| 1699 | |
| 1700 | *revPtr = rev; |
| 1701 | *rv1Ptr = rv1; |
| 1702 | *rv2Ptr = rv2; |
| 1703 | #if SCALED_ADDR_MODES |
| 1704 | *mulPtr = mul; |
| 1705 | #endif |
| 1706 | *cnsPtr = cns; |
| 1707 | |
| 1708 | return true; |
| 1709 | } |
| 1710 | |
| 1711 | /***************************************************************************** |
| 1712 | * The condition to use for (the jmp/set for) the given type of operation |
| 1713 | * |
| 1714 | * In case of amd64, this routine should be used when there is no gentree available |
| 1715 | * and one needs to generate jumps based on integer comparisons. When gentree is |
| 1716 | * available always use its overloaded version. |
| 1717 | * |
| 1718 | */ |
| 1719 | |
| 1720 | // static |
| 1721 | emitJumpKind CodeGen::genJumpKindForOper(genTreeOps cmp, CompareKind compareKind) |
| 1722 | { |
| 1723 | const static BYTE genJCCinsSigned[] = { |
| 1724 | #if defined(_TARGET_XARCH_) |
| 1725 | EJ_je, // GT_EQ |
| 1726 | EJ_jne, // GT_NE |
| 1727 | EJ_jl, // GT_LT |
| 1728 | EJ_jle, // GT_LE |
| 1729 | EJ_jge, // GT_GE |
| 1730 | EJ_jg, // GT_GT |
| 1731 | EJ_je, // GT_TEST_EQ |
| 1732 | EJ_jne, // GT_TEST_NE |
| 1733 | #elif defined(_TARGET_ARMARCH_) |
| 1734 | EJ_eq, // GT_EQ |
| 1735 | EJ_ne, // GT_NE |
| 1736 | EJ_lt, // GT_LT |
| 1737 | EJ_le, // GT_LE |
| 1738 | EJ_ge, // GT_GE |
| 1739 | EJ_gt, // GT_GT |
| 1740 | #if defined(_TARGET_ARM64_) |
| 1741 | EJ_eq, // GT_TEST_EQ |
| 1742 | EJ_ne, // GT_TEST_NE |
| 1743 | #endif |
| 1744 | #endif |
| 1745 | }; |
| 1746 | |
| 1747 | const static BYTE genJCCinsUnsigned[] = /* unsigned comparison */ |
| 1748 | { |
| 1749 | #if defined(_TARGET_XARCH_) |
| 1750 | EJ_je, // GT_EQ |
| 1751 | EJ_jne, // GT_NE |
| 1752 | EJ_jb, // GT_LT |
| 1753 | EJ_jbe, // GT_LE |
| 1754 | EJ_jae, // GT_GE |
| 1755 | EJ_ja, // GT_GT |
| 1756 | EJ_je, // GT_TEST_EQ |
| 1757 | EJ_jne, // GT_TEST_NE |
| 1758 | #elif defined(_TARGET_ARMARCH_) |
| 1759 | EJ_eq, // GT_EQ |
| 1760 | EJ_ne, // GT_NE |
| 1761 | EJ_lo, // GT_LT |
| 1762 | EJ_ls, // GT_LE |
| 1763 | EJ_hs, // GT_GE |
| 1764 | EJ_hi, // GT_GT |
| 1765 | #if defined(_TARGET_ARM64_) |
| 1766 | EJ_eq, // GT_TEST_EQ |
| 1767 | EJ_ne, // GT_TEST_NE |
| 1768 | #endif |
| 1769 | #endif |
| 1770 | }; |
| 1771 | |
| 1772 | const static BYTE genJCCinsLogical[] = /* logical operation */ |
| 1773 | { |
| 1774 | #if defined(_TARGET_XARCH_) |
| 1775 | EJ_je, // GT_EQ (Z == 1) |
| 1776 | EJ_jne, // GT_NE (Z == 0) |
| 1777 | EJ_js, // GT_LT (S == 1) |
| 1778 | EJ_NONE, // GT_LE |
| 1779 | EJ_jns, // GT_GE (S == 0) |
| 1780 | EJ_NONE, // GT_GT |
| 1781 | EJ_NONE, // GT_TEST_EQ |
| 1782 | EJ_NONE, // GT_TEST_NE |
| 1783 | #elif defined(_TARGET_ARMARCH_) |
| 1784 | EJ_eq, // GT_EQ (Z == 1) |
| 1785 | EJ_ne, // GT_NE (Z == 0) |
| 1786 | EJ_mi, // GT_LT (N == 1) |
| 1787 | EJ_NONE, // GT_LE |
| 1788 | EJ_pl, // GT_GE (N == 0) |
| 1789 | EJ_NONE, // GT_GT |
| 1790 | #if defined(_TARGET_ARM64_) |
| 1791 | EJ_eq, // GT_TEST_EQ |
| 1792 | EJ_ne, // GT_TEST_NE |
| 1793 | #endif |
| 1794 | #endif |
| 1795 | }; |
| 1796 | |
| 1797 | #if defined(_TARGET_XARCH_) |
| 1798 | assert(genJCCinsSigned[GT_EQ - GT_EQ] == EJ_je); |
| 1799 | assert(genJCCinsSigned[GT_NE - GT_EQ] == EJ_jne); |
| 1800 | assert(genJCCinsSigned[GT_LT - GT_EQ] == EJ_jl); |
| 1801 | assert(genJCCinsSigned[GT_LE - GT_EQ] == EJ_jle); |
| 1802 | assert(genJCCinsSigned[GT_GE - GT_EQ] == EJ_jge); |
| 1803 | assert(genJCCinsSigned[GT_GT - GT_EQ] == EJ_jg); |
| 1804 | assert(genJCCinsSigned[GT_TEST_EQ - GT_EQ] == EJ_je); |
| 1805 | assert(genJCCinsSigned[GT_TEST_NE - GT_EQ] == EJ_jne); |
| 1806 | |
| 1807 | assert(genJCCinsUnsigned[GT_EQ - GT_EQ] == EJ_je); |
| 1808 | assert(genJCCinsUnsigned[GT_NE - GT_EQ] == EJ_jne); |
| 1809 | assert(genJCCinsUnsigned[GT_LT - GT_EQ] == EJ_jb); |
| 1810 | assert(genJCCinsUnsigned[GT_LE - GT_EQ] == EJ_jbe); |
| 1811 | assert(genJCCinsUnsigned[GT_GE - GT_EQ] == EJ_jae); |
| 1812 | assert(genJCCinsUnsigned[GT_GT - GT_EQ] == EJ_ja); |
| 1813 | assert(genJCCinsUnsigned[GT_TEST_EQ - GT_EQ] == EJ_je); |
| 1814 | assert(genJCCinsUnsigned[GT_TEST_NE - GT_EQ] == EJ_jne); |
| 1815 | |
| 1816 | assert(genJCCinsLogical[GT_EQ - GT_EQ] == EJ_je); |
| 1817 | assert(genJCCinsLogical[GT_NE - GT_EQ] == EJ_jne); |
| 1818 | assert(genJCCinsLogical[GT_LT - GT_EQ] == EJ_js); |
| 1819 | assert(genJCCinsLogical[GT_GE - GT_EQ] == EJ_jns); |
| 1820 | #elif defined(_TARGET_ARMARCH_) |
| 1821 | assert(genJCCinsSigned[GT_EQ - GT_EQ] == EJ_eq); |
| 1822 | assert(genJCCinsSigned[GT_NE - GT_EQ] == EJ_ne); |
| 1823 | assert(genJCCinsSigned[GT_LT - GT_EQ] == EJ_lt); |
| 1824 | assert(genJCCinsSigned[GT_LE - GT_EQ] == EJ_le); |
| 1825 | assert(genJCCinsSigned[GT_GE - GT_EQ] == EJ_ge); |
| 1826 | assert(genJCCinsSigned[GT_GT - GT_EQ] == EJ_gt); |
| 1827 | |
| 1828 | assert(genJCCinsUnsigned[GT_EQ - GT_EQ] == EJ_eq); |
| 1829 | assert(genJCCinsUnsigned[GT_NE - GT_EQ] == EJ_ne); |
| 1830 | assert(genJCCinsUnsigned[GT_LT - GT_EQ] == EJ_lo); |
| 1831 | assert(genJCCinsUnsigned[GT_LE - GT_EQ] == EJ_ls); |
| 1832 | assert(genJCCinsUnsigned[GT_GE - GT_EQ] == EJ_hs); |
| 1833 | assert(genJCCinsUnsigned[GT_GT - GT_EQ] == EJ_hi); |
| 1834 | |
| 1835 | assert(genJCCinsLogical[GT_EQ - GT_EQ] == EJ_eq); |
| 1836 | assert(genJCCinsLogical[GT_NE - GT_EQ] == EJ_ne); |
| 1837 | assert(genJCCinsLogical[GT_LT - GT_EQ] == EJ_mi); |
| 1838 | assert(genJCCinsLogical[GT_GE - GT_EQ] == EJ_pl); |
| 1839 | #else |
| 1840 | assert(!"unknown arch" ); |
| 1841 | #endif |
| 1842 | assert(GenTree::OperIsCompare(cmp)); |
| 1843 | |
| 1844 | emitJumpKind result = EJ_COUNT; |
| 1845 | |
| 1846 | if (compareKind == CK_UNSIGNED) |
| 1847 | { |
| 1848 | result = (emitJumpKind)genJCCinsUnsigned[cmp - GT_EQ]; |
| 1849 | } |
| 1850 | else if (compareKind == CK_SIGNED) |
| 1851 | { |
| 1852 | result = (emitJumpKind)genJCCinsSigned[cmp - GT_EQ]; |
| 1853 | } |
| 1854 | else if (compareKind == CK_LOGICAL) |
| 1855 | { |
| 1856 | result = (emitJumpKind)genJCCinsLogical[cmp - GT_EQ]; |
| 1857 | } |
| 1858 | assert(result != EJ_COUNT); |
| 1859 | return result; |
| 1860 | } |
| 1861 | |
| 1862 | #ifdef _TARGET_ARMARCH_ |
| 1863 | //------------------------------------------------------------------------ |
| 1864 | // genEmitGSCookieCheck: Generate code to check that the GS cookie |
| 1865 | // wasn't thrashed by a buffer overrun. Common code for ARM32 and ARM64. |
| 1866 | // |
| 1867 | void CodeGen::genEmitGSCookieCheck(bool pushReg) |
| 1868 | { |
| 1869 | noway_assert(compiler->gsGlobalSecurityCookieAddr || compiler->gsGlobalSecurityCookieVal); |
| 1870 | |
| 1871 | // Make sure that the return register is reported as live GC-ref so that any GC that kicks in while |
| 1872 | // executing GS cookie check will not collect the object pointed to by REG_INTRET (R0). |
| 1873 | if (!pushReg && (compiler->info.compRetType == TYP_REF)) |
| 1874 | gcInfo.gcRegGCrefSetCur |= RBM_INTRET; |
| 1875 | |
| 1876 | // We need two temporary registers, to load the GS cookie values and compare them. We can't use |
| 1877 | // any argument registers if 'pushReg' is true (meaning we have a JMP call). They should be |
| 1878 | // callee-trash registers, which should not contain anything interesting at this point. |
| 1879 | // We don't have any IR node representing this check, so LSRA can't communicate registers |
| 1880 | // for us to use. |
| 1881 | |
| 1882 | regNumber regGSConst = REG_GSCOOKIE_TMP_0; |
| 1883 | regNumber regGSValue = REG_GSCOOKIE_TMP_1; |
| 1884 | |
| 1885 | if (compiler->gsGlobalSecurityCookieAddr == nullptr) |
| 1886 | { |
| 1887 | // load the GS cookie constant into a reg |
| 1888 | // |
| 1889 | genSetRegToIcon(regGSConst, compiler->gsGlobalSecurityCookieVal, TYP_I_IMPL); |
| 1890 | } |
| 1891 | else |
| 1892 | { |
| 1893 | // Ngen case - GS cookie constant needs to be accessed through an indirection. |
| 1894 | instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, regGSConst, (ssize_t)compiler->gsGlobalSecurityCookieAddr); |
| 1895 | getEmitter()->emitIns_R_R_I(ins_Load(TYP_I_IMPL), EA_PTRSIZE, regGSConst, regGSConst, 0); |
| 1896 | } |
| 1897 | // Load this method's GS value from the stack frame |
| 1898 | getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, regGSValue, compiler->lvaGSSecurityCookie, 0); |
| 1899 | // Compare with the GC cookie constant |
| 1900 | getEmitter()->emitIns_R_R(INS_cmp, EA_PTRSIZE, regGSConst, regGSValue); |
| 1901 | |
| 1902 | BasicBlock* gsCheckBlk = genCreateTempLabel(); |
| 1903 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 1904 | inst_JMP(jmpEqual, gsCheckBlk); |
| 1905 | // regGSConst and regGSValue aren't needed anymore, we can use them for helper call |
| 1906 | genEmitHelperCall(CORINFO_HELP_FAIL_FAST, 0, EA_UNKNOWN, regGSConst); |
| 1907 | genDefineTempLabel(gsCheckBlk); |
| 1908 | } |
| 1909 | #endif // _TARGET_ARMARCH_ |
| 1910 | |
| 1911 | /***************************************************************************** |
| 1912 | * |
| 1913 | * Generate an exit sequence for a return from a method (note: when compiling |
| 1914 | * for speed there might be multiple exit points). |
| 1915 | */ |
| 1916 | |
| 1917 | void CodeGen::genExitCode(BasicBlock* block) |
| 1918 | { |
| 1919 | /* Just wrote the first instruction of the epilog - inform debugger |
| 1920 | Note that this may result in a duplicate IPmapping entry, and |
| 1921 | that this is ok */ |
| 1922 | |
| 1923 | // For non-optimized debuggable code, there is only one epilog. |
| 1924 | genIPmappingAdd((IL_OFFSETX)ICorDebugInfo::EPILOG, true); |
| 1925 | |
| 1926 | bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0); |
| 1927 | if (compiler->getNeedsGSSecurityCookie()) |
| 1928 | { |
| 1929 | genEmitGSCookieCheck(jmpEpilog); |
| 1930 | |
| 1931 | if (jmpEpilog) |
| 1932 | { |
| 1933 | // Dev10 642944 - |
| 1934 | // The GS cookie check created a temp label that has no live |
| 1935 | // incoming GC registers, we need to fix that |
| 1936 | |
| 1937 | unsigned varNum; |
| 1938 | LclVarDsc* varDsc; |
| 1939 | |
| 1940 | /* Figure out which register parameters hold pointers */ |
| 1941 | |
| 1942 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount && varDsc->lvIsRegArg; |
| 1943 | varNum++, varDsc++) |
| 1944 | { |
| 1945 | noway_assert(varDsc->lvIsParam); |
| 1946 | |
| 1947 | gcInfo.gcMarkRegPtrVal(varDsc->lvArgReg, varDsc->TypeGet()); |
| 1948 | } |
| 1949 | |
| 1950 | getEmitter()->emitThisGCrefRegs = getEmitter()->emitInitGCrefRegs = gcInfo.gcRegGCrefSetCur; |
| 1951 | getEmitter()->emitThisByrefRegs = getEmitter()->emitInitByrefRegs = gcInfo.gcRegByrefSetCur; |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | genReserveEpilog(block); |
| 1956 | } |
| 1957 | |
| 1958 | //------------------------------------------------------------------------ |
| 1959 | // genJumpToThrowHlpBlk: Generate code for an out-of-line exception. |
| 1960 | // |
| 1961 | // Notes: |
| 1962 | // For code that uses throw helper blocks, we share the helper blocks created by fgAddCodeRef(). |
| 1963 | // Otherwise, we generate the 'throw' inline. |
| 1964 | // |
| 1965 | // Arguments: |
| 1966 | // jumpKind - jump kind to generate; |
| 1967 | // codeKind - the special throw-helper kind; |
| 1968 | // failBlk - optional fail target block, if it is already known; |
| 1969 | // |
| 1970 | void CodeGen::genJumpToThrowHlpBlk(emitJumpKind jumpKind, SpecialCodeKind codeKind, GenTree* failBlk) |
| 1971 | { |
| 1972 | bool useThrowHlpBlk = compiler->fgUseThrowHelperBlocks(); |
| 1973 | #if defined(UNIX_X86_ABI) && FEATURE_EH_FUNCLETS |
| 1974 | // Inline exception-throwing code in funclet to make it possible to unwind funclet frames. |
| 1975 | useThrowHlpBlk = useThrowHlpBlk && (compiler->funCurrentFunc()->funKind == FUNC_ROOT); |
| 1976 | #endif // UNIX_X86_ABI && FEATURE_EH_FUNCLETS |
| 1977 | |
| 1978 | if (useThrowHlpBlk) |
| 1979 | { |
| 1980 | // For code with throw helper blocks, find and use the helper block for |
| 1981 | // raising the exception. The block may be shared by other trees too. |
| 1982 | |
| 1983 | BasicBlock* excpRaisingBlock; |
| 1984 | |
| 1985 | if (failBlk != nullptr) |
| 1986 | { |
| 1987 | // We already know which block to jump to. Use that. |
| 1988 | assert(failBlk->gtOper == GT_LABEL); |
| 1989 | excpRaisingBlock = failBlk->gtLabel.gtLabBB; |
| 1990 | |
| 1991 | #ifdef DEBUG |
| 1992 | Compiler::AddCodeDsc* add = |
| 1993 | compiler->fgFindExcptnTarget(codeKind, compiler->bbThrowIndex(compiler->compCurBB)); |
| 1994 | assert(excpRaisingBlock == add->acdDstBlk); |
| 1995 | #if !FEATURE_FIXED_OUT_ARGS |
| 1996 | assert(add->acdStkLvlInit || isFramePointerUsed()); |
| 1997 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 1998 | #endif // DEBUG |
| 1999 | } |
| 2000 | else |
| 2001 | { |
| 2002 | // Find the helper-block which raises the exception. |
| 2003 | Compiler::AddCodeDsc* add = |
| 2004 | compiler->fgFindExcptnTarget(codeKind, compiler->bbThrowIndex(compiler->compCurBB)); |
| 2005 | PREFIX_ASSUME_MSG((add != nullptr), ("ERROR: failed to find exception throw block" )); |
| 2006 | excpRaisingBlock = add->acdDstBlk; |
| 2007 | #if !FEATURE_FIXED_OUT_ARGS |
| 2008 | assert(add->acdStkLvlInit || isFramePointerUsed()); |
| 2009 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 2010 | } |
| 2011 | |
| 2012 | noway_assert(excpRaisingBlock != nullptr); |
| 2013 | |
| 2014 | // Jump to the exception-throwing block on error. |
| 2015 | inst_JMP(jumpKind, excpRaisingBlock); |
| 2016 | } |
| 2017 | else |
| 2018 | { |
| 2019 | // The code to throw the exception will be generated inline, and |
| 2020 | // we will jump around it in the normal non-exception case. |
| 2021 | |
| 2022 | BasicBlock* tgtBlk = nullptr; |
| 2023 | emitJumpKind reverseJumpKind = emitter::emitReverseJumpKind(jumpKind); |
| 2024 | if (reverseJumpKind != jumpKind) |
| 2025 | { |
| 2026 | tgtBlk = genCreateTempLabel(); |
| 2027 | inst_JMP(reverseJumpKind, tgtBlk); |
| 2028 | } |
| 2029 | |
| 2030 | genEmitHelperCall(compiler->acdHelper(codeKind), 0, EA_UNKNOWN); |
| 2031 | |
| 2032 | // Define the spot for the normal non-exception case to jump to. |
| 2033 | if (tgtBlk != nullptr) |
| 2034 | { |
| 2035 | assert(reverseJumpKind != jumpKind); |
| 2036 | genDefineTempLabel(tgtBlk); |
| 2037 | } |
| 2038 | } |
| 2039 | } |
| 2040 | |
| 2041 | /***************************************************************************** |
| 2042 | * |
| 2043 | * The last operation done was generating code for "tree" and that would |
| 2044 | * have set the flags. Check if the operation caused an overflow. |
| 2045 | */ |
| 2046 | |
| 2047 | // inline |
| 2048 | void CodeGen::genCheckOverflow(GenTree* tree) |
| 2049 | { |
| 2050 | // Overflow-check should be asked for this tree |
| 2051 | noway_assert(tree->gtOverflow()); |
| 2052 | |
| 2053 | const var_types type = tree->TypeGet(); |
| 2054 | |
| 2055 | // Overflow checks can only occur for the non-small types: (i.e. TYP_INT,TYP_LONG) |
| 2056 | noway_assert(!varTypeIsSmall(type)); |
| 2057 | |
| 2058 | emitJumpKind jumpKind; |
| 2059 | |
| 2060 | #ifdef _TARGET_ARM64_ |
| 2061 | if (tree->OperGet() == GT_MUL) |
| 2062 | { |
| 2063 | jumpKind = EJ_ne; |
| 2064 | } |
| 2065 | else |
| 2066 | #endif |
| 2067 | { |
| 2068 | bool isUnsignedOverflow = ((tree->gtFlags & GTF_UNSIGNED) != 0); |
| 2069 | |
| 2070 | #if defined(_TARGET_XARCH_) |
| 2071 | |
| 2072 | jumpKind = isUnsignedOverflow ? EJ_jb : EJ_jo; |
| 2073 | |
| 2074 | #elif defined(_TARGET_ARMARCH_) |
| 2075 | |
| 2076 | jumpKind = isUnsignedOverflow ? EJ_lo : EJ_vs; |
| 2077 | |
| 2078 | if (jumpKind == EJ_lo) |
| 2079 | { |
| 2080 | if (tree->OperGet() != GT_SUB) |
| 2081 | { |
| 2082 | jumpKind = EJ_hs; |
| 2083 | } |
| 2084 | } |
| 2085 | |
| 2086 | #endif // defined(_TARGET_ARMARCH_) |
| 2087 | } |
| 2088 | |
| 2089 | // Jump to the block which will throw the expection |
| 2090 | |
| 2091 | genJumpToThrowHlpBlk(jumpKind, SCK_OVERFLOW); |
| 2092 | } |
| 2093 | |
| 2094 | #if FEATURE_EH_FUNCLETS |
| 2095 | |
| 2096 | /***************************************************************************** |
| 2097 | * |
| 2098 | * Update the current funclet as needed by calling genUpdateCurrentFunclet(). |
| 2099 | * For non-BBF_FUNCLET_BEG blocks, it asserts that the current funclet |
| 2100 | * is up-to-date. |
| 2101 | * |
| 2102 | */ |
| 2103 | |
| 2104 | void CodeGen::genUpdateCurrentFunclet(BasicBlock* block) |
| 2105 | { |
| 2106 | if (block->bbFlags & BBF_FUNCLET_BEG) |
| 2107 | { |
| 2108 | compiler->funSetCurrentFunc(compiler->funGetFuncIdx(block)); |
| 2109 | if (compiler->funCurrentFunc()->funKind == FUNC_FILTER) |
| 2110 | { |
| 2111 | assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->ebdFilter == block); |
| 2112 | } |
| 2113 | else |
| 2114 | { |
| 2115 | // We shouldn't see FUNC_ROOT |
| 2116 | assert(compiler->funCurrentFunc()->funKind == FUNC_HANDLER); |
| 2117 | assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->ebdHndBeg == block); |
| 2118 | } |
| 2119 | } |
| 2120 | else |
| 2121 | { |
| 2122 | assert(compiler->compCurrFuncIdx <= compiler->compFuncInfoCount); |
| 2123 | if (compiler->funCurrentFunc()->funKind == FUNC_FILTER) |
| 2124 | { |
| 2125 | assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->InFilterRegionBBRange(block)); |
| 2126 | } |
| 2127 | else if (compiler->funCurrentFunc()->funKind == FUNC_ROOT) |
| 2128 | { |
| 2129 | assert(!block->hasHndIndex()); |
| 2130 | } |
| 2131 | else |
| 2132 | { |
| 2133 | assert(compiler->funCurrentFunc()->funKind == FUNC_HANDLER); |
| 2134 | assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->InHndRegionBBRange(block)); |
| 2135 | } |
| 2136 | } |
| 2137 | } |
| 2138 | |
| 2139 | #if defined(_TARGET_ARM_) |
| 2140 | void CodeGen::genInsertNopForUnwinder(BasicBlock* block) |
| 2141 | { |
| 2142 | // If this block is the target of a finally return, we need to add a preceding NOP, in the same EH region, |
| 2143 | // so the unwinder doesn't get confused by our "movw lr, xxx; movt lr, xxx; b Lyyy" calling convention that |
| 2144 | // calls the funclet during non-exceptional control flow. |
| 2145 | if (block->bbFlags & BBF_FINALLY_TARGET) |
| 2146 | { |
| 2147 | assert(block->bbFlags & BBF_JMP_TARGET); |
| 2148 | |
| 2149 | #ifdef DEBUG |
| 2150 | if (compiler->verbose) |
| 2151 | { |
| 2152 | printf("\nEmitting finally target NOP predecessor for " FMT_BB "\n" , block->bbNum); |
| 2153 | } |
| 2154 | #endif |
| 2155 | // Create a label that we'll use for computing the start of an EH region, if this block is |
| 2156 | // at the beginning of such a region. If we used the existing bbEmitCookie as is for |
| 2157 | // determining the EH regions, then this NOP would end up outside of the region, if this |
| 2158 | // block starts an EH region. If we pointed the existing bbEmitCookie here, then the NOP |
| 2159 | // would be executed, which we would prefer not to do. |
| 2160 | |
| 2161 | block->bbUnwindNopEmitCookie = |
| 2162 | getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur); |
| 2163 | |
| 2164 | instGen(INS_nop); |
| 2165 | } |
| 2166 | } |
| 2167 | #endif |
| 2168 | |
| 2169 | #endif // FEATURE_EH_FUNCLETS |
| 2170 | |
| 2171 | /***************************************************************************** |
| 2172 | * |
| 2173 | * Generate code for the function. |
| 2174 | */ |
| 2175 | |
| 2176 | void CodeGen::genGenerateCode(void** codePtr, ULONG* nativeSizeOfCode) |
| 2177 | { |
| 2178 | #ifdef DEBUG |
| 2179 | if (verbose) |
| 2180 | { |
| 2181 | printf("*************** In genGenerateCode()\n" ); |
| 2182 | compiler->fgDispBasicBlocks(compiler->verboseTrees); |
| 2183 | } |
| 2184 | #endif |
| 2185 | |
| 2186 | unsigned codeSize; |
| 2187 | unsigned prologSize; |
| 2188 | unsigned epilogSize; |
| 2189 | |
| 2190 | void* consPtr; |
| 2191 | |
| 2192 | #ifdef DEBUG |
| 2193 | genInterruptibleUsed = true; |
| 2194 | |
| 2195 | #if STACK_PROBES |
| 2196 | genNeedPrologStackProbe = false; |
| 2197 | #endif |
| 2198 | |
| 2199 | compiler->fgDebugCheckBBlist(); |
| 2200 | #endif // DEBUG |
| 2201 | |
| 2202 | /* This is the real thing */ |
| 2203 | |
| 2204 | genPrepForCompiler(); |
| 2205 | |
| 2206 | /* Prepare the emitter */ |
| 2207 | getEmitter()->Init(); |
| 2208 | #ifdef DEBUG |
| 2209 | VarSetOps::AssignNoCopy(compiler, genTempOldLife, VarSetOps::MakeEmpty(compiler)); |
| 2210 | #endif |
| 2211 | |
| 2212 | #ifdef DEBUG |
| 2213 | if (compiler->opts.disAsmSpilled && regSet.rsNeededSpillReg) |
| 2214 | { |
| 2215 | compiler->opts.disAsm = true; |
| 2216 | } |
| 2217 | |
| 2218 | if (compiler->opts.disAsm) |
| 2219 | { |
| 2220 | printf("; Assembly listing for method %s\n" , compiler->info.compFullName); |
| 2221 | |
| 2222 | printf("; Emitting " ); |
| 2223 | |
| 2224 | if (compiler->compCodeOpt() == Compiler::SMALL_CODE) |
| 2225 | { |
| 2226 | printf("SMALL_CODE" ); |
| 2227 | } |
| 2228 | else if (compiler->compCodeOpt() == Compiler::FAST_CODE) |
| 2229 | { |
| 2230 | printf("FAST_CODE" ); |
| 2231 | } |
| 2232 | else |
| 2233 | { |
| 2234 | printf("BLENDED_CODE" ); |
| 2235 | } |
| 2236 | |
| 2237 | printf(" for " ); |
| 2238 | |
| 2239 | if (compiler->info.genCPU == CPU_X86) |
| 2240 | { |
| 2241 | printf("generic X86 CPU" ); |
| 2242 | } |
| 2243 | else if (compiler->info.genCPU == CPU_X86_PENTIUM_4) |
| 2244 | { |
| 2245 | printf("Pentium 4" ); |
| 2246 | } |
| 2247 | else if (compiler->info.genCPU == CPU_X64) |
| 2248 | { |
| 2249 | if (compiler->canUseVexEncoding()) |
| 2250 | { |
| 2251 | printf("X64 CPU with AVX" ); |
| 2252 | } |
| 2253 | else |
| 2254 | { |
| 2255 | printf("X64 CPU with SSE2" ); |
| 2256 | } |
| 2257 | } |
| 2258 | else if (compiler->info.genCPU == CPU_ARM) |
| 2259 | { |
| 2260 | printf("generic ARM CPU" ); |
| 2261 | } |
| 2262 | else if (compiler->info.genCPU == CPU_ARM64) |
| 2263 | { |
| 2264 | printf("generic ARM64 CPU" ); |
| 2265 | } |
| 2266 | else |
| 2267 | { |
| 2268 | printf("unknown architecture" ); |
| 2269 | } |
| 2270 | |
| 2271 | #if defined(_TARGET_WINDOWS_) |
| 2272 | printf(" - Windows" ); |
| 2273 | #elif defined(_TARGET_UNIX_) |
| 2274 | printf(" - Unix" ); |
| 2275 | #endif |
| 2276 | |
| 2277 | printf("\n" ); |
| 2278 | |
| 2279 | if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_TIER0)) |
| 2280 | { |
| 2281 | printf("; Tier-0 compilation\n" ); |
| 2282 | } |
| 2283 | if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_TIER1)) |
| 2284 | { |
| 2285 | printf("; Tier-1 compilation\n" ); |
| 2286 | } |
| 2287 | |
| 2288 | if ((compiler->opts.compFlags & CLFLG_MAXOPT) == CLFLG_MAXOPT) |
| 2289 | { |
| 2290 | printf("; optimized code\n" ); |
| 2291 | } |
| 2292 | else if (compiler->opts.compDbgCode) |
| 2293 | { |
| 2294 | printf("; debuggable code\n" ); |
| 2295 | } |
| 2296 | else if (compiler->opts.MinOpts()) |
| 2297 | { |
| 2298 | printf("; compiler->opts.MinOpts() is true\n" ); |
| 2299 | } |
| 2300 | else |
| 2301 | { |
| 2302 | printf("; unknown optimization flags\n" ); |
| 2303 | } |
| 2304 | |
| 2305 | #if DOUBLE_ALIGN |
| 2306 | if (compiler->genDoubleAlign()) |
| 2307 | printf("; double-aligned frame\n" ); |
| 2308 | else |
| 2309 | #endif |
| 2310 | printf("; %s based frame\n" , isFramePointerUsed() ? STR_FPBASE : STR_SPBASE); |
| 2311 | |
| 2312 | if (genInterruptible) |
| 2313 | { |
| 2314 | printf("; fully interruptible\n" ); |
| 2315 | } |
| 2316 | else |
| 2317 | { |
| 2318 | printf("; partially interruptible\n" ); |
| 2319 | } |
| 2320 | |
| 2321 | if (compiler->fgHaveProfileData()) |
| 2322 | { |
| 2323 | printf("; with IBC profile data, edge weights are %s, and fgCalledCount is %u\n" , |
| 2324 | compiler->fgHaveValidEdgeWeights ? "valid" : "invalid" , compiler->fgCalledCount); |
| 2325 | } |
| 2326 | |
| 2327 | if (compiler->fgProfileData_ILSizeMismatch) |
| 2328 | { |
| 2329 | printf("; discarded IBC profile data due to mismatch in ILSize\n" ); |
| 2330 | } |
| 2331 | } |
| 2332 | #endif // DEBUG |
| 2333 | |
| 2334 | // We compute the final frame layout before code generation. This is because LSRA |
| 2335 | // has already computed exactly the maximum concurrent number of spill temps of each type that are |
| 2336 | // required during code generation. So, there is nothing left to estimate: we can be precise in the frame |
| 2337 | // layout. This helps us generate smaller code, and allocate, after code generation, a smaller amount of |
| 2338 | // memory from the VM. |
| 2339 | |
| 2340 | genFinalizeFrame(); |
| 2341 | |
| 2342 | unsigned maxTmpSize = regSet.tmpGetTotalSize(); // This is precise after LSRA has pre-allocated the temps. |
| 2343 | |
| 2344 | getEmitter()->emitBegFN(isFramePointerUsed() |
| 2345 | #if defined(DEBUG) |
| 2346 | , |
| 2347 | (compiler->compCodeOpt() != Compiler::SMALL_CODE) && |
| 2348 | !compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PREJIT) |
| 2349 | #endif |
| 2350 | , |
| 2351 | maxTmpSize); |
| 2352 | |
| 2353 | /* Now generate code for the function */ |
| 2354 | genCodeForBBlist(); |
| 2355 | |
| 2356 | #ifdef DEBUG |
| 2357 | // After code generation, dump the frame layout again. It should be the same as before code generation, if code |
| 2358 | // generation hasn't touched it (it shouldn't!). |
| 2359 | if (verbose) |
| 2360 | { |
| 2361 | compiler->lvaTableDump(); |
| 2362 | } |
| 2363 | #endif // DEBUG |
| 2364 | |
| 2365 | /* We can now generate the function prolog and epilog */ |
| 2366 | |
| 2367 | genGeneratePrologsAndEpilogs(); |
| 2368 | |
| 2369 | /* Bind jump distances */ |
| 2370 | |
| 2371 | getEmitter()->emitJumpDistBind(); |
| 2372 | |
| 2373 | /* The code is now complete and final; it should not change after this. */ |
| 2374 | |
| 2375 | /* Compute the size of the code sections that we are going to ask the VM |
| 2376 | to allocate. Note that this might not be precisely the size of the |
| 2377 | code we emit, though it's fatal if we emit more code than the size we |
| 2378 | compute here. |
| 2379 | (Note: an example of a case where we emit less code would be useful.) |
| 2380 | */ |
| 2381 | |
| 2382 | getEmitter()->emitComputeCodeSizes(); |
| 2383 | |
| 2384 | #ifdef DEBUG |
| 2385 | |
| 2386 | // Code to test or stress our ability to run a fallback compile. |
| 2387 | // We trigger the fallback here, before asking the VM for any memory, |
| 2388 | // because if not, we will leak mem, as the current codebase can't free |
| 2389 | // the mem after the emitter asks the VM for it. As this is only a stress |
| 2390 | // mode, we only want the functionality, and don't care about the relative |
| 2391 | // ugliness of having the failure here. |
| 2392 | if (!compiler->jitFallbackCompile) |
| 2393 | { |
| 2394 | // Use COMPlus_JitNoForceFallback=1 to prevent NOWAY assert testing from happening, |
| 2395 | // especially that caused by enabling JIT stress. |
| 2396 | if (!JitConfig.JitNoForceFallback()) |
| 2397 | { |
| 2398 | if (JitConfig.JitForceFallback() || compiler->compStressCompile(Compiler::STRESS_GENERIC_VARN, 5)) |
| 2399 | { |
| 2400 | NO_WAY_NOASSERT("Stress failure" ); |
| 2401 | } |
| 2402 | } |
| 2403 | } |
| 2404 | |
| 2405 | #endif // DEBUG |
| 2406 | |
| 2407 | /* We've finished collecting all the unwind information for the function. Now reserve |
| 2408 | space for it from the VM. |
| 2409 | */ |
| 2410 | |
| 2411 | compiler->unwindReserve(); |
| 2412 | |
| 2413 | #if DISPLAY_SIZES |
| 2414 | |
| 2415 | size_t dataSize = getEmitter()->emitDataSize(); |
| 2416 | |
| 2417 | #endif // DISPLAY_SIZES |
| 2418 | |
| 2419 | void* coldCodePtr; |
| 2420 | |
| 2421 | bool trackedStackPtrsContig; // are tracked stk-ptrs contiguous ? |
| 2422 | |
| 2423 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 2424 | trackedStackPtrsContig = false; |
| 2425 | #elif defined(_TARGET_ARM_) |
| 2426 | // On arm due to prespilling of arguments, tracked stk-ptrs may not be contiguous |
| 2427 | trackedStackPtrsContig = !compiler->opts.compDbgEnC && !compiler->compIsProfilerHookNeeded(); |
| 2428 | #else |
| 2429 | trackedStackPtrsContig = !compiler->opts.compDbgEnC; |
| 2430 | #endif |
| 2431 | |
| 2432 | #ifdef DEBUG |
| 2433 | /* We're done generating code for this function */ |
| 2434 | compiler->compCodeGenDone = true; |
| 2435 | #endif |
| 2436 | |
| 2437 | compiler->EndPhase(PHASE_GENERATE_CODE); |
| 2438 | |
| 2439 | codeSize = getEmitter()->emitEndCodeGen(compiler, trackedStackPtrsContig, genInterruptible, genFullPtrRegMap, |
| 2440 | (compiler->info.compRetType == TYP_REF), compiler->compHndBBtabCount, |
| 2441 | &prologSize, &epilogSize, codePtr, &coldCodePtr, &consPtr); |
| 2442 | |
| 2443 | compiler->EndPhase(PHASE_EMIT_CODE); |
| 2444 | |
| 2445 | #ifdef DEBUG |
| 2446 | if (compiler->opts.disAsm) |
| 2447 | { |
| 2448 | printf("; Total bytes of code %d, prolog size %d for method %s\n" , codeSize, prologSize, |
| 2449 | compiler->info.compFullName); |
| 2450 | printf("; ============================================================\n" ); |
| 2451 | printf("" ); // in our logic this causes a flush |
| 2452 | } |
| 2453 | |
| 2454 | if (verbose) |
| 2455 | { |
| 2456 | printf("*************** After end code gen, before unwindEmit()\n" ); |
| 2457 | getEmitter()->emitDispIGlist(true); |
| 2458 | } |
| 2459 | #endif |
| 2460 | |
| 2461 | #if EMIT_TRACK_STACK_DEPTH |
| 2462 | // Check our max stack level. Needed for fgAddCodeRef(). |
| 2463 | // We need to relax the assert as our estimation won't include code-gen |
| 2464 | // stack changes (which we know don't affect fgAddCodeRef()). |
| 2465 | // NOTE: after emitEndCodeGen (including here), emitMaxStackDepth is a |
| 2466 | // count of DWORD-sized arguments, NOT argument size in bytes. |
| 2467 | { |
| 2468 | unsigned maxAllowedStackDepth = compiler->fgPtrArgCntMax + // Max number of pointer-sized stack arguments. |
| 2469 | compiler->compHndBBtabCount + // Return address for locally-called finallys |
| 2470 | genTypeStSz(TYP_LONG) + // longs/doubles may be transferred via stack, etc |
| 2471 | (compiler->compTailCallUsed ? 4 : 0); // CORINFO_HELP_TAILCALL args |
| 2472 | #if defined(UNIX_X86_ABI) |
| 2473 | // Convert maxNestedAlignment to DWORD count before adding to maxAllowedStackDepth. |
| 2474 | assert(maxNestedAlignment % sizeof(int) == 0); |
| 2475 | maxAllowedStackDepth += maxNestedAlignment / sizeof(int); |
| 2476 | #endif |
| 2477 | noway_assert(getEmitter()->emitMaxStackDepth <= maxAllowedStackDepth); |
| 2478 | } |
| 2479 | #endif // EMIT_TRACK_STACK_DEPTH |
| 2480 | |
| 2481 | *nativeSizeOfCode = codeSize; |
| 2482 | compiler->info.compNativeCodeSize = (UNATIVE_OFFSET)codeSize; |
| 2483 | |
| 2484 | // printf("%6u bytes of code generated for %s.%s\n", codeSize, compiler->info.compFullName); |
| 2485 | |
| 2486 | // Make sure that the x86 alignment and cache prefetch optimization rules |
| 2487 | // were obeyed. |
| 2488 | |
| 2489 | // Don't start a method in the last 7 bytes of a 16-byte alignment area |
| 2490 | // unless we are generating SMALL_CODE |
| 2491 | // noway_assert( (((unsigned)(*codePtr) % 16) <= 8) || (compiler->compCodeOpt() == SMALL_CODE)); |
| 2492 | |
| 2493 | /* Now that the code is issued, we can finalize and emit the unwind data */ |
| 2494 | |
| 2495 | compiler->unwindEmit(*codePtr, coldCodePtr); |
| 2496 | |
| 2497 | /* Finalize the line # tracking logic after we know the exact block sizes/offsets */ |
| 2498 | |
| 2499 | genIPmappingGen(); |
| 2500 | |
| 2501 | /* Finalize the Local Var info in terms of generated code */ |
| 2502 | |
| 2503 | genSetScopeInfo(); |
| 2504 | |
| 2505 | #ifdef LATE_DISASM |
| 2506 | unsigned finalHotCodeSize; |
| 2507 | unsigned finalColdCodeSize; |
| 2508 | if (compiler->fgFirstColdBlock != nullptr) |
| 2509 | { |
| 2510 | // We did some hot/cold splitting. The hot section is always padded out to the |
| 2511 | // size we thought it would be, but the cold section is not. |
| 2512 | assert(codeSize <= compiler->info.compTotalHotCodeSize + compiler->info.compTotalColdCodeSize); |
| 2513 | assert(compiler->info.compTotalHotCodeSize > 0); |
| 2514 | assert(compiler->info.compTotalColdCodeSize > 0); |
| 2515 | finalHotCodeSize = compiler->info.compTotalHotCodeSize; |
| 2516 | finalColdCodeSize = codeSize - finalHotCodeSize; |
| 2517 | } |
| 2518 | else |
| 2519 | { |
| 2520 | // No hot/cold splitting |
| 2521 | assert(codeSize <= compiler->info.compTotalHotCodeSize); |
| 2522 | assert(compiler->info.compTotalHotCodeSize > 0); |
| 2523 | assert(compiler->info.compTotalColdCodeSize == 0); |
| 2524 | finalHotCodeSize = codeSize; |
| 2525 | finalColdCodeSize = 0; |
| 2526 | } |
| 2527 | getDisAssembler().disAsmCode((BYTE*)*codePtr, finalHotCodeSize, (BYTE*)coldCodePtr, finalColdCodeSize); |
| 2528 | #endif // LATE_DISASM |
| 2529 | |
| 2530 | /* Report any exception handlers to the VM */ |
| 2531 | |
| 2532 | genReportEH(); |
| 2533 | |
| 2534 | #ifdef JIT32_GCENCODER |
| 2535 | #ifdef DEBUG |
| 2536 | void* infoPtr = |
| 2537 | #endif // DEBUG |
| 2538 | #endif |
| 2539 | // Create and store the GC info for this method. |
| 2540 | genCreateAndStoreGCInfo(codeSize, prologSize, epilogSize DEBUGARG(codePtr)); |
| 2541 | |
| 2542 | #ifdef DEBUG |
| 2543 | FILE* dmpf = jitstdout; |
| 2544 | |
| 2545 | compiler->opts.dmpHex = false; |
| 2546 | if (!strcmp(compiler->info.compMethodName, "<name of method you want the hex dump for" )) |
| 2547 | { |
| 2548 | FILE* codf; |
| 2549 | errno_t ec = fopen_s(&codf, "C:\\JIT.COD" , "at" ); // NOTE: file append mode |
| 2550 | if (ec != 0) |
| 2551 | { |
| 2552 | assert(codf); |
| 2553 | dmpf = codf; |
| 2554 | compiler->opts.dmpHex = true; |
| 2555 | } |
| 2556 | } |
| 2557 | if (compiler->opts.dmpHex) |
| 2558 | { |
| 2559 | size_t consSize = getEmitter()->emitDataSize(); |
| 2560 | size_t infoSize = compiler->compInfoBlkSize; |
| 2561 | |
| 2562 | fprintf(dmpf, "Generated code for %s:\n" , compiler->info.compFullName); |
| 2563 | fprintf(dmpf, "\n" ); |
| 2564 | |
| 2565 | if (codeSize) |
| 2566 | { |
| 2567 | fprintf(dmpf, " Code at %p [%04X bytes]\n" , dspPtr(*codePtr), codeSize); |
| 2568 | } |
| 2569 | if (consSize) |
| 2570 | { |
| 2571 | fprintf(dmpf, " Const at %p [%04X bytes]\n" , dspPtr(consPtr), consSize); |
| 2572 | } |
| 2573 | #ifdef JIT32_GCENCODER |
| 2574 | if (infoSize) |
| 2575 | fprintf(dmpf, " Info at %p [%04X bytes]\n" , dspPtr(infoPtr), infoSize); |
| 2576 | #endif // JIT32_GCENCODER |
| 2577 | |
| 2578 | fprintf(dmpf, "\n" ); |
| 2579 | |
| 2580 | if (codeSize) |
| 2581 | { |
| 2582 | hexDump(dmpf, "Code" , (BYTE*)*codePtr, codeSize); |
| 2583 | } |
| 2584 | if (consSize) |
| 2585 | { |
| 2586 | hexDump(dmpf, "Const" , (BYTE*)consPtr, consSize); |
| 2587 | } |
| 2588 | #ifdef JIT32_GCENCODER |
| 2589 | if (infoSize) |
| 2590 | hexDump(dmpf, "Info" , (BYTE*)infoPtr, infoSize); |
| 2591 | #endif // JIT32_GCENCODER |
| 2592 | |
| 2593 | fflush(dmpf); |
| 2594 | } |
| 2595 | |
| 2596 | if (dmpf != jitstdout) |
| 2597 | { |
| 2598 | fclose(dmpf); |
| 2599 | } |
| 2600 | |
| 2601 | #endif // DEBUG |
| 2602 | |
| 2603 | /* Tell the emitter that we're done with this function */ |
| 2604 | |
| 2605 | getEmitter()->emitEndFN(); |
| 2606 | |
| 2607 | /* Shut down the spill logic */ |
| 2608 | |
| 2609 | regSet.rsSpillDone(); |
| 2610 | |
| 2611 | /* Shut down the temp logic */ |
| 2612 | |
| 2613 | regSet.tmpDone(); |
| 2614 | |
| 2615 | #if DISPLAY_SIZES |
| 2616 | |
| 2617 | grossVMsize += compiler->info.compILCodeSize; |
| 2618 | totalNCsize += codeSize + dataSize + compiler->compInfoBlkSize; |
| 2619 | grossNCsize += codeSize + dataSize; |
| 2620 | |
| 2621 | #endif // DISPLAY_SIZES |
| 2622 | |
| 2623 | compiler->EndPhase(PHASE_EMIT_GCEH); |
| 2624 | } |
| 2625 | |
| 2626 | /***************************************************************************** |
| 2627 | * |
| 2628 | * Report EH clauses to the VM |
| 2629 | */ |
| 2630 | |
| 2631 | void CodeGen::genReportEH() |
| 2632 | { |
| 2633 | if (compiler->compHndBBtabCount == 0) |
| 2634 | { |
| 2635 | return; |
| 2636 | } |
| 2637 | |
| 2638 | #ifdef DEBUG |
| 2639 | if (compiler->opts.dspEHTable) |
| 2640 | { |
| 2641 | printf("*************** EH table for %s\n" , compiler->info.compFullName); |
| 2642 | } |
| 2643 | #endif // DEBUG |
| 2644 | |
| 2645 | unsigned XTnum; |
| 2646 | EHblkDsc* HBtab; |
| 2647 | EHblkDsc* HBtabEnd; |
| 2648 | |
| 2649 | bool isCoreRTABI = compiler->IsTargetAbi(CORINFO_CORERT_ABI); |
| 2650 | |
| 2651 | unsigned EHCount = compiler->compHndBBtabCount; |
| 2652 | |
| 2653 | #if FEATURE_EH_FUNCLETS |
| 2654 | // Count duplicated clauses. This uses the same logic as below, where we actually generate them for reporting to the |
| 2655 | // VM. |
| 2656 | unsigned duplicateClauseCount = 0; |
| 2657 | unsigned enclosingTryIndex; |
| 2658 | |
| 2659 | // Duplicate clauses are not used by CoreRT ABI |
| 2660 | if (!isCoreRTABI) |
| 2661 | { |
| 2662 | for (XTnum = 0; XTnum < compiler->compHndBBtabCount; XTnum++) |
| 2663 | { |
| 2664 | for (enclosingTryIndex = compiler->ehTrueEnclosingTryIndexIL(XTnum); // find the true enclosing try index, |
| 2665 | // ignoring 'mutual protect' trys |
| 2666 | enclosingTryIndex != EHblkDsc::NO_ENCLOSING_INDEX; |
| 2667 | enclosingTryIndex = compiler->ehGetEnclosingTryIndex(enclosingTryIndex)) |
| 2668 | { |
| 2669 | ++duplicateClauseCount; |
| 2670 | } |
| 2671 | } |
| 2672 | EHCount += duplicateClauseCount; |
| 2673 | } |
| 2674 | |
| 2675 | #if FEATURE_EH_CALLFINALLY_THUNKS |
| 2676 | unsigned clonedFinallyCount = 0; |
| 2677 | |
| 2678 | // Duplicate clauses are not used by CoreRT ABI |
| 2679 | if (!isCoreRTABI) |
| 2680 | { |
| 2681 | // We don't keep track of how many cloned finally there are. So, go through and count. |
| 2682 | // We do a quick pass first through the EH table to see if there are any try/finally |
| 2683 | // clauses. If there aren't, we don't need to look for BBJ_CALLFINALLY. |
| 2684 | |
| 2685 | bool anyFinallys = false; |
| 2686 | for (HBtab = compiler->compHndBBtab, HBtabEnd = compiler->compHndBBtab + compiler->compHndBBtabCount; |
| 2687 | HBtab < HBtabEnd; HBtab++) |
| 2688 | { |
| 2689 | if (HBtab->HasFinallyHandler()) |
| 2690 | { |
| 2691 | anyFinallys = true; |
| 2692 | break; |
| 2693 | } |
| 2694 | } |
| 2695 | if (anyFinallys) |
| 2696 | { |
| 2697 | for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext) |
| 2698 | { |
| 2699 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
| 2700 | { |
| 2701 | ++clonedFinallyCount; |
| 2702 | } |
| 2703 | } |
| 2704 | |
| 2705 | EHCount += clonedFinallyCount; |
| 2706 | } |
| 2707 | } |
| 2708 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
| 2709 | |
| 2710 | #endif // FEATURE_EH_FUNCLETS |
| 2711 | |
| 2712 | #ifdef DEBUG |
| 2713 | if (compiler->opts.dspEHTable) |
| 2714 | { |
| 2715 | #if FEATURE_EH_FUNCLETS |
| 2716 | #if FEATURE_EH_CALLFINALLY_THUNKS |
| 2717 | printf("%d EH table entries, %d duplicate clauses, %d cloned finallys, %d total EH entries reported to VM\n" , |
| 2718 | compiler->compHndBBtabCount, duplicateClauseCount, clonedFinallyCount, EHCount); |
| 2719 | assert(compiler->compHndBBtabCount + duplicateClauseCount + clonedFinallyCount == EHCount); |
| 2720 | #else // !FEATURE_EH_CALLFINALLY_THUNKS |
| 2721 | printf("%d EH table entries, %d duplicate clauses, %d total EH entries reported to VM\n" , |
| 2722 | compiler->compHndBBtabCount, duplicateClauseCount, EHCount); |
| 2723 | assert(compiler->compHndBBtabCount + duplicateClauseCount == EHCount); |
| 2724 | #endif // !FEATURE_EH_CALLFINALLY_THUNKS |
| 2725 | #else // !FEATURE_EH_FUNCLETS |
| 2726 | printf("%d EH table entries, %d total EH entries reported to VM\n" , compiler->compHndBBtabCount, EHCount); |
| 2727 | assert(compiler->compHndBBtabCount == EHCount); |
| 2728 | #endif // !FEATURE_EH_FUNCLETS |
| 2729 | } |
| 2730 | #endif // DEBUG |
| 2731 | |
| 2732 | // Tell the VM how many EH clauses to expect. |
| 2733 | compiler->eeSetEHcount(EHCount); |
| 2734 | |
| 2735 | XTnum = 0; // This is the index we pass to the VM |
| 2736 | |
| 2737 | for (HBtab = compiler->compHndBBtab, HBtabEnd = compiler->compHndBBtab + compiler->compHndBBtabCount; |
| 2738 | HBtab < HBtabEnd; HBtab++) |
| 2739 | { |
| 2740 | UNATIVE_OFFSET tryBeg, tryEnd, hndBeg, hndEnd, hndTyp; |
| 2741 | |
| 2742 | tryBeg = compiler->ehCodeOffset(HBtab->ebdTryBeg); |
| 2743 | hndBeg = compiler->ehCodeOffset(HBtab->ebdHndBeg); |
| 2744 | |
| 2745 | tryEnd = (HBtab->ebdTryLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize |
| 2746 | : compiler->ehCodeOffset(HBtab->ebdTryLast->bbNext); |
| 2747 | hndEnd = (HBtab->ebdHndLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize |
| 2748 | : compiler->ehCodeOffset(HBtab->ebdHndLast->bbNext); |
| 2749 | |
| 2750 | if (HBtab->HasFilter()) |
| 2751 | { |
| 2752 | hndTyp = compiler->ehCodeOffset(HBtab->ebdFilter); |
| 2753 | } |
| 2754 | else |
| 2755 | { |
| 2756 | hndTyp = HBtab->ebdTyp; |
| 2757 | } |
| 2758 | |
| 2759 | CORINFO_EH_CLAUSE_FLAGS flags = ToCORINFO_EH_CLAUSE_FLAGS(HBtab->ebdHandlerType); |
| 2760 | |
| 2761 | if (isCoreRTABI && (XTnum > 0)) |
| 2762 | { |
| 2763 | // For CoreRT, CORINFO_EH_CLAUSE_SAMETRY flag means that the current clause covers same |
| 2764 | // try block as the previous one. The runtime cannot reliably infer this information from |
| 2765 | // native code offsets because of different try blocks can have same offsets. Alternative |
| 2766 | // solution to this problem would be inserting extra nops to ensure that different try |
| 2767 | // blocks have different offsets. |
| 2768 | if (EHblkDsc::ebdIsSameTry(HBtab, HBtab - 1)) |
| 2769 | { |
| 2770 | // The SAMETRY bit should only be set on catch clauses. This is ensured in IL, where only 'catch' is |
| 2771 | // allowed to be mutually-protect. E.g., the C# "try {} catch {} catch {} finally {}" actually exists in |
| 2772 | // IL as "try { try {} catch {} catch {} } finally {}". |
| 2773 | assert(HBtab->HasCatchHandler()); |
| 2774 | flags = (CORINFO_EH_CLAUSE_FLAGS)(flags | CORINFO_EH_CLAUSE_SAMETRY); |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | // Note that we reuse the CORINFO_EH_CLAUSE type, even though the names of |
| 2779 | // the fields aren't accurate. |
| 2780 | |
| 2781 | CORINFO_EH_CLAUSE clause; |
| 2782 | clause.ClassToken = hndTyp; /* filter offset is passed back here for filter-based exception handlers */ |
| 2783 | clause.Flags = flags; |
| 2784 | clause.TryOffset = tryBeg; |
| 2785 | clause.TryLength = tryEnd; |
| 2786 | clause.HandlerOffset = hndBeg; |
| 2787 | clause.HandlerLength = hndEnd; |
| 2788 | |
| 2789 | assert(XTnum < EHCount); |
| 2790 | |
| 2791 | // Tell the VM about this EH clause. |
| 2792 | compiler->eeSetEHinfo(XTnum, &clause); |
| 2793 | |
| 2794 | ++XTnum; |
| 2795 | } |
| 2796 | |
| 2797 | #if FEATURE_EH_FUNCLETS |
| 2798 | // Now output duplicated clauses. |
| 2799 | // |
| 2800 | // If a funclet has been created by moving a handler out of a try region that it was originally nested |
| 2801 | // within, then we need to report a "duplicate" clause representing the fact that an exception in that |
| 2802 | // handler can be caught by the 'try' it has been moved out of. This is because the original 'try' region |
| 2803 | // descriptor can only specify a single, contiguous protected range, but the funclet we've moved out is |
| 2804 | // no longer contiguous with the original 'try' region. The new EH descriptor will have the same handler |
| 2805 | // region as the enclosing try region's handler region. This is the sense in which it is duplicated: |
| 2806 | // there is now a "duplicate" clause with the same handler region as another, but a different 'try' |
| 2807 | // region. |
| 2808 | // |
| 2809 | // For example, consider this (capital letters represent an unknown code sequence, numbers identify a |
| 2810 | // try or handler region): |
| 2811 | // |
| 2812 | // A |
| 2813 | // try (1) { |
| 2814 | // B |
| 2815 | // try (2) { |
| 2816 | // C |
| 2817 | // } catch (3) { |
| 2818 | // D |
| 2819 | // } catch (4) { |
| 2820 | // E |
| 2821 | // } |
| 2822 | // F |
| 2823 | // } catch (5) { |
| 2824 | // G |
| 2825 | // } |
| 2826 | // H |
| 2827 | // |
| 2828 | // Here, we have try region (1) BCDEF protected by catch (5) G, and region (2) C protected |
| 2829 | // by catch (3) D and catch (4) E. Note that catch (4) E does *NOT* protect the code "D". |
| 2830 | // This is an example of 'mutually protect' regions. First, we move handlers (3) and (4) |
| 2831 | // to the end of the code. However, (3) and (4) are nested inside, and protected by, try (1). Again |
| 2832 | // note that (3) is not nested inside (4), despite ebdEnclosingTryIndex indicating that. |
| 2833 | // The code "D" and "E" won't be contiguous with the protected region for try (1) (which |
| 2834 | // will, after moving catch (3) AND (4), be BCF). Thus, we need to add a new EH descriptor |
| 2835 | // representing try (1) protecting the new funclets catch (3) and (4). |
| 2836 | // The code will be generated as follows: |
| 2837 | // |
| 2838 | // ABCFH // "main" code |
| 2839 | // D // funclet |
| 2840 | // E // funclet |
| 2841 | // G // funclet |
| 2842 | // |
| 2843 | // The EH regions are: |
| 2844 | // |
| 2845 | // C -> D |
| 2846 | // C -> E |
| 2847 | // BCF -> G |
| 2848 | // D -> G // "duplicate" clause |
| 2849 | // E -> G // "duplicate" clause |
| 2850 | // |
| 2851 | // Note that we actually need to generate one of these additional "duplicate" clauses for every |
| 2852 | // region the funclet is nested in. Take this example: |
| 2853 | // |
| 2854 | // A |
| 2855 | // try (1) { |
| 2856 | // B |
| 2857 | // try (2,3) { |
| 2858 | // C |
| 2859 | // try (4) { |
| 2860 | // D |
| 2861 | // try (5,6) { |
| 2862 | // E |
| 2863 | // } catch { |
| 2864 | // F |
| 2865 | // } catch { |
| 2866 | // G |
| 2867 | // } |
| 2868 | // H |
| 2869 | // } catch { |
| 2870 | // I |
| 2871 | // } |
| 2872 | // J |
| 2873 | // } catch { |
| 2874 | // K |
| 2875 | // } catch { |
| 2876 | // L |
| 2877 | // } |
| 2878 | // M |
| 2879 | // } catch { |
| 2880 | // N |
| 2881 | // } |
| 2882 | // O |
| 2883 | // |
| 2884 | // When we pull out funclets, we get the following generated code: |
| 2885 | // |
| 2886 | // ABCDEHJMO // "main" function |
| 2887 | // F // funclet |
| 2888 | // G // funclet |
| 2889 | // I // funclet |
| 2890 | // K // funclet |
| 2891 | // L // funclet |
| 2892 | // N // funclet |
| 2893 | // |
| 2894 | // And the EH regions we report to the VM are (in order; main clauses |
| 2895 | // first in most-to-least nested order, funclets ("duplicated clauses") |
| 2896 | // last, in most-to-least nested) are: |
| 2897 | // |
| 2898 | // E -> F |
| 2899 | // E -> G |
| 2900 | // DEH -> I |
| 2901 | // CDEHJ -> K |
| 2902 | // CDEHJ -> L |
| 2903 | // BCDEHJM -> N |
| 2904 | // F -> I // funclet clause #1 for F |
| 2905 | // F -> K // funclet clause #2 for F |
| 2906 | // F -> L // funclet clause #3 for F |
| 2907 | // F -> N // funclet clause #4 for F |
| 2908 | // G -> I // funclet clause #1 for G |
| 2909 | // G -> K // funclet clause #2 for G |
| 2910 | // G -> L // funclet clause #3 for G |
| 2911 | // G -> N // funclet clause #4 for G |
| 2912 | // I -> K // funclet clause #1 for I |
| 2913 | // I -> L // funclet clause #2 for I |
| 2914 | // I -> N // funclet clause #3 for I |
| 2915 | // K -> N // funclet clause #1 for K |
| 2916 | // L -> N // funclet clause #1 for L |
| 2917 | // |
| 2918 | // So whereas the IL had 6 EH clauses, we need to report 19 EH clauses to the VM. |
| 2919 | // Note that due to the nature of 'mutually protect' clauses, it would be incorrect |
| 2920 | // to add a clause "F -> G" because F is NOT protected by G, but we still have |
| 2921 | // both "F -> K" and "F -> L" because F IS protected by both of those handlers. |
| 2922 | // |
| 2923 | // The overall ordering of the clauses is still the same most-to-least nesting |
| 2924 | // after front-to-back start offset. Because we place the funclets at the end |
| 2925 | // these new clauses should also go at the end by this ordering. |
| 2926 | // |
| 2927 | |
| 2928 | if (duplicateClauseCount > 0) |
| 2929 | { |
| 2930 | unsigned reportedDuplicateClauseCount = 0; // How many duplicated clauses have we reported? |
| 2931 | unsigned XTnum2; |
| 2932 | for (XTnum2 = 0, HBtab = compiler->compHndBBtab; XTnum2 < compiler->compHndBBtabCount; XTnum2++, HBtab++) |
| 2933 | { |
| 2934 | unsigned enclosingTryIndex; |
| 2935 | |
| 2936 | EHblkDsc* fletTab = compiler->ehGetDsc(XTnum2); |
| 2937 | |
| 2938 | for (enclosingTryIndex = compiler->ehTrueEnclosingTryIndexIL(XTnum2); // find the true enclosing try index, |
| 2939 | // ignoring 'mutual protect' trys |
| 2940 | enclosingTryIndex != EHblkDsc::NO_ENCLOSING_INDEX; |
| 2941 | enclosingTryIndex = compiler->ehGetEnclosingTryIndex(enclosingTryIndex)) |
| 2942 | { |
| 2943 | // The funclet we moved out is nested in a try region, so create a new EH descriptor for the funclet |
| 2944 | // that will have the enclosing try protecting the funclet. |
| 2945 | |
| 2946 | noway_assert(XTnum2 < enclosingTryIndex); // the enclosing region must be less nested, and hence have a |
| 2947 | // greater EH table index |
| 2948 | |
| 2949 | EHblkDsc* encTab = compiler->ehGetDsc(enclosingTryIndex); |
| 2950 | |
| 2951 | // The try region is the handler of the funclet. Note that for filters, we don't protect the |
| 2952 | // filter region, only the filter handler region. This is because exceptions in filters never |
| 2953 | // escape; the VM swallows them. |
| 2954 | |
| 2955 | BasicBlock* bbTryBeg = fletTab->ebdHndBeg; |
| 2956 | BasicBlock* bbTryLast = fletTab->ebdHndLast; |
| 2957 | |
| 2958 | BasicBlock* bbHndBeg = encTab->ebdHndBeg; // The handler region is the same as the enclosing try |
| 2959 | BasicBlock* bbHndLast = encTab->ebdHndLast; |
| 2960 | |
| 2961 | UNATIVE_OFFSET tryBeg, tryEnd, hndBeg, hndEnd, hndTyp; |
| 2962 | |
| 2963 | tryBeg = compiler->ehCodeOffset(bbTryBeg); |
| 2964 | hndBeg = compiler->ehCodeOffset(bbHndBeg); |
| 2965 | |
| 2966 | tryEnd = (bbTryLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize |
| 2967 | : compiler->ehCodeOffset(bbTryLast->bbNext); |
| 2968 | hndEnd = (bbHndLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize |
| 2969 | : compiler->ehCodeOffset(bbHndLast->bbNext); |
| 2970 | |
| 2971 | if (encTab->HasFilter()) |
| 2972 | { |
| 2973 | hndTyp = compiler->ehCodeOffset(encTab->ebdFilter); |
| 2974 | } |
| 2975 | else |
| 2976 | { |
| 2977 | hndTyp = encTab->ebdTyp; |
| 2978 | } |
| 2979 | |
| 2980 | CORINFO_EH_CLAUSE_FLAGS flags = ToCORINFO_EH_CLAUSE_FLAGS(encTab->ebdHandlerType); |
| 2981 | |
| 2982 | // Tell the VM this is an extra clause caused by moving funclets out of line. |
| 2983 | flags = (CORINFO_EH_CLAUSE_FLAGS)(flags | CORINFO_EH_CLAUSE_DUPLICATE); |
| 2984 | |
| 2985 | // Note that the JIT-EE interface reuses the CORINFO_EH_CLAUSE type, even though the names of |
| 2986 | // the fields aren't really accurate. For example, we set "TryLength" to the offset of the |
| 2987 | // instruction immediately after the 'try' body. So, it really could be more accurately named |
| 2988 | // "TryEndOffset". |
| 2989 | |
| 2990 | CORINFO_EH_CLAUSE clause; |
| 2991 | clause.ClassToken = hndTyp; /* filter offset is passed back here for filter-based exception handlers */ |
| 2992 | clause.Flags = flags; |
| 2993 | clause.TryOffset = tryBeg; |
| 2994 | clause.TryLength = tryEnd; |
| 2995 | clause.HandlerOffset = hndBeg; |
| 2996 | clause.HandlerLength = hndEnd; |
| 2997 | |
| 2998 | assert(XTnum < EHCount); |
| 2999 | |
| 3000 | // Tell the VM about this EH clause (a duplicated clause). |
| 3001 | compiler->eeSetEHinfo(XTnum, &clause); |
| 3002 | |
| 3003 | ++XTnum; |
| 3004 | ++reportedDuplicateClauseCount; |
| 3005 | |
| 3006 | #ifndef DEBUG |
| 3007 | if (duplicateClauseCount == reportedDuplicateClauseCount) |
| 3008 | { |
| 3009 | break; // we've reported all of them; no need to continue looking |
| 3010 | } |
| 3011 | #endif // !DEBUG |
| 3012 | |
| 3013 | } // for each 'true' enclosing 'try' |
| 3014 | } // for each EH table entry |
| 3015 | |
| 3016 | assert(duplicateClauseCount == reportedDuplicateClauseCount); |
| 3017 | } // if (duplicateClauseCount > 0) |
| 3018 | |
| 3019 | #if FEATURE_EH_CALLFINALLY_THUNKS |
| 3020 | if (clonedFinallyCount > 0) |
| 3021 | { |
| 3022 | unsigned reportedClonedFinallyCount = 0; |
| 3023 | for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext) |
| 3024 | { |
| 3025 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
| 3026 | { |
| 3027 | UNATIVE_OFFSET hndBeg, hndEnd; |
| 3028 | |
| 3029 | hndBeg = compiler->ehCodeOffset(block); |
| 3030 | |
| 3031 | // How big is it? The BBJ_ALWAYS has a null bbEmitCookie! Look for the block after, which must be |
| 3032 | // a label or jump target, since the BBJ_CALLFINALLY doesn't fall through. |
| 3033 | BasicBlock* bbLabel = block->bbNext; |
| 3034 | if (block->isBBCallAlwaysPair()) |
| 3035 | { |
| 3036 | bbLabel = bbLabel->bbNext; // skip the BBJ_ALWAYS |
| 3037 | } |
| 3038 | if (bbLabel == nullptr) |
| 3039 | { |
| 3040 | hndEnd = compiler->info.compNativeCodeSize; |
| 3041 | } |
| 3042 | else |
| 3043 | { |
| 3044 | assert(bbLabel->bbEmitCookie != nullptr); |
| 3045 | hndEnd = compiler->ehCodeOffset(bbLabel); |
| 3046 | } |
| 3047 | |
| 3048 | CORINFO_EH_CLAUSE clause; |
| 3049 | clause.ClassToken = 0; // unused |
| 3050 | clause.Flags = (CORINFO_EH_CLAUSE_FLAGS)(CORINFO_EH_CLAUSE_FINALLY | CORINFO_EH_CLAUSE_DUPLICATE); |
| 3051 | clause.TryOffset = hndBeg; |
| 3052 | clause.TryLength = hndBeg; |
| 3053 | clause.HandlerOffset = hndBeg; |
| 3054 | clause.HandlerLength = hndEnd; |
| 3055 | |
| 3056 | assert(XTnum < EHCount); |
| 3057 | |
| 3058 | // Tell the VM about this EH clause (a cloned finally clause). |
| 3059 | compiler->eeSetEHinfo(XTnum, &clause); |
| 3060 | |
| 3061 | ++XTnum; |
| 3062 | ++reportedClonedFinallyCount; |
| 3063 | |
| 3064 | #ifndef DEBUG |
| 3065 | if (clonedFinallyCount == reportedClonedFinallyCount) |
| 3066 | { |
| 3067 | break; // we're done; no need to keep looking |
| 3068 | } |
| 3069 | #endif // !DEBUG |
| 3070 | } // block is BBJ_CALLFINALLY |
| 3071 | } // for each block |
| 3072 | |
| 3073 | assert(clonedFinallyCount == reportedClonedFinallyCount); |
| 3074 | } // if (clonedFinallyCount > 0) |
| 3075 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
| 3076 | |
| 3077 | #endif // FEATURE_EH_FUNCLETS |
| 3078 | |
| 3079 | assert(XTnum == EHCount); |
| 3080 | } |
| 3081 | |
| 3082 | //---------------------------------------------------------------------- |
| 3083 | // genUseOptimizedWriteBarriers: Determine if an optimized write barrier |
| 3084 | // helper should be used. |
| 3085 | // |
| 3086 | // Arguments: |
| 3087 | // wbf - The WriteBarrierForm of the write (GT_STOREIND) that is happening. |
| 3088 | // |
| 3089 | // Return Value: |
| 3090 | // true if an optimized write barrier helper should be used, false otherwise. |
| 3091 | // Note: only x86 implements register-specific source optimized write |
| 3092 | // barriers currently. |
| 3093 | // |
| 3094 | bool CodeGenInterface::genUseOptimizedWriteBarriers(GCInfo::WriteBarrierForm wbf) |
| 3095 | { |
| 3096 | #if defined(_TARGET_X86_) && NOGC_WRITE_BARRIERS |
| 3097 | #ifdef DEBUG |
| 3098 | return (wbf != GCInfo::WBF_NoBarrier_CheckNotHeapInDebug); // This one is always a call to a C++ method. |
| 3099 | #else |
| 3100 | return true; |
| 3101 | #endif |
| 3102 | #else |
| 3103 | return false; |
| 3104 | #endif |
| 3105 | } |
| 3106 | |
| 3107 | //---------------------------------------------------------------------- |
| 3108 | // genUseOptimizedWriteBarriers: Determine if an optimized write barrier |
| 3109 | // helper should be used. |
| 3110 | // |
| 3111 | // This has the same functionality as the version of |
| 3112 | // genUseOptimizedWriteBarriers that takes a WriteBarrierForm, but avoids |
| 3113 | // determining what the required write barrier form is, if possible. |
| 3114 | // |
| 3115 | // Arguments: |
| 3116 | // tgt - target tree of write (e.g., GT_STOREIND) |
| 3117 | // assignVal - tree with value to write |
| 3118 | // |
| 3119 | // Return Value: |
| 3120 | // true if an optimized write barrier helper should be used, false otherwise. |
| 3121 | // Note: only x86 implements register-specific source optimized write |
| 3122 | // barriers currently. |
| 3123 | // |
| 3124 | bool CodeGenInterface::genUseOptimizedWriteBarriers(GenTree* tgt, GenTree* assignVal) |
| 3125 | { |
| 3126 | #if defined(_TARGET_X86_) && NOGC_WRITE_BARRIERS |
| 3127 | #ifdef DEBUG |
| 3128 | GCInfo::WriteBarrierForm wbf = compiler->codeGen->gcInfo.gcIsWriteBarrierCandidate(tgt, assignVal); |
| 3129 | return (wbf != GCInfo::WBF_NoBarrier_CheckNotHeapInDebug); // This one is always a call to a C++ method. |
| 3130 | #else |
| 3131 | return true; |
| 3132 | #endif |
| 3133 | #else |
| 3134 | return false; |
| 3135 | #endif |
| 3136 | } |
| 3137 | |
| 3138 | //---------------------------------------------------------------------- |
| 3139 | // genWriteBarrierHelperForWriteBarrierForm: Given a write node requiring a write |
| 3140 | // barrier, and the write barrier form required, determine the helper to call. |
| 3141 | // |
| 3142 | // Arguments: |
| 3143 | // tgt - target tree of write (e.g., GT_STOREIND) |
| 3144 | // wbf - already computed write barrier form to use |
| 3145 | // |
| 3146 | // Return Value: |
| 3147 | // Write barrier helper to use. |
| 3148 | // |
| 3149 | // Note: do not call this function to get an optimized write barrier helper (e.g., |
| 3150 | // for x86). |
| 3151 | // |
| 3152 | CorInfoHelpFunc CodeGenInterface::genWriteBarrierHelperForWriteBarrierForm(GenTree* tgt, GCInfo::WriteBarrierForm wbf) |
| 3153 | { |
| 3154 | noway_assert(tgt->gtOper == GT_STOREIND); |
| 3155 | |
| 3156 | CorInfoHelpFunc helper = CORINFO_HELP_ASSIGN_REF; |
| 3157 | |
| 3158 | #ifdef DEBUG |
| 3159 | if (wbf == GCInfo::WBF_NoBarrier_CheckNotHeapInDebug) |
| 3160 | { |
| 3161 | helper = CORINFO_HELP_ASSIGN_REF_ENSURE_NONHEAP; |
| 3162 | } |
| 3163 | else |
| 3164 | #endif |
| 3165 | if (tgt->gtOper != GT_CLS_VAR) |
| 3166 | { |
| 3167 | if (wbf != GCInfo::WBF_BarrierUnchecked) // This overrides the tests below. |
| 3168 | { |
| 3169 | if (tgt->gtFlags & GTF_IND_TGTANYWHERE) |
| 3170 | { |
| 3171 | helper = CORINFO_HELP_CHECKED_ASSIGN_REF; |
| 3172 | } |
| 3173 | else if (tgt->gtOp.gtOp1->TypeGet() == TYP_I_IMPL) |
| 3174 | { |
| 3175 | helper = CORINFO_HELP_CHECKED_ASSIGN_REF; |
| 3176 | } |
| 3177 | } |
| 3178 | } |
| 3179 | assert(((helper == CORINFO_HELP_ASSIGN_REF_ENSURE_NONHEAP) && (wbf == GCInfo::WBF_NoBarrier_CheckNotHeapInDebug)) || |
| 3180 | ((helper == CORINFO_HELP_CHECKED_ASSIGN_REF) && |
| 3181 | (wbf == GCInfo::WBF_BarrierChecked || wbf == GCInfo::WBF_BarrierUnknown)) || |
| 3182 | ((helper == CORINFO_HELP_ASSIGN_REF) && |
| 3183 | (wbf == GCInfo::WBF_BarrierUnchecked || wbf == GCInfo::WBF_BarrierUnknown))); |
| 3184 | |
| 3185 | return helper; |
| 3186 | } |
| 3187 | |
| 3188 | //---------------------------------------------------------------------- |
| 3189 | // genGCWriteBarrier: Generate a write barrier for a node. |
| 3190 | // |
| 3191 | // Arguments: |
| 3192 | // tgt - target tree of write (e.g., GT_STOREIND) |
| 3193 | // wbf - already computed write barrier form to use |
| 3194 | // |
| 3195 | void CodeGen::genGCWriteBarrier(GenTree* tgt, GCInfo::WriteBarrierForm wbf) |
| 3196 | { |
| 3197 | CorInfoHelpFunc helper = genWriteBarrierHelperForWriteBarrierForm(tgt, wbf); |
| 3198 | |
| 3199 | #ifdef FEATURE_COUNT_GC_WRITE_BARRIERS |
| 3200 | // We classify the "tgt" trees as follows: |
| 3201 | // If "tgt" is of the form (where [ x ] indicates an optional x, and { x1, ..., xn } means "one of the x_i forms"): |
| 3202 | // IND [-> ADDR -> IND] -> { GT_LCL_VAR, ADD({GT_LCL_VAR}, X), ADD(X, (GT_LCL_VAR)) } |
| 3203 | // then let "v" be the GT_LCL_VAR. |
| 3204 | // * If "v" is the return buffer argument, classify as CWBKind_RetBuf. |
| 3205 | // * If "v" is another by-ref argument, classify as CWBKind_ByRefArg. |
| 3206 | // * Otherwise, classify as CWBKind_OtherByRefLocal. |
| 3207 | // If "tgt" is of the form IND -> ADDR -> GT_LCL_VAR, clasify as CWBKind_AddrOfLocal. |
| 3208 | // Otherwise, classify as CWBKind_Unclassified. |
| 3209 | |
| 3210 | CheckedWriteBarrierKinds wbKind = CWBKind_Unclassified; |
| 3211 | if (tgt->gtOper == GT_IND) |
| 3212 | { |
| 3213 | GenTree* lcl = NULL; |
| 3214 | |
| 3215 | GenTree* indArg = tgt->gtOp.gtOp1; |
| 3216 | if (indArg->gtOper == GT_ADDR && indArg->gtOp.gtOp1->gtOper == GT_IND) |
| 3217 | { |
| 3218 | indArg = indArg->gtOp.gtOp1->gtOp.gtOp1; |
| 3219 | } |
| 3220 | if (indArg->gtOper == GT_LCL_VAR) |
| 3221 | { |
| 3222 | lcl = indArg; |
| 3223 | } |
| 3224 | else if (indArg->gtOper == GT_ADD) |
| 3225 | { |
| 3226 | if (indArg->gtOp.gtOp1->gtOper == GT_LCL_VAR) |
| 3227 | { |
| 3228 | lcl = indArg->gtOp.gtOp1; |
| 3229 | } |
| 3230 | else if (indArg->gtOp.gtOp2->gtOper == GT_LCL_VAR) |
| 3231 | { |
| 3232 | lcl = indArg->gtOp.gtOp2; |
| 3233 | } |
| 3234 | } |
| 3235 | if (lcl != NULL) |
| 3236 | { |
| 3237 | wbKind = CWBKind_OtherByRefLocal; // Unclassified local variable. |
| 3238 | unsigned lclNum = lcl->AsLclVar()->GetLclNum(); |
| 3239 | if (lclNum == compiler->info.compRetBuffArg) |
| 3240 | { |
| 3241 | wbKind = CWBKind_RetBuf; // Ret buff. Can happen if the struct exceeds the size limit. |
| 3242 | } |
| 3243 | else |
| 3244 | { |
| 3245 | LclVarDsc* varDsc = &compiler->lvaTable[lclNum]; |
| 3246 | if (varDsc->lvIsParam && varDsc->lvType == TYP_BYREF) |
| 3247 | { |
| 3248 | wbKind = CWBKind_ByRefArg; // Out (or in/out) arg |
| 3249 | } |
| 3250 | } |
| 3251 | } |
| 3252 | else |
| 3253 | { |
| 3254 | // We should have eliminated the barrier for this case. |
| 3255 | assert(!(indArg->gtOper == GT_ADDR && indArg->gtOp.gtOp1->gtOper == GT_LCL_VAR)); |
| 3256 | } |
| 3257 | } |
| 3258 | |
| 3259 | if (helper == CORINFO_HELP_CHECKED_ASSIGN_REF) |
| 3260 | { |
| 3261 | #if 0 |
| 3262 | #ifdef DEBUG |
| 3263 | // Enable this to sample the unclassified trees. |
| 3264 | static int unclassifiedBarrierSite = 0; |
| 3265 | if (wbKind == CWBKind_Unclassified) |
| 3266 | { |
| 3267 | unclassifiedBarrierSite++; |
| 3268 | printf("unclassifiedBarrierSite = %d:\n" , unclassifiedBarrierSite); compiler->gtDispTree(tgt); printf("" ); printf("\n" ); |
| 3269 | } |
| 3270 | #endif // DEBUG |
| 3271 | #endif // 0 |
| 3272 | AddStackLevel(4); |
| 3273 | inst_IV(INS_push, wbKind); |
| 3274 | genEmitHelperCall(helper, |
| 3275 | 4, // argSize |
| 3276 | EA_PTRSIZE); // retSize |
| 3277 | SubtractStackLevel(4); |
| 3278 | } |
| 3279 | else |
| 3280 | { |
| 3281 | genEmitHelperCall(helper, |
| 3282 | 0, // argSize |
| 3283 | EA_PTRSIZE); // retSize |
| 3284 | } |
| 3285 | |
| 3286 | #else // !FEATURE_COUNT_GC_WRITE_BARRIERS |
| 3287 | genEmitHelperCall(helper, |
| 3288 | 0, // argSize |
| 3289 | EA_PTRSIZE); // retSize |
| 3290 | #endif // !FEATURE_COUNT_GC_WRITE_BARRIERS |
| 3291 | } |
| 3292 | |
| 3293 | /* |
| 3294 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3295 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3296 | XX XX |
| 3297 | XX Prolog / Epilog XX |
| 3298 | XX XX |
| 3299 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3300 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 3301 | */ |
| 3302 | |
| 3303 | /***************************************************************************** |
| 3304 | * |
| 3305 | * Generates code for moving incoming register arguments to their |
| 3306 | * assigned location, in the function prolog. |
| 3307 | */ |
| 3308 | |
| 3309 | #ifdef _PREFAST_ |
| 3310 | #pragma warning(push) |
| 3311 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
| 3312 | #endif |
| 3313 | void CodeGen::genFnPrologCalleeRegArgs(regNumber xtraReg, bool* pXtraRegClobbered, RegState* regState) |
| 3314 | { |
| 3315 | #ifdef DEBUG |
| 3316 | if (verbose) |
| 3317 | { |
| 3318 | printf("*************** In genFnPrologCalleeRegArgs() for %s regs\n" , regState->rsIsFloat ? "float" : "int" ); |
| 3319 | } |
| 3320 | #endif |
| 3321 | |
| 3322 | unsigned argMax; // maximum argNum value plus 1, (including the RetBuffArg) |
| 3323 | unsigned argNum; // current argNum, always in [0..argMax-1] |
| 3324 | unsigned fixedRetBufIndex; // argNum value used by the fixed return buffer argument (ARM64) |
| 3325 | unsigned regArgNum; // index into the regArgTab[] table |
| 3326 | regMaskTP regArgMaskLive = regState->rsCalleeRegArgMaskLiveIn; |
| 3327 | bool doingFloat = regState->rsIsFloat; |
| 3328 | |
| 3329 | // We should be generating the prolog block when we are called |
| 3330 | assert(compiler->compGeneratingProlog); |
| 3331 | |
| 3332 | // We expect to have some registers of the type we are doing, that are LiveIn, otherwise we don't need to be called. |
| 3333 | noway_assert(regArgMaskLive != 0); |
| 3334 | |
| 3335 | // If a method has 3 args (and no fixed return buffer) then argMax is 3 and valid indexes are 0,1,2 |
| 3336 | // If a method has a fixed return buffer (on ARM64) then argMax gets set to 9 and valid index are 0-8 |
| 3337 | // |
| 3338 | // The regArgTab can always have unused entries, |
| 3339 | // for example if an architecture always increments the arg register number but uses either |
| 3340 | // an integer register or a floating point register to hold the next argument |
| 3341 | // then with a mix of float and integer args you could have: |
| 3342 | // |
| 3343 | // sampleMethod(int i, float x, int j, float y, int k, float z); |
| 3344 | // r0, r2 and r4 as valid integer arguments with argMax as 5 |
| 3345 | // and f1, f3 and f5 and valid floating point arguments with argMax as 6 |
| 3346 | // The first one is doingFloat==false and the second one is doingFloat==true |
| 3347 | // |
| 3348 | // If a fixed return buffer (in r8) was also present then the first one would become: |
| 3349 | // r0, r2, r4 and r8 as valid integer arguments with argMax as 9 |
| 3350 | // |
| 3351 | |
| 3352 | argMax = regState->rsCalleeRegArgCount; |
| 3353 | fixedRetBufIndex = (unsigned)-1; // Invalid value |
| 3354 | |
| 3355 | // If necessary we will select a correct xtraReg for circular floating point args later. |
| 3356 | if (doingFloat) |
| 3357 | { |
| 3358 | xtraReg = REG_NA; |
| 3359 | noway_assert(argMax <= MAX_FLOAT_REG_ARG); |
| 3360 | } |
| 3361 | else // we are doing the integer registers |
| 3362 | { |
| 3363 | noway_assert(argMax <= MAX_REG_ARG); |
| 3364 | if (hasFixedRetBuffReg()) |
| 3365 | { |
| 3366 | fixedRetBufIndex = theFixedRetBuffArgNum(); |
| 3367 | // We have an additional integer register argument when hasFixedRetBuffReg() is true |
| 3368 | argMax = fixedRetBufIndex + 1; |
| 3369 | assert(argMax == (MAX_REG_ARG + 1)); |
| 3370 | } |
| 3371 | } |
| 3372 | |
| 3373 | // |
| 3374 | // Construct a table with the register arguments, for detecting circular and |
| 3375 | // non-circular dependencies between the register arguments. A dependency is when |
| 3376 | // an argument register Rn needs to be moved to register Rm that is also an argument |
| 3377 | // register. The table is constructed in the order the arguments are passed in |
| 3378 | // registers: the first register argument is in regArgTab[0], the second in |
| 3379 | // regArgTab[1], etc. Note that on ARM, a TYP_DOUBLE takes two entries, starting |
| 3380 | // at an even index. The regArgTab is indexed from 0 to argMax - 1. |
| 3381 | // Note that due to an extra argument register for ARM64 (i.e theFixedRetBuffReg()) |
| 3382 | // we have increased the allocated size of the regArgTab[] by one. |
| 3383 | // |
| 3384 | struct regArgElem |
| 3385 | { |
| 3386 | unsigned varNum; // index into compiler->lvaTable[] for this register argument |
| 3387 | #if defined(UNIX_AMD64_ABI) |
| 3388 | var_types type; // the Jit type of this regArgTab entry |
| 3389 | #endif // defined(UNIX_AMD64_ABI) |
| 3390 | unsigned trashBy; // index into this regArgTab[] table of the register that will be copied to this register. |
| 3391 | // That is, for regArgTab[x].trashBy = y, argument register number 'y' will be copied to |
| 3392 | // argument register number 'x'. Only used when circular = true. |
| 3393 | char slot; // 0 means the register is not used for a register argument |
| 3394 | // 1 means the first part of a register argument |
| 3395 | // 2, 3 or 4 means the second,third or fourth part of a multireg argument |
| 3396 | bool stackArg; // true if the argument gets homed to the stack |
| 3397 | bool processed; // true after we've processed the argument (and it is in its final location) |
| 3398 | bool circular; // true if this register participates in a circular dependency loop. |
| 3399 | |
| 3400 | #ifdef UNIX_AMD64_ABI |
| 3401 | |
| 3402 | // For UNIX AMD64 struct passing, the type of the register argument slot can differ from |
| 3403 | // the type of the lclVar in ways that are not ascertainable from lvType. |
| 3404 | // So, for that case we retain the type of the register in the regArgTab. |
| 3405 | |
| 3406 | var_types getRegType(Compiler* compiler) |
| 3407 | { |
| 3408 | return type; // UNIX_AMD64 implementation |
| 3409 | } |
| 3410 | |
| 3411 | #else // !UNIX_AMD64_ABI |
| 3412 | |
| 3413 | // In other cases, we simply use the type of the lclVar to determine the type of the register. |
| 3414 | var_types getRegType(Compiler* compiler) |
| 3415 | { |
| 3416 | const LclVarDsc& varDsc = compiler->lvaTable[varNum]; |
| 3417 | // Check if this is an HFA register arg and return the HFA type |
| 3418 | if (varDsc.lvIsHfaRegArg()) |
| 3419 | { |
| 3420 | #if defined(_TARGET_WINDOWS_) |
| 3421 | // Cannot have hfa types on windows arm targets |
| 3422 | // in vararg methods. |
| 3423 | assert(!compiler->info.compIsVarArgs); |
| 3424 | #endif // defined(_TARGET_WINDOWS_) |
| 3425 | return varDsc.GetHfaType(); |
| 3426 | } |
| 3427 | return compiler->mangleVarArgsType(varDsc.lvType); |
| 3428 | } |
| 3429 | |
| 3430 | #endif // !UNIX_AMD64_ABI |
| 3431 | } regArgTab[max(MAX_REG_ARG + 1, MAX_FLOAT_REG_ARG)] = {}; |
| 3432 | |
| 3433 | unsigned varNum; |
| 3434 | LclVarDsc* varDsc; |
| 3435 | |
| 3436 | for (varNum = 0; varNum < compiler->lvaCount; ++varNum) |
| 3437 | { |
| 3438 | varDsc = compiler->lvaTable + varNum; |
| 3439 | |
| 3440 | // Is this variable a register arg? |
| 3441 | if (!varDsc->lvIsParam) |
| 3442 | { |
| 3443 | continue; |
| 3444 | } |
| 3445 | |
| 3446 | if (!varDsc->lvIsRegArg) |
| 3447 | { |
| 3448 | continue; |
| 3449 | } |
| 3450 | |
| 3451 | // When we have a promoted struct we have two possible LclVars that can represent the incoming argument |
| 3452 | // in the regArgTab[], either the original TYP_STRUCT argument or the introduced lvStructField. |
| 3453 | // We will use the lvStructField if we have a TYPE_INDEPENDENT promoted struct field otherwise |
| 3454 | // use the the original TYP_STRUCT argument. |
| 3455 | // |
| 3456 | if (varDsc->lvPromoted || varDsc->lvIsStructField) |
| 3457 | { |
| 3458 | LclVarDsc* parentVarDsc = varDsc; |
| 3459 | if (varDsc->lvIsStructField) |
| 3460 | { |
| 3461 | assert(!varDsc->lvPromoted); |
| 3462 | parentVarDsc = &compiler->lvaTable[varDsc->lvParentLcl]; |
| 3463 | } |
| 3464 | |
| 3465 | Compiler::lvaPromotionType promotionType = compiler->lvaGetPromotionType(parentVarDsc); |
| 3466 | |
| 3467 | if (promotionType == Compiler::PROMOTION_TYPE_INDEPENDENT) |
| 3468 | { |
| 3469 | noway_assert(parentVarDsc->lvFieldCnt == 1); // We only handle one field here |
| 3470 | |
| 3471 | // For register arguments that are independent promoted structs we put the promoted field varNum in the |
| 3472 | // regArgTab[] |
| 3473 | if (varDsc->lvPromoted) |
| 3474 | { |
| 3475 | continue; |
| 3476 | } |
| 3477 | } |
| 3478 | else |
| 3479 | { |
| 3480 | // For register arguments that are not independent promoted structs we put the parent struct varNum in |
| 3481 | // the regArgTab[] |
| 3482 | if (varDsc->lvIsStructField) |
| 3483 | { |
| 3484 | continue; |
| 3485 | } |
| 3486 | } |
| 3487 | } |
| 3488 | |
| 3489 | var_types regType = compiler->mangleVarArgsType(varDsc->TypeGet()); |
| 3490 | // Change regType to the HFA type when we have a HFA argument |
| 3491 | if (varDsc->lvIsHfaRegArg()) |
| 3492 | { |
| 3493 | #if defined(_TARGET_WINDOWS_) && defined(_TARGET_ARM64_) |
| 3494 | if (compiler->info.compIsVarArgs) |
| 3495 | { |
| 3496 | assert(!"Illegal incoming HFA arg encountered in Vararg method." ); |
| 3497 | } |
| 3498 | #endif // defined(_TARGET_WINDOWS_) && defined(_TARGET_ARM64_) |
| 3499 | regType = varDsc->GetHfaType(); |
| 3500 | } |
| 3501 | |
| 3502 | #if defined(UNIX_AMD64_ABI) |
| 3503 | if (!varTypeIsStruct(regType)) |
| 3504 | #endif // defined(UNIX_AMD64_ABI) |
| 3505 | { |
| 3506 | // A struct might be passed partially in XMM register for System V calls. |
| 3507 | // So a single arg might use both register files. |
| 3508 | if (isFloatRegType(regType) != doingFloat) |
| 3509 | { |
| 3510 | continue; |
| 3511 | } |
| 3512 | } |
| 3513 | |
| 3514 | int slots = 0; |
| 3515 | |
| 3516 | #if defined(UNIX_AMD64_ABI) |
| 3517 | if (varTypeIsStruct(varDsc)) |
| 3518 | { |
| 3519 | CORINFO_CLASS_HANDLE typeHnd = varDsc->lvVerTypeInfo.GetClassHandle(); |
| 3520 | assert(typeHnd != nullptr); |
| 3521 | SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR structDesc; |
| 3522 | compiler->eeGetSystemVAmd64PassStructInRegisterDescriptor(typeHnd, &structDesc); |
| 3523 | if (!structDesc.passedInRegisters) |
| 3524 | { |
| 3525 | // The var is not passed in registers. |
| 3526 | continue; |
| 3527 | } |
| 3528 | |
| 3529 | unsigned firstRegSlot = 0; |
| 3530 | for (unsigned slotCounter = 0; slotCounter < structDesc.eightByteCount; slotCounter++) |
| 3531 | { |
| 3532 | regNumber regNum = varDsc->lvRegNumForSlot(slotCounter); |
| 3533 | var_types regType; |
| 3534 | |
| 3535 | #ifdef FEATURE_SIMD |
| 3536 | // Assumption 1: |
| 3537 | // RyuJit backend depends on the assumption that on 64-Bit targets Vector3 size is rounded off |
| 3538 | // to TARGET_POINTER_SIZE and hence Vector3 locals on stack can be treated as TYP_SIMD16 for |
| 3539 | // reading and writing purposes. Hence while homing a Vector3 type arg on stack we should |
| 3540 | // home entire 16-bytes so that the upper-most 4-bytes will be zeroed when written to stack. |
| 3541 | // |
| 3542 | // Assumption 2: |
| 3543 | // RyuJit backend is making another implicit assumption that Vector3 type args when passed in |
| 3544 | // registers or on stack, the upper most 4-bytes will be zero. |
| 3545 | // |
| 3546 | // For P/Invoke return and Reverse P/Invoke argument passing, native compiler doesn't guarantee |
| 3547 | // that upper 4-bytes of a Vector3 type struct is zero initialized and hence assumption 2 is |
| 3548 | // invalid. |
| 3549 | // |
| 3550 | // RyuJIT x64 Windows: arguments are treated as passed by ref and hence read/written just 12 |
| 3551 | // bytes. In case of Vector3 returns, Caller allocates a zero initialized Vector3 local and |
| 3552 | // passes it retBuf arg and Callee method writes only 12 bytes to retBuf. For this reason, |
| 3553 | // there is no need to clear upper 4-bytes of Vector3 type args. |
| 3554 | // |
| 3555 | // RyuJIT x64 Unix: arguments are treated as passed by value and read/writen as if TYP_SIMD16. |
| 3556 | // Vector3 return values are returned two return registers and Caller assembles them into a |
| 3557 | // single xmm reg. Hence RyuJIT explicitly generates code to clears upper 4-bytes of Vector3 |
| 3558 | // type args in prolog and Vector3 type return value of a call |
| 3559 | |
| 3560 | if (varDsc->lvType == TYP_SIMD12) |
| 3561 | { |
| 3562 | regType = TYP_DOUBLE; |
| 3563 | } |
| 3564 | else |
| 3565 | #endif |
| 3566 | { |
| 3567 | regType = compiler->GetEightByteType(structDesc, slotCounter); |
| 3568 | } |
| 3569 | |
| 3570 | regArgNum = genMapRegNumToRegArgNum(regNum, regType); |
| 3571 | |
| 3572 | if ((!doingFloat && (structDesc.IsIntegralSlot(slotCounter))) || |
| 3573 | (doingFloat && (structDesc.IsSseSlot(slotCounter)))) |
| 3574 | { |
| 3575 | // Store the reg for the first slot. |
| 3576 | if (slots == 0) |
| 3577 | { |
| 3578 | firstRegSlot = regArgNum; |
| 3579 | } |
| 3580 | |
| 3581 | // Bingo - add it to our table |
| 3582 | noway_assert(regArgNum < argMax); |
| 3583 | noway_assert(regArgTab[regArgNum].slot == 0); // we better not have added it already (there better |
| 3584 | // not be multiple vars representing this argument |
| 3585 | // register) |
| 3586 | regArgTab[regArgNum].varNum = varNum; |
| 3587 | regArgTab[regArgNum].slot = (char)(slotCounter + 1); |
| 3588 | regArgTab[regArgNum].type = regType; |
| 3589 | slots++; |
| 3590 | } |
| 3591 | } |
| 3592 | |
| 3593 | if (slots == 0) |
| 3594 | { |
| 3595 | continue; // Nothing to do for this regState set. |
| 3596 | } |
| 3597 | |
| 3598 | regArgNum = firstRegSlot; |
| 3599 | } |
| 3600 | else |
| 3601 | #endif // defined(UNIX_AMD64_ABI) |
| 3602 | { |
| 3603 | // Bingo - add it to our table |
| 3604 | regArgNum = genMapRegNumToRegArgNum(varDsc->lvArgReg, regType); |
| 3605 | |
| 3606 | noway_assert(regArgNum < argMax); |
| 3607 | // We better not have added it already (there better not be multiple vars representing this argument |
| 3608 | // register) |
| 3609 | noway_assert(regArgTab[regArgNum].slot == 0); |
| 3610 | |
| 3611 | #if defined(UNIX_AMD64_ABI) |
| 3612 | // Set the register type. |
| 3613 | regArgTab[regArgNum].type = regType; |
| 3614 | #endif // defined(UNIX_AMD64_ABI) |
| 3615 | |
| 3616 | regArgTab[regArgNum].varNum = varNum; |
| 3617 | regArgTab[regArgNum].slot = 1; |
| 3618 | |
| 3619 | slots = 1; |
| 3620 | |
| 3621 | #if FEATURE_MULTIREG_ARGS |
| 3622 | if (compiler->lvaIsMultiregStruct(varDsc, compiler->info.compIsVarArgs)) |
| 3623 | { |
| 3624 | if (varDsc->lvIsHfaRegArg()) |
| 3625 | { |
| 3626 | // We have an HFA argument, set slots to the number of registers used |
| 3627 | slots = varDsc->lvHfaSlots(); |
| 3628 | } |
| 3629 | else |
| 3630 | { |
| 3631 | // Currently all non-HFA multireg structs are two registers in size (i.e. two slots) |
| 3632 | assert(varDsc->lvSize() == (2 * TARGET_POINTER_SIZE)); |
| 3633 | // We have a non-HFA multireg argument, set slots to two |
| 3634 | slots = 2; |
| 3635 | } |
| 3636 | |
| 3637 | // Note that regArgNum+1 represents an argument index not an actual argument register. |
| 3638 | // see genMapRegArgNumToRegNum(unsigned argNum, var_types type) |
| 3639 | |
| 3640 | // This is the setup for the rest of a multireg struct arg |
| 3641 | |
| 3642 | for (int i = 1; i < slots; i++) |
| 3643 | { |
| 3644 | noway_assert((regArgNum + i) < argMax); |
| 3645 | |
| 3646 | // We better not have added it already (there better not be multiple vars representing this argument |
| 3647 | // register) |
| 3648 | noway_assert(regArgTab[regArgNum + i].slot == 0); |
| 3649 | |
| 3650 | regArgTab[regArgNum + i].varNum = varNum; |
| 3651 | regArgTab[regArgNum + i].slot = (char)(i + 1); |
| 3652 | } |
| 3653 | } |
| 3654 | #endif // FEATURE_MULTIREG_ARGS |
| 3655 | } |
| 3656 | |
| 3657 | #ifdef _TARGET_ARM_ |
| 3658 | int lclSize = compiler->lvaLclSize(varNum); |
| 3659 | |
| 3660 | if (lclSize > REGSIZE_BYTES) |
| 3661 | { |
| 3662 | unsigned maxRegArgNum = doingFloat ? MAX_FLOAT_REG_ARG : MAX_REG_ARG; |
| 3663 | slots = lclSize / REGSIZE_BYTES; |
| 3664 | if (regArgNum + slots > maxRegArgNum) |
| 3665 | { |
| 3666 | slots = maxRegArgNum - regArgNum; |
| 3667 | } |
| 3668 | } |
| 3669 | C_ASSERT((char)MAX_REG_ARG == MAX_REG_ARG); |
| 3670 | assert(slots < INT8_MAX); |
| 3671 | for (char i = 1; i < slots; i++) |
| 3672 | { |
| 3673 | regArgTab[regArgNum + i].varNum = varNum; |
| 3674 | regArgTab[regArgNum + i].slot = i + 1; |
| 3675 | } |
| 3676 | #endif // _TARGET_ARM_ |
| 3677 | |
| 3678 | for (int i = 0; i < slots; i++) |
| 3679 | { |
| 3680 | regType = regArgTab[regArgNum + i].getRegType(compiler); |
| 3681 | regNumber regNum = genMapRegArgNumToRegNum(regArgNum + i, regType); |
| 3682 | |
| 3683 | #if !defined(UNIX_AMD64_ABI) |
| 3684 | assert((i > 0) || (regNum == varDsc->lvArgReg)); |
| 3685 | #endif // defined(UNIX_AMD64_ABI) |
| 3686 | |
| 3687 | // Is the arg dead on entry to the method ? |
| 3688 | |
| 3689 | if ((regArgMaskLive & genRegMask(regNum)) == 0) |
| 3690 | { |
| 3691 | if (varDsc->lvTrackedNonStruct()) |
| 3692 | { |
| 3693 | // We may now see some tracked locals with zero refs. |
| 3694 | // See Lowering::DoPhase. Tolerate these. |
| 3695 | if (varDsc->lvRefCnt() > 0) |
| 3696 | { |
| 3697 | noway_assert(!VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)); |
| 3698 | } |
| 3699 | } |
| 3700 | else |
| 3701 | { |
| 3702 | #ifdef _TARGET_X86_ |
| 3703 | noway_assert(varDsc->lvType == TYP_STRUCT); |
| 3704 | #else // !_TARGET_X86_ |
| 3705 | // For LSRA, it may not be in regArgMaskLive if it has a zero |
| 3706 | // refcnt. This is in contrast with the non-LSRA case in which all |
| 3707 | // non-tracked args are assumed live on entry. |
| 3708 | noway_assert((varDsc->lvRefCnt() == 0) || (varDsc->lvType == TYP_STRUCT) || |
| 3709 | (varDsc->lvAddrExposed && compiler->info.compIsVarArgs) || |
| 3710 | (varDsc->lvAddrExposed && compiler->opts.compUseSoftFP)); |
| 3711 | #endif // !_TARGET_X86_ |
| 3712 | } |
| 3713 | // Mark it as processed and be done with it |
| 3714 | regArgTab[regArgNum + i].processed = true; |
| 3715 | goto NON_DEP; |
| 3716 | } |
| 3717 | |
| 3718 | #ifdef _TARGET_ARM_ |
| 3719 | // On the ARM when the varDsc is a struct arg (or pre-spilled due to varargs) the initReg/xtraReg |
| 3720 | // could be equal to lvArgReg. The pre-spilled registers are also not considered live either since |
| 3721 | // they've already been spilled. |
| 3722 | // |
| 3723 | if ((regSet.rsMaskPreSpillRegs(false) & genRegMask(regNum)) == 0) |
| 3724 | #endif // _TARGET_ARM_ |
| 3725 | { |
| 3726 | #if !defined(UNIX_AMD64_ABI) |
| 3727 | noway_assert(xtraReg != (varDsc->lvArgReg + i)); |
| 3728 | #endif |
| 3729 | noway_assert(regArgMaskLive & genRegMask(regNum)); |
| 3730 | } |
| 3731 | |
| 3732 | regArgTab[regArgNum + i].processed = false; |
| 3733 | |
| 3734 | /* mark stack arguments since we will take care of those first */ |
| 3735 | regArgTab[regArgNum + i].stackArg = (varDsc->lvIsInReg()) ? false : true; |
| 3736 | |
| 3737 | /* If it goes on the stack or in a register that doesn't hold |
| 3738 | * an argument anymore -> CANNOT form a circular dependency */ |
| 3739 | |
| 3740 | if (varDsc->lvIsInReg() && (genRegMask(regNum) & regArgMaskLive)) |
| 3741 | { |
| 3742 | /* will trash another argument -> possible dependency |
| 3743 | * We may need several passes after the table is constructed |
| 3744 | * to decide on that */ |
| 3745 | |
| 3746 | /* Maybe the argument stays in the register (IDEAL) */ |
| 3747 | |
| 3748 | if ((i == 0) && (varDsc->lvRegNum == regNum)) |
| 3749 | { |
| 3750 | goto NON_DEP; |
| 3751 | } |
| 3752 | |
| 3753 | #if !defined(_TARGET_64BIT_) |
| 3754 | if ((i == 1) && varTypeIsStruct(varDsc) && (varDsc->lvOtherReg == regNum)) |
| 3755 | { |
| 3756 | goto NON_DEP; |
| 3757 | } |
| 3758 | if ((i == 1) && (genActualType(varDsc->TypeGet()) == TYP_LONG) && (varDsc->lvOtherReg == regNum)) |
| 3759 | { |
| 3760 | goto NON_DEP; |
| 3761 | } |
| 3762 | |
| 3763 | if ((i == 1) && (genActualType(varDsc->TypeGet()) == TYP_DOUBLE) && |
| 3764 | (REG_NEXT(varDsc->lvRegNum) == regNum)) |
| 3765 | { |
| 3766 | goto NON_DEP; |
| 3767 | } |
| 3768 | #endif // !defined(_TARGET_64BIT_) |
| 3769 | regArgTab[regArgNum + i].circular = true; |
| 3770 | } |
| 3771 | else |
| 3772 | { |
| 3773 | NON_DEP: |
| 3774 | regArgTab[regArgNum + i].circular = false; |
| 3775 | |
| 3776 | /* mark the argument register as free */ |
| 3777 | regArgMaskLive &= ~genRegMask(regNum); |
| 3778 | } |
| 3779 | } |
| 3780 | } |
| 3781 | |
| 3782 | /* Find the circular dependencies for the argument registers, if any. |
| 3783 | * A circular dependency is a set of registers R1, R2, ..., Rn |
| 3784 | * such that R1->R2 (that is, R1 needs to be moved to R2), R2->R3, ..., Rn->R1 */ |
| 3785 | |
| 3786 | bool change = true; |
| 3787 | if (regArgMaskLive) |
| 3788 | { |
| 3789 | /* Possible circular dependencies still exist; the previous pass was not enough |
| 3790 | * to filter them out. Use a "sieve" strategy to find all circular dependencies. */ |
| 3791 | |
| 3792 | while (change) |
| 3793 | { |
| 3794 | change = false; |
| 3795 | |
| 3796 | for (argNum = 0; argNum < argMax; argNum++) |
| 3797 | { |
| 3798 | // If we already marked the argument as non-circular then continue |
| 3799 | |
| 3800 | if (!regArgTab[argNum].circular) |
| 3801 | { |
| 3802 | continue; |
| 3803 | } |
| 3804 | |
| 3805 | if (regArgTab[argNum].slot == 0) // Not a register argument |
| 3806 | { |
| 3807 | continue; |
| 3808 | } |
| 3809 | |
| 3810 | varNum = regArgTab[argNum].varNum; |
| 3811 | noway_assert(varNum < compiler->lvaCount); |
| 3812 | varDsc = compiler->lvaTable + varNum; |
| 3813 | noway_assert(varDsc->lvIsParam && varDsc->lvIsRegArg); |
| 3814 | |
| 3815 | /* cannot possibly have stack arguments */ |
| 3816 | noway_assert(varDsc->lvIsInReg()); |
| 3817 | noway_assert(!regArgTab[argNum].stackArg); |
| 3818 | |
| 3819 | var_types regType = regArgTab[argNum].getRegType(compiler); |
| 3820 | regNumber regNum = genMapRegArgNumToRegNum(argNum, regType); |
| 3821 | |
| 3822 | regNumber destRegNum = REG_NA; |
| 3823 | if (regArgTab[argNum].slot == 1) |
| 3824 | { |
| 3825 | destRegNum = varDsc->lvRegNum; |
| 3826 | } |
| 3827 | #if FEATURE_MULTIREG_ARGS && defined(FEATURE_SIMD) && defined(_TARGET_64BIT_) |
| 3828 | else |
| 3829 | { |
| 3830 | assert(regArgTab[argNum].slot == 2); |
| 3831 | assert(argNum > 0); |
| 3832 | assert(regArgTab[argNum - 1].slot == 1); |
| 3833 | assert(regArgTab[argNum - 1].varNum == varNum); |
| 3834 | assert((varDsc->lvType == TYP_SIMD12) || (varDsc->lvType == TYP_SIMD16)); |
| 3835 | regArgMaskLive &= ~genRegMask(regNum); |
| 3836 | regArgTab[argNum].circular = false; |
| 3837 | change = true; |
| 3838 | continue; |
| 3839 | } |
| 3840 | #elif !defined(_TARGET_64BIT_) |
| 3841 | else if (regArgTab[argNum].slot == 2 && genActualType(varDsc->TypeGet()) == TYP_LONG) |
| 3842 | { |
| 3843 | destRegNum = varDsc->lvOtherReg; |
| 3844 | } |
| 3845 | else |
| 3846 | { |
| 3847 | assert(regArgTab[argNum].slot == 2); |
| 3848 | assert(varDsc->TypeGet() == TYP_DOUBLE); |
| 3849 | destRegNum = REG_NEXT(varDsc->lvRegNum); |
| 3850 | } |
| 3851 | #endif // !defined(_TARGET_64BIT_) |
| 3852 | noway_assert(destRegNum != REG_NA); |
| 3853 | if (genRegMask(destRegNum) & regArgMaskLive) |
| 3854 | { |
| 3855 | /* we are trashing a live argument register - record it */ |
| 3856 | unsigned destRegArgNum = genMapRegNumToRegArgNum(destRegNum, regType); |
| 3857 | noway_assert(destRegArgNum < argMax); |
| 3858 | regArgTab[destRegArgNum].trashBy = argNum; |
| 3859 | } |
| 3860 | else |
| 3861 | { |
| 3862 | /* argument goes to a free register */ |
| 3863 | regArgTab[argNum].circular = false; |
| 3864 | change = true; |
| 3865 | |
| 3866 | /* mark the argument register as free */ |
| 3867 | regArgMaskLive &= ~genRegMask(regNum); |
| 3868 | } |
| 3869 | } |
| 3870 | } |
| 3871 | } |
| 3872 | |
| 3873 | /* At this point, everything that has the "circular" flag |
| 3874 | * set to "true" forms a circular dependency */ |
| 3875 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 3876 | |
| 3877 | #ifdef DEBUG |
| 3878 | if (regArgMaskLive) |
| 3879 | { |
| 3880 | if (verbose) |
| 3881 | { |
| 3882 | printf("Circular dependencies found while home-ing the incoming arguments.\n" ); |
| 3883 | } |
| 3884 | } |
| 3885 | #endif |
| 3886 | |
| 3887 | // LSRA allocates registers to incoming parameters in order and will not overwrite |
| 3888 | // a register still holding a live parameter. |
| 3889 | |
| 3890 | noway_assert(((regArgMaskLive & RBM_FLTARG_REGS) == 0) && |
| 3891 | "Homing of float argument registers with circular dependencies not implemented." ); |
| 3892 | |
| 3893 | /* Now move the arguments to their locations. |
| 3894 | * First consider ones that go on the stack since they may |
| 3895 | * free some registers. */ |
| 3896 | |
| 3897 | regArgMaskLive = regState->rsCalleeRegArgMaskLiveIn; // reset the live in to what it was at the start |
| 3898 | for (argNum = 0; argNum < argMax; argNum++) |
| 3899 | { |
| 3900 | emitAttr size; |
| 3901 | |
| 3902 | #if defined(UNIX_AMD64_ABI) |
| 3903 | // If this is the wrong register file, just continue. |
| 3904 | if (regArgTab[argNum].type == TYP_UNDEF) |
| 3905 | { |
| 3906 | // This could happen if the reg in regArgTab[argNum] is of the other register file - |
| 3907 | // for System V register passed structs where the first reg is GPR and the second an XMM reg. |
| 3908 | // The next register file processing will process it. |
| 3909 | continue; |
| 3910 | } |
| 3911 | #endif // defined(UNIX_AMD64_ABI) |
| 3912 | |
| 3913 | // If the arg is dead on entry to the method, skip it |
| 3914 | |
| 3915 | if (regArgTab[argNum].processed) |
| 3916 | { |
| 3917 | continue; |
| 3918 | } |
| 3919 | |
| 3920 | if (regArgTab[argNum].slot == 0) // Not a register argument |
| 3921 | { |
| 3922 | continue; |
| 3923 | } |
| 3924 | |
| 3925 | varNum = regArgTab[argNum].varNum; |
| 3926 | noway_assert(varNum < compiler->lvaCount); |
| 3927 | varDsc = compiler->lvaTable + varNum; |
| 3928 | |
| 3929 | #ifndef _TARGET_64BIT_ |
| 3930 | // If not a stack arg go to the next one |
| 3931 | if (varDsc->lvType == TYP_LONG) |
| 3932 | { |
| 3933 | if (regArgTab[argNum].slot == 1 && !regArgTab[argNum].stackArg) |
| 3934 | { |
| 3935 | continue; |
| 3936 | } |
| 3937 | else if (varDsc->lvOtherReg != REG_STK) |
| 3938 | { |
| 3939 | continue; |
| 3940 | } |
| 3941 | } |
| 3942 | else |
| 3943 | #endif // !_TARGET_64BIT_ |
| 3944 | { |
| 3945 | // If not a stack arg go to the next one |
| 3946 | if (!regArgTab[argNum].stackArg) |
| 3947 | { |
| 3948 | continue; |
| 3949 | } |
| 3950 | } |
| 3951 | |
| 3952 | #if defined(_TARGET_ARM_) |
| 3953 | if (varDsc->lvType == TYP_DOUBLE) |
| 3954 | { |
| 3955 | if (regArgTab[argNum].slot == 2) |
| 3956 | { |
| 3957 | // We handled the entire double when processing the first half (slot == 1) |
| 3958 | continue; |
| 3959 | } |
| 3960 | } |
| 3961 | #endif |
| 3962 | |
| 3963 | noway_assert(regArgTab[argNum].circular == false); |
| 3964 | |
| 3965 | noway_assert(varDsc->lvIsParam); |
| 3966 | noway_assert(varDsc->lvIsRegArg); |
| 3967 | noway_assert(varDsc->lvIsInReg() == false || |
| 3968 | (varDsc->lvType == TYP_LONG && varDsc->lvOtherReg == REG_STK && regArgTab[argNum].slot == 2)); |
| 3969 | |
| 3970 | var_types storeType = TYP_UNDEF; |
| 3971 | unsigned slotSize = TARGET_POINTER_SIZE; |
| 3972 | |
| 3973 | if (varTypeIsStruct(varDsc)) |
| 3974 | { |
| 3975 | storeType = TYP_I_IMPL; // Default store type for a struct type is a pointer sized integer |
| 3976 | #if FEATURE_MULTIREG_ARGS |
| 3977 | // Must be <= MAX_PASS_MULTIREG_BYTES or else it wouldn't be passed in registers |
| 3978 | noway_assert(varDsc->lvSize() <= MAX_PASS_MULTIREG_BYTES); |
| 3979 | #endif // FEATURE_MULTIREG_ARGS |
| 3980 | #ifdef UNIX_AMD64_ABI |
| 3981 | storeType = regArgTab[argNum].type; |
| 3982 | #endif // !UNIX_AMD64_ABI |
| 3983 | if (varDsc->lvIsHfaRegArg()) |
| 3984 | { |
| 3985 | #ifdef _TARGET_ARM_ |
| 3986 | // On ARM32 the storeType for HFA args is always TYP_FLOAT |
| 3987 | storeType = TYP_FLOAT; |
| 3988 | slotSize = (unsigned)emitActualTypeSize(storeType); |
| 3989 | #else // _TARGET_ARM64_ |
| 3990 | storeType = genActualType(varDsc->GetHfaType()); |
| 3991 | slotSize = (unsigned)emitActualTypeSize(storeType); |
| 3992 | #endif // _TARGET_ARM64_ |
| 3993 | } |
| 3994 | } |
| 3995 | else // Not a struct type |
| 3996 | { |
| 3997 | storeType = compiler->mangleVarArgsType(genActualType(varDsc->TypeGet())); |
| 3998 | } |
| 3999 | size = emitActualTypeSize(storeType); |
| 4000 | #ifdef _TARGET_X86_ |
| 4001 | noway_assert(genTypeSize(storeType) == TARGET_POINTER_SIZE); |
| 4002 | #endif //_TARGET_X86_ |
| 4003 | |
| 4004 | regNumber srcRegNum = genMapRegArgNumToRegNum(argNum, storeType); |
| 4005 | |
| 4006 | // Stack argument - if the ref count is 0 don't care about it |
| 4007 | |
| 4008 | if (!varDsc->lvOnFrame) |
| 4009 | { |
| 4010 | noway_assert(varDsc->lvRefCnt() == 0); |
| 4011 | } |
| 4012 | else |
| 4013 | { |
| 4014 | // Since slot is typically 1, baseOffset is typically 0 |
| 4015 | int baseOffset = (regArgTab[argNum].slot - 1) * slotSize; |
| 4016 | |
| 4017 | getEmitter()->emitIns_S_R(ins_Store(storeType), size, srcRegNum, varNum, baseOffset); |
| 4018 | |
| 4019 | #ifndef UNIX_AMD64_ABI |
| 4020 | // Check if we are writing past the end of the struct |
| 4021 | if (varTypeIsStruct(varDsc)) |
| 4022 | { |
| 4023 | assert(varDsc->lvSize() >= baseOffset + (unsigned)size); |
| 4024 | } |
| 4025 | #endif // !UNIX_AMD64_ABI |
| 4026 | |
| 4027 | if (regArgTab[argNum].slot == 1) |
| 4028 | { |
| 4029 | psiMoveToStack(varNum); |
| 4030 | } |
| 4031 | } |
| 4032 | |
| 4033 | /* mark the argument as processed */ |
| 4034 | |
| 4035 | regArgTab[argNum].processed = true; |
| 4036 | regArgMaskLive &= ~genRegMask(srcRegNum); |
| 4037 | |
| 4038 | #if defined(_TARGET_ARM_) |
| 4039 | if (storeType == TYP_DOUBLE) |
| 4040 | { |
| 4041 | regArgTab[argNum + 1].processed = true; |
| 4042 | regArgMaskLive &= ~genRegMask(REG_NEXT(srcRegNum)); |
| 4043 | } |
| 4044 | #endif |
| 4045 | } |
| 4046 | |
| 4047 | /* Process any circular dependencies */ |
| 4048 | if (regArgMaskLive) |
| 4049 | { |
| 4050 | unsigned begReg, destReg, srcReg; |
| 4051 | unsigned varNumDest, varNumSrc; |
| 4052 | LclVarDsc* varDscDest; |
| 4053 | LclVarDsc* varDscSrc; |
| 4054 | instruction insCopy = INS_mov; |
| 4055 | |
| 4056 | if (doingFloat) |
| 4057 | { |
| 4058 | #if defined(FEATURE_HFA) || defined(UNIX_AMD64_ABI) |
| 4059 | insCopy = ins_Copy(TYP_DOUBLE); |
| 4060 | // Compute xtraReg here when we have a float argument |
| 4061 | assert(xtraReg == REG_NA); |
| 4062 | |
| 4063 | regMaskTP fpAvailMask; |
| 4064 | |
| 4065 | fpAvailMask = RBM_FLT_CALLEE_TRASH & ~regArgMaskLive; |
| 4066 | #if defined(FEATURE_HFA) |
| 4067 | fpAvailMask &= RBM_ALLDOUBLE; |
| 4068 | #else |
| 4069 | #if !defined(UNIX_AMD64_ABI) |
| 4070 | #error Error. Wrong architecture. |
| 4071 | #endif // !defined(UNIX_AMD64_ABI) |
| 4072 | #endif // defined(FEATURE_HFA) |
| 4073 | |
| 4074 | if (fpAvailMask == RBM_NONE) |
| 4075 | { |
| 4076 | fpAvailMask = RBM_ALLFLOAT & ~regArgMaskLive; |
| 4077 | #if defined(FEATURE_HFA) |
| 4078 | fpAvailMask &= RBM_ALLDOUBLE; |
| 4079 | #else |
| 4080 | #if !defined(UNIX_AMD64_ABI) |
| 4081 | #error Error. Wrong architecture. |
| 4082 | #endif // !defined(UNIX_AMD64_ABI) |
| 4083 | #endif // defined(FEATURE_HFA) |
| 4084 | } |
| 4085 | |
| 4086 | assert(fpAvailMask != RBM_NONE); |
| 4087 | |
| 4088 | // We pick the lowest avail register number |
| 4089 | regMaskTP tempMask = genFindLowestBit(fpAvailMask); |
| 4090 | xtraReg = genRegNumFromMask(tempMask); |
| 4091 | #elif defined(_TARGET_X86_) |
| 4092 | // This case shouldn't occur on x86 since NYI gets converted to an assert |
| 4093 | NYI("Homing circular FP registers via xtraReg" ); |
| 4094 | #endif |
| 4095 | } |
| 4096 | |
| 4097 | for (argNum = 0; argNum < argMax; argNum++) |
| 4098 | { |
| 4099 | // If not a circular dependency then continue |
| 4100 | if (!regArgTab[argNum].circular) |
| 4101 | { |
| 4102 | continue; |
| 4103 | } |
| 4104 | |
| 4105 | // If already processed the dependency then continue |
| 4106 | |
| 4107 | if (regArgTab[argNum].processed) |
| 4108 | { |
| 4109 | continue; |
| 4110 | } |
| 4111 | |
| 4112 | if (regArgTab[argNum].slot == 0) // Not a register argument |
| 4113 | { |
| 4114 | continue; |
| 4115 | } |
| 4116 | |
| 4117 | destReg = begReg = argNum; |
| 4118 | srcReg = regArgTab[argNum].trashBy; |
| 4119 | |
| 4120 | varNumDest = regArgTab[destReg].varNum; |
| 4121 | noway_assert(varNumDest < compiler->lvaCount); |
| 4122 | varDscDest = compiler->lvaTable + varNumDest; |
| 4123 | noway_assert(varDscDest->lvIsParam && varDscDest->lvIsRegArg); |
| 4124 | |
| 4125 | noway_assert(srcReg < argMax); |
| 4126 | varNumSrc = regArgTab[srcReg].varNum; |
| 4127 | noway_assert(varNumSrc < compiler->lvaCount); |
| 4128 | varDscSrc = compiler->lvaTable + varNumSrc; |
| 4129 | noway_assert(varDscSrc->lvIsParam && varDscSrc->lvIsRegArg); |
| 4130 | |
| 4131 | emitAttr size = EA_PTRSIZE; |
| 4132 | |
| 4133 | #ifdef _TARGET_XARCH_ |
| 4134 | // |
| 4135 | // The following code relies upon the target architecture having an |
| 4136 | // 'xchg' instruction which directly swaps the values held in two registers. |
| 4137 | // On the ARM architecture we do not have such an instruction. |
| 4138 | // |
| 4139 | if (destReg == regArgTab[srcReg].trashBy) |
| 4140 | { |
| 4141 | /* only 2 registers form the circular dependency - use "xchg" */ |
| 4142 | |
| 4143 | varNum = regArgTab[argNum].varNum; |
| 4144 | noway_assert(varNum < compiler->lvaCount); |
| 4145 | varDsc = compiler->lvaTable + varNum; |
| 4146 | noway_assert(varDsc->lvIsParam && varDsc->lvIsRegArg); |
| 4147 | |
| 4148 | noway_assert(genTypeSize(genActualType(varDscSrc->TypeGet())) <= REGSIZE_BYTES); |
| 4149 | |
| 4150 | /* Set "size" to indicate GC if one and only one of |
| 4151 | * the operands is a pointer |
| 4152 | * RATIONALE: If both are pointers, nothing changes in |
| 4153 | * the GC pointer tracking. If only one is a pointer we |
| 4154 | * have to "swap" the registers in the GC reg pointer mask |
| 4155 | */ |
| 4156 | |
| 4157 | if (varTypeGCtype(varDscSrc->TypeGet()) != varTypeGCtype(varDscDest->TypeGet())) |
| 4158 | { |
| 4159 | size = EA_GCREF; |
| 4160 | } |
| 4161 | |
| 4162 | noway_assert(varDscDest->lvArgReg == varDscSrc->lvRegNum); |
| 4163 | |
| 4164 | getEmitter()->emitIns_R_R(INS_xchg, size, varDscSrc->lvRegNum, varDscSrc->lvArgReg); |
| 4165 | regSet.verifyRegUsed(varDscSrc->lvRegNum); |
| 4166 | regSet.verifyRegUsed(varDscSrc->lvArgReg); |
| 4167 | |
| 4168 | /* mark both arguments as processed */ |
| 4169 | regArgTab[destReg].processed = true; |
| 4170 | regArgTab[srcReg].processed = true; |
| 4171 | |
| 4172 | regArgMaskLive &= ~genRegMask(varDscSrc->lvArgReg); |
| 4173 | regArgMaskLive &= ~genRegMask(varDscDest->lvArgReg); |
| 4174 | |
| 4175 | psiMoveToReg(varNumSrc); |
| 4176 | psiMoveToReg(varNumDest); |
| 4177 | } |
| 4178 | else |
| 4179 | #endif // _TARGET_XARCH_ |
| 4180 | { |
| 4181 | var_types destMemType = varDscDest->TypeGet(); |
| 4182 | |
| 4183 | #ifdef _TARGET_ARM_ |
| 4184 | bool cycleAllDouble = true; // assume the best |
| 4185 | |
| 4186 | unsigned iter = begReg; |
| 4187 | do |
| 4188 | { |
| 4189 | if (compiler->lvaTable[regArgTab[iter].varNum].TypeGet() != TYP_DOUBLE) |
| 4190 | { |
| 4191 | cycleAllDouble = false; |
| 4192 | break; |
| 4193 | } |
| 4194 | iter = regArgTab[iter].trashBy; |
| 4195 | } while (iter != begReg); |
| 4196 | |
| 4197 | // We may treat doubles as floats for ARM because we could have partial circular |
| 4198 | // dependencies of a float with a lo/hi part of the double. We mark the |
| 4199 | // trashBy values for each slot of the double, so let the circular dependency |
| 4200 | // logic work its way out for floats rather than doubles. If a cycle has all |
| 4201 | // doubles, then optimize so that instead of two vmov.f32's to move a double, |
| 4202 | // we can use one vmov.f64. |
| 4203 | // |
| 4204 | if (!cycleAllDouble && destMemType == TYP_DOUBLE) |
| 4205 | { |
| 4206 | destMemType = TYP_FLOAT; |
| 4207 | } |
| 4208 | #endif // _TARGET_ARM_ |
| 4209 | |
| 4210 | if (destMemType == TYP_REF) |
| 4211 | { |
| 4212 | size = EA_GCREF; |
| 4213 | } |
| 4214 | else if (destMemType == TYP_BYREF) |
| 4215 | { |
| 4216 | size = EA_BYREF; |
| 4217 | } |
| 4218 | else if (destMemType == TYP_DOUBLE) |
| 4219 | { |
| 4220 | size = EA_8BYTE; |
| 4221 | } |
| 4222 | else if (destMemType == TYP_FLOAT) |
| 4223 | { |
| 4224 | size = EA_4BYTE; |
| 4225 | } |
| 4226 | |
| 4227 | /* move the dest reg (begReg) in the extra reg */ |
| 4228 | |
| 4229 | assert(xtraReg != REG_NA); |
| 4230 | |
| 4231 | regNumber begRegNum = genMapRegArgNumToRegNum(begReg, destMemType); |
| 4232 | |
| 4233 | getEmitter()->emitIns_R_R(insCopy, size, xtraReg, begRegNum); |
| 4234 | |
| 4235 | regSet.verifyRegUsed(xtraReg); |
| 4236 | |
| 4237 | *pXtraRegClobbered = true; |
| 4238 | |
| 4239 | psiMoveToReg(varNumDest, xtraReg); |
| 4240 | |
| 4241 | /* start moving everything to its right place */ |
| 4242 | |
| 4243 | while (srcReg != begReg) |
| 4244 | { |
| 4245 | /* mov dest, src */ |
| 4246 | |
| 4247 | regNumber destRegNum = genMapRegArgNumToRegNum(destReg, destMemType); |
| 4248 | regNumber srcRegNum = genMapRegArgNumToRegNum(srcReg, destMemType); |
| 4249 | |
| 4250 | getEmitter()->emitIns_R_R(insCopy, size, destRegNum, srcRegNum); |
| 4251 | |
| 4252 | regSet.verifyRegUsed(destRegNum); |
| 4253 | |
| 4254 | /* mark 'src' as processed */ |
| 4255 | noway_assert(srcReg < argMax); |
| 4256 | regArgTab[srcReg].processed = true; |
| 4257 | #ifdef _TARGET_ARM_ |
| 4258 | if (size == EA_8BYTE) |
| 4259 | regArgTab[srcReg + 1].processed = true; |
| 4260 | #endif |
| 4261 | regArgMaskLive &= ~genMapArgNumToRegMask(srcReg, destMemType); |
| 4262 | |
| 4263 | /* move to the next pair */ |
| 4264 | destReg = srcReg; |
| 4265 | srcReg = regArgTab[srcReg].trashBy; |
| 4266 | |
| 4267 | varDscDest = varDscSrc; |
| 4268 | destMemType = varDscDest->TypeGet(); |
| 4269 | #ifdef _TARGET_ARM_ |
| 4270 | if (!cycleAllDouble && destMemType == TYP_DOUBLE) |
| 4271 | { |
| 4272 | destMemType = TYP_FLOAT; |
| 4273 | } |
| 4274 | #endif |
| 4275 | varNumSrc = regArgTab[srcReg].varNum; |
| 4276 | noway_assert(varNumSrc < compiler->lvaCount); |
| 4277 | varDscSrc = compiler->lvaTable + varNumSrc; |
| 4278 | noway_assert(varDscSrc->lvIsParam && varDscSrc->lvIsRegArg); |
| 4279 | |
| 4280 | if (destMemType == TYP_REF) |
| 4281 | { |
| 4282 | size = EA_GCREF; |
| 4283 | } |
| 4284 | else if (destMemType == TYP_DOUBLE) |
| 4285 | { |
| 4286 | size = EA_8BYTE; |
| 4287 | } |
| 4288 | else |
| 4289 | { |
| 4290 | size = EA_4BYTE; |
| 4291 | } |
| 4292 | } |
| 4293 | |
| 4294 | /* take care of the beginning register */ |
| 4295 | |
| 4296 | noway_assert(srcReg == begReg); |
| 4297 | |
| 4298 | /* move the dest reg (begReg) in the extra reg */ |
| 4299 | |
| 4300 | regNumber destRegNum = genMapRegArgNumToRegNum(destReg, destMemType); |
| 4301 | |
| 4302 | getEmitter()->emitIns_R_R(insCopy, size, destRegNum, xtraReg); |
| 4303 | |
| 4304 | regSet.verifyRegUsed(destRegNum); |
| 4305 | |
| 4306 | psiMoveToReg(varNumSrc); |
| 4307 | |
| 4308 | /* mark the beginning register as processed */ |
| 4309 | |
| 4310 | regArgTab[srcReg].processed = true; |
| 4311 | #ifdef _TARGET_ARM_ |
| 4312 | if (size == EA_8BYTE) |
| 4313 | regArgTab[srcReg + 1].processed = true; |
| 4314 | #endif |
| 4315 | regArgMaskLive &= ~genMapArgNumToRegMask(srcReg, destMemType); |
| 4316 | } |
| 4317 | } |
| 4318 | } |
| 4319 | |
| 4320 | /* Finally take care of the remaining arguments that must be enregistered */ |
| 4321 | while (regArgMaskLive) |
| 4322 | { |
| 4323 | regMaskTP regArgMaskLiveSave = regArgMaskLive; |
| 4324 | |
| 4325 | for (argNum = 0; argNum < argMax; argNum++) |
| 4326 | { |
| 4327 | /* If already processed go to the next one */ |
| 4328 | if (regArgTab[argNum].processed) |
| 4329 | { |
| 4330 | continue; |
| 4331 | } |
| 4332 | |
| 4333 | if (regArgTab[argNum].slot == 0) |
| 4334 | { // Not a register argument |
| 4335 | continue; |
| 4336 | } |
| 4337 | |
| 4338 | varNum = regArgTab[argNum].varNum; |
| 4339 | noway_assert(varNum < compiler->lvaCount); |
| 4340 | varDsc = compiler->lvaTable + varNum; |
| 4341 | var_types regType = regArgTab[argNum].getRegType(compiler); |
| 4342 | regNumber regNum = genMapRegArgNumToRegNum(argNum, regType); |
| 4343 | |
| 4344 | #if defined(UNIX_AMD64_ABI) |
| 4345 | if (regType == TYP_UNDEF) |
| 4346 | { |
| 4347 | // This could happen if the reg in regArgTab[argNum] is of the other register file - |
| 4348 | // for System V register passed structs where the first reg is GPR and the second an XMM reg. |
| 4349 | // The next register file processing will process it. |
| 4350 | regArgMaskLive &= ~genRegMask(regNum); |
| 4351 | continue; |
| 4352 | } |
| 4353 | #endif // defined(UNIX_AMD64_ABI) |
| 4354 | |
| 4355 | noway_assert(varDsc->lvIsParam && varDsc->lvIsRegArg); |
| 4356 | #ifndef _TARGET_64BIT_ |
| 4357 | #ifndef _TARGET_ARM_ |
| 4358 | // Right now we think that incoming arguments are not pointer sized. When we eventually |
| 4359 | // understand the calling convention, this still won't be true. But maybe we'll have a better |
| 4360 | // idea of how to ignore it. |
| 4361 | |
| 4362 | // On Arm, a long can be passed in register |
| 4363 | noway_assert(genTypeSize(genActualType(varDsc->TypeGet())) == TARGET_POINTER_SIZE); |
| 4364 | #endif |
| 4365 | #endif //_TARGET_64BIT_ |
| 4366 | |
| 4367 | noway_assert(varDsc->lvIsInReg() && !regArgTab[argNum].circular); |
| 4368 | |
| 4369 | /* Register argument - hopefully it stays in the same register */ |
| 4370 | regNumber destRegNum = REG_NA; |
| 4371 | var_types destMemType = varDsc->TypeGet(); |
| 4372 | |
| 4373 | if (regArgTab[argNum].slot == 1) |
| 4374 | { |
| 4375 | destRegNum = varDsc->lvRegNum; |
| 4376 | |
| 4377 | #ifdef _TARGET_ARM_ |
| 4378 | if (genActualType(destMemType) == TYP_DOUBLE && regArgTab[argNum + 1].processed) |
| 4379 | { |
| 4380 | // The second half of the double has already been processed! Treat this as a single. |
| 4381 | destMemType = TYP_FLOAT; |
| 4382 | } |
| 4383 | #endif // _TARGET_ARM_ |
| 4384 | } |
| 4385 | #ifndef _TARGET_64BIT_ |
| 4386 | else if (regArgTab[argNum].slot == 2 && genActualType(destMemType) == TYP_LONG) |
| 4387 | { |
| 4388 | assert(genActualType(varDsc->TypeGet()) == TYP_LONG || genActualType(varDsc->TypeGet()) == TYP_DOUBLE); |
| 4389 | if (genActualType(varDsc->TypeGet()) == TYP_DOUBLE) |
| 4390 | { |
| 4391 | destRegNum = regNum; |
| 4392 | } |
| 4393 | else |
| 4394 | { |
| 4395 | destRegNum = varDsc->lvOtherReg; |
| 4396 | } |
| 4397 | |
| 4398 | assert(destRegNum != REG_STK); |
| 4399 | } |
| 4400 | else |
| 4401 | { |
| 4402 | assert(regArgTab[argNum].slot == 2); |
| 4403 | assert(destMemType == TYP_DOUBLE); |
| 4404 | |
| 4405 | // For doubles, we move the entire double using the argNum representing |
| 4406 | // the first half of the double. There are two things we won't do: |
| 4407 | // (1) move the double when the 1st half of the destination is free but the |
| 4408 | // 2nd half is occupied, and (2) move the double when the 2nd half of the |
| 4409 | // destination is free but the 1st half is occupied. Here we consider the |
| 4410 | // case where the first half can't be moved initially because its target is |
| 4411 | // still busy, but the second half can be moved. We wait until the entire |
| 4412 | // double can be moved, if possible. For example, we have F0/F1 double moving to F2/F3, |
| 4413 | // and F2 single moving to F16. When we process F0, its target F2 is busy, |
| 4414 | // so we skip it on the first pass. When we process F1, its target F3 is |
| 4415 | // available. However, we want to move F0/F1 all at once, so we skip it here. |
| 4416 | // We process F2, which frees up F2. The next pass through, we process F0 and |
| 4417 | // F2/F3 are empty, so we move it. Note that if half of a double is involved |
| 4418 | // in a circularity with a single, then we will have already moved that half |
| 4419 | // above, so we go ahead and move the remaining half as a single. |
| 4420 | // Because there are no circularities left, we are guaranteed to terminate. |
| 4421 | |
| 4422 | assert(argNum > 0); |
| 4423 | assert(regArgTab[argNum - 1].slot == 1); |
| 4424 | |
| 4425 | if (!regArgTab[argNum - 1].processed) |
| 4426 | { |
| 4427 | // The first half of the double hasn't been processed; try to be processed at the same time |
| 4428 | continue; |
| 4429 | } |
| 4430 | |
| 4431 | // The first half of the double has been processed but the second half hasn't! |
| 4432 | // This could happen for double F2/F3 moving to F0/F1, and single F0 moving to F2. |
| 4433 | // In that case, there is a F0/F2 loop that is not a double-only loop. The circular |
| 4434 | // dependency logic above will move them as singles, leaving just F3 to move. Treat |
| 4435 | // it as a single to finish the shuffling. |
| 4436 | |
| 4437 | destMemType = TYP_FLOAT; |
| 4438 | destRegNum = REG_NEXT(varDsc->lvRegNum); |
| 4439 | } |
| 4440 | #endif // !_TARGET_64BIT_ |
| 4441 | #if (defined(UNIX_AMD64_ABI) || defined(_TARGET_ARM64_)) && defined(FEATURE_SIMD) |
| 4442 | else |
| 4443 | { |
| 4444 | assert(regArgTab[argNum].slot == 2); |
| 4445 | assert(argNum > 0); |
| 4446 | assert(regArgTab[argNum - 1].slot == 1); |
| 4447 | assert((varDsc->lvType == TYP_SIMD12) || (varDsc->lvType == TYP_SIMD16)); |
| 4448 | destRegNum = varDsc->lvRegNum; |
| 4449 | noway_assert(regNum != destRegNum); |
| 4450 | continue; |
| 4451 | } |
| 4452 | #endif // (defined(UNIX_AMD64_ABI) || defined(_TARGET_ARM64_)) && defined(FEATURE_SIMD) |
| 4453 | noway_assert(destRegNum != REG_NA); |
| 4454 | if (destRegNum != regNum) |
| 4455 | { |
| 4456 | /* Cannot trash a currently live register argument. |
| 4457 | * Skip this one until its target will be free |
| 4458 | * which is guaranteed to happen since we have no circular dependencies. */ |
| 4459 | |
| 4460 | regMaskTP destMask = genRegMask(destRegNum); |
| 4461 | #ifdef _TARGET_ARM_ |
| 4462 | // Don't process the double until both halves of the destination are clear. |
| 4463 | if (genActualType(destMemType) == TYP_DOUBLE) |
| 4464 | { |
| 4465 | assert((destMask & RBM_DBL_REGS) != 0); |
| 4466 | destMask |= genRegMask(REG_NEXT(destRegNum)); |
| 4467 | } |
| 4468 | #endif |
| 4469 | |
| 4470 | if (destMask & regArgMaskLive) |
| 4471 | { |
| 4472 | continue; |
| 4473 | } |
| 4474 | |
| 4475 | /* Move it to the new register */ |
| 4476 | |
| 4477 | emitAttr size = emitActualTypeSize(destMemType); |
| 4478 | |
| 4479 | #if defined(_TARGET_ARM64_) |
| 4480 | if (varTypeIsSIMD(varDsc) && argNum < (argMax - 1) && regArgTab[argNum + 1].slot == 2) |
| 4481 | { |
| 4482 | // For a SIMD type that is passed in two integer registers, |
| 4483 | // Limit the copy below to the first 8 bytes from the first integer register. |
| 4484 | // Handle the remaining 8 bytes from the second slot in the code further below |
| 4485 | assert(EA_SIZE(size) >= 8); |
| 4486 | size = EA_8BYTE; |
| 4487 | } |
| 4488 | #endif |
| 4489 | |
| 4490 | getEmitter()->emitIns_R_R(ins_Copy(destMemType), size, destRegNum, regNum); |
| 4491 | |
| 4492 | psiMoveToReg(varNum); |
| 4493 | } |
| 4494 | |
| 4495 | /* mark the argument as processed */ |
| 4496 | |
| 4497 | assert(!regArgTab[argNum].processed); |
| 4498 | regArgTab[argNum].processed = true; |
| 4499 | regArgMaskLive &= ~genRegMask(regNum); |
| 4500 | #if FEATURE_MULTIREG_ARGS |
| 4501 | int argRegCount = 1; |
| 4502 | #ifdef _TARGET_ARM_ |
| 4503 | if (genActualType(destMemType) == TYP_DOUBLE) |
| 4504 | { |
| 4505 | argRegCount = 2; |
| 4506 | } |
| 4507 | #endif |
| 4508 | #if defined(UNIX_AMD64_ABI) && defined(FEATURE_SIMD) |
| 4509 | if (varTypeIsStruct(varDsc) && argNum < (argMax - 1) && regArgTab[argNum + 1].slot == 2) |
| 4510 | { |
| 4511 | argRegCount = 2; |
| 4512 | int nextArgNum = argNum + 1; |
| 4513 | regNumber nextRegNum = genMapRegArgNumToRegNum(nextArgNum, regArgTab[nextArgNum].getRegType(compiler)); |
| 4514 | noway_assert(regArgTab[nextArgNum].varNum == varNum); |
| 4515 | // Emit a shufpd with a 0 immediate, which preserves the 0th element of the dest reg |
| 4516 | // and moves the 0th element of the src reg into the 1st element of the dest reg. |
| 4517 | getEmitter()->emitIns_R_R_I(INS_shufpd, emitActualTypeSize(varDsc->lvType), destRegNum, nextRegNum, 0); |
| 4518 | // Set destRegNum to regNum so that we skip the setting of the register below, |
| 4519 | // but mark argNum as processed and clear regNum from the live mask. |
| 4520 | destRegNum = regNum; |
| 4521 | } |
| 4522 | #endif // defined(UNIX_AMD64_ABI) && defined(FEATURE_SIMD) |
| 4523 | #if defined(_TARGET_ARM64_) && defined(FEATURE_SIMD) |
| 4524 | if (varTypeIsSIMD(varDsc) && argNum < (argMax - 1) && regArgTab[argNum + 1].slot == 2) |
| 4525 | { |
| 4526 | // For a SIMD type that is passed in two integer registers, |
| 4527 | // Code above copies the first integer argument register into the lower 8 bytes |
| 4528 | // of the target register. Here we must handle the second 8 bytes of the slot pair by |
| 4529 | // inserting the second integer register into the upper 8 bytes of the target |
| 4530 | // SIMD floating point register. |
| 4531 | argRegCount = 2; |
| 4532 | int nextArgNum = argNum + 1; |
| 4533 | regNumber nextRegNum = genMapRegArgNumToRegNum(nextArgNum, regArgTab[nextArgNum].getRegType(compiler)); |
| 4534 | noway_assert(regArgTab[nextArgNum].varNum == varNum); |
| 4535 | noway_assert(genIsValidIntReg(nextRegNum)); |
| 4536 | noway_assert(genIsValidFloatReg(destRegNum)); |
| 4537 | getEmitter()->emitIns_R_R_I(INS_mov, EA_8BYTE, destRegNum, nextRegNum, 1); |
| 4538 | } |
| 4539 | #endif // defined(_TARGET_ARM64_) && defined(FEATURE_SIMD) |
| 4540 | |
| 4541 | // Mark the rest of the argument registers corresponding to this multi-reg type as |
| 4542 | // being processed and no longer live. |
| 4543 | for (int regSlot = 1; regSlot < argRegCount; regSlot++) |
| 4544 | { |
| 4545 | int nextArgNum = argNum + regSlot; |
| 4546 | assert(!regArgTab[nextArgNum].processed); |
| 4547 | regArgTab[nextArgNum].processed = true; |
| 4548 | regNumber nextRegNum = genMapRegArgNumToRegNum(nextArgNum, regArgTab[nextArgNum].getRegType(compiler)); |
| 4549 | regArgMaskLive &= ~genRegMask(nextRegNum); |
| 4550 | } |
| 4551 | #endif // FEATURE_MULTIREG_ARGS |
| 4552 | } |
| 4553 | |
| 4554 | noway_assert(regArgMaskLiveSave != regArgMaskLive); // if it doesn't change, we have an infinite loop |
| 4555 | } |
| 4556 | } |
| 4557 | #ifdef _PREFAST_ |
| 4558 | #pragma warning(pop) |
| 4559 | #endif |
| 4560 | |
| 4561 | /***************************************************************************** |
| 4562 | * If any incoming stack arguments live in registers, load them. |
| 4563 | */ |
| 4564 | void CodeGen::genEnregisterIncomingStackArgs() |
| 4565 | { |
| 4566 | #ifdef DEBUG |
| 4567 | if (verbose) |
| 4568 | { |
| 4569 | printf("*************** In genEnregisterIncomingStackArgs()\n" ); |
| 4570 | } |
| 4571 | #endif |
| 4572 | |
| 4573 | assert(compiler->compGeneratingProlog); |
| 4574 | |
| 4575 | unsigned varNum = 0; |
| 4576 | |
| 4577 | for (LclVarDsc *varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++) |
| 4578 | { |
| 4579 | /* Is this variable a parameter? */ |
| 4580 | |
| 4581 | if (!varDsc->lvIsParam) |
| 4582 | { |
| 4583 | continue; |
| 4584 | } |
| 4585 | |
| 4586 | /* If it's a register argument then it's already been taken care of. |
| 4587 | But, on Arm when under a profiler, we would have prespilled a register argument |
| 4588 | and hence here we need to load it from its prespilled location. |
| 4589 | */ |
| 4590 | bool isPrespilledForProfiling = false; |
| 4591 | #if defined(_TARGET_ARM_) && defined(PROFILING_SUPPORTED) |
| 4592 | isPrespilledForProfiling = |
| 4593 | compiler->compIsProfilerHookNeeded() && compiler->lvaIsPreSpilled(varNum, regSet.rsMaskPreSpillRegs(false)); |
| 4594 | #endif |
| 4595 | |
| 4596 | if (varDsc->lvIsRegArg && !isPrespilledForProfiling) |
| 4597 | { |
| 4598 | continue; |
| 4599 | } |
| 4600 | |
| 4601 | /* Has the parameter been assigned to a register? */ |
| 4602 | |
| 4603 | if (!varDsc->lvIsInReg()) |
| 4604 | { |
| 4605 | continue; |
| 4606 | } |
| 4607 | |
| 4608 | var_types type = genActualType(varDsc->TypeGet()); |
| 4609 | |
| 4610 | /* Is the variable dead on entry */ |
| 4611 | |
| 4612 | if (!VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)) |
| 4613 | { |
| 4614 | continue; |
| 4615 | } |
| 4616 | |
| 4617 | /* Load the incoming parameter into the register */ |
| 4618 | |
| 4619 | /* Figure out the home offset of the incoming argument */ |
| 4620 | |
| 4621 | regNumber regNum = varDsc->lvArgInitReg; |
| 4622 | assert(regNum != REG_STK); |
| 4623 | |
| 4624 | getEmitter()->emitIns_R_S(ins_Load(type), emitTypeSize(type), regNum, varNum, 0); |
| 4625 | regSet.verifyRegUsed(regNum); |
| 4626 | |
| 4627 | psiMoveToReg(varNum); |
| 4628 | } |
| 4629 | } |
| 4630 | |
| 4631 | /*------------------------------------------------------------------------- |
| 4632 | * |
| 4633 | * We have to decide whether we're going to use block initialization |
| 4634 | * in the prolog before we assign final stack offsets. This is because |
| 4635 | * when using block initialization we may need additional callee-saved |
| 4636 | * registers which need to be saved on the frame, thus increasing the |
| 4637 | * frame size. |
| 4638 | * |
| 4639 | * We'll count the number of locals we have to initialize, |
| 4640 | * and if there are lots of them we'll use block initialization. |
| 4641 | * Thus, the local variable table must have accurate register location |
| 4642 | * information for enregistered locals for their register state on entry |
| 4643 | * to the function. |
| 4644 | * |
| 4645 | * At the same time we set lvMustInit for locals (enregistered or on stack) |
| 4646 | * that must be initialized (e.g. initialize memory (comInitMem), |
| 4647 | * untracked pointers or disable DFA) |
| 4648 | */ |
| 4649 | void CodeGen::genCheckUseBlockInit() |
| 4650 | { |
| 4651 | assert(!compiler->compGeneratingProlog); |
| 4652 | |
| 4653 | unsigned initStkLclCnt = 0; // The number of int-sized stack local variables that need to be initialized (variables |
| 4654 | // larger than int count for more than 1). |
| 4655 | unsigned largeGcStructs = 0; // The number of "large" structs with GC pointers. Used as part of the heuristic to |
| 4656 | // determine whether to use block init. |
| 4657 | |
| 4658 | unsigned varNum; |
| 4659 | LclVarDsc* varDsc; |
| 4660 | |
| 4661 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++) |
| 4662 | { |
| 4663 | if (varDsc->lvIsParam) |
| 4664 | { |
| 4665 | continue; |
| 4666 | } |
| 4667 | |
| 4668 | if (!varDsc->lvIsInReg() && !varDsc->lvOnFrame) |
| 4669 | { |
| 4670 | noway_assert(varDsc->lvRefCnt() == 0); |
| 4671 | continue; |
| 4672 | } |
| 4673 | |
| 4674 | if (varNum == compiler->lvaInlinedPInvokeFrameVar || varNum == compiler->lvaStubArgumentVar) |
| 4675 | { |
| 4676 | continue; |
| 4677 | } |
| 4678 | |
| 4679 | #if FEATURE_FIXED_OUT_ARGS |
| 4680 | if (varNum == compiler->lvaPInvokeFrameRegSaveVar) |
| 4681 | { |
| 4682 | continue; |
| 4683 | } |
| 4684 | if (varNum == compiler->lvaOutgoingArgSpaceVar) |
| 4685 | { |
| 4686 | continue; |
| 4687 | } |
| 4688 | #endif |
| 4689 | |
| 4690 | #if FEATURE_EH_FUNCLETS |
| 4691 | // There's no need to force 0-initialization of the PSPSym, it will be |
| 4692 | // initialized with a real value in the prolog |
| 4693 | if (varNum == compiler->lvaPSPSym) |
| 4694 | { |
| 4695 | continue; |
| 4696 | } |
| 4697 | #endif |
| 4698 | |
| 4699 | if (compiler->lvaIsFieldOfDependentlyPromotedStruct(varDsc)) |
| 4700 | { |
| 4701 | // For Compiler::PROMOTION_TYPE_DEPENDENT type of promotion, the whole struct should have been |
| 4702 | // initialized by the parent struct. No need to set the lvMustInit bit in the |
| 4703 | // field locals. |
| 4704 | continue; |
| 4705 | } |
| 4706 | |
| 4707 | if (compiler->info.compInitMem || varTypeIsGC(varDsc->TypeGet()) || (varDsc->lvStructGcCount > 0) || |
| 4708 | varDsc->lvMustInit) |
| 4709 | { |
| 4710 | if (varDsc->lvTracked) |
| 4711 | { |
| 4712 | /* For uninitialized use of tracked variables, the liveness |
| 4713 | * will bubble to the top (compiler->fgFirstBB) in fgInterBlockLocalVarLiveness() |
| 4714 | */ |
| 4715 | if (varDsc->lvMustInit || |
| 4716 | VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)) |
| 4717 | { |
| 4718 | /* This var must be initialized */ |
| 4719 | |
| 4720 | varDsc->lvMustInit = 1; |
| 4721 | |
| 4722 | /* See if the variable is on the stack will be initialized |
| 4723 | * using rep stos - compute the total size to be zero-ed */ |
| 4724 | |
| 4725 | if (varDsc->lvOnFrame) |
| 4726 | { |
| 4727 | if (!varDsc->lvRegister) |
| 4728 | { |
| 4729 | if (!varDsc->lvIsInReg()) |
| 4730 | { |
| 4731 | // Var is on the stack at entry. |
| 4732 | initStkLclCnt += |
| 4733 | roundUp(compiler->lvaLclSize(varNum), TARGET_POINTER_SIZE) / sizeof(int); |
| 4734 | } |
| 4735 | } |
| 4736 | else |
| 4737 | { |
| 4738 | // Var is partially enregistered |
| 4739 | noway_assert(genTypeSize(varDsc->TypeGet()) > sizeof(int) && varDsc->lvOtherReg == REG_STK); |
| 4740 | initStkLclCnt += genTypeStSz(TYP_INT); |
| 4741 | } |
| 4742 | } |
| 4743 | } |
| 4744 | } |
| 4745 | |
| 4746 | /* With compInitMem, all untracked vars will have to be init'ed */ |
| 4747 | /* VSW 102460 - Do not force initialization of compiler generated temps, |
| 4748 | unless they are untracked GC type or structs that contain GC pointers */ |
| 4749 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 4750 | |
| 4751 | #if FEATURE_SIMD |
| 4752 | // TODO-1stClassStructs |
| 4753 | // This is here to duplicate previous behavior, where TYP_SIMD8 locals |
| 4754 | // were not being re-typed correctly. |
| 4755 | if ((!varDsc->lvTracked || (varDsc->lvType == TYP_STRUCT) || (varDsc->lvType == TYP_SIMD8)) && |
| 4756 | #else // !FEATURE_SIMD |
| 4757 | if ((!varDsc->lvTracked || (varDsc->lvType == TYP_STRUCT)) && |
| 4758 | #endif // !FEATURE_SIMD |
| 4759 | varDsc->lvOnFrame && |
| 4760 | (!varDsc->lvIsTemp || varTypeIsGC(varDsc->TypeGet()) || (varDsc->lvStructGcCount > 0))) |
| 4761 | { |
| 4762 | varDsc->lvMustInit = true; |
| 4763 | |
| 4764 | initStkLclCnt += roundUp(compiler->lvaLclSize(varNum), TARGET_POINTER_SIZE) / sizeof(int); |
| 4765 | } |
| 4766 | |
| 4767 | continue; |
| 4768 | } |
| 4769 | |
| 4770 | /* Ignore if not a pointer variable or value class with a GC field */ |
| 4771 | |
| 4772 | if (!compiler->lvaTypeIsGC(varNum)) |
| 4773 | { |
| 4774 | continue; |
| 4775 | } |
| 4776 | |
| 4777 | /* If we don't know lifetimes of variables, must be conservative */ |
| 4778 | if (!compiler->backendRequiresLocalVarLifetimes()) |
| 4779 | { |
| 4780 | varDsc->lvMustInit = true; |
| 4781 | noway_assert(!varDsc->lvRegister); |
| 4782 | } |
| 4783 | else |
| 4784 | { |
| 4785 | if (!varDsc->lvTracked) |
| 4786 | { |
| 4787 | varDsc->lvMustInit = true; |
| 4788 | } |
| 4789 | } |
| 4790 | |
| 4791 | /* Is this a 'must-init' stack pointer local? */ |
| 4792 | |
| 4793 | if (varDsc->lvMustInit && varDsc->lvOnFrame) |
| 4794 | { |
| 4795 | initStkLclCnt += varDsc->lvStructGcCount; |
| 4796 | } |
| 4797 | |
| 4798 | if ((compiler->lvaLclSize(varNum) > (3 * TARGET_POINTER_SIZE)) && (largeGcStructs <= 4)) |
| 4799 | { |
| 4800 | largeGcStructs++; |
| 4801 | } |
| 4802 | } |
| 4803 | |
| 4804 | /* Don't forget about spill temps that hold pointers */ |
| 4805 | |
| 4806 | if (!TRACK_GC_TEMP_LIFETIMES) |
| 4807 | { |
| 4808 | assert(regSet.tmpAllFree()); |
| 4809 | for (TempDsc* tempThis = regSet.tmpListBeg(); tempThis != nullptr; tempThis = regSet.tmpListNxt(tempThis)) |
| 4810 | { |
| 4811 | if (varTypeIsGC(tempThis->tdTempType())) |
| 4812 | { |
| 4813 | initStkLclCnt++; |
| 4814 | } |
| 4815 | } |
| 4816 | } |
| 4817 | |
| 4818 | // After debugging this further it was found that this logic is incorrect: |
| 4819 | // it incorrectly assumes the stack slots are always 4 bytes (not necessarily the case) |
| 4820 | // and this also double counts variables (we saw this in the debugger) around line 4829. |
| 4821 | // Even though this doesn't pose a problem with correctness it will improperly decide to |
| 4822 | // zero init the stack using a block operation instead of a 'case by case' basis. |
| 4823 | genInitStkLclCnt = initStkLclCnt; |
| 4824 | |
| 4825 | /* If we have more than 4 untracked locals, use block initialization */ |
| 4826 | /* TODO-Review: If we have large structs, bias toward not using block initialization since |
| 4827 | we waste all the other slots. Really need to compute the correct |
| 4828 | and compare that against zeroing the slots individually */ |
| 4829 | |
| 4830 | genUseBlockInit = (genInitStkLclCnt > (largeGcStructs + 4)); |
| 4831 | |
| 4832 | if (genUseBlockInit) |
| 4833 | { |
| 4834 | regMaskTP maskCalleeRegArgMask = intRegState.rsCalleeRegArgMaskLiveIn; |
| 4835 | |
| 4836 | // If there is a secret stub param, don't count it, as it will no longer |
| 4837 | // be live when we do block init. |
| 4838 | if (compiler->info.compPublishStubParam) |
| 4839 | { |
| 4840 | maskCalleeRegArgMask &= ~RBM_SECRET_STUB_PARAM; |
| 4841 | } |
| 4842 | |
| 4843 | #ifdef _TARGET_XARCH_ |
| 4844 | // If we're going to use "REP STOS", remember that we will trash EDI |
| 4845 | // For fastcall we will have to save ECX, EAX |
| 4846 | // so reserve two extra callee saved |
| 4847 | // This is better than pushing eax, ecx, because we in the later |
| 4848 | // we will mess up already computed offsets on the stack (for ESP frames) |
| 4849 | regSet.rsSetRegsModified(RBM_EDI); |
| 4850 | |
| 4851 | #ifdef UNIX_AMD64_ABI |
| 4852 | // For register arguments we may have to save ECX (and RDI on Amd64 System V OSes.) |
| 4853 | // In such case use R12 and R13 registers. |
| 4854 | if (maskCalleeRegArgMask & RBM_RCX) |
| 4855 | { |
| 4856 | regSet.rsSetRegsModified(RBM_R12); |
| 4857 | } |
| 4858 | |
| 4859 | if (maskCalleeRegArgMask & RBM_RDI) |
| 4860 | { |
| 4861 | regSet.rsSetRegsModified(RBM_R13); |
| 4862 | } |
| 4863 | #else // !UNIX_AMD64_ABI |
| 4864 | if (maskCalleeRegArgMask & RBM_ECX) |
| 4865 | { |
| 4866 | regSet.rsSetRegsModified(RBM_ESI); |
| 4867 | } |
| 4868 | #endif // !UNIX_AMD64_ABI |
| 4869 | |
| 4870 | if (maskCalleeRegArgMask & RBM_EAX) |
| 4871 | { |
| 4872 | regSet.rsSetRegsModified(RBM_EBX); |
| 4873 | } |
| 4874 | |
| 4875 | #endif // _TARGET_XARCH_ |
| 4876 | #ifdef _TARGET_ARM_ |
| 4877 | // |
| 4878 | // On the Arm if we are using a block init to initialize, then we |
| 4879 | // must force spill R4/R5/R6 so that we can use them during |
| 4880 | // zero-initialization process. |
| 4881 | // |
| 4882 | int forceSpillRegCount = genCountBits(maskCalleeRegArgMask & ~regSet.rsMaskPreSpillRegs(false)) - 1; |
| 4883 | if (forceSpillRegCount > 0) |
| 4884 | regSet.rsSetRegsModified(RBM_R4); |
| 4885 | if (forceSpillRegCount > 1) |
| 4886 | regSet.rsSetRegsModified(RBM_R5); |
| 4887 | if (forceSpillRegCount > 2) |
| 4888 | regSet.rsSetRegsModified(RBM_R6); |
| 4889 | #endif // _TARGET_ARM_ |
| 4890 | } |
| 4891 | } |
| 4892 | |
| 4893 | /*----------------------------------------------------------------------------- |
| 4894 | * |
| 4895 | * Push any callee-saved registers we have used |
| 4896 | */ |
| 4897 | |
| 4898 | #if defined(_TARGET_ARM64_) |
| 4899 | void CodeGen::genPushCalleeSavedRegisters(regNumber initReg, bool* pInitRegZeroed) |
| 4900 | #else |
| 4901 | void CodeGen::genPushCalleeSavedRegisters() |
| 4902 | #endif |
| 4903 | { |
| 4904 | assert(compiler->compGeneratingProlog); |
| 4905 | |
| 4906 | #if defined(_TARGET_XARCH_) |
| 4907 | // x86/x64 doesn't support push of xmm/ymm regs, therefore consider only integer registers for pushing onto stack |
| 4908 | // here. Space for float registers to be preserved is stack allocated and saved as part of prolog sequence and not |
| 4909 | // here. |
| 4910 | regMaskTP rsPushRegs = regSet.rsGetModifiedRegsMask() & RBM_INT_CALLEE_SAVED; |
| 4911 | #else // !defined(_TARGET_XARCH_) |
| 4912 | regMaskTP rsPushRegs = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED; |
| 4913 | #endif |
| 4914 | |
| 4915 | #if ETW_EBP_FRAMED |
| 4916 | if (!isFramePointerUsed() && regSet.rsRegsModified(RBM_FPBASE)) |
| 4917 | { |
| 4918 | noway_assert(!"Used register RBM_FPBASE as a scratch register!" ); |
| 4919 | } |
| 4920 | #endif |
| 4921 | |
| 4922 | #ifdef _TARGET_XARCH_ |
| 4923 | // On X86/X64 we have already pushed the FP (frame-pointer) prior to calling this method |
| 4924 | if (isFramePointerUsed()) |
| 4925 | { |
| 4926 | rsPushRegs &= ~RBM_FPBASE; |
| 4927 | } |
| 4928 | #endif |
| 4929 | |
| 4930 | #ifdef _TARGET_ARMARCH_ |
| 4931 | // On ARM we push the FP (frame-pointer) here along with all other callee saved registers |
| 4932 | if (isFramePointerUsed()) |
| 4933 | rsPushRegs |= RBM_FPBASE; |
| 4934 | |
| 4935 | // |
| 4936 | // It may be possible to skip pushing/popping lr for leaf methods. However, such optimization would require |
| 4937 | // changes in GC suspension architecture. |
| 4938 | // |
| 4939 | // We would need to guarantee that a tight loop calling a virtual leaf method can be suspended for GC. Today, we |
| 4940 | // generate partially interruptible code for both the method that contains the tight loop with the call and the leaf |
| 4941 | // method. GC suspension depends on return address hijacking in this case. Return address hijacking depends |
| 4942 | // on the return address to be saved on the stack. If we skipped pushing/popping lr, the return address would never |
| 4943 | // be saved on the stack and the GC suspension would time out. |
| 4944 | // |
| 4945 | // So if we wanted to skip pushing pushing/popping lr for leaf frames, we would also need to do one of |
| 4946 | // the following to make GC suspension work in the above scenario: |
| 4947 | // - Make return address hijacking work even when lr is not saved on the stack. |
| 4948 | // - Generate fully interruptible code for loops that contains calls |
| 4949 | // - Generate fully interruptible code for leaf methods |
| 4950 | // |
| 4951 | // Given the limited benefit from this optimization (<10k for mscorlib NGen image), the extra complexity |
| 4952 | // is not worth it. |
| 4953 | // |
| 4954 | rsPushRegs |= RBM_LR; // We must save the return address (in the LR register) |
| 4955 | |
| 4956 | regSet.rsMaskCalleeSaved = rsPushRegs; |
| 4957 | #endif // _TARGET_ARMARCH_ |
| 4958 | |
| 4959 | #ifdef DEBUG |
| 4960 | if (compiler->compCalleeRegsPushed != genCountBits(rsPushRegs)) |
| 4961 | { |
| 4962 | printf("Error: unexpected number of callee-saved registers to push. Expected: %d. Got: %d " , |
| 4963 | compiler->compCalleeRegsPushed, genCountBits(rsPushRegs)); |
| 4964 | dspRegMask(rsPushRegs); |
| 4965 | printf("\n" ); |
| 4966 | assert(compiler->compCalleeRegsPushed == genCountBits(rsPushRegs)); |
| 4967 | } |
| 4968 | #endif // DEBUG |
| 4969 | |
| 4970 | #if defined(_TARGET_ARM_) |
| 4971 | regMaskTP maskPushRegsFloat = rsPushRegs & RBM_ALLFLOAT; |
| 4972 | regMaskTP maskPushRegsInt = rsPushRegs & ~maskPushRegsFloat; |
| 4973 | |
| 4974 | maskPushRegsInt |= genStackAllocRegisterMask(compiler->compLclFrameSize, maskPushRegsFloat); |
| 4975 | |
| 4976 | assert(FitsIn<int>(maskPushRegsInt)); |
| 4977 | inst_IV(INS_push, (int)maskPushRegsInt); |
| 4978 | compiler->unwindPushMaskInt(maskPushRegsInt); |
| 4979 | |
| 4980 | if (maskPushRegsFloat != 0) |
| 4981 | { |
| 4982 | genPushFltRegs(maskPushRegsFloat); |
| 4983 | compiler->unwindPushMaskFloat(maskPushRegsFloat); |
| 4984 | } |
| 4985 | #elif defined(_TARGET_ARM64_) |
| 4986 | // See the document "ARM64 JIT Frame Layout" and/or "ARM64 Exception Data" for more details or requirements and |
| 4987 | // options. Case numbers in comments here refer to this document. |
| 4988 | // |
| 4989 | // For most frames, generate, e.g.: |
| 4990 | // stp fp, lr, [sp,-0x80]! // predecrement SP with full frame size, and store FP/LR pair. Store pair |
| 4991 | // // ensures stack stays aligned. |
| 4992 | // stp r19, r20, [sp, 0x60] // store at positive offset from SP established above, into callee-saved area |
| 4993 | // // at top of frame (highest addresses). |
| 4994 | // stp r21, r22, [sp, 0x70] |
| 4995 | // |
| 4996 | // Notes: |
| 4997 | // 1. We don't always need to save FP. If FP isn't saved, then LR is saved with the other callee-saved registers |
| 4998 | // at the top of the frame. |
| 4999 | // 2. If we save FP, then the first store is FP, LR. |
| 5000 | // 3. General-purpose registers are 8 bytes, floating-point registers are 16 bytes, but FP/SIMD registers only |
| 5001 | // preserve their lower 8 bytes, by calling convention. |
| 5002 | // 4. For frames with varargs, we spill the integer register arguments to the stack, so all the arguments are |
| 5003 | // consecutive. |
| 5004 | // 5. We allocate the frame here; no further changes to SP are allowed (except in the body, for localloc). |
| 5005 | |
| 5006 | int totalFrameSize = genTotalFrameSize(); |
| 5007 | |
| 5008 | int offset; // This will be the starting place for saving the callee-saved registers, in increasing order. |
| 5009 | |
| 5010 | regMaskTP maskSaveRegsFloat = rsPushRegs & RBM_ALLFLOAT; |
| 5011 | regMaskTP maskSaveRegsInt = rsPushRegs & ~maskSaveRegsFloat; |
| 5012 | |
| 5013 | int frameType = 0; // This number is arbitrary, is defined below, and corresponds to one of the frame styles we |
| 5014 | // generate based on various sizes. |
| 5015 | int calleeSaveSPDelta = 0; |
| 5016 | int calleeSaveSPDeltaUnaligned = 0; |
| 5017 | |
| 5018 | if (isFramePointerUsed()) |
| 5019 | { |
| 5020 | // We need to save both FP and LR. |
| 5021 | |
| 5022 | assert((maskSaveRegsInt & RBM_FP) != 0); |
| 5023 | assert((maskSaveRegsInt & RBM_LR) != 0); |
| 5024 | |
| 5025 | if ((compiler->lvaOutgoingArgSpaceSize == 0) && (totalFrameSize < 512)) |
| 5026 | { |
| 5027 | // Case #1. |
| 5028 | // |
| 5029 | // Generate: |
| 5030 | // stp fp,lr,[sp,#-framesz]! |
| 5031 | // |
| 5032 | // The (totalFrameSize < 512) condition ensures that both the predecrement |
| 5033 | // and the postincrement of SP can occur with STP. |
| 5034 | // |
| 5035 | // After saving callee-saved registers, we establish the frame pointer with: |
| 5036 | // mov fp,sp |
| 5037 | // We do this *after* saving callee-saved registers, so the prolog/epilog unwind codes mostly match. |
| 5038 | |
| 5039 | frameType = 1; |
| 5040 | |
| 5041 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, -totalFrameSize, |
| 5042 | INS_OPTS_PRE_INDEX); |
| 5043 | compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, -totalFrameSize); |
| 5044 | |
| 5045 | maskSaveRegsInt &= ~(RBM_FP | RBM_LR); // We've already saved FP/LR |
| 5046 | offset = (int)compiler->compLclFrameSize + 2 * REGSIZE_BYTES; // 2 for FP/LR |
| 5047 | } |
| 5048 | else if (totalFrameSize <= 512) |
| 5049 | { |
| 5050 | // Case #2. |
| 5051 | // |
| 5052 | // Generate: |
| 5053 | // sub sp,sp,#framesz |
| 5054 | // stp fp,lr,[sp,#outsz] // note that by necessity, #outsz <= #framesz - 16, so #outsz <= 496. |
| 5055 | // |
| 5056 | // The (totalFrameSize <= 512) condition ensures the callee-saved registers can all be saved using STP with |
| 5057 | // signed offset encoding. |
| 5058 | // |
| 5059 | // After saving callee-saved registers, we establish the frame pointer with: |
| 5060 | // add fp,sp,#outsz |
| 5061 | // We do this *after* saving callee-saved registers, so the prolog/epilog unwind codes mostly match. |
| 5062 | |
| 5063 | frameType = 2; |
| 5064 | |
| 5065 | assert(compiler->lvaOutgoingArgSpaceSize + 2 * REGSIZE_BYTES <= (unsigned)totalFrameSize); |
| 5066 | |
| 5067 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, totalFrameSize); |
| 5068 | compiler->unwindAllocStack(totalFrameSize); |
| 5069 | |
| 5070 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, |
| 5071 | compiler->lvaOutgoingArgSpaceSize); |
| 5072 | compiler->unwindSaveRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize); |
| 5073 | |
| 5074 | maskSaveRegsInt &= ~(RBM_FP | RBM_LR); // We've already saved FP/LR |
| 5075 | offset = (int)compiler->compLclFrameSize + 2 * REGSIZE_BYTES; // 2 for FP/LR |
| 5076 | } |
| 5077 | else |
| 5078 | { |
| 5079 | // Case 5 or 6. |
| 5080 | // |
| 5081 | // First, the callee-saved registers will be saved, and the callee-saved register code must use pre-index |
| 5082 | // to subtract from SP as the first instruction. It must also leave space for varargs registers to be |
| 5083 | // stored. For example: |
| 5084 | // stp r19,r20,[sp,#-96]! |
| 5085 | // stp d8,d9,[sp,#16] |
| 5086 | // ... save varargs incoming integer registers ... |
| 5087 | // Note that all SP alterations must be 16-byte aligned. We have already calculated any alignment to be |
| 5088 | // lower on the stack than the callee-saved registers (see lvaAlignFrame() for how we calculate alignment). |
| 5089 | // So, if there is an odd number of callee-saved registers, we use (for example, with just one saved |
| 5090 | // register): |
| 5091 | // sub sp,sp,#16 |
| 5092 | // str r19,[sp,#8] |
| 5093 | // This is one additional instruction, but it centralizes the aligned space. Otherwise, it might be |
| 5094 | // possible to have two 8-byte alignment padding words, one below the callee-saved registers, and one |
| 5095 | // above them. If that is preferable, we could implement it. |
| 5096 | // Note that any varargs saved space will always be 16-byte aligned, since there are 8 argument registers. |
| 5097 | // |
| 5098 | // Then, define #remainingFrameSz = #framesz - (callee-saved size + varargs space + possible alignment |
| 5099 | // padding from above). |
| 5100 | // Note that #remainingFrameSz must not be zero, since we still need to save FP,SP. |
| 5101 | // |
| 5102 | // Generate: |
| 5103 | // sub sp,sp,#remainingFrameSz |
| 5104 | // or, for large frames: |
| 5105 | // mov rX, #remainingFrameSz // maybe multiple instructions |
| 5106 | // sub sp,sp,rX |
| 5107 | // |
| 5108 | // followed by: |
| 5109 | // stp fp,lr,[sp,#outsz] |
| 5110 | // add fp,sp,#outsz |
| 5111 | // |
| 5112 | // However, we need to handle the case where #outsz is larger than the constant signed offset encoding can |
| 5113 | // handle. And, once again, we might need to deal with #outsz that is not aligned to 16-bytes (i.e., |
| 5114 | // STACK_ALIGN). So, in the case of large #outsz we will have an additional SP adjustment, using one of the |
| 5115 | // following sequences: |
| 5116 | // |
| 5117 | // Define #remainingFrameSz2 = #remainingFrameSz - #outsz. |
| 5118 | // |
| 5119 | // sub sp,sp,#remainingFrameSz2 // if #remainingFrameSz2 is 16-byte aligned |
| 5120 | // stp fp,lr,[sp] |
| 5121 | // mov fp,sp |
| 5122 | // sub sp,sp,#outsz // in this case, #outsz must also be 16-byte aligned |
| 5123 | // |
| 5124 | // Or: |
| 5125 | // |
| 5126 | // sub sp,sp,roundUp(#remainingFrameSz2,16) // if #remainingFrameSz2 is not 16-byte aligned (it is |
| 5127 | // // always guaranteed to be 8 byte aligned). |
| 5128 | // stp fp,lr,[sp,#8] // it will always be #8 in the unaligned case |
| 5129 | // add fp,sp,#8 |
| 5130 | // sub sp,sp,#outsz - #8 |
| 5131 | // |
| 5132 | // (As usual, for a large constant "#outsz - #8", we might need multiple instructions: |
| 5133 | // mov rX, #outsz - #8 // maybe multiple instructions |
| 5134 | // sub sp,sp,rX |
| 5135 | // ) |
| 5136 | |
| 5137 | frameType = 3; |
| 5138 | |
| 5139 | calleeSaveSPDeltaUnaligned = |
| 5140 | totalFrameSize - compiler->compLclFrameSize - 2 * REGSIZE_BYTES; // 2 for FP, LR which we'll save later. |
| 5141 | assert(calleeSaveSPDeltaUnaligned >= 0); |
| 5142 | assert((calleeSaveSPDeltaUnaligned % 8) == 0); // It better at least be 8 byte aligned. |
| 5143 | calleeSaveSPDelta = AlignUp((UINT)calleeSaveSPDeltaUnaligned, STACK_ALIGN); |
| 5144 | |
| 5145 | offset = calleeSaveSPDelta - calleeSaveSPDeltaUnaligned; |
| 5146 | assert((offset == 0) || (offset == REGSIZE_BYTES)); // At most one alignment slot between SP and where we |
| 5147 | // store the callee-saved registers. |
| 5148 | |
| 5149 | // We'll take care of these later, but callee-saved regs code shouldn't see them. |
| 5150 | maskSaveRegsInt &= ~(RBM_FP | RBM_LR); |
| 5151 | } |
| 5152 | } |
| 5153 | else |
| 5154 | { |
| 5155 | // No frame pointer (no chaining). |
| 5156 | assert((maskSaveRegsInt & RBM_FP) == 0); |
| 5157 | assert((maskSaveRegsInt & RBM_LR) != 0); |
| 5158 | |
| 5159 | // Note that there is no pre-indexed save_lrpair unwind code variant, so we can't allocate the frame using 'stp' |
| 5160 | // if we only have one callee-saved register plus LR to save. |
| 5161 | |
| 5162 | NYI("Frame without frame pointer" ); |
| 5163 | offset = 0; |
| 5164 | } |
| 5165 | |
| 5166 | assert(frameType != 0); |
| 5167 | |
| 5168 | genSaveCalleeSavedRegistersHelp(maskSaveRegsInt | maskSaveRegsFloat, offset, -calleeSaveSPDelta); |
| 5169 | |
| 5170 | offset += genCountBits(maskSaveRegsInt | maskSaveRegsFloat) * REGSIZE_BYTES; |
| 5171 | |
| 5172 | // For varargs, home the incoming arg registers last. Note that there is nothing to unwind here, |
| 5173 | // so we just report "NOP" unwind codes. If there's no more frame setup after this, we don't |
| 5174 | // need to add codes at all. |
| 5175 | |
| 5176 | if (compiler->info.compIsVarArgs) |
| 5177 | { |
| 5178 | // There are 8 general-purpose registers to home, thus 'offset' must be 16-byte aligned here. |
| 5179 | assert((offset % 16) == 0); |
| 5180 | for (regNumber reg1 = REG_ARG_FIRST; reg1 < REG_ARG_LAST; reg1 = REG_NEXT(REG_NEXT(reg1))) |
| 5181 | { |
| 5182 | regNumber reg2 = REG_NEXT(reg1); |
| 5183 | // stp REG, REG + 1, [SP, #offset] |
| 5184 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, offset); |
| 5185 | compiler->unwindNop(); |
| 5186 | offset += 2 * REGSIZE_BYTES; |
| 5187 | } |
| 5188 | } |
| 5189 | |
| 5190 | if (frameType == 1) |
| 5191 | { |
| 5192 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_SPBASE); |
| 5193 | compiler->unwindSetFrameReg(REG_FPBASE, 0); |
| 5194 | } |
| 5195 | else if (frameType == 2) |
| 5196 | { |
| 5197 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize); |
| 5198 | compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize); |
| 5199 | } |
| 5200 | else if (frameType == 3) |
| 5201 | { |
| 5202 | int remainingFrameSz = totalFrameSize - calleeSaveSPDelta; |
| 5203 | assert(remainingFrameSz > 0); |
| 5204 | assert((remainingFrameSz % 16) == 0); // this is guaranteed to be 16-byte aligned because each component -- |
| 5205 | // totalFrameSize and calleeSaveSPDelta -- is 16-byte aligned. |
| 5206 | |
| 5207 | if (compiler->lvaOutgoingArgSpaceSize >= 504) |
| 5208 | { |
| 5209 | // We can't do "stp fp,lr,[sp,#outsz]" because #outsz is too big. |
| 5210 | // If compiler->lvaOutgoingArgSpaceSize is not aligned, we need to align the SP adjustment. |
| 5211 | assert(remainingFrameSz > (int)compiler->lvaOutgoingArgSpaceSize); |
| 5212 | int spAdjustment2Unaligned = remainingFrameSz - compiler->lvaOutgoingArgSpaceSize; |
| 5213 | int spAdjustment2 = (int)roundUp((unsigned)spAdjustment2Unaligned, STACK_ALIGN); |
| 5214 | int alignmentAdjustment2 = spAdjustment2 - spAdjustment2Unaligned; |
| 5215 | assert((alignmentAdjustment2 == 0) || (alignmentAdjustment2 == 8)); |
| 5216 | |
| 5217 | genPrologSaveRegPair(REG_FP, REG_LR, alignmentAdjustment2, -spAdjustment2, false, initReg, pInitRegZeroed); |
| 5218 | offset += spAdjustment2; |
| 5219 | |
| 5220 | // Now subtract off the #outsz (or the rest of the #outsz if it was unaligned, and the above "sub" included |
| 5221 | // some of it) |
| 5222 | |
| 5223 | int spAdjustment3 = compiler->lvaOutgoingArgSpaceSize - alignmentAdjustment2; |
| 5224 | assert(spAdjustment3 > 0); |
| 5225 | assert((spAdjustment3 % 16) == 0); |
| 5226 | |
| 5227 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, alignmentAdjustment2); |
| 5228 | compiler->unwindSetFrameReg(REG_FPBASE, alignmentAdjustment2); |
| 5229 | |
| 5230 | genStackPointerAdjustment(-spAdjustment3, initReg, pInitRegZeroed); |
| 5231 | offset += spAdjustment3; |
| 5232 | } |
| 5233 | else |
| 5234 | { |
| 5235 | genPrologSaveRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize, -remainingFrameSz, false, initReg, |
| 5236 | pInitRegZeroed); |
| 5237 | offset += remainingFrameSz; |
| 5238 | |
| 5239 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize); |
| 5240 | compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize); |
| 5241 | } |
| 5242 | } |
| 5243 | |
| 5244 | assert(offset == totalFrameSize); |
| 5245 | |
| 5246 | #elif defined(_TARGET_XARCH_) |
| 5247 | // Push backwards so we match the order we will pop them in the epilog |
| 5248 | // and all the other code that expects it to be in this order. |
| 5249 | for (regNumber reg = REG_INT_LAST; rsPushRegs != RBM_NONE; reg = REG_PREV(reg)) |
| 5250 | { |
| 5251 | regMaskTP regBit = genRegMask(reg); |
| 5252 | |
| 5253 | if ((regBit & rsPushRegs) != 0) |
| 5254 | { |
| 5255 | inst_RV(INS_push, reg, TYP_REF); |
| 5256 | compiler->unwindPush(reg); |
| 5257 | |
| 5258 | if (!doubleAlignOrFramePointerUsed()) |
| 5259 | { |
| 5260 | psiAdjustStackLevel(REGSIZE_BYTES); |
| 5261 | } |
| 5262 | |
| 5263 | rsPushRegs &= ~regBit; |
| 5264 | } |
| 5265 | } |
| 5266 | |
| 5267 | #else |
| 5268 | assert(!"Unknown TARGET" ); |
| 5269 | #endif // _TARGET_* |
| 5270 | } |
| 5271 | |
| 5272 | #if defined(_TARGET_ARM_) |
| 5273 | |
| 5274 | void CodeGen::genPushFltRegs(regMaskTP regMask) |
| 5275 | { |
| 5276 | assert(regMask != 0); // Don't call uness we have some registers to push |
| 5277 | assert((regMask & RBM_ALLFLOAT) == regMask); // Only floasting point registers should be in regMask |
| 5278 | |
| 5279 | regNumber lowReg = genRegNumFromMask(genFindLowestBit(regMask)); |
| 5280 | int slots = genCountBits(regMask); |
| 5281 | // regMask should be contiguously set |
| 5282 | regMaskTP tmpMask = ((regMask >> lowReg) + 1); // tmpMask should have a single bit set |
| 5283 | assert((tmpMask & (tmpMask - 1)) == 0); |
| 5284 | assert(lowReg == REG_F16); // Currently we expect to start at F16 in the unwind codes |
| 5285 | |
| 5286 | // Our calling convention requires that we only use vpush for TYP_DOUBLE registers |
| 5287 | noway_assert(floatRegCanHoldType(lowReg, TYP_DOUBLE)); |
| 5288 | noway_assert((slots % 2) == 0); |
| 5289 | |
| 5290 | getEmitter()->emitIns_R_I(INS_vpush, EA_8BYTE, lowReg, slots / 2); |
| 5291 | } |
| 5292 | |
| 5293 | void CodeGen::genPopFltRegs(regMaskTP regMask) |
| 5294 | { |
| 5295 | assert(regMask != 0); // Don't call uness we have some registers to pop |
| 5296 | assert((regMask & RBM_ALLFLOAT) == regMask); // Only floasting point registers should be in regMask |
| 5297 | |
| 5298 | regNumber lowReg = genRegNumFromMask(genFindLowestBit(regMask)); |
| 5299 | int slots = genCountBits(regMask); |
| 5300 | // regMask should be contiguously set |
| 5301 | regMaskTP tmpMask = ((regMask >> lowReg) + 1); // tmpMask should have a single bit set |
| 5302 | assert((tmpMask & (tmpMask - 1)) == 0); |
| 5303 | |
| 5304 | // Our calling convention requires that we only use vpop for TYP_DOUBLE registers |
| 5305 | noway_assert(floatRegCanHoldType(lowReg, TYP_DOUBLE)); |
| 5306 | noway_assert((slots % 2) == 0); |
| 5307 | |
| 5308 | getEmitter()->emitIns_R_I(INS_vpop, EA_8BYTE, lowReg, slots / 2); |
| 5309 | } |
| 5310 | |
| 5311 | /*----------------------------------------------------------------------------- |
| 5312 | * |
| 5313 | * If we have a jmp call, then the argument registers cannot be used in the |
| 5314 | * epilog. So return the current call's argument registers as the argument |
| 5315 | * registers for the jmp call. |
| 5316 | */ |
| 5317 | regMaskTP CodeGen::genJmpCallArgMask() |
| 5318 | { |
| 5319 | assert(compiler->compGeneratingEpilog); |
| 5320 | |
| 5321 | regMaskTP argMask = RBM_NONE; |
| 5322 | for (unsigned varNum = 0; varNum < compiler->info.compArgsCount; ++varNum) |
| 5323 | { |
| 5324 | const LclVarDsc& desc = compiler->lvaTable[varNum]; |
| 5325 | if (desc.lvIsRegArg) |
| 5326 | { |
| 5327 | argMask |= genRegMask(desc.lvArgReg); |
| 5328 | } |
| 5329 | } |
| 5330 | return argMask; |
| 5331 | } |
| 5332 | |
| 5333 | /*----------------------------------------------------------------------------- |
| 5334 | * |
| 5335 | * Free the local stack frame: add to SP. |
| 5336 | * If epilog unwind hasn't been started, and we generate code, we start unwind |
| 5337 | * and set *pUnwindStarted = true. |
| 5338 | */ |
| 5339 | |
| 5340 | void CodeGen::genFreeLclFrame(unsigned frameSize, /* IN OUT */ bool* pUnwindStarted, bool jmpEpilog) |
| 5341 | { |
| 5342 | assert(compiler->compGeneratingEpilog); |
| 5343 | |
| 5344 | if (frameSize == 0) |
| 5345 | return; |
| 5346 | |
| 5347 | // Add 'frameSize' to SP. |
| 5348 | // |
| 5349 | // Unfortunately, we can't just use: |
| 5350 | // |
| 5351 | // inst_RV_IV(INS_add, REG_SPBASE, frameSize, EA_PTRSIZE); |
| 5352 | // |
| 5353 | // because we need to generate proper unwind codes for each instruction generated, |
| 5354 | // and large frame sizes might generate a temp register load which might |
| 5355 | // need an unwind code. We don't want to generate a "NOP" code for this |
| 5356 | // temp register load; we want the unwind codes to start after that. |
| 5357 | |
| 5358 | if (arm_Valid_Imm_For_Instr(INS_add, frameSize, INS_FLAGS_DONT_CARE)) |
| 5359 | { |
| 5360 | if (!*pUnwindStarted) |
| 5361 | { |
| 5362 | compiler->unwindBegEpilog(); |
| 5363 | *pUnwindStarted = true; |
| 5364 | } |
| 5365 | |
| 5366 | getEmitter()->emitIns_R_I(INS_add, EA_PTRSIZE, REG_SPBASE, frameSize, INS_FLAGS_DONT_CARE); |
| 5367 | } |
| 5368 | else |
| 5369 | { |
| 5370 | regMaskTP grabMask = RBM_INT_CALLEE_TRASH; |
| 5371 | if (jmpEpilog) |
| 5372 | { |
| 5373 | // Do not use argument registers as scratch registers in the jmp epilog. |
| 5374 | grabMask &= ~genJmpCallArgMask(); |
| 5375 | } |
| 5376 | regNumber tmpReg = REG_TMP_0; |
| 5377 | instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, frameSize); |
| 5378 | if (*pUnwindStarted) |
| 5379 | { |
| 5380 | compiler->unwindPadding(); |
| 5381 | } |
| 5382 | |
| 5383 | // We're going to generate an unwindable instruction, so check again if |
| 5384 | // we need to start the unwind codes. |
| 5385 | |
| 5386 | if (!*pUnwindStarted) |
| 5387 | { |
| 5388 | compiler->unwindBegEpilog(); |
| 5389 | *pUnwindStarted = true; |
| 5390 | } |
| 5391 | |
| 5392 | getEmitter()->emitIns_R_R(INS_add, EA_PTRSIZE, REG_SPBASE, tmpReg, INS_FLAGS_DONT_CARE); |
| 5393 | } |
| 5394 | |
| 5395 | compiler->unwindAllocStack(frameSize); |
| 5396 | } |
| 5397 | |
| 5398 | /*----------------------------------------------------------------------------- |
| 5399 | * |
| 5400 | * Move of relocatable displacement value to register |
| 5401 | */ |
| 5402 | void CodeGen::genMov32RelocatableDisplacement(BasicBlock* block, regNumber reg) |
| 5403 | { |
| 5404 | getEmitter()->emitIns_R_L(INS_movw, EA_4BYTE_DSP_RELOC, block, reg); |
| 5405 | getEmitter()->emitIns_R_L(INS_movt, EA_4BYTE_DSP_RELOC, block, reg); |
| 5406 | |
| 5407 | if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_RELATIVE_CODE_RELOCS)) |
| 5408 | { |
| 5409 | getEmitter()->emitIns_R_R_R(INS_add, EA_4BYTE_DSP_RELOC, reg, reg, REG_PC); |
| 5410 | } |
| 5411 | } |
| 5412 | |
| 5413 | /*----------------------------------------------------------------------------- |
| 5414 | * |
| 5415 | * Move of relocatable data-label to register |
| 5416 | */ |
| 5417 | void CodeGen::genMov32RelocatableDataLabel(unsigned value, regNumber reg) |
| 5418 | { |
| 5419 | getEmitter()->emitIns_R_D(INS_movw, EA_HANDLE_CNS_RELOC, value, reg); |
| 5420 | getEmitter()->emitIns_R_D(INS_movt, EA_HANDLE_CNS_RELOC, value, reg); |
| 5421 | |
| 5422 | if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_RELATIVE_CODE_RELOCS)) |
| 5423 | { |
| 5424 | getEmitter()->emitIns_R_R_R(INS_add, EA_HANDLE_CNS_RELOC, reg, reg, REG_PC); |
| 5425 | } |
| 5426 | } |
| 5427 | |
| 5428 | /*----------------------------------------------------------------------------- |
| 5429 | * |
| 5430 | * Move of relocatable immediate to register |
| 5431 | */ |
| 5432 | void CodeGen::genMov32RelocatableImmediate(emitAttr size, BYTE* addr, regNumber reg) |
| 5433 | { |
| 5434 | _ASSERTE(EA_IS_RELOC(size)); |
| 5435 | |
| 5436 | getEmitter()->emitIns_MovRelocatableImmediate(INS_movw, size, reg, addr); |
| 5437 | getEmitter()->emitIns_MovRelocatableImmediate(INS_movt, size, reg, addr); |
| 5438 | |
| 5439 | if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_RELATIVE_CODE_RELOCS)) |
| 5440 | { |
| 5441 | getEmitter()->emitIns_R_R_R(INS_add, size, reg, reg, REG_PC); |
| 5442 | } |
| 5443 | } |
| 5444 | |
| 5445 | /*----------------------------------------------------------------------------- |
| 5446 | * |
| 5447 | * Returns register mask to push/pop to allocate a small stack frame, |
| 5448 | * instead of using "sub sp" / "add sp". Returns RBM_NONE if either frame size |
| 5449 | * is zero, or if we should use "sub sp" / "add sp" instead of push/pop. |
| 5450 | */ |
| 5451 | regMaskTP CodeGen::genStackAllocRegisterMask(unsigned frameSize, regMaskTP maskCalleeSavedFloat) |
| 5452 | { |
| 5453 | assert(compiler->compGeneratingProlog || compiler->compGeneratingEpilog); |
| 5454 | |
| 5455 | // We can't do this optimization with callee saved floating point registers because |
| 5456 | // the stack would be allocated in a wrong spot. |
| 5457 | if (maskCalleeSavedFloat != RBM_NONE) |
| 5458 | return RBM_NONE; |
| 5459 | |
| 5460 | // Allocate space for small frames by pushing extra registers. It generates smaller and faster code |
| 5461 | // that extra sub sp,XXX/add sp,XXX. |
| 5462 | // R0 and R1 may be used by return value. Keep things simple and just skip the optimization |
| 5463 | // for the 3*REGSIZE_BYTES and 4*REGSIZE_BYTES cases. They are less common and they have more |
| 5464 | // significant negative side-effects (more memory bus traffic). |
| 5465 | switch (frameSize) |
| 5466 | { |
| 5467 | case REGSIZE_BYTES: |
| 5468 | return RBM_R3; |
| 5469 | case 2 * REGSIZE_BYTES: |
| 5470 | return RBM_R2 | RBM_R3; |
| 5471 | default: |
| 5472 | return RBM_NONE; |
| 5473 | } |
| 5474 | } |
| 5475 | |
| 5476 | #endif // _TARGET_ARM_ |
| 5477 | |
| 5478 | /***************************************************************************** |
| 5479 | * |
| 5480 | * initFltRegs -- The mask of float regs to be zeroed. |
| 5481 | * initDblRegs -- The mask of double regs to be zeroed. |
| 5482 | * initReg -- A zero initialized integer reg to copy from. |
| 5483 | * |
| 5484 | * Does best effort to move between VFP/xmm regs if one is already |
| 5485 | * initialized to 0. (Arm Only) Else copies from the integer register which |
| 5486 | * is slower. |
| 5487 | */ |
| 5488 | void CodeGen::genZeroInitFltRegs(const regMaskTP& initFltRegs, const regMaskTP& initDblRegs, const regNumber& initReg) |
| 5489 | { |
| 5490 | assert(compiler->compGeneratingProlog); |
| 5491 | |
| 5492 | // The first float/double reg that is initialized to 0. So they can be used to |
| 5493 | // initialize the remaining registers. |
| 5494 | regNumber fltInitReg = REG_NA; |
| 5495 | regNumber dblInitReg = REG_NA; |
| 5496 | |
| 5497 | // Iterate through float/double registers and initialize them to 0 or |
| 5498 | // copy from already initialized register of the same type. |
| 5499 | regMaskTP regMask = genRegMask(REG_FP_FIRST); |
| 5500 | for (regNumber reg = REG_FP_FIRST; reg <= REG_FP_LAST; reg = REG_NEXT(reg), regMask <<= 1) |
| 5501 | { |
| 5502 | if (regMask & initFltRegs) |
| 5503 | { |
| 5504 | // Do we have a float register already set to 0? |
| 5505 | if (fltInitReg != REG_NA) |
| 5506 | { |
| 5507 | // Copy from float. |
| 5508 | inst_RV_RV(ins_Copy(TYP_FLOAT), reg, fltInitReg, TYP_FLOAT); |
| 5509 | } |
| 5510 | else |
| 5511 | { |
| 5512 | #ifdef _TARGET_ARM_ |
| 5513 | // Do we have a double register initialized to 0? |
| 5514 | if (dblInitReg != REG_NA) |
| 5515 | { |
| 5516 | // Copy from double. |
| 5517 | inst_RV_RV(INS_vcvt_d2f, reg, dblInitReg, TYP_FLOAT); |
| 5518 | } |
| 5519 | else |
| 5520 | { |
| 5521 | // Copy from int. |
| 5522 | inst_RV_RV(INS_vmov_i2f, reg, initReg, TYP_FLOAT, EA_4BYTE); |
| 5523 | } |
| 5524 | #elif defined(_TARGET_XARCH_) |
| 5525 | // XORPS is the fastest and smallest way to initialize a XMM register to zero. |
| 5526 | inst_RV_RV(INS_xorps, reg, reg, TYP_DOUBLE); |
| 5527 | dblInitReg = reg; |
| 5528 | #elif defined(_TARGET_ARM64_) |
| 5529 | // We will just zero out the entire vector register. This sets it to a double/float zero value |
| 5530 | getEmitter()->emitIns_R_I(INS_movi, EA_16BYTE, reg, 0x00, INS_OPTS_16B); |
| 5531 | #else // _TARGET_* |
| 5532 | #error Unsupported or unset target architecture |
| 5533 | #endif |
| 5534 | fltInitReg = reg; |
| 5535 | } |
| 5536 | } |
| 5537 | else if (regMask & initDblRegs) |
| 5538 | { |
| 5539 | // Do we have a double register already set to 0? |
| 5540 | if (dblInitReg != REG_NA) |
| 5541 | { |
| 5542 | // Copy from double. |
| 5543 | inst_RV_RV(ins_Copy(TYP_DOUBLE), reg, dblInitReg, TYP_DOUBLE); |
| 5544 | } |
| 5545 | else |
| 5546 | { |
| 5547 | #ifdef _TARGET_ARM_ |
| 5548 | // Do we have a float register initialized to 0? |
| 5549 | if (fltInitReg != REG_NA) |
| 5550 | { |
| 5551 | // Copy from float. |
| 5552 | inst_RV_RV(INS_vcvt_f2d, reg, fltInitReg, TYP_DOUBLE); |
| 5553 | } |
| 5554 | else |
| 5555 | { |
| 5556 | // Copy from int. |
| 5557 | inst_RV_RV_RV(INS_vmov_i2d, reg, initReg, initReg, EA_8BYTE); |
| 5558 | } |
| 5559 | #elif defined(_TARGET_XARCH_) |
| 5560 | // XORPS is the fastest and smallest way to initialize a XMM register to zero. |
| 5561 | inst_RV_RV(INS_xorps, reg, reg, TYP_DOUBLE); |
| 5562 | fltInitReg = reg; |
| 5563 | #elif defined(_TARGET_ARM64_) |
| 5564 | // We will just zero out the entire vector register. This sets it to a double/float zero value |
| 5565 | getEmitter()->emitIns_R_I(INS_movi, EA_16BYTE, reg, 0x00, INS_OPTS_16B); |
| 5566 | #else // _TARGET_* |
| 5567 | #error Unsupported or unset target architecture |
| 5568 | #endif |
| 5569 | dblInitReg = reg; |
| 5570 | } |
| 5571 | } |
| 5572 | } |
| 5573 | } |
| 5574 | |
| 5575 | /*----------------------------------------------------------------------------- |
| 5576 | * |
| 5577 | * Restore any callee-saved registers we have used |
| 5578 | */ |
| 5579 | |
| 5580 | #if defined(_TARGET_ARM_) |
| 5581 | |
| 5582 | bool CodeGen::genCanUsePopToReturn(regMaskTP maskPopRegsInt, bool jmpEpilog) |
| 5583 | { |
| 5584 | assert(compiler->compGeneratingEpilog); |
| 5585 | |
| 5586 | if (!jmpEpilog && regSet.rsMaskPreSpillRegs(true) == RBM_NONE) |
| 5587 | return true; |
| 5588 | else |
| 5589 | return false; |
| 5590 | } |
| 5591 | |
| 5592 | void CodeGen::genPopCalleeSavedRegisters(bool jmpEpilog) |
| 5593 | { |
| 5594 | assert(compiler->compGeneratingEpilog); |
| 5595 | |
| 5596 | regMaskTP maskPopRegs = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED; |
| 5597 | regMaskTP maskPopRegsFloat = maskPopRegs & RBM_ALLFLOAT; |
| 5598 | regMaskTP maskPopRegsInt = maskPopRegs & ~maskPopRegsFloat; |
| 5599 | |
| 5600 | // First, pop float registers |
| 5601 | |
| 5602 | if (maskPopRegsFloat != RBM_NONE) |
| 5603 | { |
| 5604 | genPopFltRegs(maskPopRegsFloat); |
| 5605 | compiler->unwindPopMaskFloat(maskPopRegsFloat); |
| 5606 | } |
| 5607 | |
| 5608 | // Next, pop integer registers |
| 5609 | |
| 5610 | if (!jmpEpilog) |
| 5611 | { |
| 5612 | regMaskTP maskStackAlloc = genStackAllocRegisterMask(compiler->compLclFrameSize, maskPopRegsFloat); |
| 5613 | maskPopRegsInt |= maskStackAlloc; |
| 5614 | } |
| 5615 | |
| 5616 | if (isFramePointerUsed()) |
| 5617 | { |
| 5618 | assert(!regSet.rsRegsModified(RBM_FPBASE)); |
| 5619 | maskPopRegsInt |= RBM_FPBASE; |
| 5620 | } |
| 5621 | |
| 5622 | if (genCanUsePopToReturn(maskPopRegsInt, jmpEpilog)) |
| 5623 | { |
| 5624 | maskPopRegsInt |= RBM_PC; |
| 5625 | // Record the fact that we use a pop to the PC to perform the return |
| 5626 | genUsedPopToReturn = true; |
| 5627 | } |
| 5628 | else |
| 5629 | { |
| 5630 | maskPopRegsInt |= RBM_LR; |
| 5631 | // Record the fact that we did not use a pop to the PC to perform the return |
| 5632 | genUsedPopToReturn = false; |
| 5633 | } |
| 5634 | |
| 5635 | assert(FitsIn<int>(maskPopRegsInt)); |
| 5636 | inst_IV(INS_pop, (int)maskPopRegsInt); |
| 5637 | compiler->unwindPopMaskInt(maskPopRegsInt); |
| 5638 | } |
| 5639 | |
| 5640 | #elif defined(_TARGET_ARM64_) |
| 5641 | |
| 5642 | void CodeGen::genPopCalleeSavedRegistersAndFreeLclFrame(bool jmpEpilog) |
| 5643 | { |
| 5644 | assert(compiler->compGeneratingEpilog); |
| 5645 | |
| 5646 | regMaskTP rsRestoreRegs = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED; |
| 5647 | |
| 5648 | if (isFramePointerUsed()) |
| 5649 | { |
| 5650 | rsRestoreRegs |= RBM_FPBASE; |
| 5651 | } |
| 5652 | |
| 5653 | rsRestoreRegs |= RBM_LR; // We must save/restore the return address (in the LR register) |
| 5654 | |
| 5655 | regMaskTP regsToRestoreMask = rsRestoreRegs; |
| 5656 | |
| 5657 | int totalFrameSize = genTotalFrameSize(); |
| 5658 | |
| 5659 | int calleeSaveSPOffset; // This will be the starting place for restoring the callee-saved registers, in decreasing |
| 5660 | // order. |
| 5661 | int frameType = 0; // An indicator of what type of frame we are popping. |
| 5662 | int calleeSaveSPDelta = 0; |
| 5663 | int calleeSaveSPDeltaUnaligned = 0; |
| 5664 | |
| 5665 | if (isFramePointerUsed()) |
| 5666 | { |
| 5667 | if ((compiler->lvaOutgoingArgSpaceSize == 0) && (totalFrameSize < 512)) |
| 5668 | { |
| 5669 | frameType = 1; |
| 5670 | if (compiler->compLocallocUsed) |
| 5671 | { |
| 5672 | // Restore sp from fp |
| 5673 | // mov sp, fp |
| 5674 | inst_RV_RV(INS_mov, REG_SPBASE, REG_FPBASE); |
| 5675 | compiler->unwindSetFrameReg(REG_FPBASE, 0); |
| 5676 | } |
| 5677 | |
| 5678 | regsToRestoreMask &= ~(RBM_FP | RBM_LR); // We'll restore FP/LR at the end, and post-index SP. |
| 5679 | |
| 5680 | // Compute callee save SP offset which is at the top of local frame while the FP/LR is saved at the bottom |
| 5681 | // of stack. |
| 5682 | calleeSaveSPOffset = compiler->compLclFrameSize + 2 * REGSIZE_BYTES; |
| 5683 | } |
| 5684 | else if (totalFrameSize <= 512) |
| 5685 | { |
| 5686 | frameType = 2; |
| 5687 | if (compiler->compLocallocUsed) |
| 5688 | { |
| 5689 | // Restore sp from fp |
| 5690 | // sub sp, fp, #outsz |
| 5691 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, |
| 5692 | compiler->lvaOutgoingArgSpaceSize); |
| 5693 | compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize); |
| 5694 | } |
| 5695 | |
| 5696 | regsToRestoreMask &= ~(RBM_FP | RBM_LR); // We'll restore FP/LR at the end, and post-index SP. |
| 5697 | |
| 5698 | // Compute callee save SP offset which is at the top of local frame while the FP/LR is saved at the bottom |
| 5699 | // of stack. |
| 5700 | calleeSaveSPOffset = compiler->compLclFrameSize + 2 * REGSIZE_BYTES; |
| 5701 | } |
| 5702 | else |
| 5703 | { |
| 5704 | frameType = 3; |
| 5705 | |
| 5706 | calleeSaveSPDeltaUnaligned = totalFrameSize - compiler->compLclFrameSize - |
| 5707 | 2 * REGSIZE_BYTES; // 2 for FP, LR which we'll restore later. |
| 5708 | assert(calleeSaveSPDeltaUnaligned >= 0); |
| 5709 | assert((calleeSaveSPDeltaUnaligned % 8) == 0); // It better at least be 8 byte aligned. |
| 5710 | calleeSaveSPDelta = AlignUp((UINT)calleeSaveSPDeltaUnaligned, STACK_ALIGN); |
| 5711 | |
| 5712 | regsToRestoreMask &= ~(RBM_FP | RBM_LR); // We'll restore FP/LR at the end, and (hopefully) post-index SP. |
| 5713 | |
| 5714 | int remainingFrameSz = totalFrameSize - calleeSaveSPDelta; |
| 5715 | assert(remainingFrameSz > 0); |
| 5716 | |
| 5717 | if (compiler->lvaOutgoingArgSpaceSize >= 504) |
| 5718 | { |
| 5719 | // We can't do "ldp fp,lr,[sp,#outsz]" because #outsz is too big. |
| 5720 | // If compiler->lvaOutgoingArgSpaceSize is not aligned, we need to align the SP adjustment. |
| 5721 | assert(remainingFrameSz > (int)compiler->lvaOutgoingArgSpaceSize); |
| 5722 | int spAdjustment2Unaligned = remainingFrameSz - compiler->lvaOutgoingArgSpaceSize; |
| 5723 | int spAdjustment2 = (int)roundUp((unsigned)spAdjustment2Unaligned, STACK_ALIGN); |
| 5724 | int alignmentAdjustment2 = spAdjustment2 - spAdjustment2Unaligned; |
| 5725 | assert((alignmentAdjustment2 == 0) || (alignmentAdjustment2 == REGSIZE_BYTES)); |
| 5726 | |
| 5727 | if (compiler->compLocallocUsed) |
| 5728 | { |
| 5729 | // Restore sp from fp. No need to update sp after this since we've set up fp before adjusting sp in |
| 5730 | // prolog. |
| 5731 | // sub sp, fp, #alignmentAdjustment2 |
| 5732 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, alignmentAdjustment2); |
| 5733 | compiler->unwindSetFrameReg(REG_FPBASE, alignmentAdjustment2); |
| 5734 | } |
| 5735 | else |
| 5736 | { |
| 5737 | // Generate: |
| 5738 | // add sp,sp,#outsz ; if #outsz is not 16-byte aligned, we need to be more |
| 5739 | // ; careful |
| 5740 | int spAdjustment3 = compiler->lvaOutgoingArgSpaceSize - alignmentAdjustment2; |
| 5741 | assert(spAdjustment3 > 0); |
| 5742 | assert((spAdjustment3 % 16) == 0); |
| 5743 | genStackPointerAdjustment(spAdjustment3, REG_IP0, nullptr); |
| 5744 | } |
| 5745 | |
| 5746 | // Generate: |
| 5747 | // ldp fp,lr,[sp] |
| 5748 | // add sp,sp,#remainingFrameSz |
| 5749 | genEpilogRestoreRegPair(REG_FP, REG_LR, alignmentAdjustment2, spAdjustment2, REG_IP1, nullptr); |
| 5750 | } |
| 5751 | else |
| 5752 | { |
| 5753 | if (compiler->compLocallocUsed) |
| 5754 | { |
| 5755 | // Restore sp from fp |
| 5756 | // sub sp, fp, #outsz |
| 5757 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, |
| 5758 | compiler->lvaOutgoingArgSpaceSize); |
| 5759 | compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize); |
| 5760 | } |
| 5761 | |
| 5762 | // Generate: |
| 5763 | // ldp fp,lr,[sp,#outsz] |
| 5764 | // add sp,sp,#remainingFrameSz ; might need to load this constant in a scratch register if |
| 5765 | // ; it's large |
| 5766 | |
| 5767 | genEpilogRestoreRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize, remainingFrameSz, REG_IP1, |
| 5768 | nullptr); |
| 5769 | } |
| 5770 | |
| 5771 | // Unlike frameType=1 or frameType=2 that restore SP at the end, |
| 5772 | // frameType=3 already adjusted SP above to delete local frame. |
| 5773 | // There is at most one alignment slot between SP and where we store the callee-saved registers. |
| 5774 | calleeSaveSPOffset = calleeSaveSPDelta - calleeSaveSPDeltaUnaligned; |
| 5775 | assert((calleeSaveSPOffset == 0) || (calleeSaveSPOffset == REGSIZE_BYTES)); |
| 5776 | } |
| 5777 | } |
| 5778 | else |
| 5779 | { |
| 5780 | // No frame pointer (no chaining). |
| 5781 | NYI("Frame without frame pointer" ); |
| 5782 | calleeSaveSPOffset = 0; |
| 5783 | } |
| 5784 | |
| 5785 | genRestoreCalleeSavedRegistersHelp(regsToRestoreMask, calleeSaveSPOffset, calleeSaveSPDelta); |
| 5786 | |
| 5787 | if (frameType == 1) |
| 5788 | { |
| 5789 | // Generate: |
| 5790 | // ldp fp,lr,[sp],#framesz |
| 5791 | |
| 5792 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, totalFrameSize, |
| 5793 | INS_OPTS_POST_INDEX); |
| 5794 | compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, -totalFrameSize); |
| 5795 | } |
| 5796 | else if (frameType == 2) |
| 5797 | { |
| 5798 | // Generate: |
| 5799 | // ldr fp,lr,[sp,#outsz] |
| 5800 | // add sp,sp,#framesz |
| 5801 | |
| 5802 | getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, |
| 5803 | compiler->lvaOutgoingArgSpaceSize); |
| 5804 | compiler->unwindSaveRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize); |
| 5805 | |
| 5806 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, totalFrameSize); |
| 5807 | compiler->unwindAllocStack(totalFrameSize); |
| 5808 | } |
| 5809 | else if (frameType == 3) |
| 5810 | { |
| 5811 | // Nothing to do after restoring callee-saved registers. |
| 5812 | } |
| 5813 | else |
| 5814 | { |
| 5815 | unreached(); |
| 5816 | } |
| 5817 | } |
| 5818 | |
| 5819 | #elif defined(_TARGET_XARCH_) |
| 5820 | |
| 5821 | void CodeGen::genPopCalleeSavedRegisters(bool jmpEpilog) |
| 5822 | { |
| 5823 | assert(compiler->compGeneratingEpilog); |
| 5824 | |
| 5825 | unsigned popCount = 0; |
| 5826 | if (regSet.rsRegsModified(RBM_EBX)) |
| 5827 | { |
| 5828 | popCount++; |
| 5829 | inst_RV(INS_pop, REG_EBX, TYP_I_IMPL); |
| 5830 | } |
| 5831 | if (regSet.rsRegsModified(RBM_FPBASE)) |
| 5832 | { |
| 5833 | // EBP cannot be directly modified for EBP frame and double-aligned frames |
| 5834 | assert(!doubleAlignOrFramePointerUsed()); |
| 5835 | |
| 5836 | popCount++; |
| 5837 | inst_RV(INS_pop, REG_EBP, TYP_I_IMPL); |
| 5838 | } |
| 5839 | |
| 5840 | #ifndef UNIX_AMD64_ABI |
| 5841 | // For System V AMD64 calling convention ESI and EDI are volatile registers. |
| 5842 | if (regSet.rsRegsModified(RBM_ESI)) |
| 5843 | { |
| 5844 | popCount++; |
| 5845 | inst_RV(INS_pop, REG_ESI, TYP_I_IMPL); |
| 5846 | } |
| 5847 | if (regSet.rsRegsModified(RBM_EDI)) |
| 5848 | { |
| 5849 | popCount++; |
| 5850 | inst_RV(INS_pop, REG_EDI, TYP_I_IMPL); |
| 5851 | } |
| 5852 | #endif // !defined(UNIX_AMD64_ABI) |
| 5853 | |
| 5854 | #ifdef _TARGET_AMD64_ |
| 5855 | if (regSet.rsRegsModified(RBM_R12)) |
| 5856 | { |
| 5857 | popCount++; |
| 5858 | inst_RV(INS_pop, REG_R12, TYP_I_IMPL); |
| 5859 | } |
| 5860 | if (regSet.rsRegsModified(RBM_R13)) |
| 5861 | { |
| 5862 | popCount++; |
| 5863 | inst_RV(INS_pop, REG_R13, TYP_I_IMPL); |
| 5864 | } |
| 5865 | if (regSet.rsRegsModified(RBM_R14)) |
| 5866 | { |
| 5867 | popCount++; |
| 5868 | inst_RV(INS_pop, REG_R14, TYP_I_IMPL); |
| 5869 | } |
| 5870 | if (regSet.rsRegsModified(RBM_R15)) |
| 5871 | { |
| 5872 | popCount++; |
| 5873 | inst_RV(INS_pop, REG_R15, TYP_I_IMPL); |
| 5874 | } |
| 5875 | #endif // _TARGET_AMD64_ |
| 5876 | |
| 5877 | // Amd64/x86 doesn't support push/pop of xmm registers. |
| 5878 | // These will get saved to stack separately after allocating |
| 5879 | // space on stack in prolog sequence. PopCount is essentially |
| 5880 | // tracking the count of integer registers pushed. |
| 5881 | |
| 5882 | noway_assert(compiler->compCalleeRegsPushed == popCount); |
| 5883 | } |
| 5884 | |
| 5885 | #elif defined(_TARGET_X86_) |
| 5886 | |
| 5887 | void CodeGen::genPopCalleeSavedRegisters(bool jmpEpilog) |
| 5888 | { |
| 5889 | assert(compiler->compGeneratingEpilog); |
| 5890 | |
| 5891 | unsigned popCount = 0; |
| 5892 | |
| 5893 | /* NOTE: The EBP-less frame code below depends on the fact that |
| 5894 | all of the pops are generated right at the start and |
| 5895 | each takes one byte of machine code. |
| 5896 | */ |
| 5897 | |
| 5898 | if (regSet.rsRegsModified(RBM_FPBASE)) |
| 5899 | { |
| 5900 | // EBP cannot be directly modified for EBP frame and double-aligned frames |
| 5901 | noway_assert(!doubleAlignOrFramePointerUsed()); |
| 5902 | |
| 5903 | inst_RV(INS_pop, REG_EBP, TYP_I_IMPL); |
| 5904 | popCount++; |
| 5905 | } |
| 5906 | if (regSet.rsRegsModified(RBM_EBX)) |
| 5907 | { |
| 5908 | popCount++; |
| 5909 | inst_RV(INS_pop, REG_EBX, TYP_I_IMPL); |
| 5910 | } |
| 5911 | if (regSet.rsRegsModified(RBM_ESI)) |
| 5912 | { |
| 5913 | popCount++; |
| 5914 | inst_RV(INS_pop, REG_ESI, TYP_I_IMPL); |
| 5915 | } |
| 5916 | if (regSet.rsRegsModified(RBM_EDI)) |
| 5917 | { |
| 5918 | popCount++; |
| 5919 | inst_RV(INS_pop, REG_EDI, TYP_I_IMPL); |
| 5920 | } |
| 5921 | noway_assert(compiler->compCalleeRegsPushed == popCount); |
| 5922 | } |
| 5923 | |
| 5924 | #endif // _TARGET_* |
| 5925 | |
| 5926 | // We need a register with value zero. Zero the initReg, if necessary, and set *pInitRegZeroed if so. |
| 5927 | // Return the register to use. On ARM64, we never touch the initReg, and always just return REG_ZR. |
| 5928 | regNumber CodeGen::genGetZeroReg(regNumber initReg, bool* pInitRegZeroed) |
| 5929 | { |
| 5930 | #ifdef _TARGET_ARM64_ |
| 5931 | return REG_ZR; |
| 5932 | #else // !_TARGET_ARM64_ |
| 5933 | if (*pInitRegZeroed == false) |
| 5934 | { |
| 5935 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg); |
| 5936 | *pInitRegZeroed = true; |
| 5937 | } |
| 5938 | return initReg; |
| 5939 | #endif // !_TARGET_ARM64_ |
| 5940 | } |
| 5941 | |
| 5942 | /*----------------------------------------------------------------------------- |
| 5943 | * |
| 5944 | * Do we have any untracked pointer locals at all, |
| 5945 | * or do we need to initialize memory for locspace? |
| 5946 | * |
| 5947 | * untrLclHi - (Untracked locals High-Offset) The upper bound offset at which the zero init code will end |
| 5948 | * initializing memory (not inclusive). |
| 5949 | * untrLclLo - (Untracked locals Low-Offset) The lower bound at which the zero init code will start zero |
| 5950 | * initializing memory. |
| 5951 | * initReg - A scratch register (that gets set to zero on some platforms). |
| 5952 | * pInitRegZeroed - Sets a flag that tells the callee whether or not the initReg register got zeroed. |
| 5953 | */ |
| 5954 | void CodeGen::genZeroInitFrame(int untrLclHi, int untrLclLo, regNumber initReg, bool* pInitRegZeroed) |
| 5955 | { |
| 5956 | assert(compiler->compGeneratingProlog); |
| 5957 | |
| 5958 | if (genUseBlockInit) |
| 5959 | { |
| 5960 | assert(untrLclHi > untrLclLo); |
| 5961 | #ifdef _TARGET_ARMARCH_ |
| 5962 | /* |
| 5963 | Generate the following code: |
| 5964 | |
| 5965 | For cnt less than 10 |
| 5966 | |
| 5967 | mov rZero1, 0 |
| 5968 | mov rZero2, 0 |
| 5969 | mov rCnt, <cnt> |
| 5970 | stm <rZero1,rZero2>,[rAddr!] |
| 5971 | <optional> stm <rZero1,rZero2>,[rAddr!] |
| 5972 | <optional> stm <rZero1,rZero2>,[rAddr!] |
| 5973 | <optional> stm <rZero1,rZero2>,[rAddr!] |
| 5974 | <optional> str rZero1,[rAddr] |
| 5975 | |
| 5976 | For rCnt greater than or equal to 10 |
| 5977 | |
| 5978 | mov rZero1, 0 |
| 5979 | mov rZero2, 0 |
| 5980 | mov rCnt, <cnt/2> |
| 5981 | sub rAddr, sp, OFFS |
| 5982 | |
| 5983 | loop: |
| 5984 | stm <rZero1,rZero2>,[rAddr!] |
| 5985 | sub rCnt,rCnt,1 |
| 5986 | jnz loop |
| 5987 | |
| 5988 | <optional> str rZero1,[rAddr] // When cnt is odd |
| 5989 | |
| 5990 | NOTE: for ARM64, the instruction is stp, not stm. And we can use ZR instead of allocating registers. |
| 5991 | */ |
| 5992 | |
| 5993 | regNumber rAddr; |
| 5994 | regNumber rCnt = REG_NA; // Invalid |
| 5995 | regMaskTP regMask; |
| 5996 | |
| 5997 | regMaskTP availMask = regSet.rsGetModifiedRegsMask() | RBM_INT_CALLEE_TRASH; // Set of available registers |
| 5998 | availMask &= ~intRegState.rsCalleeRegArgMaskLiveIn; // Remove all of the incoming argument registers as they are |
| 5999 | // currently live |
| 6000 | availMask &= ~genRegMask(initReg); // Remove the pre-calculated initReg as we will zero it and maybe use it for |
| 6001 | // a large constant. |
| 6002 | |
| 6003 | #if defined(_TARGET_ARM_) |
| 6004 | |
| 6005 | if (compiler->compLocallocUsed) |
| 6006 | { |
| 6007 | availMask &= ~RBM_SAVED_LOCALLOC_SP; // Remove the register reserved when we have a localloc frame |
| 6008 | } |
| 6009 | |
| 6010 | regNumber rZero1; // We're going to use initReg for rZero1 |
| 6011 | regNumber rZero2; |
| 6012 | |
| 6013 | // We pick the next lowest register number for rZero2 |
| 6014 | noway_assert(availMask != RBM_NONE); |
| 6015 | regMask = genFindLowestBit(availMask); |
| 6016 | rZero2 = genRegNumFromMask(regMask); |
| 6017 | availMask &= ~regMask; |
| 6018 | assert((genRegMask(rZero2) & intRegState.rsCalleeRegArgMaskLiveIn) == |
| 6019 | 0); // rZero2 is not a live incoming argument reg |
| 6020 | |
| 6021 | // We pick the next lowest register number for rAddr |
| 6022 | noway_assert(availMask != RBM_NONE); |
| 6023 | regMask = genFindLowestBit(availMask); |
| 6024 | rAddr = genRegNumFromMask(regMask); |
| 6025 | availMask &= ~regMask; |
| 6026 | |
| 6027 | #else // !define(_TARGET_ARM_) |
| 6028 | |
| 6029 | regNumber rZero1 = REG_ZR; |
| 6030 | rAddr = initReg; |
| 6031 | *pInitRegZeroed = false; |
| 6032 | |
| 6033 | #endif // !defined(_TARGET_ARM_) |
| 6034 | |
| 6035 | bool useLoop = false; |
| 6036 | unsigned uCntBytes = untrLclHi - untrLclLo; |
| 6037 | assert((uCntBytes % sizeof(int)) == 0); // The smallest stack slot is always 4 bytes. |
| 6038 | unsigned uCntSlots = uCntBytes / REGSIZE_BYTES; // How many register sized stack slots we're going to use. |
| 6039 | |
| 6040 | // When uCntSlots is 9 or less, we will emit a sequence of stm/stp instructions inline. |
| 6041 | // When it is 10 or greater, we will emit a loop containing a stm/stp instruction. |
| 6042 | // In both of these cases the stm/stp instruction will write two zeros to memory |
| 6043 | // and we will use a single str instruction at the end whenever we have an odd count. |
| 6044 | if (uCntSlots >= 10) |
| 6045 | useLoop = true; |
| 6046 | |
| 6047 | if (useLoop) |
| 6048 | { |
| 6049 | // We pick the next lowest register number for rCnt |
| 6050 | noway_assert(availMask != RBM_NONE); |
| 6051 | regMask = genFindLowestBit(availMask); |
| 6052 | rCnt = genRegNumFromMask(regMask); |
| 6053 | availMask &= ~regMask; |
| 6054 | } |
| 6055 | |
| 6056 | assert((genRegMask(rAddr) & intRegState.rsCalleeRegArgMaskLiveIn) == |
| 6057 | 0); // rAddr is not a live incoming argument reg |
| 6058 | #if defined(_TARGET_ARM_) |
| 6059 | if (arm_Valid_Imm_For_Add(untrLclLo, INS_FLAGS_DONT_CARE)) |
| 6060 | #else // !_TARGET_ARM_ |
| 6061 | if (emitter::emitIns_valid_imm_for_add(untrLclLo, EA_PTRSIZE)) |
| 6062 | #endif // !_TARGET_ARM_ |
| 6063 | { |
| 6064 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, rAddr, genFramePointerReg(), untrLclLo); |
| 6065 | } |
| 6066 | else |
| 6067 | { |
| 6068 | // Load immediate into the InitReg register |
| 6069 | instGen_Set_Reg_To_Imm(EA_PTRSIZE, initReg, (ssize_t)untrLclLo); |
| 6070 | getEmitter()->emitIns_R_R_R(INS_add, EA_PTRSIZE, rAddr, genFramePointerReg(), initReg); |
| 6071 | *pInitRegZeroed = false; |
| 6072 | } |
| 6073 | |
| 6074 | if (useLoop) |
| 6075 | { |
| 6076 | noway_assert(uCntSlots >= 2); |
| 6077 | assert((genRegMask(rCnt) & intRegState.rsCalleeRegArgMaskLiveIn) == |
| 6078 | 0); // rCnt is not a live incoming argument reg |
| 6079 | instGen_Set_Reg_To_Imm(EA_PTRSIZE, rCnt, (ssize_t)uCntSlots / 2); |
| 6080 | } |
| 6081 | |
| 6082 | #if defined(_TARGET_ARM_) |
| 6083 | rZero1 = genGetZeroReg(initReg, pInitRegZeroed); |
| 6084 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, rZero2); |
| 6085 | target_ssize_t stmImm = (target_ssize_t)(genRegMask(rZero1) | genRegMask(rZero2)); |
| 6086 | #endif // _TARGET_ARM_ |
| 6087 | |
| 6088 | if (!useLoop) |
| 6089 | { |
| 6090 | while (uCntBytes >= REGSIZE_BYTES * 2) |
| 6091 | { |
| 6092 | #ifdef _TARGET_ARM_ |
| 6093 | getEmitter()->emitIns_R_I(INS_stm, EA_PTRSIZE, rAddr, stmImm); |
| 6094 | #else // !_TARGET_ARM_ |
| 6095 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_ZR, REG_ZR, rAddr, 2 * REGSIZE_BYTES, |
| 6096 | INS_OPTS_POST_INDEX); |
| 6097 | #endif // !_TARGET_ARM_ |
| 6098 | uCntBytes -= REGSIZE_BYTES * 2; |
| 6099 | } |
| 6100 | } |
| 6101 | else // useLoop is true |
| 6102 | { |
| 6103 | #ifdef _TARGET_ARM_ |
| 6104 | getEmitter()->emitIns_R_I(INS_stm, EA_PTRSIZE, rAddr, stmImm); // zero stack slots |
| 6105 | getEmitter()->emitIns_R_I(INS_sub, EA_PTRSIZE, rCnt, 1, INS_FLAGS_SET); |
| 6106 | #else // !_TARGET_ARM_ |
| 6107 | getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_ZR, REG_ZR, rAddr, 2 * REGSIZE_BYTES, |
| 6108 | INS_OPTS_POST_INDEX); // zero stack slots |
| 6109 | getEmitter()->emitIns_R_R_I(INS_subs, EA_PTRSIZE, rCnt, rCnt, 1); |
| 6110 | #endif // !_TARGET_ARM_ |
| 6111 | getEmitter()->emitIns_J(INS_bhi, NULL, -3); |
| 6112 | uCntBytes %= REGSIZE_BYTES * 2; |
| 6113 | } |
| 6114 | |
| 6115 | if (uCntBytes >= REGSIZE_BYTES) // check and zero the last register-sized stack slot (odd number) |
| 6116 | { |
| 6117 | #ifdef _TARGET_ARM_ |
| 6118 | getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, rZero1, rAddr, 0); |
| 6119 | #else // _TARGET_ARM_ |
| 6120 | if ((uCntBytes - REGSIZE_BYTES) == 0) |
| 6121 | { |
| 6122 | getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, REG_ZR, rAddr, 0); |
| 6123 | } |
| 6124 | else |
| 6125 | { |
| 6126 | getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, REG_ZR, rAddr, REGSIZE_BYTES, INS_OPTS_POST_INDEX); |
| 6127 | } |
| 6128 | #endif // !_TARGET_ARM_ |
| 6129 | uCntBytes -= REGSIZE_BYTES; |
| 6130 | } |
| 6131 | #ifdef _TARGET_ARM64_ |
| 6132 | if (uCntBytes > 0) |
| 6133 | { |
| 6134 | assert(uCntBytes == sizeof(int)); |
| 6135 | getEmitter()->emitIns_R_R_I(INS_str, EA_4BYTE, REG_ZR, rAddr, 0); |
| 6136 | uCntBytes -= sizeof(int); |
| 6137 | } |
| 6138 | #endif // _TARGET_ARM64_ |
| 6139 | noway_assert(uCntBytes == 0); |
| 6140 | |
| 6141 | #elif defined(_TARGET_XARCH_) |
| 6142 | /* |
| 6143 | Generate the following code: |
| 6144 | |
| 6145 | lea edi, [ebp/esp-OFFS] |
| 6146 | mov ecx, <size> |
| 6147 | xor eax, eax |
| 6148 | rep stosd |
| 6149 | */ |
| 6150 | |
| 6151 | noway_assert(regSet.rsRegsModified(RBM_EDI)); |
| 6152 | |
| 6153 | #ifdef UNIX_AMD64_ABI |
| 6154 | // For register arguments we may have to save ECX and RDI on Amd64 System V OSes |
| 6155 | if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RCX) |
| 6156 | { |
| 6157 | noway_assert(regSet.rsRegsModified(RBM_R12)); |
| 6158 | inst_RV_RV(INS_mov, REG_R12, REG_RCX); |
| 6159 | regSet.verifyRegUsed(REG_R12); |
| 6160 | } |
| 6161 | |
| 6162 | if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RDI) |
| 6163 | { |
| 6164 | noway_assert(regSet.rsRegsModified(RBM_R13)); |
| 6165 | inst_RV_RV(INS_mov, REG_R13, REG_RDI); |
| 6166 | regSet.verifyRegUsed(REG_R13); |
| 6167 | } |
| 6168 | #else // !UNIX_AMD64_ABI |
| 6169 | // For register arguments we may have to save ECX |
| 6170 | if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_ECX) |
| 6171 | { |
| 6172 | noway_assert(regSet.rsRegsModified(RBM_ESI)); |
| 6173 | inst_RV_RV(INS_mov, REG_ESI, REG_ECX); |
| 6174 | regSet.verifyRegUsed(REG_ESI); |
| 6175 | } |
| 6176 | #endif // !UNIX_AMD64_ABI |
| 6177 | |
| 6178 | noway_assert((intRegState.rsCalleeRegArgMaskLiveIn & RBM_EAX) == 0); |
| 6179 | |
| 6180 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_EDI, genFramePointerReg(), untrLclLo); |
| 6181 | regSet.verifyRegUsed(REG_EDI); |
| 6182 | |
| 6183 | inst_RV_IV(INS_mov, REG_ECX, (untrLclHi - untrLclLo) / sizeof(int), EA_4BYTE); |
| 6184 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, REG_EAX); |
| 6185 | instGen(INS_r_stosd); |
| 6186 | |
| 6187 | #ifdef UNIX_AMD64_ABI |
| 6188 | // Move back the argument registers |
| 6189 | if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RCX) |
| 6190 | { |
| 6191 | inst_RV_RV(INS_mov, REG_RCX, REG_R12); |
| 6192 | } |
| 6193 | |
| 6194 | if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RDI) |
| 6195 | { |
| 6196 | inst_RV_RV(INS_mov, REG_RDI, REG_R13); |
| 6197 | } |
| 6198 | #else // !UNIX_AMD64_ABI |
| 6199 | // Move back the argument registers |
| 6200 | if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_ECX) |
| 6201 | { |
| 6202 | inst_RV_RV(INS_mov, REG_ECX, REG_ESI); |
| 6203 | } |
| 6204 | #endif // !UNIX_AMD64_ABI |
| 6205 | |
| 6206 | #else // _TARGET_* |
| 6207 | #error Unsupported or unset target architecture |
| 6208 | #endif // _TARGET_* |
| 6209 | } |
| 6210 | else if (genInitStkLclCnt > 0) |
| 6211 | { |
| 6212 | assert((genRegMask(initReg) & intRegState.rsCalleeRegArgMaskLiveIn) == |
| 6213 | 0); // initReg is not a live incoming argument reg |
| 6214 | |
| 6215 | /* Initialize any lvMustInit vars on the stack */ |
| 6216 | |
| 6217 | LclVarDsc* varDsc; |
| 6218 | unsigned varNum; |
| 6219 | |
| 6220 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++) |
| 6221 | { |
| 6222 | if (!varDsc->lvMustInit) |
| 6223 | { |
| 6224 | continue; |
| 6225 | } |
| 6226 | |
| 6227 | // TODO-Review: I'm not sure that we're correctly handling the mustInit case for |
| 6228 | // partially-enregistered vars in the case where we don't use a block init. |
| 6229 | noway_assert(varDsc->lvIsInReg() || varDsc->lvOnFrame); |
| 6230 | |
| 6231 | // lvMustInit can only be set for GC types or TYP_STRUCT types |
| 6232 | // or when compInitMem is true |
| 6233 | // or when in debug code |
| 6234 | |
| 6235 | noway_assert(varTypeIsGC(varDsc->TypeGet()) || (varDsc->TypeGet() == TYP_STRUCT) || |
| 6236 | compiler->info.compInitMem || compiler->opts.compDbgCode); |
| 6237 | |
| 6238 | if (!varDsc->lvOnFrame) |
| 6239 | { |
| 6240 | continue; |
| 6241 | } |
| 6242 | |
| 6243 | if ((varDsc->TypeGet() == TYP_STRUCT) && !compiler->info.compInitMem && |
| 6244 | (varDsc->lvExactSize >= TARGET_POINTER_SIZE)) |
| 6245 | { |
| 6246 | // We only initialize the GC variables in the TYP_STRUCT |
| 6247 | const unsigned slots = (unsigned)compiler->lvaLclSize(varNum) / REGSIZE_BYTES; |
| 6248 | const BYTE* gcPtrs = compiler->lvaGetGcLayout(varNum); |
| 6249 | |
| 6250 | for (unsigned i = 0; i < slots; i++) |
| 6251 | { |
| 6252 | if (gcPtrs[i] != TYPE_GC_NONE) |
| 6253 | { |
| 6254 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, |
| 6255 | genGetZeroReg(initReg, pInitRegZeroed), varNum, i * REGSIZE_BYTES); |
| 6256 | } |
| 6257 | } |
| 6258 | } |
| 6259 | else |
| 6260 | { |
| 6261 | regNumber zeroReg = genGetZeroReg(initReg, pInitRegZeroed); |
| 6262 | |
| 6263 | // zero out the whole thing rounded up to a single stack slot size |
| 6264 | unsigned lclSize = roundUp(compiler->lvaLclSize(varNum), (unsigned)sizeof(int)); |
| 6265 | unsigned i; |
| 6266 | for (i = 0; i + REGSIZE_BYTES <= lclSize; i += REGSIZE_BYTES) |
| 6267 | { |
| 6268 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, zeroReg, varNum, i); |
| 6269 | } |
| 6270 | |
| 6271 | #ifdef _TARGET_64BIT_ |
| 6272 | assert(i == lclSize || (i + sizeof(int) == lclSize)); |
| 6273 | if (i != lclSize) |
| 6274 | { |
| 6275 | getEmitter()->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, zeroReg, varNum, i); |
| 6276 | i += sizeof(int); |
| 6277 | } |
| 6278 | #endif // _TARGET_64BIT_ |
| 6279 | assert(i == lclSize); |
| 6280 | } |
| 6281 | } |
| 6282 | |
| 6283 | if (!TRACK_GC_TEMP_LIFETIMES) |
| 6284 | { |
| 6285 | assert(regSet.tmpAllFree()); |
| 6286 | for (TempDsc* tempThis = regSet.tmpListBeg(); tempThis != nullptr; tempThis = regSet.tmpListNxt(tempThis)) |
| 6287 | { |
| 6288 | if (!varTypeIsGC(tempThis->tdTempType())) |
| 6289 | { |
| 6290 | continue; |
| 6291 | } |
| 6292 | |
| 6293 | // printf("initialize untracked spillTmp [EBP-%04X]\n", stkOffs); |
| 6294 | |
| 6295 | inst_ST_RV(ins_Store(TYP_I_IMPL), tempThis, 0, genGetZeroReg(initReg, pInitRegZeroed), TYP_I_IMPL); |
| 6296 | } |
| 6297 | } |
| 6298 | } |
| 6299 | } |
| 6300 | |
| 6301 | /*----------------------------------------------------------------------------- |
| 6302 | * |
| 6303 | * Save the generic context argument. |
| 6304 | * |
| 6305 | * We need to do this within the "prolog" in case anyone tries to inspect |
| 6306 | * the param-type-arg/this (which can be done after the prolog) using |
| 6307 | * ICodeManager::GetParamTypeArg(). |
| 6308 | */ |
| 6309 | |
| 6310 | void CodeGen::genReportGenericContextArg(regNumber initReg, bool* pInitRegZeroed) |
| 6311 | { |
| 6312 | assert(compiler->compGeneratingProlog); |
| 6313 | |
| 6314 | bool reportArg = compiler->lvaReportParamTypeArg(); |
| 6315 | |
| 6316 | // We should report either generic context arg or "this" when used so. |
| 6317 | if (!reportArg) |
| 6318 | { |
| 6319 | #ifndef JIT32_GCENCODER |
| 6320 | if (!compiler->lvaKeepAliveAndReportThis()) |
| 6321 | #endif |
| 6322 | { |
| 6323 | return; |
| 6324 | } |
| 6325 | } |
| 6326 | |
| 6327 | // For JIT32_GCENCODER, we won't be here if reportArg is false. |
| 6328 | unsigned contextArg = reportArg ? compiler->info.compTypeCtxtArg : compiler->info.compThisArg; |
| 6329 | |
| 6330 | noway_assert(contextArg != BAD_VAR_NUM); |
| 6331 | LclVarDsc* varDsc = &compiler->lvaTable[contextArg]; |
| 6332 | |
| 6333 | // We are still in the prolog and compiler->info.compTypeCtxtArg has not been |
| 6334 | // moved to its final home location. So we need to use it from the |
| 6335 | // incoming location. |
| 6336 | |
| 6337 | regNumber reg; |
| 6338 | |
| 6339 | bool isPrespilledForProfiling = false; |
| 6340 | #if defined(_TARGET_ARM_) && defined(PROFILING_SUPPORTED) |
| 6341 | isPrespilledForProfiling = |
| 6342 | compiler->compIsProfilerHookNeeded() && compiler->lvaIsPreSpilled(contextArg, regSet.rsMaskPreSpillRegs(false)); |
| 6343 | #endif |
| 6344 | |
| 6345 | // Load from the argument register only if it is not prespilled. |
| 6346 | if (compiler->lvaIsRegArgument(contextArg) && !isPrespilledForProfiling) |
| 6347 | { |
| 6348 | reg = varDsc->lvArgReg; |
| 6349 | } |
| 6350 | else |
| 6351 | { |
| 6352 | if (isFramePointerUsed()) |
| 6353 | { |
| 6354 | #if defined(_TARGET_ARM_) |
| 6355 | // lvStkOffs is always valid for incoming stack-arguments, even if the argument |
| 6356 | // will become enregistered. |
| 6357 | // On Arm compiler->compArgSize doesn't include r11 and lr sizes and hence we need to add 2*REGSIZE_BYTES |
| 6358 | noway_assert((2 * REGSIZE_BYTES <= varDsc->lvStkOffs) && |
| 6359 | (size_t(varDsc->lvStkOffs) < compiler->compArgSize + 2 * REGSIZE_BYTES)); |
| 6360 | #else |
| 6361 | // lvStkOffs is always valid for incoming stack-arguments, even if the argument |
| 6362 | // will become enregistered. |
| 6363 | noway_assert((0 < varDsc->lvStkOffs) && (size_t(varDsc->lvStkOffs) < compiler->compArgSize)); |
| 6364 | #endif |
| 6365 | } |
| 6366 | |
| 6367 | // We will just use the initReg since it is an available register |
| 6368 | // and we are probably done using it anyway... |
| 6369 | reg = initReg; |
| 6370 | *pInitRegZeroed = false; |
| 6371 | |
| 6372 | // mov reg, [compiler->info.compTypeCtxtArg] |
| 6373 | getEmitter()->emitIns_R_AR(ins_Load(TYP_I_IMPL), EA_PTRSIZE, reg, genFramePointerReg(), varDsc->lvStkOffs); |
| 6374 | regSet.verifyRegUsed(reg); |
| 6375 | } |
| 6376 | |
| 6377 | #if CPU_LOAD_STORE_ARCH |
| 6378 | getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, reg, genFramePointerReg(), |
| 6379 | compiler->lvaCachedGenericContextArgOffset()); |
| 6380 | #else // CPU_LOAD_STORE_ARCH |
| 6381 | // mov [ebp-lvaCachedGenericContextArgOffset()], reg |
| 6382 | getEmitter()->emitIns_AR_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, reg, genFramePointerReg(), |
| 6383 | compiler->lvaCachedGenericContextArgOffset()); |
| 6384 | #endif // !CPU_LOAD_STORE_ARCH |
| 6385 | } |
| 6386 | |
| 6387 | /*----------------------------------------------------------------------------- |
| 6388 | * |
| 6389 | * Set the "GS" security cookie in the prolog. |
| 6390 | */ |
| 6391 | |
| 6392 | void CodeGen::genSetGSSecurityCookie(regNumber initReg, bool* pInitRegZeroed) |
| 6393 | { |
| 6394 | assert(compiler->compGeneratingProlog); |
| 6395 | |
| 6396 | if (!compiler->getNeedsGSSecurityCookie()) |
| 6397 | { |
| 6398 | return; |
| 6399 | } |
| 6400 | |
| 6401 | noway_assert(compiler->gsGlobalSecurityCookieAddr || compiler->gsGlobalSecurityCookieVal); |
| 6402 | |
| 6403 | if (compiler->gsGlobalSecurityCookieAddr == nullptr) |
| 6404 | { |
| 6405 | #ifdef _TARGET_AMD64_ |
| 6406 | // eax = #GlobalSecurityCookieVal64; [frame.GSSecurityCookie] = eax |
| 6407 | getEmitter()->emitIns_R_I(INS_mov, EA_PTRSIZE, REG_RAX, compiler->gsGlobalSecurityCookieVal); |
| 6408 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_RAX, compiler->lvaGSSecurityCookie, 0); |
| 6409 | #else |
| 6410 | // mov dword ptr [frame.GSSecurityCookie], #GlobalSecurityCookieVal |
| 6411 | instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, compiler->gsGlobalSecurityCookieVal, |
| 6412 | compiler->lvaGSSecurityCookie, 0, initReg); |
| 6413 | #endif |
| 6414 | } |
| 6415 | else |
| 6416 | { |
| 6417 | regNumber reg; |
| 6418 | #ifdef _TARGET_XARCH_ |
| 6419 | // Always use EAX on x86 and x64 |
| 6420 | // On x64, if we're not moving into RAX, and the address isn't RIP relative, we can't encode it. |
| 6421 | reg = REG_EAX; |
| 6422 | #else |
| 6423 | // We will just use the initReg since it is an available register |
| 6424 | reg = initReg; |
| 6425 | #endif |
| 6426 | |
| 6427 | *pInitRegZeroed = false; |
| 6428 | |
| 6429 | #if CPU_LOAD_STORE_ARCH |
| 6430 | instGen_Set_Reg_To_Imm(EA_PTR_DSP_RELOC, reg, (ssize_t)compiler->gsGlobalSecurityCookieAddr); |
| 6431 | getEmitter()->emitIns_R_R_I(ins_Load(TYP_I_IMPL), EA_PTRSIZE, reg, reg, 0); |
| 6432 | regSet.verifyRegUsed(reg); |
| 6433 | #else |
| 6434 | // mov reg, dword ptr [compiler->gsGlobalSecurityCookieAddr] |
| 6435 | // mov dword ptr [frame.GSSecurityCookie], reg |
| 6436 | getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, reg, (ssize_t)compiler->gsGlobalSecurityCookieAddr); |
| 6437 | regSet.verifyRegUsed(reg); |
| 6438 | #endif |
| 6439 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, reg, compiler->lvaGSSecurityCookie, 0); |
| 6440 | } |
| 6441 | } |
| 6442 | |
| 6443 | #ifdef PROFILING_SUPPORTED |
| 6444 | |
| 6445 | //----------------------------------------------------------------------------------- |
| 6446 | // genProfilingEnterCallback: Generate the profiling function enter callback. |
| 6447 | // |
| 6448 | // Arguments: |
| 6449 | // initReg - register to use as scratch register |
| 6450 | // pInitRegZeroed - OUT parameter. *pInitRegZeroed set to 'false' if 'initReg' is |
| 6451 | // not zero after this call. |
| 6452 | // |
| 6453 | // Return Value: |
| 6454 | // None |
| 6455 | // |
| 6456 | // Notes: |
| 6457 | // The x86 profile enter helper has the following requirements (see ProfileEnterNaked in |
| 6458 | // VM\i386\asmhelpers.asm for details): |
| 6459 | // 1. The calling sequence for calling the helper is: |
| 6460 | // push FunctionIDOrClientID |
| 6461 | // call ProfileEnterHelper |
| 6462 | // 2. The calling function has an EBP frame. |
| 6463 | // 3. EBP points to the saved ESP which is the first thing saved in the function. Thus, |
| 6464 | // the following prolog is assumed: |
| 6465 | // push ESP |
| 6466 | // mov EBP, ESP |
| 6467 | // 4. All registers are preserved. |
| 6468 | // 5. The helper pops the FunctionIDOrClientID argument from the stack. |
| 6469 | // |
| 6470 | void CodeGen::genProfilingEnterCallback(regNumber initReg, bool* pInitRegZeroed) |
| 6471 | { |
| 6472 | assert(compiler->compGeneratingProlog); |
| 6473 | |
| 6474 | // Give profiler a chance to back out of hooking this method |
| 6475 | if (!compiler->compIsProfilerHookNeeded()) |
| 6476 | { |
| 6477 | return; |
| 6478 | } |
| 6479 | |
| 6480 | #if defined(_TARGET_AMD64_) |
| 6481 | #if !defined(UNIX_AMD64_ABI) |
| 6482 | |
| 6483 | unsigned varNum; |
| 6484 | LclVarDsc* varDsc; |
| 6485 | |
| 6486 | // Since the method needs to make a profiler callback, it should have out-going arg space allocated. |
| 6487 | noway_assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM); |
| 6488 | noway_assert(compiler->lvaOutgoingArgSpaceSize >= (4 * REGSIZE_BYTES)); |
| 6489 | |
| 6490 | // Home all arguments passed in arg registers (RCX, RDX, R8 and R9). |
| 6491 | // In case of vararg methods, arg regs are already homed. |
| 6492 | // |
| 6493 | // Note: Here we don't need to worry about updating gc'info since enter |
| 6494 | // callback is generated as part of prolog which is non-gc interruptible. |
| 6495 | // Moreover GC cannot kick while executing inside profiler callback which is a |
| 6496 | // profiler requirement so it can examine arguments which could be obj refs. |
| 6497 | if (!compiler->info.compIsVarArgs) |
| 6498 | { |
| 6499 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->info.compArgsCount; varNum++, varDsc++) |
| 6500 | { |
| 6501 | noway_assert(varDsc->lvIsParam); |
| 6502 | |
| 6503 | if (!varDsc->lvIsRegArg) |
| 6504 | { |
| 6505 | continue; |
| 6506 | } |
| 6507 | |
| 6508 | var_types storeType = varDsc->lvaArgType(); |
| 6509 | regNumber argReg = varDsc->lvArgReg; |
| 6510 | |
| 6511 | instruction store_ins = ins_Store(storeType); |
| 6512 | |
| 6513 | #ifdef FEATURE_SIMD |
| 6514 | if ((storeType == TYP_SIMD8) && genIsValidIntReg(argReg)) |
| 6515 | { |
| 6516 | store_ins = INS_mov; |
| 6517 | } |
| 6518 | #endif // FEATURE_SIMD |
| 6519 | |
| 6520 | getEmitter()->emitIns_S_R(store_ins, emitTypeSize(storeType), argReg, varNum, 0); |
| 6521 | } |
| 6522 | } |
| 6523 | |
| 6524 | // Emit profiler EnterCallback(ProfilerMethHnd, caller's SP) |
| 6525 | // RCX = ProfilerMethHnd |
| 6526 | if (compiler->compProfilerMethHndIndirected) |
| 6527 | { |
| 6528 | // Profiler hooks enabled during Ngen time. |
| 6529 | // Profiler handle needs to be accessed through an indirection of a pointer. |
| 6530 | getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6531 | } |
| 6532 | else |
| 6533 | { |
| 6534 | // No need to record relocations, if we are generating ELT hooks under the influence |
| 6535 | // of COMPlus_JitELTHookEnabled=1 |
| 6536 | if (compiler->opts.compJitELTHookEnabled) |
| 6537 | { |
| 6538 | genSetRegToIcon(REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL); |
| 6539 | } |
| 6540 | else |
| 6541 | { |
| 6542 | instGen_Set_Reg_To_Imm(EA_8BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6543 | } |
| 6544 | } |
| 6545 | |
| 6546 | // RDX = caller's SP |
| 6547 | // Notes |
| 6548 | // 1) Here we can query caller's SP offset since prolog will be generated after final frame layout. |
| 6549 | // 2) caller's SP relative offset to FramePointer will be negative. We need to add absolute value |
| 6550 | // of that offset to FramePointer to obtain caller's SP value. |
| 6551 | assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM); |
| 6552 | int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed()); |
| 6553 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_ARG_1, genFramePointerReg(), -callerSPOffset); |
| 6554 | |
| 6555 | // Can't have a call until we have enough padding for rejit |
| 6556 | genPrologPadForReJit(); |
| 6557 | |
| 6558 | // This will emit either |
| 6559 | // "call ip-relative 32-bit offset" or |
| 6560 | // "mov rax, helper addr; call rax" |
| 6561 | genEmitHelperCall(CORINFO_HELP_PROF_FCN_ENTER, 0, EA_UNKNOWN); |
| 6562 | |
| 6563 | // TODO-AMD64-CQ: Rather than reloading, see if this could be optimized by combining with prolog |
| 6564 | // generation logic that moves args around as required by first BB entry point conditions |
| 6565 | // computed by LSRA. Code pointers for investigating this further: genFnPrologCalleeRegArgs() |
| 6566 | // and genEnregisterIncomingStackArgs(). |
| 6567 | // |
| 6568 | // Now reload arg registers from home locations. |
| 6569 | // Vararg methods: |
| 6570 | // - we need to reload only known (i.e. fixed) reg args. |
| 6571 | // - if floating point type, also reload it into corresponding integer reg |
| 6572 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->info.compArgsCount; varNum++, varDsc++) |
| 6573 | { |
| 6574 | noway_assert(varDsc->lvIsParam); |
| 6575 | |
| 6576 | if (!varDsc->lvIsRegArg) |
| 6577 | { |
| 6578 | continue; |
| 6579 | } |
| 6580 | |
| 6581 | var_types loadType = varDsc->lvaArgType(); |
| 6582 | regNumber argReg = varDsc->lvArgReg; |
| 6583 | |
| 6584 | instruction load_ins = ins_Load(loadType); |
| 6585 | |
| 6586 | #ifdef FEATURE_SIMD |
| 6587 | if ((loadType == TYP_SIMD8) && genIsValidIntReg(argReg)) |
| 6588 | { |
| 6589 | load_ins = INS_mov; |
| 6590 | } |
| 6591 | #endif // FEATURE_SIMD |
| 6592 | |
| 6593 | getEmitter()->emitIns_R_S(load_ins, emitTypeSize(loadType), argReg, varNum, 0); |
| 6594 | |
| 6595 | #if FEATURE_VARARG |
| 6596 | if (compiler->info.compIsVarArgs && varTypeIsFloating(loadType)) |
| 6597 | { |
| 6598 | regNumber intArgReg = compiler->getCallArgIntRegister(argReg); |
| 6599 | instruction ins = ins_CopyFloatToInt(loadType, TYP_LONG); |
| 6600 | inst_RV_RV(ins, argReg, intArgReg, loadType); |
| 6601 | } |
| 6602 | #endif // FEATURE_VARARG |
| 6603 | } |
| 6604 | |
| 6605 | // If initReg is one of RBM_CALLEE_TRASH, then it needs to be zero'ed before using. |
| 6606 | if ((RBM_CALLEE_TRASH & genRegMask(initReg)) != 0) |
| 6607 | { |
| 6608 | *pInitRegZeroed = false; |
| 6609 | } |
| 6610 | |
| 6611 | #else // !defined(UNIX_AMD64_ABI) |
| 6612 | |
| 6613 | // Emit profiler EnterCallback(ProfilerMethHnd, caller's SP) |
| 6614 | // R14 = ProfilerMethHnd |
| 6615 | if (compiler->compProfilerMethHndIndirected) |
| 6616 | { |
| 6617 | // Profiler hooks enabled during Ngen time. |
| 6618 | // Profiler handle needs to be accessed through an indirection of a pointer. |
| 6619 | getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_PROFILER_ENTER_ARG_0, |
| 6620 | (ssize_t)compiler->compProfilerMethHnd); |
| 6621 | } |
| 6622 | else |
| 6623 | { |
| 6624 | // No need to record relocations, if we are generating ELT hooks under the influence |
| 6625 | // of COMPlus_JitELTHookEnabled=1 |
| 6626 | if (compiler->opts.compJitELTHookEnabled) |
| 6627 | { |
| 6628 | genSetRegToIcon(REG_PROFILER_ENTER_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL); |
| 6629 | } |
| 6630 | else |
| 6631 | { |
| 6632 | instGen_Set_Reg_To_Imm(EA_8BYTE, REG_PROFILER_ENTER_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6633 | } |
| 6634 | } |
| 6635 | |
| 6636 | // R15 = caller's SP |
| 6637 | // Notes |
| 6638 | // 1) Here we can query caller's SP offset since prolog will be generated after final frame layout. |
| 6639 | // 2) caller's SP relative offset to FramePointer will be negative. We need to add absolute value |
| 6640 | // of that offset to FramePointer to obtain caller's SP value. |
| 6641 | assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM); |
| 6642 | int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed()); |
| 6643 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_PROFILER_ENTER_ARG_1, genFramePointerReg(), -callerSPOffset); |
| 6644 | |
| 6645 | // Can't have a call until we have enough padding for rejit |
| 6646 | genPrologPadForReJit(); |
| 6647 | |
| 6648 | // We can use any callee trash register (other than RAX, RDI, RSI) for call target. |
| 6649 | // We use R11 here. This will emit either |
| 6650 | // "call ip-relative 32-bit offset" or |
| 6651 | // "mov r11, helper addr; call r11" |
| 6652 | genEmitHelperCall(CORINFO_HELP_PROF_FCN_ENTER, 0, EA_UNKNOWN, REG_DEFAULT_PROFILER_CALL_TARGET); |
| 6653 | |
| 6654 | // If initReg is one of RBM_CALLEE_TRASH, then it needs to be zero'ed before using. |
| 6655 | if ((RBM_CALLEE_TRASH & genRegMask(initReg)) != 0) |
| 6656 | { |
| 6657 | *pInitRegZeroed = false; |
| 6658 | } |
| 6659 | |
| 6660 | #endif // !defined(UNIX_AMD64_ABI) |
| 6661 | |
| 6662 | #elif defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 6663 | |
| 6664 | unsigned saveStackLvl2 = genStackLevel; |
| 6665 | |
| 6666 | #if defined(_TARGET_X86_) |
| 6667 | // Important note: when you change enter probe layout, you must also update SKIP_ENTER_PROF_CALLBACK() |
| 6668 | // for x86 stack unwinding |
| 6669 | |
| 6670 | #if defined(UNIX_X86_ABI) |
| 6671 | // Manually align the stack to be 16-byte aligned. This is similar to CodeGen::genAlignStackBeforeCall() |
| 6672 | getEmitter()->emitIns_R_I(INS_sub, EA_4BYTE, REG_SPBASE, 0xC); |
| 6673 | #endif // UNIX_X86_ABI |
| 6674 | |
| 6675 | // Push the profilerHandle |
| 6676 | if (compiler->compProfilerMethHndIndirected) |
| 6677 | { |
| 6678 | getEmitter()->emitIns_AR_R(INS_push, EA_PTR_DSP_RELOC, REG_NA, REG_NA, (ssize_t)compiler->compProfilerMethHnd); |
| 6679 | } |
| 6680 | else |
| 6681 | { |
| 6682 | inst_IV(INS_push, (size_t)compiler->compProfilerMethHnd); |
| 6683 | } |
| 6684 | |
| 6685 | #elif defined(_TARGET_ARM_) |
| 6686 | // On Arm arguments are prespilled on stack, which frees r0-r3. |
| 6687 | // For generating Enter callout we would need two registers and one of them has to be r0 to pass profiler handle. |
| 6688 | // The call target register could be any free register. |
| 6689 | regNumber argReg = REG_PROFILER_ENTER_ARG; |
| 6690 | regMaskTP argRegMask = genRegMask(argReg); |
| 6691 | assert((regSet.rsMaskPreSpillRegArg & argRegMask) != 0); |
| 6692 | |
| 6693 | if (compiler->compProfilerMethHndIndirected) |
| 6694 | { |
| 6695 | getEmitter()->emitIns_R_AI(INS_ldr, EA_PTR_DSP_RELOC, argReg, (ssize_t)compiler->compProfilerMethHnd); |
| 6696 | regSet.verifyRegUsed(argReg); |
| 6697 | } |
| 6698 | else |
| 6699 | { |
| 6700 | instGen_Set_Reg_To_Imm(EA_4BYTE, argReg, (ssize_t)compiler->compProfilerMethHnd); |
| 6701 | } |
| 6702 | #else // _TARGET_* |
| 6703 | NYI("Pushing the profilerHandle & caller's sp for the profiler callout and locking registers" ); |
| 6704 | #endif // _TARGET_* |
| 6705 | |
| 6706 | // |
| 6707 | // Can't have a call until we have enough padding for rejit |
| 6708 | // |
| 6709 | genPrologPadForReJit(); |
| 6710 | |
| 6711 | // This will emit either |
| 6712 | // "call ip-relative 32-bit offset" or |
| 6713 | // "mov rax, helper addr; call rax" |
| 6714 | genEmitHelperCall(CORINFO_HELP_PROF_FCN_ENTER, |
| 6715 | 0, // argSize. Again, we have to lie about it |
| 6716 | EA_UNKNOWN); // retSize |
| 6717 | |
| 6718 | #if defined(_TARGET_X86_) |
| 6719 | // Check that we have place for the push. |
| 6720 | assert(compiler->fgPtrArgCntMax >= 1); |
| 6721 | |
| 6722 | #if defined(UNIX_X86_ABI) |
| 6723 | // Restoring alignment manually. This is similar to CodeGen::genRemoveAlignmentAfterCall |
| 6724 | getEmitter()->emitIns_R_I(INS_add, EA_4BYTE, REG_SPBASE, 0x10); |
| 6725 | #endif // UNIX_X86_ABI |
| 6726 | |
| 6727 | #elif defined(_TARGET_ARM_) |
| 6728 | if (initReg == argReg) |
| 6729 | { |
| 6730 | *pInitRegZeroed = false; |
| 6731 | } |
| 6732 | #else // _TARGET_* |
| 6733 | NYI("Pushing the profilerHandle & caller's sp for the profiler callout and locking registers" ); |
| 6734 | #endif // _TARGET_* |
| 6735 | |
| 6736 | /* Restore the stack level */ |
| 6737 | |
| 6738 | SetStackLevel(saveStackLvl2); |
| 6739 | |
| 6740 | #else // target |
| 6741 | NYI("Emit Profiler Enter callback" ); |
| 6742 | #endif // target |
| 6743 | } |
| 6744 | |
| 6745 | //----------------------------------------------------------------------------------- |
| 6746 | // genProfilingLeaveCallback: Generate the profiling function leave or tailcall callback. |
| 6747 | // Technically, this is not part of the epilog; it is called when we are generating code for a GT_RETURN node. |
| 6748 | // |
| 6749 | // Arguments: |
| 6750 | // helper - which helper to call. Either CORINFO_HELP_PROF_FCN_LEAVE or CORINFO_HELP_PROF_FCN_TAILCALL |
| 6751 | // |
| 6752 | // Return Value: |
| 6753 | // None |
| 6754 | // |
| 6755 | // Notes: |
| 6756 | // The x86 profile leave/tailcall helper has the following requirements (see ProfileLeaveNaked and |
| 6757 | // ProfileTailcallNaked in VM\i386\asmhelpers.asm for details): |
| 6758 | // 1. The calling sequence for calling the helper is: |
| 6759 | // push FunctionIDOrClientID |
| 6760 | // call ProfileLeaveHelper or ProfileTailcallHelper |
| 6761 | // 2. The calling function has an EBP frame. |
| 6762 | // 3. EBP points to the saved ESP which is the first thing saved in the function. Thus, |
| 6763 | // the following prolog is assumed: |
| 6764 | // push ESP |
| 6765 | // mov EBP, ESP |
| 6766 | // 4. helper == CORINFO_HELP_PROF_FCN_LEAVE: All registers are preserved. |
| 6767 | // helper == CORINFO_HELP_PROF_FCN_TAILCALL: Only argument registers are preserved. |
| 6768 | // 5. The helper pops the FunctionIDOrClientID argument from the stack. |
| 6769 | // |
| 6770 | void CodeGen::genProfilingLeaveCallback(unsigned helper /*= CORINFO_HELP_PROF_FCN_LEAVE*/) |
| 6771 | { |
| 6772 | assert((helper == CORINFO_HELP_PROF_FCN_LEAVE) || (helper == CORINFO_HELP_PROF_FCN_TAILCALL)); |
| 6773 | |
| 6774 | // Only hook if profiler says it's okay. |
| 6775 | if (!compiler->compIsProfilerHookNeeded()) |
| 6776 | { |
| 6777 | return; |
| 6778 | } |
| 6779 | |
| 6780 | compiler->info.compProfilerCallback = true; |
| 6781 | |
| 6782 | // Need to save on to the stack level, since the helper call will pop the argument |
| 6783 | unsigned saveStackLvl2 = genStackLevel; |
| 6784 | |
| 6785 | #if defined(_TARGET_AMD64_) |
| 6786 | #if !defined(UNIX_AMD64_ABI) |
| 6787 | |
| 6788 | // Since the method needs to make a profiler callback, it should have out-going arg space allocated. |
| 6789 | noway_assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM); |
| 6790 | noway_assert(compiler->lvaOutgoingArgSpaceSize >= (4 * REGSIZE_BYTES)); |
| 6791 | |
| 6792 | // If thisPtr needs to be kept alive and reported, it cannot be one of the callee trash |
| 6793 | // registers that profiler callback kills. |
| 6794 | if (compiler->lvaKeepAliveAndReportThis() && compiler->lvaTable[compiler->info.compThisArg].lvIsInReg()) |
| 6795 | { |
| 6796 | regMaskTP thisPtrMask = genRegMask(compiler->lvaTable[compiler->info.compThisArg].lvRegNum); |
| 6797 | noway_assert((RBM_PROFILER_LEAVE_TRASH & thisPtrMask) == 0); |
| 6798 | } |
| 6799 | |
| 6800 | // At this point return value is computed and stored in RAX or XMM0. |
| 6801 | // On Amd64, Leave callback preserves the return register. We keep |
| 6802 | // RAX alive by not reporting as trashed by helper call. Also note |
| 6803 | // that GC cannot kick-in while executing inside profiler callback, |
| 6804 | // which is a requirement of profiler as well since it needs to examine |
| 6805 | // return value which could be an obj ref. |
| 6806 | |
| 6807 | // RCX = ProfilerMethHnd |
| 6808 | if (compiler->compProfilerMethHndIndirected) |
| 6809 | { |
| 6810 | // Profiler hooks enabled during Ngen time. |
| 6811 | // Profiler handle needs to be accessed through an indirection of an address. |
| 6812 | getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6813 | } |
| 6814 | else |
| 6815 | { |
| 6816 | // Don't record relocations, if we are generating ELT hooks under the influence |
| 6817 | // of COMPlus_JitELTHookEnabled=1 |
| 6818 | if (compiler->opts.compJitELTHookEnabled) |
| 6819 | { |
| 6820 | genSetRegToIcon(REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL); |
| 6821 | } |
| 6822 | else |
| 6823 | { |
| 6824 | instGen_Set_Reg_To_Imm(EA_8BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6825 | } |
| 6826 | } |
| 6827 | |
| 6828 | // RDX = caller's SP |
| 6829 | // TODO-AMD64-Cleanup: Once we start doing codegen after final frame layout, retain the "if" portion |
| 6830 | // of the stmnts to execute unconditionally and clean-up rest. |
| 6831 | if (compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT) |
| 6832 | { |
| 6833 | // Caller's SP relative offset to FramePointer will be negative. We need to add absolute |
| 6834 | // value of that offset to FramePointer to obtain caller's SP value. |
| 6835 | int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed()); |
| 6836 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_ARG_1, genFramePointerReg(), -callerSPOffset); |
| 6837 | } |
| 6838 | else |
| 6839 | { |
| 6840 | // If we are here means that it is a tentative frame layout during which we |
| 6841 | // cannot use caller's SP offset since it is an estimate. For now we require the |
| 6842 | // method to have at least a single arg so that we can use it to obtain caller's |
| 6843 | // SP. |
| 6844 | LclVarDsc* varDsc = compiler->lvaTable; |
| 6845 | NYI_IF((varDsc == nullptr) || !varDsc->lvIsParam, "Profiler ELT callback for a method without any params" ); |
| 6846 | |
| 6847 | // lea rdx, [FramePointer + Arg0's offset] |
| 6848 | getEmitter()->emitIns_R_S(INS_lea, EA_PTRSIZE, REG_ARG_1, 0, 0); |
| 6849 | } |
| 6850 | |
| 6851 | // We can use any callee trash register (other than RAX, RCX, RDX) for call target. |
| 6852 | // We use R8 here. This will emit either |
| 6853 | // "call ip-relative 32-bit offset" or |
| 6854 | // "mov r8, helper addr; call r8" |
| 6855 | genEmitHelperCall(helper, 0, EA_UNKNOWN, REG_ARG_2); |
| 6856 | |
| 6857 | #else // !defined(UNIX_AMD64_ABI) |
| 6858 | |
| 6859 | // RDI = ProfilerMethHnd |
| 6860 | if (compiler->compProfilerMethHndIndirected) |
| 6861 | { |
| 6862 | getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6863 | } |
| 6864 | else |
| 6865 | { |
| 6866 | if (compiler->opts.compJitELTHookEnabled) |
| 6867 | { |
| 6868 | genSetRegToIcon(REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL); |
| 6869 | } |
| 6870 | else |
| 6871 | { |
| 6872 | instGen_Set_Reg_To_Imm(EA_8BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6873 | } |
| 6874 | } |
| 6875 | |
| 6876 | // RSI = caller's SP |
| 6877 | if (compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT) |
| 6878 | { |
| 6879 | int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed()); |
| 6880 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_ARG_1, genFramePointerReg(), -callerSPOffset); |
| 6881 | } |
| 6882 | else |
| 6883 | { |
| 6884 | LclVarDsc* varDsc = compiler->lvaTable; |
| 6885 | NYI_IF((varDsc == nullptr) || !varDsc->lvIsParam, "Profiler ELT callback for a method without any params" ); |
| 6886 | |
| 6887 | // lea rdx, [FramePointer + Arg0's offset] |
| 6888 | getEmitter()->emitIns_R_S(INS_lea, EA_PTRSIZE, REG_ARG_1, 0, 0); |
| 6889 | } |
| 6890 | |
| 6891 | // We can use any callee trash register (other than RAX, RDI, RSI) for call target. |
| 6892 | // We use R11 here. This will emit either |
| 6893 | // "call ip-relative 32-bit offset" or |
| 6894 | // "mov r11, helper addr; call r11" |
| 6895 | genEmitHelperCall(helper, 0, EA_UNKNOWN, REG_DEFAULT_PROFILER_CALL_TARGET); |
| 6896 | |
| 6897 | #endif // !defined(UNIX_AMD64_ABI) |
| 6898 | |
| 6899 | #elif defined(_TARGET_X86_) |
| 6900 | |
| 6901 | #if defined(UNIX_X86_ABI) |
| 6902 | // Manually align the stack to be 16-byte aligned. This is similar to CodeGen::genAlignStackBeforeCall() |
| 6903 | getEmitter()->emitIns_R_I(INS_sub, EA_4BYTE, REG_SPBASE, 0xC); |
| 6904 | AddStackLevel(0xC); |
| 6905 | AddNestedAlignment(0xC); |
| 6906 | #endif // UNIX_X86_ABI |
| 6907 | |
| 6908 | // |
| 6909 | // Push the profilerHandle |
| 6910 | // |
| 6911 | |
| 6912 | if (compiler->compProfilerMethHndIndirected) |
| 6913 | { |
| 6914 | getEmitter()->emitIns_AR_R(INS_push, EA_PTR_DSP_RELOC, REG_NA, REG_NA, (ssize_t)compiler->compProfilerMethHnd); |
| 6915 | } |
| 6916 | else |
| 6917 | { |
| 6918 | inst_IV(INS_push, (size_t)compiler->compProfilerMethHnd); |
| 6919 | } |
| 6920 | genSinglePush(); |
| 6921 | |
| 6922 | #if defined(UNIX_X86_ABI) |
| 6923 | int argSize = -REGSIZE_BYTES; // negative means caller-pop (cdecl) |
| 6924 | #else |
| 6925 | int argSize = REGSIZE_BYTES; |
| 6926 | #endif |
| 6927 | genEmitHelperCall(helper, argSize, EA_UNKNOWN /* retSize */); |
| 6928 | |
| 6929 | // Check that we have place for the push. |
| 6930 | assert(compiler->fgPtrArgCntMax >= 1); |
| 6931 | |
| 6932 | #if defined(UNIX_X86_ABI) |
| 6933 | // Restoring alignment manually. This is similar to CodeGen::genRemoveAlignmentAfterCall |
| 6934 | getEmitter()->emitIns_R_I(INS_add, EA_4BYTE, REG_SPBASE, 0x10); |
| 6935 | SubtractStackLevel(0x10); |
| 6936 | SubtractNestedAlignment(0xC); |
| 6937 | #endif // UNIX_X86_ABI |
| 6938 | |
| 6939 | #elif defined(_TARGET_ARM_) |
| 6940 | // |
| 6941 | // Push the profilerHandle |
| 6942 | // |
| 6943 | |
| 6944 | // Contract between JIT and Profiler Leave callout on arm: |
| 6945 | // Return size <= 4 bytes: REG_PROFILER_RET_SCRATCH will contain return value |
| 6946 | // Return size > 4 and <= 8: <REG_PROFILER_RET_SCRATCH,r1> will contain return value. |
| 6947 | // Floating point or double or HFA return values will be in s0-s15 in case of non-vararg methods. |
| 6948 | // It is assumed that profiler Leave callback doesn't trash registers r1,REG_PROFILER_RET_SCRATCH and s0-s15. |
| 6949 | // |
| 6950 | // In the following cases r0 doesn't contain a return value and hence need not be preserved before emitting Leave |
| 6951 | // callback. |
| 6952 | bool r0Trashed; |
| 6953 | emitAttr attr = EA_UNKNOWN; |
| 6954 | |
| 6955 | if (compiler->info.compRetType == TYP_VOID || (!compiler->info.compIsVarArgs && !compiler->opts.compUseSoftFP && |
| 6956 | (varTypeIsFloating(compiler->info.compRetType) || |
| 6957 | compiler->IsHfa(compiler->info.compMethodInfo->args.retTypeClass)))) |
| 6958 | { |
| 6959 | r0Trashed = false; |
| 6960 | } |
| 6961 | else |
| 6962 | { |
| 6963 | // Has a return value and r0 is in use. For emitting Leave profiler callout we would need r0 for passing |
| 6964 | // profiler handle. Therefore, r0 is moved to REG_PROFILER_RETURN_SCRATCH as per contract. |
| 6965 | if (RBM_ARG_0 & gcInfo.gcRegGCrefSetCur) |
| 6966 | { |
| 6967 | attr = EA_GCREF; |
| 6968 | gcInfo.gcMarkRegSetGCref(RBM_PROFILER_RET_SCRATCH); |
| 6969 | } |
| 6970 | else if (RBM_ARG_0 & gcInfo.gcRegByrefSetCur) |
| 6971 | { |
| 6972 | attr = EA_BYREF; |
| 6973 | gcInfo.gcMarkRegSetByref(RBM_PROFILER_RET_SCRATCH); |
| 6974 | } |
| 6975 | else |
| 6976 | { |
| 6977 | attr = EA_4BYTE; |
| 6978 | } |
| 6979 | |
| 6980 | getEmitter()->emitIns_R_R(INS_mov, attr, REG_PROFILER_RET_SCRATCH, REG_ARG_0); |
| 6981 | regSet.verifyRegUsed(REG_PROFILER_RET_SCRATCH); |
| 6982 | gcInfo.gcMarkRegSetNpt(RBM_ARG_0); |
| 6983 | r0Trashed = true; |
| 6984 | } |
| 6985 | |
| 6986 | if (compiler->compProfilerMethHndIndirected) |
| 6987 | { |
| 6988 | getEmitter()->emitIns_R_AI(INS_ldr, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6989 | regSet.verifyRegUsed(REG_ARG_0); |
| 6990 | } |
| 6991 | else |
| 6992 | { |
| 6993 | instGen_Set_Reg_To_Imm(EA_4BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd); |
| 6994 | } |
| 6995 | |
| 6996 | genEmitHelperCall(CORINFO_HELP_PROF_FCN_LEAVE, |
| 6997 | 0, // argSize |
| 6998 | EA_UNKNOWN); // retSize |
| 6999 | |
| 7000 | // Restore state that existed before profiler callback |
| 7001 | if (r0Trashed) |
| 7002 | { |
| 7003 | getEmitter()->emitIns_R_R(INS_mov, attr, REG_ARG_0, REG_PROFILER_RET_SCRATCH); |
| 7004 | regSet.verifyRegUsed(REG_ARG_0); |
| 7005 | gcInfo.gcMarkRegSetNpt(RBM_PROFILER_RET_SCRATCH); |
| 7006 | } |
| 7007 | |
| 7008 | #else // target |
| 7009 | NYI("Emit Profiler Leave callback" ); |
| 7010 | #endif // target |
| 7011 | |
| 7012 | /* Restore the stack level */ |
| 7013 | SetStackLevel(saveStackLvl2); |
| 7014 | } |
| 7015 | |
| 7016 | #endif // PROFILING_SUPPORTED |
| 7017 | |
| 7018 | /***************************************************************************** |
| 7019 | |
| 7020 | Esp frames : |
| 7021 | ---------- |
| 7022 | |
| 7023 | These instructions are just a reordering of the instructions used today. |
| 7024 | |
| 7025 | push ebp |
| 7026 | push esi |
| 7027 | push edi |
| 7028 | push ebx |
| 7029 | sub esp, LOCALS_SIZE / push dummyReg if LOCALS_SIZE=sizeof(void*) |
| 7030 | ... |
| 7031 | add esp, LOCALS_SIZE / pop dummyReg |
| 7032 | pop ebx |
| 7033 | pop edi |
| 7034 | pop esi |
| 7035 | pop ebp |
| 7036 | ret |
| 7037 | |
| 7038 | Ebp frames : |
| 7039 | ---------- |
| 7040 | |
| 7041 | The epilog does "add esp, LOCALS_SIZE" instead of "mov ebp, esp". |
| 7042 | Everything else is similar, though in a different order. |
| 7043 | |
| 7044 | The security object will no longer be at a fixed offset. However, the |
| 7045 | offset can still be determined by looking up the GC-info and determining |
| 7046 | how many callee-saved registers are pushed. |
| 7047 | |
| 7048 | push ebp |
| 7049 | mov ebp, esp |
| 7050 | push esi |
| 7051 | push edi |
| 7052 | push ebx |
| 7053 | sub esp, LOCALS_SIZE / push dummyReg if LOCALS_SIZE=sizeof(void*) |
| 7054 | ... |
| 7055 | add esp, LOCALS_SIZE / pop dummyReg |
| 7056 | pop ebx |
| 7057 | pop edi |
| 7058 | pop esi |
| 7059 | (mov esp, ebp if there are no callee-saved registers) |
| 7060 | pop ebp |
| 7061 | ret |
| 7062 | |
| 7063 | Double-aligned frame : |
| 7064 | -------------------- |
| 7065 | |
| 7066 | LOCALS_SIZE_ADJUSTED needs to include an unused DWORD if an odd number |
| 7067 | of callee-saved registers are pushed on the stack so that the locals |
| 7068 | themselves are qword-aligned. The instructions are the same as today, |
| 7069 | just in a different order. |
| 7070 | |
| 7071 | push ebp |
| 7072 | mov ebp, esp |
| 7073 | and esp, 0xFFFFFFFC |
| 7074 | push esi |
| 7075 | push edi |
| 7076 | push ebx |
| 7077 | sub esp, LOCALS_SIZE_ADJUSTED / push dummyReg if LOCALS_SIZE=sizeof(void*) |
| 7078 | ... |
| 7079 | add esp, LOCALS_SIZE_ADJUSTED / pop dummyReg |
| 7080 | pop ebx |
| 7081 | pop edi |
| 7082 | pop esi |
| 7083 | pop ebp |
| 7084 | mov esp, ebp |
| 7085 | pop ebp |
| 7086 | ret |
| 7087 | |
| 7088 | localloc (with ebp) frames : |
| 7089 | -------------------------- |
| 7090 | |
| 7091 | The instructions are the same as today, just in a different order. |
| 7092 | Also, today the epilog does "lea esp, [ebp-LOCALS_SIZE-calleeSavedRegsPushedSize]" |
| 7093 | which will change to "lea esp, [ebp-calleeSavedRegsPushedSize]". |
| 7094 | |
| 7095 | push ebp |
| 7096 | mov ebp, esp |
| 7097 | push esi |
| 7098 | push edi |
| 7099 | push ebx |
| 7100 | sub esp, LOCALS_SIZE / push dummyReg if LOCALS_SIZE=sizeof(void*) |
| 7101 | ... |
| 7102 | lea esp, [ebp-calleeSavedRegsPushedSize] |
| 7103 | pop ebx |
| 7104 | pop edi |
| 7105 | pop esi |
| 7106 | (mov esp, ebp if there are no callee-saved registers) |
| 7107 | pop ebp |
| 7108 | ret |
| 7109 | |
| 7110 | *****************************************************************************/ |
| 7111 | |
| 7112 | /***************************************************************************** |
| 7113 | * |
| 7114 | * Generates appropriate NOP padding for a function prolog to support ReJIT. |
| 7115 | */ |
| 7116 | |
| 7117 | void CodeGen::genPrologPadForReJit() |
| 7118 | { |
| 7119 | assert(compiler->compGeneratingProlog); |
| 7120 | |
| 7121 | #ifdef _TARGET_XARCH_ |
| 7122 | if (!compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PROF_REJIT_NOPS)) |
| 7123 | { |
| 7124 | return; |
| 7125 | } |
| 7126 | |
| 7127 | #if FEATURE_EH_FUNCLETS |
| 7128 | |
| 7129 | // No need to generate pad (nops) for funclets. |
| 7130 | // When compiling the main function (and not a funclet) |
| 7131 | // the value of funCurrentFunc->funKind is equal to FUNC_ROOT. |
| 7132 | if (compiler->funCurrentFunc()->funKind != FUNC_ROOT) |
| 7133 | { |
| 7134 | return; |
| 7135 | } |
| 7136 | |
| 7137 | #endif // FEATURE_EH_FUNCLETS |
| 7138 | |
| 7139 | unsigned size = getEmitter()->emitGetPrologOffsetEstimate(); |
| 7140 | if (size < 5) |
| 7141 | { |
| 7142 | instNop(5 - size); |
| 7143 | } |
| 7144 | #endif |
| 7145 | } |
| 7146 | |
| 7147 | /***************************************************************************** |
| 7148 | * |
| 7149 | * Reserve space for a function prolog. |
| 7150 | */ |
| 7151 | |
| 7152 | void CodeGen::genReserveProlog(BasicBlock* block) |
| 7153 | { |
| 7154 | assert(block != nullptr); |
| 7155 | |
| 7156 | JITDUMP("Reserving prolog IG for block " FMT_BB "\n" , block->bbNum); |
| 7157 | |
| 7158 | /* Nothing is live on entry to the prolog */ |
| 7159 | |
| 7160 | getEmitter()->emitCreatePlaceholderIG(IGPT_PROLOG, block, VarSetOps::MakeEmpty(compiler), 0, 0, false); |
| 7161 | } |
| 7162 | |
| 7163 | /***************************************************************************** |
| 7164 | * |
| 7165 | * Reserve space for a function epilog. |
| 7166 | */ |
| 7167 | |
| 7168 | void CodeGen::genReserveEpilog(BasicBlock* block) |
| 7169 | { |
| 7170 | regMaskTP gcrefRegsArg = gcInfo.gcRegGCrefSetCur; |
| 7171 | regMaskTP byrefRegsArg = gcInfo.gcRegByrefSetCur; |
| 7172 | |
| 7173 | /* The return value is special-cased: make sure it goes live for the epilog */ |
| 7174 | |
| 7175 | bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0); |
| 7176 | |
| 7177 | if (genFullPtrRegMap && !jmpEpilog) |
| 7178 | { |
| 7179 | if (varTypeIsGC(compiler->info.compRetNativeType)) |
| 7180 | { |
| 7181 | noway_assert(genTypeStSz(compiler->info.compRetNativeType) == genTypeStSz(TYP_I_IMPL)); |
| 7182 | |
| 7183 | gcInfo.gcMarkRegPtrVal(REG_INTRET, compiler->info.compRetNativeType); |
| 7184 | |
| 7185 | switch (compiler->info.compRetNativeType) |
| 7186 | { |
| 7187 | case TYP_REF: |
| 7188 | gcrefRegsArg |= RBM_INTRET; |
| 7189 | break; |
| 7190 | case TYP_BYREF: |
| 7191 | byrefRegsArg |= RBM_INTRET; |
| 7192 | break; |
| 7193 | default: |
| 7194 | break; |
| 7195 | } |
| 7196 | } |
| 7197 | } |
| 7198 | |
| 7199 | JITDUMP("Reserving epilog IG for block " FMT_BB "\n" , block->bbNum); |
| 7200 | |
| 7201 | assert(block != nullptr); |
| 7202 | const VARSET_TP& gcrefVarsArg(getEmitter()->emitThisGCrefVars); |
| 7203 | bool last = (block->bbNext == nullptr); |
| 7204 | getEmitter()->emitCreatePlaceholderIG(IGPT_EPILOG, block, gcrefVarsArg, gcrefRegsArg, byrefRegsArg, last); |
| 7205 | } |
| 7206 | |
| 7207 | #if FEATURE_EH_FUNCLETS |
| 7208 | |
| 7209 | /***************************************************************************** |
| 7210 | * |
| 7211 | * Reserve space for a funclet prolog. |
| 7212 | */ |
| 7213 | |
| 7214 | void CodeGen::genReserveFuncletProlog(BasicBlock* block) |
| 7215 | { |
| 7216 | assert(block != nullptr); |
| 7217 | |
| 7218 | /* Currently, no registers are live on entry to the prolog, except maybe |
| 7219 | the exception object. There might be some live stack vars, but they |
| 7220 | cannot be accessed until after the frame pointer is re-established. |
| 7221 | In order to potentially prevent emitting a death before the prolog |
| 7222 | and a birth right after it, we just report it as live during the |
| 7223 | prolog, and rely on the prolog being non-interruptible. Trust |
| 7224 | genCodeForBBlist to correctly initialize all the sets. |
| 7225 | |
| 7226 | We might need to relax these asserts if the VM ever starts |
| 7227 | restoring any registers, then we could have live-in reg vars... |
| 7228 | */ |
| 7229 | |
| 7230 | noway_assert((gcInfo.gcRegGCrefSetCur & RBM_EXCEPTION_OBJECT) == gcInfo.gcRegGCrefSetCur); |
| 7231 | noway_assert(gcInfo.gcRegByrefSetCur == 0); |
| 7232 | |
| 7233 | JITDUMP("Reserving funclet prolog IG for block " FMT_BB "\n" , block->bbNum); |
| 7234 | |
| 7235 | getEmitter()->emitCreatePlaceholderIG(IGPT_FUNCLET_PROLOG, block, gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, |
| 7236 | gcInfo.gcRegByrefSetCur, false); |
| 7237 | } |
| 7238 | |
| 7239 | /***************************************************************************** |
| 7240 | * |
| 7241 | * Reserve space for a funclet epilog. |
| 7242 | */ |
| 7243 | |
| 7244 | void CodeGen::genReserveFuncletEpilog(BasicBlock* block) |
| 7245 | { |
| 7246 | assert(block != nullptr); |
| 7247 | |
| 7248 | JITDUMP("Reserving funclet epilog IG for block " FMT_BB "\n" , block->bbNum); |
| 7249 | |
| 7250 | bool last = (block->bbNext == nullptr); |
| 7251 | getEmitter()->emitCreatePlaceholderIG(IGPT_FUNCLET_EPILOG, block, gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, |
| 7252 | gcInfo.gcRegByrefSetCur, last); |
| 7253 | } |
| 7254 | |
| 7255 | #endif // FEATURE_EH_FUNCLETS |
| 7256 | |
| 7257 | /***************************************************************************** |
| 7258 | * Finalize the frame size and offset assignments. |
| 7259 | * |
| 7260 | * No changes can be made to the modified register set after this, since that can affect how many |
| 7261 | * callee-saved registers get saved. |
| 7262 | */ |
| 7263 | void CodeGen::genFinalizeFrame() |
| 7264 | { |
| 7265 | JITDUMP("Finalizing stack frame\n" ); |
| 7266 | |
| 7267 | // Initializations need to happen based on the var locations at the start |
| 7268 | // of the first basic block, so load those up. In particular, the determination |
| 7269 | // of whether or not to use block init in the prolog is dependent on the variable |
| 7270 | // locations on entry to the function. |
| 7271 | compiler->m_pLinearScan->recordVarLocationsAtStartOfBB(compiler->fgFirstBB); |
| 7272 | |
| 7273 | genCheckUseBlockInit(); |
| 7274 | |
| 7275 | // Set various registers as "modified" for special code generation scenarios: Edit & Continue, P/Invoke calls, etc. |
| 7276 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 7277 | |
| 7278 | #if defined(_TARGET_X86_) |
| 7279 | |
| 7280 | if (compiler->compTailCallUsed) |
| 7281 | { |
| 7282 | // If we are generating a helper-based tailcall, we've set the tailcall helper "flags" |
| 7283 | // argument to "1", indicating to the tailcall helper that we've saved the callee-saved |
| 7284 | // registers (ebx, esi, edi). So, we need to make sure all the callee-saved registers |
| 7285 | // actually get saved. |
| 7286 | |
| 7287 | regSet.rsSetRegsModified(RBM_INT_CALLEE_SAVED); |
| 7288 | } |
| 7289 | #endif // _TARGET_X86_ |
| 7290 | |
| 7291 | #if defined(_TARGET_ARMARCH_) |
| 7292 | // We need to determine if we will change SP larger than a specific amount to determine if we want to use a loop |
| 7293 | // to touch stack pages, that will require multiple registers. See genAllocLclFrame() for details. |
| 7294 | if (compiler->compLclFrameSize >= compiler->getVeryLargeFrameSize()) |
| 7295 | { |
| 7296 | regSet.rsSetRegsModified(VERY_LARGE_FRAME_SIZE_REG_MASK); |
| 7297 | } |
| 7298 | #endif // defined(_TARGET_ARMARCH_) |
| 7299 | |
| 7300 | #if defined(_TARGET_ARM_) |
| 7301 | // If there are any reserved registers, add them to the |
| 7302 | if (regSet.rsMaskResvd != RBM_NONE) |
| 7303 | { |
| 7304 | regSet.rsSetRegsModified(regSet.rsMaskResvd); |
| 7305 | } |
| 7306 | #endif // _TARGET_ARM_ |
| 7307 | |
| 7308 | #ifdef DEBUG |
| 7309 | if (verbose) |
| 7310 | { |
| 7311 | printf("Modified regs: " ); |
| 7312 | dspRegMask(regSet.rsGetModifiedRegsMask()); |
| 7313 | printf("\n" ); |
| 7314 | } |
| 7315 | #endif // DEBUG |
| 7316 | |
| 7317 | // Set various registers as "modified" for special code generation scenarios: Edit & Continue, P/Invoke calls, etc. |
| 7318 | if (compiler->opts.compDbgEnC) |
| 7319 | { |
| 7320 | // We always save FP. |
| 7321 | noway_assert(isFramePointerUsed()); |
| 7322 | #ifdef _TARGET_AMD64_ |
| 7323 | // On x64 we always save exactly RBP, RSI and RDI for EnC. |
| 7324 | regMaskTP okRegs = (RBM_CALLEE_TRASH | RBM_FPBASE | RBM_RSI | RBM_RDI); |
| 7325 | regSet.rsSetRegsModified(RBM_RSI | RBM_RDI); |
| 7326 | noway_assert((regSet.rsGetModifiedRegsMask() & ~okRegs) == 0); |
| 7327 | #else // !_TARGET_AMD64_ |
| 7328 | // On x86 we save all callee saved regs so the saved reg area size is consistent |
| 7329 | regSet.rsSetRegsModified(RBM_INT_CALLEE_SAVED & ~RBM_FPBASE); |
| 7330 | #endif // !_TARGET_AMD64_ |
| 7331 | } |
| 7332 | |
| 7333 | /* If we have any pinvoke calls, we might potentially trash everything */ |
| 7334 | if (compiler->info.compCallUnmanaged) |
| 7335 | { |
| 7336 | noway_assert(isFramePointerUsed()); // Setup of Pinvoke frame currently requires an EBP style frame |
| 7337 | regSet.rsSetRegsModified(RBM_INT_CALLEE_SAVED & ~RBM_FPBASE); |
| 7338 | } |
| 7339 | |
| 7340 | #ifdef UNIX_AMD64_ABI |
| 7341 | // On Unix x64 we also save R14 and R15 for ELT profiler hook generation. |
| 7342 | if (compiler->compIsProfilerHookNeeded()) |
| 7343 | { |
| 7344 | regSet.rsSetRegsModified(RBM_PROFILER_ENTER_ARG_0 | RBM_PROFILER_ENTER_ARG_1); |
| 7345 | } |
| 7346 | #endif |
| 7347 | |
| 7348 | /* Count how many callee-saved registers will actually be saved (pushed) */ |
| 7349 | |
| 7350 | // EBP cannot be (directly) modified for EBP frame and double-aligned frames |
| 7351 | noway_assert(!doubleAlignOrFramePointerUsed() || !regSet.rsRegsModified(RBM_FPBASE)); |
| 7352 | |
| 7353 | #if ETW_EBP_FRAMED |
| 7354 | // EBP cannot be (directly) modified |
| 7355 | noway_assert(!regSet.rsRegsModified(RBM_FPBASE)); |
| 7356 | #endif |
| 7357 | |
| 7358 | regMaskTP maskCalleeRegsPushed = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED; |
| 7359 | |
| 7360 | #ifdef _TARGET_ARMARCH_ |
| 7361 | if (isFramePointerUsed()) |
| 7362 | { |
| 7363 | // For a FP based frame we have to push/pop the FP register |
| 7364 | // |
| 7365 | maskCalleeRegsPushed |= RBM_FPBASE; |
| 7366 | |
| 7367 | // This assert check that we are not using REG_FP |
| 7368 | // as both the frame pointer and as a codegen register |
| 7369 | // |
| 7370 | assert(!regSet.rsRegsModified(RBM_FPBASE)); |
| 7371 | } |
| 7372 | |
| 7373 | // we always push LR. See genPushCalleeSavedRegisters |
| 7374 | // |
| 7375 | maskCalleeRegsPushed |= RBM_LR; |
| 7376 | |
| 7377 | #if defined(_TARGET_ARM_) |
| 7378 | // TODO-ARM64-Bug?: enable some variant of this for FP on ARM64? |
| 7379 | regMaskTP maskPushRegsFloat = maskCalleeRegsPushed & RBM_ALLFLOAT; |
| 7380 | regMaskTP maskPushRegsInt = maskCalleeRegsPushed & ~maskPushRegsFloat; |
| 7381 | |
| 7382 | if ((maskPushRegsFloat != RBM_NONE) || |
| 7383 | (compiler->opts.MinOpts() && (regSet.rsMaskResvd & maskCalleeRegsPushed & RBM_OPT_RSVD))) |
| 7384 | { |
| 7385 | // Here we try to keep stack double-aligned before the vpush |
| 7386 | if ((genCountBits(regSet.rsMaskPreSpillRegs(true) | maskPushRegsInt) % 2) != 0) |
| 7387 | { |
| 7388 | regNumber extraPushedReg = REG_R4; |
| 7389 | while (maskPushRegsInt & genRegMask(extraPushedReg)) |
| 7390 | { |
| 7391 | extraPushedReg = REG_NEXT(extraPushedReg); |
| 7392 | } |
| 7393 | if (extraPushedReg < REG_R11) |
| 7394 | { |
| 7395 | maskPushRegsInt |= genRegMask(extraPushedReg); |
| 7396 | regSet.rsSetRegsModified(genRegMask(extraPushedReg)); |
| 7397 | } |
| 7398 | } |
| 7399 | maskCalleeRegsPushed = maskPushRegsInt | maskPushRegsFloat; |
| 7400 | } |
| 7401 | |
| 7402 | // We currently only expect to push/pop consecutive FP registers |
| 7403 | // and these have to be double-sized registers as well. |
| 7404 | // Here we will insure that maskPushRegsFloat obeys these requirements. |
| 7405 | // |
| 7406 | if (maskPushRegsFloat != RBM_NONE) |
| 7407 | { |
| 7408 | regMaskTP contiguousMask = genRegMaskFloat(REG_F16, TYP_DOUBLE); |
| 7409 | while (maskPushRegsFloat > contiguousMask) |
| 7410 | { |
| 7411 | contiguousMask <<= 2; |
| 7412 | contiguousMask |= genRegMaskFloat(REG_F16, TYP_DOUBLE); |
| 7413 | } |
| 7414 | if (maskPushRegsFloat != contiguousMask) |
| 7415 | { |
| 7416 | regMaskTP maskExtraRegs = contiguousMask - maskPushRegsFloat; |
| 7417 | maskPushRegsFloat |= maskExtraRegs; |
| 7418 | regSet.rsSetRegsModified(maskExtraRegs); |
| 7419 | maskCalleeRegsPushed |= maskExtraRegs; |
| 7420 | } |
| 7421 | } |
| 7422 | #endif // _TARGET_ARM_ |
| 7423 | #endif // _TARGET_ARMARCH_ |
| 7424 | |
| 7425 | #if defined(_TARGET_XARCH_) |
| 7426 | // Compute the count of callee saved float regs saved on stack. |
| 7427 | // On Amd64 we push only integer regs. Callee saved float (xmm6-xmm15) |
| 7428 | // regs are stack allocated and preserved in their stack locations. |
| 7429 | compiler->compCalleeFPRegsSavedMask = maskCalleeRegsPushed & RBM_FLT_CALLEE_SAVED; |
| 7430 | maskCalleeRegsPushed &= ~RBM_FLT_CALLEE_SAVED; |
| 7431 | #endif // defined(_TARGET_XARCH_) |
| 7432 | |
| 7433 | compiler->compCalleeRegsPushed = genCountBits(maskCalleeRegsPushed); |
| 7434 | |
| 7435 | #ifdef DEBUG |
| 7436 | if (verbose) |
| 7437 | { |
| 7438 | printf("Callee-saved registers pushed: %d " , compiler->compCalleeRegsPushed); |
| 7439 | dspRegMask(maskCalleeRegsPushed); |
| 7440 | printf("\n" ); |
| 7441 | } |
| 7442 | #endif // DEBUG |
| 7443 | |
| 7444 | /* Assign the final offsets to things living on the stack frame */ |
| 7445 | |
| 7446 | compiler->lvaAssignFrameOffsets(Compiler::FINAL_FRAME_LAYOUT); |
| 7447 | |
| 7448 | /* We want to make sure that the prolog size calculated here is accurate |
| 7449 | (that is instructions will not shrink because of conservative stack |
| 7450 | frame approximations). We do this by filling in the correct size |
| 7451 | here (where we have committed to the final numbers for the frame offsets) |
| 7452 | This will ensure that the prolog size is always correct |
| 7453 | */ |
| 7454 | getEmitter()->emitMaxTmpSize = regSet.tmpGetTotalSize(); |
| 7455 | |
| 7456 | #ifdef DEBUG |
| 7457 | if (compiler->opts.dspCode || compiler->opts.disAsm || compiler->opts.disAsm2 || verbose) |
| 7458 | { |
| 7459 | compiler->lvaTableDump(); |
| 7460 | } |
| 7461 | #endif |
| 7462 | } |
| 7463 | |
| 7464 | //------------------------------------------------------------------------ |
| 7465 | // genEstablishFramePointer: Set up the frame pointer by adding an offset to the stack pointer. |
| 7466 | // |
| 7467 | // Arguments: |
| 7468 | // delta - the offset to add to the current stack pointer to establish the frame pointer |
| 7469 | // reportUnwindData - true if establishing the frame pointer should be reported in the OS unwind data. |
| 7470 | |
| 7471 | void CodeGen::genEstablishFramePointer(int delta, bool reportUnwindData) |
| 7472 | { |
| 7473 | assert(compiler->compGeneratingProlog); |
| 7474 | |
| 7475 | #if defined(_TARGET_XARCH_) |
| 7476 | |
| 7477 | if (delta == 0) |
| 7478 | { |
| 7479 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_SPBASE); |
| 7480 | psiMoveESPtoEBP(); |
| 7481 | } |
| 7482 | else |
| 7483 | { |
| 7484 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, delta); |
| 7485 | // We don't update prolog scope info (there is no function to handle lea), but that is currently dead code |
| 7486 | // anyway. |
| 7487 | } |
| 7488 | |
| 7489 | if (reportUnwindData) |
| 7490 | { |
| 7491 | compiler->unwindSetFrameReg(REG_FPBASE, delta); |
| 7492 | } |
| 7493 | |
| 7494 | #elif defined(_TARGET_ARM_) |
| 7495 | |
| 7496 | assert(arm_Valid_Imm_For_Add_SP(delta)); |
| 7497 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, delta); |
| 7498 | |
| 7499 | if (reportUnwindData) |
| 7500 | { |
| 7501 | compiler->unwindPadding(); |
| 7502 | } |
| 7503 | |
| 7504 | #else |
| 7505 | NYI("establish frame pointer" ); |
| 7506 | #endif |
| 7507 | } |
| 7508 | |
| 7509 | /***************************************************************************** |
| 7510 | * |
| 7511 | * Generates code for a function prolog. |
| 7512 | * |
| 7513 | * NOTE REGARDING CHANGES THAT IMPACT THE DEBUGGER: |
| 7514 | * |
| 7515 | * The debugger relies on decoding ARM instructions to be able to successfully step through code. It does not |
| 7516 | * implement decoding all ARM instructions. It only implements decoding the instructions which the JIT emits, and |
| 7517 | * only instructions which result in control not going to the next instruction. Basically, any time execution would |
| 7518 | * not continue at the next instruction (such as B, BL, BX, BLX, POP{pc}, etc.), the debugger has to be able to |
| 7519 | * decode that instruction. If any of this is changed on ARM, the debugger team needs to be notified so that it |
| 7520 | * can ensure stepping isn't broken. This is also a requirement for x86 and amd64. |
| 7521 | * |
| 7522 | * If any changes are made in the prolog, epilog, calls, returns, and branches, it is a good idea to notify the |
| 7523 | * debugger team to ensure that stepping still works. |
| 7524 | * |
| 7525 | * ARM stepping code is here: debug\ee\arm\armwalker.cpp, vm\arm\armsinglestepper.cpp. |
| 7526 | */ |
| 7527 | |
| 7528 | #ifdef _PREFAST_ |
| 7529 | #pragma warning(push) |
| 7530 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
| 7531 | #endif |
| 7532 | void CodeGen::genFnProlog() |
| 7533 | { |
| 7534 | ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true); |
| 7535 | |
| 7536 | compiler->funSetCurrentFunc(0); |
| 7537 | |
| 7538 | #ifdef DEBUG |
| 7539 | if (verbose) |
| 7540 | { |
| 7541 | printf("*************** In genFnProlog()\n" ); |
| 7542 | } |
| 7543 | #endif |
| 7544 | |
| 7545 | #ifdef DEBUG |
| 7546 | genInterruptibleUsed = true; |
| 7547 | #endif |
| 7548 | |
| 7549 | assert(compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT); |
| 7550 | |
| 7551 | /* Ready to start on the prolog proper */ |
| 7552 | |
| 7553 | getEmitter()->emitBegProlog(); |
| 7554 | compiler->unwindBegProlog(); |
| 7555 | |
| 7556 | // Do this so we can put the prolog instruction group ahead of |
| 7557 | // other instruction groups |
| 7558 | genIPmappingAddToFront((IL_OFFSETX)ICorDebugInfo::PROLOG); |
| 7559 | |
| 7560 | #ifdef DEBUG |
| 7561 | if (compiler->opts.dspCode) |
| 7562 | { |
| 7563 | printf("\n__prolog:\n" ); |
| 7564 | } |
| 7565 | #endif |
| 7566 | |
| 7567 | if (compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0)) |
| 7568 | { |
| 7569 | // Create new scopes for the method-parameters for the prolog-block. |
| 7570 | psiBegProlog(); |
| 7571 | } |
| 7572 | |
| 7573 | #ifdef DEBUG |
| 7574 | |
| 7575 | if (compiler->compJitHaltMethod()) |
| 7576 | { |
| 7577 | /* put a nop first because the debugger and other tools are likely to |
| 7578 | put an int3 at the begining and we don't want to confuse them */ |
| 7579 | |
| 7580 | instGen(INS_nop); |
| 7581 | instGen(INS_BREAKPOINT); |
| 7582 | |
| 7583 | #ifdef _TARGET_ARMARCH_ |
| 7584 | // Avoid asserts in the unwind info because these instructions aren't accounted for. |
| 7585 | compiler->unwindPadding(); |
| 7586 | #endif // _TARGET_ARMARCH_ |
| 7587 | } |
| 7588 | #endif // DEBUG |
| 7589 | |
| 7590 | #if FEATURE_EH_FUNCLETS && defined(DEBUG) |
| 7591 | |
| 7592 | // We cannot force 0-initialization of the PSPSym |
| 7593 | // as it will overwrite the real value |
| 7594 | if (compiler->lvaPSPSym != BAD_VAR_NUM) |
| 7595 | { |
| 7596 | LclVarDsc* varDsc = &compiler->lvaTable[compiler->lvaPSPSym]; |
| 7597 | assert(!varDsc->lvMustInit); |
| 7598 | } |
| 7599 | |
| 7600 | #endif // FEATURE_EH_FUNCLETS && DEBUG |
| 7601 | |
| 7602 | /*------------------------------------------------------------------------- |
| 7603 | * |
| 7604 | * Record the stack frame ranges that will cover all of the tracked |
| 7605 | * and untracked pointer variables. |
| 7606 | * Also find which registers will need to be zero-initialized. |
| 7607 | * |
| 7608 | * 'initRegs': - Generally, enregistered variables should not need to be |
| 7609 | * zero-inited. They only need to be zero-inited when they |
| 7610 | * have a possibly uninitialized read on some control |
| 7611 | * flow path. Apparently some of the IL_STUBs that we |
| 7612 | * generate have this property. |
| 7613 | */ |
| 7614 | |
| 7615 | int untrLclLo = +INT_MAX; |
| 7616 | int untrLclHi = -INT_MAX; |
| 7617 | // 'hasUntrLcl' is true if there are any stack locals which must be init'ed. |
| 7618 | // Note that they may be tracked, but simply not allocated to a register. |
| 7619 | bool hasUntrLcl = false; |
| 7620 | |
| 7621 | int GCrefLo = +INT_MAX; |
| 7622 | int GCrefHi = -INT_MAX; |
| 7623 | bool hasGCRef = false; |
| 7624 | |
| 7625 | regMaskTP initRegs = RBM_NONE; // Registers which must be init'ed. |
| 7626 | regMaskTP initFltRegs = RBM_NONE; // FP registers which must be init'ed. |
| 7627 | regMaskTP initDblRegs = RBM_NONE; |
| 7628 | |
| 7629 | unsigned varNum; |
| 7630 | LclVarDsc* varDsc; |
| 7631 | |
| 7632 | for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++) |
| 7633 | { |
| 7634 | if (varDsc->lvIsParam && !varDsc->lvIsRegArg) |
| 7635 | { |
| 7636 | continue; |
| 7637 | } |
| 7638 | |
| 7639 | if (!varDsc->lvIsInReg() && !varDsc->lvOnFrame) |
| 7640 | { |
| 7641 | noway_assert(varDsc->lvRefCnt() == 0); |
| 7642 | continue; |
| 7643 | } |
| 7644 | |
| 7645 | signed int loOffs = varDsc->lvStkOffs; |
| 7646 | signed int hiOffs = varDsc->lvStkOffs + compiler->lvaLclSize(varNum); |
| 7647 | |
| 7648 | /* We need to know the offset range of tracked stack GC refs */ |
| 7649 | /* We assume that the GC reference can be anywhere in the TYP_STRUCT */ |
| 7650 | |
| 7651 | if (compiler->lvaTypeIsGC(varNum) && varDsc->lvTrackedNonStruct() && varDsc->lvOnFrame) |
| 7652 | { |
| 7653 | // For fields of PROMOTION_TYPE_DEPENDENT type of promotion, they should have been |
| 7654 | // taken care of by the parent struct. |
| 7655 | if (!compiler->lvaIsFieldOfDependentlyPromotedStruct(varDsc)) |
| 7656 | { |
| 7657 | hasGCRef = true; |
| 7658 | |
| 7659 | if (loOffs < GCrefLo) |
| 7660 | { |
| 7661 | GCrefLo = loOffs; |
| 7662 | } |
| 7663 | if (hiOffs > GCrefHi) |
| 7664 | { |
| 7665 | GCrefHi = hiOffs; |
| 7666 | } |
| 7667 | } |
| 7668 | } |
| 7669 | |
| 7670 | /* For lvMustInit vars, gather pertinent info */ |
| 7671 | |
| 7672 | if (!varDsc->lvMustInit) |
| 7673 | { |
| 7674 | continue; |
| 7675 | } |
| 7676 | |
| 7677 | if (varDsc->lvIsInReg()) |
| 7678 | { |
| 7679 | regMaskTP regMask = genRegMask(varDsc->lvRegNum); |
| 7680 | if (!varDsc->IsFloatRegType()) |
| 7681 | { |
| 7682 | initRegs |= regMask; |
| 7683 | |
| 7684 | if (varTypeIsMultiReg(varDsc)) |
| 7685 | { |
| 7686 | if (varDsc->lvOtherReg != REG_STK) |
| 7687 | { |
| 7688 | initRegs |= genRegMask(varDsc->lvOtherReg); |
| 7689 | } |
| 7690 | else |
| 7691 | { |
| 7692 | /* Upper DWORD is on the stack, and needs to be inited */ |
| 7693 | |
| 7694 | loOffs += sizeof(int); |
| 7695 | goto INIT_STK; |
| 7696 | } |
| 7697 | } |
| 7698 | } |
| 7699 | else if (varDsc->TypeGet() == TYP_DOUBLE) |
| 7700 | { |
| 7701 | initDblRegs |= regMask; |
| 7702 | } |
| 7703 | else |
| 7704 | { |
| 7705 | initFltRegs |= regMask; |
| 7706 | } |
| 7707 | } |
| 7708 | else |
| 7709 | { |
| 7710 | INIT_STK: |
| 7711 | |
| 7712 | hasUntrLcl = true; |
| 7713 | |
| 7714 | if (loOffs < untrLclLo) |
| 7715 | { |
| 7716 | untrLclLo = loOffs; |
| 7717 | } |
| 7718 | if (hiOffs > untrLclHi) |
| 7719 | { |
| 7720 | untrLclHi = hiOffs; |
| 7721 | } |
| 7722 | } |
| 7723 | } |
| 7724 | |
| 7725 | /* Don't forget about spill temps that hold pointers */ |
| 7726 | |
| 7727 | if (!TRACK_GC_TEMP_LIFETIMES) |
| 7728 | { |
| 7729 | assert(regSet.tmpAllFree()); |
| 7730 | for (TempDsc* tempThis = regSet.tmpListBeg(); tempThis != nullptr; tempThis = regSet.tmpListNxt(tempThis)) |
| 7731 | { |
| 7732 | if (!varTypeIsGC(tempThis->tdTempType())) |
| 7733 | { |
| 7734 | continue; |
| 7735 | } |
| 7736 | |
| 7737 | signed int loOffs = tempThis->tdTempOffs(); |
| 7738 | signed int hiOffs = loOffs + TARGET_POINTER_SIZE; |
| 7739 | |
| 7740 | // If there is a frame pointer used, due to frame pointer chaining it will point to the stored value of the |
| 7741 | // previous frame pointer. Thus, stkOffs can't be zero. |
| 7742 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 7743 | |
| 7744 | #if !defined(_TARGET_AMD64_) |
| 7745 | // However, on amd64 there is no requirement to chain frame pointers. |
| 7746 | |
| 7747 | noway_assert(!isFramePointerUsed() || loOffs != 0); |
| 7748 | #endif // !defined(_TARGET_AMD64_) |
| 7749 | |
| 7750 | // printf(" Untracked tmp at [EBP-%04X]\n", -stkOffs); |
| 7751 | |
| 7752 | hasUntrLcl = true; |
| 7753 | |
| 7754 | if (loOffs < untrLclLo) |
| 7755 | { |
| 7756 | untrLclLo = loOffs; |
| 7757 | } |
| 7758 | if (hiOffs > untrLclHi) |
| 7759 | { |
| 7760 | untrLclHi = hiOffs; |
| 7761 | } |
| 7762 | } |
| 7763 | } |
| 7764 | |
| 7765 | assert((genInitStkLclCnt > 0) == hasUntrLcl); |
| 7766 | |
| 7767 | #ifdef DEBUG |
| 7768 | if (verbose) |
| 7769 | { |
| 7770 | if (genInitStkLclCnt > 0) |
| 7771 | { |
| 7772 | printf("Found %u lvMustInit stk vars, frame offsets %d through %d\n" , genInitStkLclCnt, -untrLclLo, |
| 7773 | -untrLclHi); |
| 7774 | } |
| 7775 | } |
| 7776 | #endif |
| 7777 | |
| 7778 | #ifdef _TARGET_ARM_ |
| 7779 | // On the ARM we will spill any incoming struct args in the first instruction in the prolog |
| 7780 | // Ditto for all enregistered user arguments in a varargs method. |
| 7781 | // These registers will be available to use for the initReg. We just remove |
| 7782 | // all of these registers from the rsCalleeRegArgMaskLiveIn. |
| 7783 | // |
| 7784 | intRegState.rsCalleeRegArgMaskLiveIn &= ~regSet.rsMaskPreSpillRegs(false); |
| 7785 | #endif |
| 7786 | |
| 7787 | /* Choose the register to use for zero initialization */ |
| 7788 | |
| 7789 | regNumber initReg = REG_SCRATCH; // Unless we find a better register below |
| 7790 | bool initRegZeroed = false; |
| 7791 | regMaskTP excludeMask = intRegState.rsCalleeRegArgMaskLiveIn; |
| 7792 | regMaskTP tempMask; |
| 7793 | |
| 7794 | // We should not use the special PINVOKE registers as the initReg |
| 7795 | // since they are trashed by the jithelper call to setup the PINVOKE frame |
| 7796 | if (compiler->info.compCallUnmanaged) |
| 7797 | { |
| 7798 | excludeMask |= RBM_PINVOKE_FRAME; |
| 7799 | |
| 7800 | assert((!compiler->opts.ShouldUsePInvokeHelpers()) || (compiler->info.compLvFrameListRoot == BAD_VAR_NUM)); |
| 7801 | if (!compiler->opts.ShouldUsePInvokeHelpers()) |
| 7802 | { |
| 7803 | noway_assert(compiler->info.compLvFrameListRoot < compiler->lvaCount); |
| 7804 | |
| 7805 | excludeMask |= (RBM_PINVOKE_TCB | RBM_PINVOKE_SCRATCH); |
| 7806 | |
| 7807 | // We also must exclude the register used by compLvFrameListRoot when it is enregistered |
| 7808 | // |
| 7809 | LclVarDsc* varDsc = &compiler->lvaTable[compiler->info.compLvFrameListRoot]; |
| 7810 | if (varDsc->lvRegister) |
| 7811 | { |
| 7812 | excludeMask |= genRegMask(varDsc->lvRegNum); |
| 7813 | } |
| 7814 | } |
| 7815 | } |
| 7816 | |
| 7817 | #ifdef _TARGET_ARM_ |
| 7818 | // If we have a variable sized frame (compLocallocUsed is true) |
| 7819 | // then using REG_SAVED_LOCALLOC_SP in the prolog is not allowed |
| 7820 | if (compiler->compLocallocUsed) |
| 7821 | { |
| 7822 | excludeMask |= RBM_SAVED_LOCALLOC_SP; |
| 7823 | } |
| 7824 | #endif // _TARGET_ARM_ |
| 7825 | |
| 7826 | #if defined(_TARGET_XARCH_) |
| 7827 | if (compiler->compLclFrameSize >= compiler->getVeryLargeFrameSize()) |
| 7828 | { |
| 7829 | // We currently must use REG_EAX on x86 here |
| 7830 | // because the loop's backwards branch depends upon the size of EAX encodings |
| 7831 | assert(initReg == REG_EAX); |
| 7832 | } |
| 7833 | else |
| 7834 | #endif // _TARGET_XARCH_ |
| 7835 | { |
| 7836 | tempMask = initRegs & ~excludeMask & ~regSet.rsMaskResvd; |
| 7837 | |
| 7838 | if (tempMask != RBM_NONE) |
| 7839 | { |
| 7840 | // We will use one of the registers that we were planning to zero init anyway. |
| 7841 | // We pick the lowest register number. |
| 7842 | tempMask = genFindLowestBit(tempMask); |
| 7843 | initReg = genRegNumFromMask(tempMask); |
| 7844 | } |
| 7845 | // Next we prefer to use one of the unused argument registers. |
| 7846 | // If they aren't available we use one of the caller-saved integer registers. |
| 7847 | else |
| 7848 | { |
| 7849 | tempMask = regSet.rsGetModifiedRegsMask() & RBM_ALLINT & ~excludeMask & ~regSet.rsMaskResvd; |
| 7850 | if (tempMask != RBM_NONE) |
| 7851 | { |
| 7852 | // We pick the lowest register number |
| 7853 | tempMask = genFindLowestBit(tempMask); |
| 7854 | initReg = genRegNumFromMask(tempMask); |
| 7855 | } |
| 7856 | } |
| 7857 | } |
| 7858 | |
| 7859 | noway_assert(!compiler->info.compCallUnmanaged || (initReg != REG_PINVOKE_FRAME)); |
| 7860 | |
| 7861 | #if defined(_TARGET_AMD64_) |
| 7862 | // If we are a varargs call, in order to set up the arguments correctly this |
| 7863 | // must be done in a 2 step process. As per the x64 ABI: |
| 7864 | // a) The caller sets up the argument shadow space (just before the return |
| 7865 | // address, 4 pointer sized slots). |
| 7866 | // b) The callee is responsible to home the arguments on the shadow space |
| 7867 | // provided by the caller. |
| 7868 | // This way, the varargs iterator will be able to retrieve the |
| 7869 | // call arguments properly since both the arg regs and the stack allocated |
| 7870 | // args will be contiguous. |
| 7871 | if (compiler->info.compIsVarArgs) |
| 7872 | { |
| 7873 | getEmitter()->spillIntArgRegsToShadowSlots(); |
| 7874 | } |
| 7875 | |
| 7876 | #endif // _TARGET_AMD64_ |
| 7877 | |
| 7878 | #ifdef _TARGET_ARM_ |
| 7879 | /*------------------------------------------------------------------------- |
| 7880 | * |
| 7881 | * Now start emitting the part of the prolog which sets up the frame |
| 7882 | */ |
| 7883 | |
| 7884 | if (regSet.rsMaskPreSpillRegs(true) != RBM_NONE) |
| 7885 | { |
| 7886 | inst_IV(INS_push, (int)regSet.rsMaskPreSpillRegs(true)); |
| 7887 | compiler->unwindPushMaskInt(regSet.rsMaskPreSpillRegs(true)); |
| 7888 | } |
| 7889 | #endif // _TARGET_ARM_ |
| 7890 | |
| 7891 | #ifdef _TARGET_XARCH_ |
| 7892 | if (doubleAlignOrFramePointerUsed()) |
| 7893 | { |
| 7894 | inst_RV(INS_push, REG_FPBASE, TYP_REF); |
| 7895 | compiler->unwindPush(REG_FPBASE); |
| 7896 | psiAdjustStackLevel(REGSIZE_BYTES); |
| 7897 | |
| 7898 | #ifndef _TARGET_AMD64_ // On AMD64, establish the frame pointer after the "sub rsp" |
| 7899 | genEstablishFramePointer(0, /*reportUnwindData*/ true); |
| 7900 | #endif // !_TARGET_AMD64_ |
| 7901 | |
| 7902 | #if DOUBLE_ALIGN |
| 7903 | if (compiler->genDoubleAlign()) |
| 7904 | { |
| 7905 | noway_assert(isFramePointerUsed() == false); |
| 7906 | noway_assert(!regSet.rsRegsModified(RBM_FPBASE)); /* Trashing EBP is out. */ |
| 7907 | |
| 7908 | inst_RV_IV(INS_AND, REG_SPBASE, -8, EA_PTRSIZE); |
| 7909 | } |
| 7910 | #endif // DOUBLE_ALIGN |
| 7911 | } |
| 7912 | #endif // _TARGET_XARCH_ |
| 7913 | |
| 7914 | #ifdef _TARGET_ARM64_ |
| 7915 | // Probe large frames now, if necessary, since genPushCalleeSavedRegisters() will allocate the frame. |
| 7916 | genAllocLclFrame(compiler->compLclFrameSize, initReg, &initRegZeroed, intRegState.rsCalleeRegArgMaskLiveIn); |
| 7917 | genPushCalleeSavedRegisters(initReg, &initRegZeroed); |
| 7918 | #else // !_TARGET_ARM64_ |
| 7919 | genPushCalleeSavedRegisters(); |
| 7920 | #endif // !_TARGET_ARM64_ |
| 7921 | |
| 7922 | #ifdef _TARGET_ARM_ |
| 7923 | bool needToEstablishFP = false; |
| 7924 | int afterLclFrameSPtoFPdelta = 0; |
| 7925 | if (doubleAlignOrFramePointerUsed()) |
| 7926 | { |
| 7927 | needToEstablishFP = true; |
| 7928 | |
| 7929 | // If the local frame is small enough, we establish the frame pointer after the OS-reported prolog. |
| 7930 | // This makes the prolog and epilog match, giving us smaller unwind data. If the frame size is |
| 7931 | // too big, we go ahead and do it here. |
| 7932 | |
| 7933 | int SPtoFPdelta = (compiler->compCalleeRegsPushed - 2) * REGSIZE_BYTES; |
| 7934 | afterLclFrameSPtoFPdelta = SPtoFPdelta + compiler->compLclFrameSize; |
| 7935 | if (!arm_Valid_Imm_For_Add_SP(afterLclFrameSPtoFPdelta)) |
| 7936 | { |
| 7937 | // Oh well, it looks too big. Go ahead and establish the frame pointer here. |
| 7938 | genEstablishFramePointer(SPtoFPdelta, /*reportUnwindData*/ true); |
| 7939 | needToEstablishFP = false; |
| 7940 | } |
| 7941 | } |
| 7942 | #endif // _TARGET_ARM_ |
| 7943 | |
| 7944 | //------------------------------------------------------------------------- |
| 7945 | // |
| 7946 | // Subtract the local frame size from SP. |
| 7947 | // |
| 7948 | //------------------------------------------------------------------------- |
| 7949 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 7950 | |
| 7951 | #ifndef _TARGET_ARM64_ |
| 7952 | regMaskTP maskStackAlloc = RBM_NONE; |
| 7953 | |
| 7954 | #ifdef _TARGET_ARM_ |
| 7955 | maskStackAlloc = |
| 7956 | genStackAllocRegisterMask(compiler->compLclFrameSize, regSet.rsGetModifiedRegsMask() & RBM_FLT_CALLEE_SAVED); |
| 7957 | #endif // _TARGET_ARM_ |
| 7958 | |
| 7959 | if (maskStackAlloc == RBM_NONE) |
| 7960 | { |
| 7961 | genAllocLclFrame(compiler->compLclFrameSize, initReg, &initRegZeroed, intRegState.rsCalleeRegArgMaskLiveIn); |
| 7962 | } |
| 7963 | #endif // !_TARGET_ARM64_ |
| 7964 | |
| 7965 | //------------------------------------------------------------------------- |
| 7966 | |
| 7967 | #ifdef _TARGET_ARM_ |
| 7968 | if (compiler->compLocallocUsed) |
| 7969 | { |
| 7970 | getEmitter()->emitIns_R_R(INS_mov, EA_4BYTE, REG_SAVED_LOCALLOC_SP, REG_SPBASE); |
| 7971 | regSet.verifyRegUsed(REG_SAVED_LOCALLOC_SP); |
| 7972 | compiler->unwindSetFrameReg(REG_SAVED_LOCALLOC_SP, 0); |
| 7973 | } |
| 7974 | #endif // _TARGET_ARMARCH_ |
| 7975 | |
| 7976 | #if defined(_TARGET_XARCH_) |
| 7977 | // Preserve callee saved float regs to stack. |
| 7978 | genPreserveCalleeSavedFltRegs(compiler->compLclFrameSize); |
| 7979 | #endif // defined(_TARGET_XARCH_) |
| 7980 | |
| 7981 | #ifdef _TARGET_AMD64_ |
| 7982 | // Establish the AMD64 frame pointer after the OS-reported prolog. |
| 7983 | if (doubleAlignOrFramePointerUsed()) |
| 7984 | { |
| 7985 | bool reportUnwindData = compiler->compLocallocUsed || compiler->opts.compDbgEnC; |
| 7986 | genEstablishFramePointer(compiler->codeGen->genSPtoFPdelta(), reportUnwindData); |
| 7987 | } |
| 7988 | #endif //_TARGET_AMD64_ |
| 7989 | |
| 7990 | //------------------------------------------------------------------------- |
| 7991 | // |
| 7992 | // This is the end of the OS-reported prolog for purposes of unwinding |
| 7993 | // |
| 7994 | //------------------------------------------------------------------------- |
| 7995 | |
| 7996 | #ifdef _TARGET_ARM_ |
| 7997 | if (needToEstablishFP) |
| 7998 | { |
| 7999 | genEstablishFramePointer(afterLclFrameSPtoFPdelta, /*reportUnwindData*/ false); |
| 8000 | needToEstablishFP = false; // nobody uses this later, but set it anyway, just to be explicit |
| 8001 | } |
| 8002 | #endif // _TARGET_ARM_ |
| 8003 | |
| 8004 | if (compiler->info.compPublishStubParam) |
| 8005 | { |
| 8006 | #if CPU_LOAD_STORE_ARCH |
| 8007 | getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SECRET_STUB_PARAM, genFramePointerReg(), |
| 8008 | compiler->lvaTable[compiler->lvaStubArgumentVar].lvStkOffs); |
| 8009 | #else |
| 8010 | // mov [lvaStubArgumentVar], EAX |
| 8011 | getEmitter()->emitIns_AR_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SECRET_STUB_PARAM, genFramePointerReg(), |
| 8012 | compiler->lvaTable[compiler->lvaStubArgumentVar].lvStkOffs); |
| 8013 | #endif |
| 8014 | assert(intRegState.rsCalleeRegArgMaskLiveIn & RBM_SECRET_STUB_PARAM); |
| 8015 | |
| 8016 | // It's no longer live; clear it out so it can be used after this in the prolog |
| 8017 | intRegState.rsCalleeRegArgMaskLiveIn &= ~RBM_SECRET_STUB_PARAM; |
| 8018 | } |
| 8019 | |
| 8020 | #if STACK_PROBES |
| 8021 | // We could probably fold this into the loop for the FrameSize >= 0x3000 probing |
| 8022 | // when creating the stack frame. Don't think it's worth it, though. |
| 8023 | if (genNeedPrologStackProbe) |
| 8024 | { |
| 8025 | // |
| 8026 | // Can't have a call until we have enough padding for rejit |
| 8027 | // |
| 8028 | genPrologPadForReJit(); |
| 8029 | noway_assert(compiler->opts.compNeedStackProbes); |
| 8030 | genGenerateStackProbe(); |
| 8031 | compiler->compStackProbePrologDone = true; |
| 8032 | } |
| 8033 | #endif // STACK_PROBES |
| 8034 | |
| 8035 | // |
| 8036 | // Zero out the frame as needed |
| 8037 | // |
| 8038 | |
| 8039 | genZeroInitFrame(untrLclHi, untrLclLo, initReg, &initRegZeroed); |
| 8040 | |
| 8041 | #if FEATURE_EH_FUNCLETS |
| 8042 | |
| 8043 | genSetPSPSym(initReg, &initRegZeroed); |
| 8044 | |
| 8045 | #else // !FEATURE_EH_FUNCLETS |
| 8046 | |
| 8047 | // when compInitMem is true the genZeroInitFrame will zero out the shadow SP slots |
| 8048 | if (compiler->ehNeedsShadowSPslots() && !compiler->info.compInitMem) |
| 8049 | { |
| 8050 | // The last slot is reserved for ICodeManager::FixContext(ppEndRegion) |
| 8051 | unsigned filterEndOffsetSlotOffs = compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) - TARGET_POINTER_SIZE; |
| 8052 | |
| 8053 | // Zero out the slot for nesting level 0 |
| 8054 | unsigned firstSlotOffs = filterEndOffsetSlotOffs - TARGET_POINTER_SIZE; |
| 8055 | |
| 8056 | if (!initRegZeroed) |
| 8057 | { |
| 8058 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg); |
| 8059 | initRegZeroed = true; |
| 8060 | } |
| 8061 | |
| 8062 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, initReg, compiler->lvaShadowSPslotsVar, |
| 8063 | firstSlotOffs); |
| 8064 | } |
| 8065 | |
| 8066 | #endif // !FEATURE_EH_FUNCLETS |
| 8067 | |
| 8068 | genReportGenericContextArg(initReg, &initRegZeroed); |
| 8069 | |
| 8070 | // The local variable representing the security object must be on the stack frame |
| 8071 | // and must be 0 initialized. |
| 8072 | noway_assert((compiler->lvaSecurityObject == BAD_VAR_NUM) || |
| 8073 | (compiler->lvaTable[compiler->lvaSecurityObject].lvOnFrame && |
| 8074 | compiler->lvaTable[compiler->lvaSecurityObject].lvMustInit)); |
| 8075 | |
| 8076 | #ifdef JIT32_GCENCODER |
| 8077 | // Initialize the LocalAllocSP slot if there is localloc in the function. |
| 8078 | if (compiler->lvaLocAllocSPvar != BAD_VAR_NUM) |
| 8079 | { |
| 8080 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaLocAllocSPvar, 0); |
| 8081 | } |
| 8082 | #endif // JIT32_GCENCODER |
| 8083 | |
| 8084 | // Set up the GS security cookie |
| 8085 | |
| 8086 | genSetGSSecurityCookie(initReg, &initRegZeroed); |
| 8087 | |
| 8088 | #ifdef PROFILING_SUPPORTED |
| 8089 | |
| 8090 | // Insert a function entry callback for profiling, if requested. |
| 8091 | genProfilingEnterCallback(initReg, &initRegZeroed); |
| 8092 | |
| 8093 | #endif // PROFILING_SUPPORTED |
| 8094 | |
| 8095 | if (!genInterruptible) |
| 8096 | { |
| 8097 | /*------------------------------------------------------------------------- |
| 8098 | * |
| 8099 | * The 'real' prolog ends here for non-interruptible methods. |
| 8100 | * For fully-interruptible methods, we extend the prolog so that |
| 8101 | * we do not need to track GC inforation while shuffling the |
| 8102 | * arguments. |
| 8103 | * |
| 8104 | * Make sure there's enough padding for ReJIT. |
| 8105 | * |
| 8106 | */ |
| 8107 | genPrologPadForReJit(); |
| 8108 | getEmitter()->emitMarkPrologEnd(); |
| 8109 | } |
| 8110 | |
| 8111 | #if defined(UNIX_AMD64_ABI) && defined(FEATURE_SIMD) |
| 8112 | // The unused bits of Vector3 arguments must be cleared |
| 8113 | // since native compiler doesn't initize the upper bits to zeros. |
| 8114 | // |
| 8115 | // TODO-Cleanup: This logic can be implemented in |
| 8116 | // genFnPrologCalleeRegArgs() for argument registers and |
| 8117 | // genEnregisterIncomingStackArgs() for stack arguments. |
| 8118 | genClearStackVec3ArgUpperBits(); |
| 8119 | #endif // UNIX_AMD64_ABI && FEATURE_SIMD |
| 8120 | |
| 8121 | /*----------------------------------------------------------------------------- |
| 8122 | * Take care of register arguments first |
| 8123 | */ |
| 8124 | |
| 8125 | RegState* regState; |
| 8126 | |
| 8127 | // Update the arg initial register locations. |
| 8128 | compiler->lvaUpdateArgsWithInitialReg(); |
| 8129 | |
| 8130 | FOREACH_REGISTER_FILE(regState) |
| 8131 | { |
| 8132 | if (regState->rsCalleeRegArgMaskLiveIn) |
| 8133 | { |
| 8134 | // If we need an extra register to shuffle around the incoming registers |
| 8135 | // we will use xtraReg (initReg) and set the xtraRegClobbered flag, |
| 8136 | // if we don't need to use the xtraReg then this flag will stay false |
| 8137 | // |
| 8138 | regNumber xtraReg; |
| 8139 | bool xtraRegClobbered = false; |
| 8140 | |
| 8141 | if (genRegMask(initReg) & RBM_ARG_REGS) |
| 8142 | { |
| 8143 | xtraReg = initReg; |
| 8144 | } |
| 8145 | else |
| 8146 | { |
| 8147 | xtraReg = REG_SCRATCH; |
| 8148 | initRegZeroed = false; |
| 8149 | } |
| 8150 | |
| 8151 | genFnPrologCalleeRegArgs(xtraReg, &xtraRegClobbered, regState); |
| 8152 | |
| 8153 | if (xtraRegClobbered) |
| 8154 | { |
| 8155 | initRegZeroed = false; |
| 8156 | } |
| 8157 | } |
| 8158 | } |
| 8159 | |
| 8160 | // Home the incoming arguments |
| 8161 | genEnregisterIncomingStackArgs(); |
| 8162 | |
| 8163 | /* Initialize any must-init registers variables now */ |
| 8164 | |
| 8165 | if (initRegs) |
| 8166 | { |
| 8167 | regMaskTP regMask = 0x1; |
| 8168 | |
| 8169 | for (regNumber reg = REG_INT_FIRST; reg <= REG_INT_LAST; reg = REG_NEXT(reg), regMask <<= 1) |
| 8170 | { |
| 8171 | if (regMask & initRegs) |
| 8172 | { |
| 8173 | // Check if we have already zeroed this register |
| 8174 | if ((reg == initReg) && initRegZeroed) |
| 8175 | { |
| 8176 | continue; |
| 8177 | } |
| 8178 | else |
| 8179 | { |
| 8180 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, reg); |
| 8181 | if (reg == initReg) |
| 8182 | { |
| 8183 | initRegZeroed = true; |
| 8184 | } |
| 8185 | } |
| 8186 | } |
| 8187 | } |
| 8188 | } |
| 8189 | |
| 8190 | if (initFltRegs | initDblRegs) |
| 8191 | { |
| 8192 | // If initReg is not in initRegs then we will use REG_SCRATCH |
| 8193 | if ((genRegMask(initReg) & initRegs) == 0) |
| 8194 | { |
| 8195 | initReg = REG_SCRATCH; |
| 8196 | initRegZeroed = false; |
| 8197 | } |
| 8198 | |
| 8199 | #ifdef _TARGET_ARM_ |
| 8200 | // This is needed only for Arm since it can use a zero initialized int register |
| 8201 | // to initialize vfp registers. |
| 8202 | if (!initRegZeroed) |
| 8203 | { |
| 8204 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg); |
| 8205 | initRegZeroed = true; |
| 8206 | } |
| 8207 | #endif // _TARGET_ARM_ |
| 8208 | |
| 8209 | genZeroInitFltRegs(initFltRegs, initDblRegs, initReg); |
| 8210 | } |
| 8211 | |
| 8212 | //----------------------------------------------------------------------------- |
| 8213 | |
| 8214 | // |
| 8215 | // Increase the prolog size here only if fully interruptible. |
| 8216 | // And again make sure it's big enough for ReJIT |
| 8217 | // |
| 8218 | |
| 8219 | if (genInterruptible) |
| 8220 | { |
| 8221 | genPrologPadForReJit(); |
| 8222 | getEmitter()->emitMarkPrologEnd(); |
| 8223 | } |
| 8224 | |
| 8225 | if (compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0)) |
| 8226 | { |
| 8227 | psiEndProlog(); |
| 8228 | } |
| 8229 | |
| 8230 | if (hasGCRef) |
| 8231 | { |
| 8232 | getEmitter()->emitSetFrameRangeGCRs(GCrefLo, GCrefHi); |
| 8233 | } |
| 8234 | else |
| 8235 | { |
| 8236 | noway_assert(GCrefLo == +INT_MAX); |
| 8237 | noway_assert(GCrefHi == -INT_MAX); |
| 8238 | } |
| 8239 | |
| 8240 | #ifdef DEBUG |
| 8241 | if (compiler->opts.dspCode) |
| 8242 | { |
| 8243 | printf("\n" ); |
| 8244 | } |
| 8245 | #endif |
| 8246 | |
| 8247 | #ifdef _TARGET_X86_ |
| 8248 | // On non-x86 the VARARG cookie does not need any special treatment. |
| 8249 | |
| 8250 | // Load up the VARARG argument pointer register so it doesn't get clobbered. |
| 8251 | // only do this if we actually access any statically declared args |
| 8252 | // (our argument pointer register has a refcount > 0). |
| 8253 | unsigned argsStartVar = compiler->lvaVarargsBaseOfStkArgs; |
| 8254 | |
| 8255 | if (compiler->info.compIsVarArgs && compiler->lvaTable[argsStartVar].lvRefCnt() > 0) |
| 8256 | { |
| 8257 | varDsc = &compiler->lvaTable[argsStartVar]; |
| 8258 | |
| 8259 | noway_assert(compiler->info.compArgsCount > 0); |
| 8260 | |
| 8261 | // MOV EAX, <VARARGS HANDLE> |
| 8262 | getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_EAX, compiler->info.compArgsCount - 1, 0); |
| 8263 | regSet.verifyRegUsed(REG_EAX); |
| 8264 | |
| 8265 | // MOV EAX, [EAX] |
| 8266 | getEmitter()->emitIns_R_AR(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_EAX, REG_EAX, 0); |
| 8267 | |
| 8268 | // EDX might actually be holding something here. So make sure to only use EAX for this code |
| 8269 | // sequence. |
| 8270 | |
| 8271 | LclVarDsc* lastArg = &compiler->lvaTable[compiler->info.compArgsCount - 1]; |
| 8272 | noway_assert(!lastArg->lvRegister); |
| 8273 | signed offset = lastArg->lvStkOffs; |
| 8274 | assert(offset != BAD_STK_OFFS); |
| 8275 | noway_assert(lastArg->lvFramePointerBased); |
| 8276 | |
| 8277 | // LEA EAX, &<VARARGS HANDLE> + EAX |
| 8278 | getEmitter()->emitIns_R_ARR(INS_lea, EA_PTRSIZE, REG_EAX, genFramePointerReg(), REG_EAX, offset); |
| 8279 | |
| 8280 | if (varDsc->lvIsInReg()) |
| 8281 | { |
| 8282 | if (varDsc->lvRegNum != REG_EAX) |
| 8283 | { |
| 8284 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, varDsc->lvRegNum, REG_EAX); |
| 8285 | regSet.verifyRegUsed(varDsc->lvRegNum); |
| 8286 | } |
| 8287 | } |
| 8288 | else |
| 8289 | { |
| 8290 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_EAX, argsStartVar, 0); |
| 8291 | } |
| 8292 | } |
| 8293 | |
| 8294 | #endif // _TARGET_X86_ |
| 8295 | |
| 8296 | #if defined(DEBUG) && defined(_TARGET_XARCH_) |
| 8297 | if (compiler->opts.compStackCheckOnRet) |
| 8298 | { |
| 8299 | noway_assert(compiler->lvaReturnSpCheck != 0xCCCCCCCC && |
| 8300 | compiler->lvaTable[compiler->lvaReturnSpCheck].lvDoNotEnregister && |
| 8301 | compiler->lvaTable[compiler->lvaReturnSpCheck].lvOnFrame); |
| 8302 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaReturnSpCheck, 0); |
| 8303 | } |
| 8304 | #endif // defined(DEBUG) && defined(_TARGET_XARCH_) |
| 8305 | |
| 8306 | getEmitter()->emitEndProlog(); |
| 8307 | compiler->unwindEndProlog(); |
| 8308 | |
| 8309 | noway_assert(getEmitter()->emitMaxTmpSize == regSet.tmpGetTotalSize()); |
| 8310 | } |
| 8311 | #ifdef _PREFAST_ |
| 8312 | #pragma warning(pop) |
| 8313 | #endif |
| 8314 | |
| 8315 | /***************************************************************************** |
| 8316 | * |
| 8317 | * Generates code for a function epilog. |
| 8318 | * |
| 8319 | * Please consult the "debugger team notification" comment in genFnProlog(). |
| 8320 | */ |
| 8321 | |
| 8322 | #if defined(_TARGET_ARMARCH_) |
| 8323 | |
| 8324 | void CodeGen::genFnEpilog(BasicBlock* block) |
| 8325 | { |
| 8326 | #ifdef DEBUG |
| 8327 | if (verbose) |
| 8328 | printf("*************** In genFnEpilog()\n" ); |
| 8329 | #endif // DEBUG |
| 8330 | |
| 8331 | ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true); |
| 8332 | |
| 8333 | VarSetOps::Assign(compiler, gcInfo.gcVarPtrSetCur, getEmitter()->emitInitGCrefVars); |
| 8334 | gcInfo.gcRegGCrefSetCur = getEmitter()->emitInitGCrefRegs; |
| 8335 | gcInfo.gcRegByrefSetCur = getEmitter()->emitInitByrefRegs; |
| 8336 | |
| 8337 | #ifdef DEBUG |
| 8338 | if (compiler->opts.dspCode) |
| 8339 | printf("\n__epilog:\n" ); |
| 8340 | |
| 8341 | if (verbose) |
| 8342 | { |
| 8343 | printf("gcVarPtrSetCur=%s " , VarSetOps::ToString(compiler, gcInfo.gcVarPtrSetCur)); |
| 8344 | dumpConvertedVarSet(compiler, gcInfo.gcVarPtrSetCur); |
| 8345 | printf(", gcRegGCrefSetCur=" ); |
| 8346 | printRegMaskInt(gcInfo.gcRegGCrefSetCur); |
| 8347 | getEmitter()->emitDispRegSet(gcInfo.gcRegGCrefSetCur); |
| 8348 | printf(", gcRegByrefSetCur=" ); |
| 8349 | printRegMaskInt(gcInfo.gcRegByrefSetCur); |
| 8350 | getEmitter()->emitDispRegSet(gcInfo.gcRegByrefSetCur); |
| 8351 | printf("\n" ); |
| 8352 | } |
| 8353 | #endif // DEBUG |
| 8354 | |
| 8355 | bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0); |
| 8356 | |
| 8357 | GenTree* lastNode = block->lastNode(); |
| 8358 | |
| 8359 | // Method handle and address info used in case of jump epilog |
| 8360 | CORINFO_METHOD_HANDLE methHnd = nullptr; |
| 8361 | CORINFO_CONST_LOOKUP addrInfo; |
| 8362 | addrInfo.addr = nullptr; |
| 8363 | addrInfo.accessType = IAT_VALUE; |
| 8364 | |
| 8365 | if (jmpEpilog && lastNode->gtOper == GT_JMP) |
| 8366 | { |
| 8367 | methHnd = (CORINFO_METHOD_HANDLE)lastNode->gtVal.gtVal1; |
| 8368 | compiler->info.compCompHnd->getFunctionEntryPoint(methHnd, &addrInfo); |
| 8369 | } |
| 8370 | |
| 8371 | #ifdef _TARGET_ARM_ |
| 8372 | // We delay starting the unwind codes until we have an instruction which we know |
| 8373 | // needs an unwind code. In particular, for large stack frames in methods without |
| 8374 | // localloc, the sequence might look something like this: |
| 8375 | // movw r3, 0x38e0 |
| 8376 | // add sp, r3 |
| 8377 | // pop {r4,r5,r6,r10,r11,pc} |
| 8378 | // In this case, the "movw" should not be part of the unwind codes, since it will |
| 8379 | // be a NOP, and it is a waste to start with a NOP. Note that calling unwindBegEpilog() |
| 8380 | // also sets the current location as the beginning offset of the epilog, so every |
| 8381 | // instruction afterwards needs an unwind code. In the case above, if you call |
| 8382 | // unwindBegEpilog() before the "movw", then you must generate a NOP for the "movw". |
| 8383 | |
| 8384 | bool unwindStarted = false; |
| 8385 | |
| 8386 | // Tear down the stack frame |
| 8387 | |
| 8388 | if (compiler->compLocallocUsed) |
| 8389 | { |
| 8390 | if (!unwindStarted) |
| 8391 | { |
| 8392 | compiler->unwindBegEpilog(); |
| 8393 | unwindStarted = true; |
| 8394 | } |
| 8395 | |
| 8396 | // mov R9 into SP |
| 8397 | inst_RV_RV(INS_mov, REG_SP, REG_SAVED_LOCALLOC_SP); |
| 8398 | compiler->unwindSetFrameReg(REG_SAVED_LOCALLOC_SP, 0); |
| 8399 | } |
| 8400 | |
| 8401 | if (jmpEpilog || |
| 8402 | genStackAllocRegisterMask(compiler->compLclFrameSize, regSet.rsGetModifiedRegsMask() & RBM_FLT_CALLEE_SAVED) == |
| 8403 | RBM_NONE) |
| 8404 | { |
| 8405 | genFreeLclFrame(compiler->compLclFrameSize, &unwindStarted, jmpEpilog); |
| 8406 | } |
| 8407 | |
| 8408 | if (!unwindStarted) |
| 8409 | { |
| 8410 | // If we haven't generated anything yet, we're certainly going to generate a "pop" next. |
| 8411 | compiler->unwindBegEpilog(); |
| 8412 | unwindStarted = true; |
| 8413 | } |
| 8414 | |
| 8415 | if (jmpEpilog && lastNode->gtOper == GT_JMP && addrInfo.accessType == IAT_RELPVALUE) |
| 8416 | { |
| 8417 | // IAT_RELPVALUE jump at the end is done using relative indirection, so, |
| 8418 | // additional helper register is required. |
| 8419 | // We use LR just before it is going to be restored from stack, i.e. |
| 8420 | // |
| 8421 | // movw r12, laddr |
| 8422 | // movt r12, haddr |
| 8423 | // mov lr, r12 |
| 8424 | // ldr r12, [r12] |
| 8425 | // add r12, r12, lr |
| 8426 | // pop {lr} |
| 8427 | // ... |
| 8428 | // bx r12 |
| 8429 | |
| 8430 | regNumber indCallReg = REG_R12; |
| 8431 | regNumber vptrReg1 = REG_LR; |
| 8432 | |
| 8433 | instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, indCallReg, (ssize_t)addrInfo.addr); |
| 8434 | getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, vptrReg1, indCallReg); |
| 8435 | getEmitter()->emitIns_R_R_I(INS_ldr, EA_PTRSIZE, indCallReg, indCallReg, 0); |
| 8436 | getEmitter()->emitIns_R_R(INS_add, EA_PTRSIZE, indCallReg, vptrReg1); |
| 8437 | } |
| 8438 | |
| 8439 | genPopCalleeSavedRegisters(jmpEpilog); |
| 8440 | |
| 8441 | if (regSet.rsMaskPreSpillRegs(true) != RBM_NONE) |
| 8442 | { |
| 8443 | // We better not have used a pop PC to return otherwise this will be unreachable code |
| 8444 | noway_assert(!genUsedPopToReturn); |
| 8445 | |
| 8446 | int preSpillRegArgSize = genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES; |
| 8447 | inst_RV_IV(INS_add, REG_SPBASE, preSpillRegArgSize, EA_PTRSIZE); |
| 8448 | compiler->unwindAllocStack(preSpillRegArgSize); |
| 8449 | } |
| 8450 | |
| 8451 | if (jmpEpilog) |
| 8452 | { |
| 8453 | // We better not have used a pop PC to return otherwise this will be unreachable code |
| 8454 | noway_assert(!genUsedPopToReturn); |
| 8455 | } |
| 8456 | |
| 8457 | #else // _TARGET_ARM64_ |
| 8458 | compiler->unwindBegEpilog(); |
| 8459 | |
| 8460 | genPopCalleeSavedRegistersAndFreeLclFrame(jmpEpilog); |
| 8461 | #endif // _TARGET_ARM64_ |
| 8462 | |
| 8463 | if (jmpEpilog) |
| 8464 | { |
| 8465 | hasTailCalls = true; |
| 8466 | |
| 8467 | noway_assert(block->bbJumpKind == BBJ_RETURN); |
| 8468 | noway_assert(block->bbTreeList != nullptr); |
| 8469 | |
| 8470 | /* figure out what jump we have */ |
| 8471 | GenTree* jmpNode = lastNode; |
| 8472 | #if !FEATURE_FASTTAILCALL |
| 8473 | noway_assert(jmpNode->gtOper == GT_JMP); |
| 8474 | #else // FEATURE_FASTTAILCALL |
| 8475 | // armarch |
| 8476 | // If jmpNode is GT_JMP then gtNext must be null. |
| 8477 | // If jmpNode is a fast tail call, gtNext need not be null since it could have embedded stmts. |
| 8478 | noway_assert((jmpNode->gtOper != GT_JMP) || (jmpNode->gtNext == nullptr)); |
| 8479 | |
| 8480 | // Could either be a "jmp method" or "fast tail call" implemented as epilog+jmp |
| 8481 | noway_assert((jmpNode->gtOper == GT_JMP) || |
| 8482 | ((jmpNode->gtOper == GT_CALL) && jmpNode->AsCall()->IsFastTailCall())); |
| 8483 | |
| 8484 | // The next block is associated with this "if" stmt |
| 8485 | if (jmpNode->gtOper == GT_JMP) |
| 8486 | #endif // FEATURE_FASTTAILCALL |
| 8487 | { |
| 8488 | // Simply emit a jump to the methodHnd. This is similar to a call so we can use |
| 8489 | // the same descriptor with some minor adjustments. |
| 8490 | assert(methHnd != nullptr); |
| 8491 | assert(addrInfo.addr != nullptr); |
| 8492 | |
| 8493 | #ifdef _TARGET_ARMARCH_ |
| 8494 | emitter::EmitCallType callType; |
| 8495 | void* addr; |
| 8496 | regNumber indCallReg; |
| 8497 | switch (addrInfo.accessType) |
| 8498 | { |
| 8499 | case IAT_VALUE: |
| 8500 | if (validImmForBL((ssize_t)addrInfo.addr)) |
| 8501 | { |
| 8502 | // Simple direct call |
| 8503 | callType = emitter::EC_FUNC_TOKEN; |
| 8504 | addr = addrInfo.addr; |
| 8505 | indCallReg = REG_NA; |
| 8506 | break; |
| 8507 | } |
| 8508 | |
| 8509 | // otherwise the target address doesn't fit in an immediate |
| 8510 | // so we have to burn a register... |
| 8511 | __fallthrough; |
| 8512 | |
| 8513 | case IAT_PVALUE: |
| 8514 | // Load the address into a register, load indirect and call through a register |
| 8515 | // We have to use R12 since we assume the argument registers are in use |
| 8516 | callType = emitter::EC_INDIR_R; |
| 8517 | indCallReg = REG_INDIRECT_CALL_TARGET_REG; |
| 8518 | addr = NULL; |
| 8519 | instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, indCallReg, (ssize_t)addrInfo.addr); |
| 8520 | if (addrInfo.accessType == IAT_PVALUE) |
| 8521 | { |
| 8522 | getEmitter()->emitIns_R_R_I(INS_ldr, EA_PTRSIZE, indCallReg, indCallReg, 0); |
| 8523 | regSet.verifyRegUsed(indCallReg); |
| 8524 | } |
| 8525 | break; |
| 8526 | |
| 8527 | case IAT_RELPVALUE: |
| 8528 | { |
| 8529 | // Load the address into a register, load relative indirect and call through a register |
| 8530 | // We have to use R12 since we assume the argument registers are in use |
| 8531 | // LR is used as helper register right before it is restored from stack, thus, |
| 8532 | // all relative address calculations are performed before LR is restored. |
| 8533 | callType = emitter::EC_INDIR_R; |
| 8534 | indCallReg = REG_R12; |
| 8535 | addr = NULL; |
| 8536 | |
| 8537 | regSet.verifyRegUsed(indCallReg); |
| 8538 | break; |
| 8539 | } |
| 8540 | |
| 8541 | case IAT_PPVALUE: |
| 8542 | default: |
| 8543 | NO_WAY("Unsupported JMP indirection" ); |
| 8544 | } |
| 8545 | |
| 8546 | /* Simply emit a jump to the methodHnd. This is similar to a call so we can use |
| 8547 | * the same descriptor with some minor adjustments. |
| 8548 | */ |
| 8549 | |
| 8550 | // clang-format off |
| 8551 | getEmitter()->emitIns_Call(callType, |
| 8552 | methHnd, |
| 8553 | INDEBUG_LDISASM_COMMA(nullptr) |
| 8554 | addr, |
| 8555 | 0, // argSize |
| 8556 | EA_UNKNOWN, // retSize |
| 8557 | #if defined(_TARGET_ARM64_) |
| 8558 | EA_UNKNOWN, // secondRetSize |
| 8559 | #endif |
| 8560 | gcInfo.gcVarPtrSetCur, |
| 8561 | gcInfo.gcRegGCrefSetCur, |
| 8562 | gcInfo.gcRegByrefSetCur, |
| 8563 | BAD_IL_OFFSET, // IL offset |
| 8564 | indCallReg, // ireg |
| 8565 | REG_NA, // xreg |
| 8566 | 0, // xmul |
| 8567 | 0, // disp |
| 8568 | true); // isJump |
| 8569 | // clang-format on |
| 8570 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 8571 | #endif //_TARGET_ARMARCH_ |
| 8572 | } |
| 8573 | #if FEATURE_FASTTAILCALL |
| 8574 | else |
| 8575 | { |
| 8576 | // Fast tail call. |
| 8577 | // Call target = REG_FASTTAILCALL_TARGET |
| 8578 | // https://github.com/dotnet/coreclr/issues/4827 |
| 8579 | // Do we need a special encoding for stack walker like rex.w prefix for x64? |
| 8580 | getEmitter()->emitIns_R(INS_br, emitTypeSize(TYP_I_IMPL), REG_FASTTAILCALL_TARGET); |
| 8581 | } |
| 8582 | #endif // FEATURE_FASTTAILCALL |
| 8583 | } |
| 8584 | else |
| 8585 | { |
| 8586 | #ifdef _TARGET_ARM_ |
| 8587 | if (!genUsedPopToReturn) |
| 8588 | { |
| 8589 | // If we did not use a pop to return, then we did a "pop {..., lr}" instead of "pop {..., pc}", |
| 8590 | // so we need a "bx lr" instruction to return from the function. |
| 8591 | inst_RV(INS_bx, REG_LR, TYP_I_IMPL); |
| 8592 | compiler->unwindBranch16(); |
| 8593 | } |
| 8594 | #else // _TARGET_ARM64_ |
| 8595 | inst_RV(INS_ret, REG_LR, TYP_I_IMPL); |
| 8596 | compiler->unwindReturn(REG_LR); |
| 8597 | #endif // _TARGET_ARM64_ |
| 8598 | } |
| 8599 | |
| 8600 | compiler->unwindEndEpilog(); |
| 8601 | } |
| 8602 | |
| 8603 | #elif defined(_TARGET_XARCH_) |
| 8604 | |
| 8605 | void CodeGen::genFnEpilog(BasicBlock* block) |
| 8606 | { |
| 8607 | #ifdef DEBUG |
| 8608 | if (verbose) |
| 8609 | { |
| 8610 | printf("*************** In genFnEpilog()\n" ); |
| 8611 | } |
| 8612 | #endif |
| 8613 | |
| 8614 | ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true); |
| 8615 | |
| 8616 | VarSetOps::Assign(compiler, gcInfo.gcVarPtrSetCur, getEmitter()->emitInitGCrefVars); |
| 8617 | gcInfo.gcRegGCrefSetCur = getEmitter()->emitInitGCrefRegs; |
| 8618 | gcInfo.gcRegByrefSetCur = getEmitter()->emitInitByrefRegs; |
| 8619 | |
| 8620 | noway_assert(!compiler->opts.MinOpts() || isFramePointerUsed()); // FPO not allowed with minOpts |
| 8621 | |
| 8622 | #ifdef DEBUG |
| 8623 | genInterruptibleUsed = true; |
| 8624 | #endif |
| 8625 | |
| 8626 | bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0); |
| 8627 | |
| 8628 | #ifdef DEBUG |
| 8629 | if (compiler->opts.dspCode) |
| 8630 | { |
| 8631 | printf("\n__epilog:\n" ); |
| 8632 | } |
| 8633 | |
| 8634 | if (verbose) |
| 8635 | { |
| 8636 | printf("gcVarPtrSetCur=%s " , VarSetOps::ToString(compiler, gcInfo.gcVarPtrSetCur)); |
| 8637 | dumpConvertedVarSet(compiler, gcInfo.gcVarPtrSetCur); |
| 8638 | printf(", gcRegGCrefSetCur=" ); |
| 8639 | printRegMaskInt(gcInfo.gcRegGCrefSetCur); |
| 8640 | getEmitter()->emitDispRegSet(gcInfo.gcRegGCrefSetCur); |
| 8641 | printf(", gcRegByrefSetCur=" ); |
| 8642 | printRegMaskInt(gcInfo.gcRegByrefSetCur); |
| 8643 | getEmitter()->emitDispRegSet(gcInfo.gcRegByrefSetCur); |
| 8644 | printf("\n" ); |
| 8645 | } |
| 8646 | #endif |
| 8647 | |
| 8648 | // Restore float registers that were saved to stack before SP is modified. |
| 8649 | genRestoreCalleeSavedFltRegs(compiler->compLclFrameSize); |
| 8650 | |
| 8651 | #ifdef JIT32_GCENCODER |
| 8652 | // When using the JIT32 GC encoder, we do not start the OS-reported portion of the epilog until after |
| 8653 | // the above call to `genRestoreCalleeSavedFltRegs` because that function |
| 8654 | // a) does not actually restore any registers: there are none when targeting the Windows x86 ABI, |
| 8655 | // which is the only target that uses the JIT32 GC encoder |
| 8656 | // b) may issue a `vzeroupper` instruction to eliminate AVX -> SSE transition penalties. |
| 8657 | // Because the `vzeroupper` instruction is not recognized by the VM's unwinder and there are no |
| 8658 | // callee-save FP restores that the unwinder would need to see, we can avoid the need to change the |
| 8659 | // unwinder (and break binary compat with older versions of the runtime) by starting the epilog |
| 8660 | // after any `vzeroupper` instruction has been emitted. If either of the above conditions changes, |
| 8661 | // we will need to rethink this. |
| 8662 | getEmitter()->emitStartEpilog(); |
| 8663 | #endif |
| 8664 | |
| 8665 | /* Compute the size in bytes we've pushed/popped */ |
| 8666 | |
| 8667 | if (!doubleAlignOrFramePointerUsed()) |
| 8668 | { |
| 8669 | // We have an ESP frame */ |
| 8670 | |
| 8671 | noway_assert(compiler->compLocallocUsed == false); // Only used with frame-pointer |
| 8672 | |
| 8673 | /* Get rid of our local variables */ |
| 8674 | |
| 8675 | if (compiler->compLclFrameSize) |
| 8676 | { |
| 8677 | #ifdef _TARGET_X86_ |
| 8678 | /* Add 'compiler->compLclFrameSize' to ESP */ |
| 8679 | /* Use pop ECX to increment ESP by 4, unless compiler->compJmpOpUsed is true */ |
| 8680 | |
| 8681 | if ((compiler->compLclFrameSize == TARGET_POINTER_SIZE) && !compiler->compJmpOpUsed) |
| 8682 | { |
| 8683 | inst_RV(INS_pop, REG_ECX, TYP_I_IMPL); |
| 8684 | regSet.verifyRegUsed(REG_ECX); |
| 8685 | } |
| 8686 | else |
| 8687 | #endif // _TARGET_X86 |
| 8688 | { |
| 8689 | /* Add 'compiler->compLclFrameSize' to ESP */ |
| 8690 | /* Generate "add esp, <stack-size>" */ |
| 8691 | inst_RV_IV(INS_add, REG_SPBASE, compiler->compLclFrameSize, EA_PTRSIZE); |
| 8692 | } |
| 8693 | } |
| 8694 | |
| 8695 | genPopCalleeSavedRegisters(); |
| 8696 | } |
| 8697 | else |
| 8698 | { |
| 8699 | noway_assert(doubleAlignOrFramePointerUsed()); |
| 8700 | |
| 8701 | /* Tear down the stack frame */ |
| 8702 | |
| 8703 | bool needMovEspEbp = false; |
| 8704 | |
| 8705 | #if DOUBLE_ALIGN |
| 8706 | if (compiler->genDoubleAlign()) |
| 8707 | { |
| 8708 | // |
| 8709 | // add esp, compLclFrameSize |
| 8710 | // |
| 8711 | // We need not do anything (except the "mov esp, ebp") if |
| 8712 | // compiler->compCalleeRegsPushed==0. However, this is unlikely, and it |
| 8713 | // also complicates the code manager. Hence, we ignore that case. |
| 8714 | |
| 8715 | noway_assert(compiler->compLclFrameSize != 0); |
| 8716 | inst_RV_IV(INS_add, REG_SPBASE, compiler->compLclFrameSize, EA_PTRSIZE); |
| 8717 | |
| 8718 | needMovEspEbp = true; |
| 8719 | } |
| 8720 | else |
| 8721 | #endif // DOUBLE_ALIGN |
| 8722 | { |
| 8723 | bool needLea = false; |
| 8724 | |
| 8725 | if (compiler->compLocallocUsed) |
| 8726 | { |
| 8727 | // ESP may be variable if a localloc was actually executed. Reset it. |
| 8728 | // lea esp, [ebp - compiler->compCalleeRegsPushed * REGSIZE_BYTES] |
| 8729 | |
| 8730 | needLea = true; |
| 8731 | } |
| 8732 | else if (!regSet.rsRegsModified(RBM_CALLEE_SAVED)) |
| 8733 | { |
| 8734 | if (compiler->compLclFrameSize != 0) |
| 8735 | { |
| 8736 | #ifdef _TARGET_AMD64_ |
| 8737 | // AMD64 can't use "mov esp, ebp", according to the ABI specification describing epilogs. So, |
| 8738 | // do an LEA to "pop off" the frame allocation. |
| 8739 | needLea = true; |
| 8740 | #else // !_TARGET_AMD64_ |
| 8741 | // We will just generate "mov esp, ebp" and be done with it. |
| 8742 | needMovEspEbp = true; |
| 8743 | #endif // !_TARGET_AMD64_ |
| 8744 | } |
| 8745 | } |
| 8746 | else if (compiler->compLclFrameSize == 0) |
| 8747 | { |
| 8748 | // do nothing before popping the callee-saved registers |
| 8749 | } |
| 8750 | #ifdef _TARGET_X86_ |
| 8751 | else if (compiler->compLclFrameSize == REGSIZE_BYTES) |
| 8752 | { |
| 8753 | // "pop ecx" will make ESP point to the callee-saved registers |
| 8754 | inst_RV(INS_pop, REG_ECX, TYP_I_IMPL); |
| 8755 | regSet.verifyRegUsed(REG_ECX); |
| 8756 | } |
| 8757 | #endif // _TARGET_X86 |
| 8758 | else |
| 8759 | { |
| 8760 | // We need to make ESP point to the callee-saved registers |
| 8761 | needLea = true; |
| 8762 | } |
| 8763 | |
| 8764 | if (needLea) |
| 8765 | { |
| 8766 | int offset; |
| 8767 | |
| 8768 | #ifdef _TARGET_AMD64_ |
| 8769 | // lea esp, [ebp + compiler->compLclFrameSize - genSPtoFPdelta] |
| 8770 | // |
| 8771 | // Case 1: localloc not used. |
| 8772 | // genSPToFPDelta = compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize |
| 8773 | // offset = compiler->compCalleeRegsPushed * REGSIZE_BYTES; |
| 8774 | // The amount to be subtracted from RBP to point at callee saved int regs. |
| 8775 | // |
| 8776 | // Case 2: localloc used |
| 8777 | // genSPToFPDelta = Min(240, (int)compiler->lvaOutgoingArgSpaceSize) |
| 8778 | // Offset = Amount to be added to RBP to point at callee saved int regs. |
| 8779 | offset = genSPtoFPdelta() - compiler->compLclFrameSize; |
| 8780 | |
| 8781 | // Offset should fit within a byte if localloc is not used. |
| 8782 | if (!compiler->compLocallocUsed) |
| 8783 | { |
| 8784 | noway_assert(offset < UCHAR_MAX); |
| 8785 | } |
| 8786 | #else |
| 8787 | // lea esp, [ebp - compiler->compCalleeRegsPushed * REGSIZE_BYTES] |
| 8788 | offset = compiler->compCalleeRegsPushed * REGSIZE_BYTES; |
| 8789 | noway_assert(offset < UCHAR_MAX); // the offset fits in a byte |
| 8790 | #endif |
| 8791 | |
| 8792 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, -offset); |
| 8793 | } |
| 8794 | } |
| 8795 | |
| 8796 | // |
| 8797 | // Pop the callee-saved registers (if any) |
| 8798 | // |
| 8799 | |
| 8800 | genPopCalleeSavedRegisters(); |
| 8801 | |
| 8802 | #ifdef _TARGET_AMD64_ |
| 8803 | assert(!needMovEspEbp); // "mov esp, ebp" is not allowed in AMD64 epilogs |
| 8804 | #else // !_TARGET_AMD64_ |
| 8805 | if (needMovEspEbp) |
| 8806 | { |
| 8807 | // mov esp, ebp |
| 8808 | inst_RV_RV(INS_mov, REG_SPBASE, REG_FPBASE); |
| 8809 | } |
| 8810 | #endif // !_TARGET_AMD64_ |
| 8811 | |
| 8812 | // pop ebp |
| 8813 | inst_RV(INS_pop, REG_EBP, TYP_I_IMPL); |
| 8814 | } |
| 8815 | |
| 8816 | getEmitter()->emitStartExitSeq(); // Mark the start of the "return" sequence |
| 8817 | |
| 8818 | /* Check if this a special return block i.e. |
| 8819 | * CEE_JMP instruction */ |
| 8820 | |
| 8821 | if (jmpEpilog) |
| 8822 | { |
| 8823 | noway_assert(block->bbJumpKind == BBJ_RETURN); |
| 8824 | noway_assert(block->bbTreeList); |
| 8825 | |
| 8826 | // figure out what jump we have |
| 8827 | GenTree* jmpNode = block->lastNode(); |
| 8828 | #if !FEATURE_FASTTAILCALL |
| 8829 | // x86 |
| 8830 | noway_assert(jmpNode->gtOper == GT_JMP); |
| 8831 | #else |
| 8832 | // amd64 |
| 8833 | // If jmpNode is GT_JMP then gtNext must be null. |
| 8834 | // If jmpNode is a fast tail call, gtNext need not be null since it could have embedded stmts. |
| 8835 | noway_assert((jmpNode->gtOper != GT_JMP) || (jmpNode->gtNext == nullptr)); |
| 8836 | |
| 8837 | // Could either be a "jmp method" or "fast tail call" implemented as epilog+jmp |
| 8838 | noway_assert((jmpNode->gtOper == GT_JMP) || |
| 8839 | ((jmpNode->gtOper == GT_CALL) && jmpNode->AsCall()->IsFastTailCall())); |
| 8840 | |
| 8841 | // The next block is associated with this "if" stmt |
| 8842 | if (jmpNode->gtOper == GT_JMP) |
| 8843 | #endif |
| 8844 | { |
| 8845 | // Simply emit a jump to the methodHnd. This is similar to a call so we can use |
| 8846 | // the same descriptor with some minor adjustments. |
| 8847 | CORINFO_METHOD_HANDLE methHnd = (CORINFO_METHOD_HANDLE)jmpNode->gtVal.gtVal1; |
| 8848 | |
| 8849 | CORINFO_CONST_LOOKUP addrInfo; |
| 8850 | compiler->info.compCompHnd->getFunctionEntryPoint(methHnd, &addrInfo); |
| 8851 | if (addrInfo.accessType != IAT_VALUE && addrInfo.accessType != IAT_PVALUE) |
| 8852 | { |
| 8853 | NO_WAY("Unsupported JMP indirection" ); |
| 8854 | } |
| 8855 | |
| 8856 | const emitter::EmitCallType callType = |
| 8857 | (addrInfo.accessType == IAT_VALUE) ? emitter::EC_FUNC_TOKEN : emitter::EC_FUNC_TOKEN_INDIR; |
| 8858 | |
| 8859 | // Simply emit a jump to the methodHnd. This is similar to a call so we can use |
| 8860 | // the same descriptor with some minor adjustments. |
| 8861 | |
| 8862 | // clang-format off |
| 8863 | getEmitter()->emitIns_Call(callType, |
| 8864 | methHnd, |
| 8865 | INDEBUG_LDISASM_COMMA(nullptr) |
| 8866 | addrInfo.addr, |
| 8867 | 0, // argSize |
| 8868 | EA_UNKNOWN // retSize |
| 8869 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(EA_UNKNOWN), // secondRetSize |
| 8870 | gcInfo.gcVarPtrSetCur, |
| 8871 | gcInfo.gcRegGCrefSetCur, |
| 8872 | gcInfo.gcRegByrefSetCur, |
| 8873 | BAD_IL_OFFSET, REG_NA, REG_NA, 0, 0, /* iloffset, ireg, xreg, xmul, disp */ |
| 8874 | true /* isJump */ |
| 8875 | ); |
| 8876 | // clang-format on |
| 8877 | } |
| 8878 | #if FEATURE_FASTTAILCALL |
| 8879 | else |
| 8880 | { |
| 8881 | #ifdef _TARGET_AMD64_ |
| 8882 | // Fast tail call. |
| 8883 | // Call target = RAX. |
| 8884 | // Stack walker requires that a register indirect tail call be rex.w prefixed. |
| 8885 | getEmitter()->emitIns_R(INS_rex_jmp, emitTypeSize(TYP_I_IMPL), REG_RAX); |
| 8886 | #else |
| 8887 | assert(!"Fast tail call as epilog+jmp" ); |
| 8888 | unreached(); |
| 8889 | #endif //_TARGET_AMD64_ |
| 8890 | } |
| 8891 | #endif // FEATURE_FASTTAILCALL |
| 8892 | } |
| 8893 | else |
| 8894 | { |
| 8895 | unsigned stkArgSize = 0; // Zero on all platforms except x86 |
| 8896 | |
| 8897 | #if defined(_TARGET_X86_) |
| 8898 | bool fCalleePop = true; |
| 8899 | |
| 8900 | // varargs has caller pop |
| 8901 | if (compiler->info.compIsVarArgs) |
| 8902 | fCalleePop = false; |
| 8903 | |
| 8904 | #ifdef UNIX_X86_ABI |
| 8905 | if (IsCallerPop(compiler->info.compMethodInfo->args.callConv)) |
| 8906 | fCalleePop = false; |
| 8907 | #endif // UNIX_X86_ABI |
| 8908 | |
| 8909 | if (fCalleePop) |
| 8910 | { |
| 8911 | noway_assert(compiler->compArgSize >= intRegState.rsCalleeRegArgCount * REGSIZE_BYTES); |
| 8912 | stkArgSize = compiler->compArgSize - intRegState.rsCalleeRegArgCount * REGSIZE_BYTES; |
| 8913 | |
| 8914 | noway_assert(compiler->compArgSize < 0x10000); // "ret" only has 2 byte operand |
| 8915 | } |
| 8916 | #endif // _TARGET_X86_ |
| 8917 | |
| 8918 | /* Return, popping our arguments (if any) */ |
| 8919 | instGen_Return(stkArgSize); |
| 8920 | } |
| 8921 | } |
| 8922 | |
| 8923 | #else // _TARGET_* |
| 8924 | #error Unsupported or unset target architecture |
| 8925 | #endif // _TARGET_* |
| 8926 | |
| 8927 | #if FEATURE_EH_FUNCLETS |
| 8928 | |
| 8929 | #ifdef _TARGET_ARM_ |
| 8930 | |
| 8931 | /***************************************************************************** |
| 8932 | * |
| 8933 | * Generates code for an EH funclet prolog. |
| 8934 | * |
| 8935 | * Funclets have the following incoming arguments: |
| 8936 | * |
| 8937 | * catch: r0 = the exception object that was caught (see GT_CATCH_ARG) |
| 8938 | * filter: r0 = the exception object to filter (see GT_CATCH_ARG), r1 = CallerSP of the containing function |
| 8939 | * finally/fault: none |
| 8940 | * |
| 8941 | * Funclets set the following registers on exit: |
| 8942 | * |
| 8943 | * catch: r0 = the address at which execution should resume (see BBJ_EHCATCHRET) |
| 8944 | * filter: r0 = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT) |
| 8945 | * finally/fault: none |
| 8946 | * |
| 8947 | * The ARM funclet prolog sequence is: |
| 8948 | * |
| 8949 | * push {regs,lr} ; We push the callee-saved regs and 'lr'. |
| 8950 | * ; TODO-ARM-CQ: We probably only need to save lr, plus any callee-save registers that we |
| 8951 | * ; actually use in the funclet. Currently, we save the same set of callee-saved regs |
| 8952 | * ; calculated for the entire function. |
| 8953 | * sub sp, XXX ; Establish the rest of the frame. |
| 8954 | * ; XXX is determined by lvaOutgoingArgSpaceSize plus space for the PSP slot, aligned |
| 8955 | * ; up to preserve stack alignment. If we push an odd number of registers, we also |
| 8956 | * ; generate this, to keep the stack aligned. |
| 8957 | * |
| 8958 | * ; Fill the PSP slot, for use by the VM (it gets reported with the GC info), or by code generation of nested |
| 8959 | * ; filters. |
| 8960 | * ; This is not part of the "OS prolog"; it has no associated unwind data, and is not reversed in the funclet |
| 8961 | * ; epilog. |
| 8962 | * |
| 8963 | * if (this is a filter funclet) |
| 8964 | * { |
| 8965 | * // r1 on entry to a filter funclet is CallerSP of the containing function: |
| 8966 | * // either the main function, or the funclet for a handler that this filter is dynamically nested within. |
| 8967 | * // Note that a filter can be dynamically nested within a funclet even if it is not statically within |
| 8968 | * // a funclet. Consider: |
| 8969 | * // |
| 8970 | * // try { |
| 8971 | * // try { |
| 8972 | * // throw new Exception(); |
| 8973 | * // } catch(Exception) { |
| 8974 | * // throw new Exception(); // The exception thrown here ... |
| 8975 | * // } |
| 8976 | * // } filter { // ... will be processed here, while the "catch" funclet frame is |
| 8977 | * // // still on the stack |
| 8978 | * // } filter-handler { |
| 8979 | * // } |
| 8980 | * // |
| 8981 | * // Because of this, we need a PSP in the main function anytime a filter funclet doesn't know whether the |
| 8982 | * // enclosing frame will be a funclet or main function. We won't know any time there is a filter protecting |
| 8983 | * // nested EH. To simplify, we just always create a main function PSP for any function with a filter. |
| 8984 | * |
| 8985 | * ldr r1, [r1 - PSP_slot_CallerSP_offset] ; Load the CallerSP of the main function (stored in the PSP of |
| 8986 | * ; the dynamically containing funclet or function) |
| 8987 | * str r1, [sp + PSP_slot_SP_offset] ; store the PSP |
| 8988 | * sub r11, r1, Function_CallerSP_to_FP_delta ; re-establish the frame pointer |
| 8989 | * } |
| 8990 | * else |
| 8991 | * { |
| 8992 | * // This is NOT a filter funclet. The VM re-establishes the frame pointer on entry. |
| 8993 | * // TODO-ARM-CQ: if VM set r1 to CallerSP on entry, like for filters, we could save an instruction. |
| 8994 | * |
| 8995 | * add r3, r11, Function_CallerSP_to_FP_delta ; compute the CallerSP, given the frame pointer. r3 is scratch. |
| 8996 | * str r3, [sp + PSP_slot_SP_offset] ; store the PSP |
| 8997 | * } |
| 8998 | * |
| 8999 | * The epilog sequence is then: |
| 9000 | * |
| 9001 | * add sp, XXX ; if necessary |
| 9002 | * pop {regs,pc} |
| 9003 | * |
| 9004 | * If it is worth it, we could push r0, r1, r2, r3 instead of using an additional add/sub instruction. |
| 9005 | * Code size would be smaller, but we would be writing to / reading from the stack, which might be slow. |
| 9006 | * |
| 9007 | * The funclet frame is thus: |
| 9008 | * |
| 9009 | * | | |
| 9010 | * |-----------------------| |
| 9011 | * | incoming | |
| 9012 | * | arguments | |
| 9013 | * +=======================+ <---- Caller's SP |
| 9014 | * |Callee saved registers | |
| 9015 | * |-----------------------| |
| 9016 | * |Pre-spill regs space | // This is only necessary to keep the PSP slot at the same offset |
| 9017 | * | | // in function and funclet |
| 9018 | * |-----------------------| |
| 9019 | * | PSP slot | // Omitted in CoreRT ABI |
| 9020 | * |-----------------------| |
| 9021 | * ~ possible 4 byte pad ~ |
| 9022 | * ~ for alignment ~ |
| 9023 | * |-----------------------| |
| 9024 | * | Outgoing arg space | |
| 9025 | * |-----------------------| <---- Ambient SP |
| 9026 | * | | | |
| 9027 | * ~ | Stack grows ~ |
| 9028 | * | | downward | |
| 9029 | * V |
| 9030 | */ |
| 9031 | |
| 9032 | void CodeGen::genFuncletProlog(BasicBlock* block) |
| 9033 | { |
| 9034 | #ifdef DEBUG |
| 9035 | if (verbose) |
| 9036 | printf("*************** In genFuncletProlog()\n" ); |
| 9037 | #endif |
| 9038 | |
| 9039 | assert(block != NULL); |
| 9040 | assert(block->bbFlags & BBF_FUNCLET_BEG); |
| 9041 | |
| 9042 | ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true); |
| 9043 | |
| 9044 | gcInfo.gcResetForBB(); |
| 9045 | |
| 9046 | compiler->unwindBegProlog(); |
| 9047 | |
| 9048 | regMaskTP maskPushRegsFloat = genFuncletInfo.fiSaveRegs & RBM_ALLFLOAT; |
| 9049 | regMaskTP maskPushRegsInt = genFuncletInfo.fiSaveRegs & ~maskPushRegsFloat; |
| 9050 | |
| 9051 | regMaskTP maskStackAlloc = genStackAllocRegisterMask(genFuncletInfo.fiSpDelta, maskPushRegsFloat); |
| 9052 | maskPushRegsInt |= maskStackAlloc; |
| 9053 | |
| 9054 | assert(FitsIn<int>(maskPushRegsInt)); |
| 9055 | inst_IV(INS_push, (int)maskPushRegsInt); |
| 9056 | compiler->unwindPushMaskInt(maskPushRegsInt); |
| 9057 | |
| 9058 | if (maskPushRegsFloat != RBM_NONE) |
| 9059 | { |
| 9060 | genPushFltRegs(maskPushRegsFloat); |
| 9061 | compiler->unwindPushMaskFloat(maskPushRegsFloat); |
| 9062 | } |
| 9063 | |
| 9064 | bool isFilter = (block->bbCatchTyp == BBCT_FILTER); |
| 9065 | |
| 9066 | regMaskTP maskArgRegsLiveIn; |
| 9067 | if (isFilter) |
| 9068 | { |
| 9069 | maskArgRegsLiveIn = RBM_R0 | RBM_R1; |
| 9070 | } |
| 9071 | else if ((block->bbCatchTyp == BBCT_FINALLY) || (block->bbCatchTyp == BBCT_FAULT)) |
| 9072 | { |
| 9073 | maskArgRegsLiveIn = RBM_NONE; |
| 9074 | } |
| 9075 | else |
| 9076 | { |
| 9077 | maskArgRegsLiveIn = RBM_R0; |
| 9078 | } |
| 9079 | |
| 9080 | regNumber initReg = REG_R3; // R3 is never live on entry to a funclet, so it can be trashed |
| 9081 | bool initRegZeroed = false; |
| 9082 | |
| 9083 | if (maskStackAlloc == RBM_NONE) |
| 9084 | { |
| 9085 | genAllocLclFrame(genFuncletInfo.fiSpDelta, initReg, &initRegZeroed, maskArgRegsLiveIn); |
| 9086 | } |
| 9087 | |
| 9088 | // This is the end of the OS-reported prolog for purposes of unwinding |
| 9089 | compiler->unwindEndProlog(); |
| 9090 | |
| 9091 | if (isFilter) |
| 9092 | { |
| 9093 | // This is the first block of a filter |
| 9094 | |
| 9095 | getEmitter()->emitIns_R_R_I(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_R1, REG_R1, |
| 9096 | genFuncletInfo.fiPSP_slot_CallerSP_offset); |
| 9097 | regSet.verifyRegUsed(REG_R1); |
| 9098 | getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_R1, REG_SPBASE, |
| 9099 | genFuncletInfo.fiPSP_slot_SP_offset); |
| 9100 | getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_FPBASE, REG_R1, |
| 9101 | genFuncletInfo.fiFunctionCallerSPtoFPdelta); |
| 9102 | } |
| 9103 | else |
| 9104 | { |
| 9105 | // This is a non-filter funclet |
| 9106 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_R3, REG_FPBASE, |
| 9107 | genFuncletInfo.fiFunctionCallerSPtoFPdelta); |
| 9108 | regSet.verifyRegUsed(REG_R3); |
| 9109 | getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_R3, REG_SPBASE, |
| 9110 | genFuncletInfo.fiPSP_slot_SP_offset); |
| 9111 | } |
| 9112 | } |
| 9113 | |
| 9114 | /***************************************************************************** |
| 9115 | * |
| 9116 | * Generates code for an EH funclet epilog. |
| 9117 | */ |
| 9118 | |
| 9119 | void CodeGen::genFuncletEpilog() |
| 9120 | { |
| 9121 | #ifdef DEBUG |
| 9122 | if (verbose) |
| 9123 | printf("*************** In genFuncletEpilog()\n" ); |
| 9124 | #endif |
| 9125 | |
| 9126 | ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true); |
| 9127 | |
| 9128 | // Just as for the main function, we delay starting the unwind codes until we have |
| 9129 | // an instruction which we know needs an unwind code. This is to support code like |
| 9130 | // this: |
| 9131 | // movw r3, 0x38e0 |
| 9132 | // add sp, r3 |
| 9133 | // pop {r4,r5,r6,r10,r11,pc} |
| 9134 | // where the "movw" shouldn't be part of the unwind codes. See genFnEpilog() for more details. |
| 9135 | |
| 9136 | bool unwindStarted = false; |
| 9137 | |
| 9138 | /* The saved regs info saves the LR register. We need to pop the PC register to return */ |
| 9139 | assert(genFuncletInfo.fiSaveRegs & RBM_LR); |
| 9140 | |
| 9141 | regMaskTP maskPopRegsFloat = genFuncletInfo.fiSaveRegs & RBM_ALLFLOAT; |
| 9142 | regMaskTP maskPopRegsInt = genFuncletInfo.fiSaveRegs & ~maskPopRegsFloat; |
| 9143 | |
| 9144 | regMaskTP maskStackAlloc = genStackAllocRegisterMask(genFuncletInfo.fiSpDelta, maskPopRegsFloat); |
| 9145 | maskPopRegsInt |= maskStackAlloc; |
| 9146 | |
| 9147 | if (maskStackAlloc == RBM_NONE) |
| 9148 | { |
| 9149 | genFreeLclFrame(genFuncletInfo.fiSpDelta, &unwindStarted, false); |
| 9150 | } |
| 9151 | |
| 9152 | if (!unwindStarted) |
| 9153 | { |
| 9154 | // We'll definitely generate an unwindable instruction next |
| 9155 | compiler->unwindBegEpilog(); |
| 9156 | unwindStarted = true; |
| 9157 | } |
| 9158 | |
| 9159 | maskPopRegsInt &= ~RBM_LR; |
| 9160 | maskPopRegsInt |= RBM_PC; |
| 9161 | |
| 9162 | if (maskPopRegsFloat != RBM_NONE) |
| 9163 | { |
| 9164 | genPopFltRegs(maskPopRegsFloat); |
| 9165 | compiler->unwindPopMaskFloat(maskPopRegsFloat); |
| 9166 | } |
| 9167 | |
| 9168 | assert(FitsIn<int>(maskPopRegsInt)); |
| 9169 | inst_IV(INS_pop, (int)maskPopRegsInt); |
| 9170 | compiler->unwindPopMaskInt(maskPopRegsInt); |
| 9171 | |
| 9172 | compiler->unwindEndEpilog(); |
| 9173 | } |
| 9174 | |
| 9175 | /***************************************************************************** |
| 9176 | * |
| 9177 | * Capture the information used to generate the funclet prologs and epilogs. |
| 9178 | * Note that all funclet prologs are identical, and all funclet epilogs are |
| 9179 | * identical (per type: filters are identical, and non-filters are identical). |
| 9180 | * Thus, we compute the data used for these just once. |
| 9181 | * |
| 9182 | * See genFuncletProlog() for more information about the prolog/epilog sequences. |
| 9183 | */ |
| 9184 | |
| 9185 | void CodeGen::genCaptureFuncletPrologEpilogInfo() |
| 9186 | { |
| 9187 | if (compiler->ehAnyFunclets()) |
| 9188 | { |
| 9189 | assert(isFramePointerUsed()); |
| 9190 | assert(compiler->lvaDoneFrameLayout == |
| 9191 | Compiler::FINAL_FRAME_LAYOUT); // The frame size and offsets must be finalized |
| 9192 | |
| 9193 | // Frame pointer doesn't point at the end, it points at the pushed r11. So, instead |
| 9194 | // of adding the number of callee-saved regs to CallerSP, we add 1 for lr and 1 for r11 |
| 9195 | // (plus the "pre spill regs"). Note that we assume r12 and r13 aren't saved |
| 9196 | // (also assumed in genFnProlog()). |
| 9197 | assert((regSet.rsMaskCalleeSaved & (RBM_R12 | RBM_R13)) == 0); |
| 9198 | unsigned preSpillRegArgSize = genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES; |
| 9199 | genFuncletInfo.fiFunctionCallerSPtoFPdelta = preSpillRegArgSize + 2 * REGSIZE_BYTES; |
| 9200 | |
| 9201 | regMaskTP rsMaskSaveRegs = regSet.rsMaskCalleeSaved; |
| 9202 | unsigned saveRegsCount = genCountBits(rsMaskSaveRegs); |
| 9203 | unsigned saveRegsSize = saveRegsCount * REGSIZE_BYTES; // bytes of regs we're saving |
| 9204 | assert(compiler->lvaOutgoingArgSpaceSize % REGSIZE_BYTES == 0); |
| 9205 | unsigned funcletFrameSize = |
| 9206 | preSpillRegArgSize + saveRegsSize + REGSIZE_BYTES /* PSP slot */ + compiler->lvaOutgoingArgSpaceSize; |
| 9207 | |
| 9208 | unsigned funcletFrameSizeAligned = roundUp(funcletFrameSize, STACK_ALIGN); |
| 9209 | unsigned funcletFrameAlignmentPad = funcletFrameSizeAligned - funcletFrameSize; |
| 9210 | unsigned spDelta = funcletFrameSizeAligned - saveRegsSize; |
| 9211 | |
| 9212 | unsigned PSP_slot_SP_offset = compiler->lvaOutgoingArgSpaceSize + funcletFrameAlignmentPad; |
| 9213 | int PSP_slot_CallerSP_offset = |
| 9214 | -(int)(funcletFrameSize - compiler->lvaOutgoingArgSpaceSize); // NOTE: it's negative! |
| 9215 | |
| 9216 | /* Now save it for future use */ |
| 9217 | |
| 9218 | genFuncletInfo.fiSaveRegs = rsMaskSaveRegs; |
| 9219 | genFuncletInfo.fiSpDelta = spDelta; |
| 9220 | genFuncletInfo.fiPSP_slot_SP_offset = PSP_slot_SP_offset; |
| 9221 | genFuncletInfo.fiPSP_slot_CallerSP_offset = PSP_slot_CallerSP_offset; |
| 9222 | |
| 9223 | #ifdef DEBUG |
| 9224 | if (verbose) |
| 9225 | { |
| 9226 | printf("\n" ); |
| 9227 | printf("Funclet prolog / epilog info\n" ); |
| 9228 | printf(" Function CallerSP-to-FP delta: %d\n" , genFuncletInfo.fiFunctionCallerSPtoFPdelta); |
| 9229 | printf(" Save regs: " ); |
| 9230 | dspRegMask(rsMaskSaveRegs); |
| 9231 | printf("\n" ); |
| 9232 | printf(" SP delta: %d\n" , genFuncletInfo.fiSpDelta); |
| 9233 | printf(" PSP slot SP offset: %d\n" , genFuncletInfo.fiPSP_slot_SP_offset); |
| 9234 | printf(" PSP slot Caller SP offset: %d\n" , genFuncletInfo.fiPSP_slot_CallerSP_offset); |
| 9235 | |
| 9236 | if (PSP_slot_CallerSP_offset != |
| 9237 | compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)) // for debugging |
| 9238 | printf("lvaGetCallerSPRelativeOffset(lvaPSPSym): %d\n" , |
| 9239 | compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)); |
| 9240 | } |
| 9241 | #endif // DEBUG |
| 9242 | |
| 9243 | assert(PSP_slot_CallerSP_offset < 0); |
| 9244 | if (compiler->lvaPSPSym != BAD_VAR_NUM) |
| 9245 | { |
| 9246 | assert(PSP_slot_CallerSP_offset == |
| 9247 | compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)); // same offset used in main |
| 9248 | // function and funclet! |
| 9249 | } |
| 9250 | } |
| 9251 | } |
| 9252 | |
| 9253 | #elif defined(_TARGET_AMD64_) |
| 9254 | |
| 9255 | /***************************************************************************** |
| 9256 | * |
| 9257 | * Generates code for an EH funclet prolog. |
| 9258 | * |
| 9259 | * Funclets have the following incoming arguments: |
| 9260 | * |
| 9261 | * catch/filter-handler: rcx = InitialSP, rdx = the exception object that was caught (see GT_CATCH_ARG) |
| 9262 | * filter: rcx = InitialSP, rdx = the exception object to filter (see GT_CATCH_ARG) |
| 9263 | * finally/fault: rcx = InitialSP |
| 9264 | * |
| 9265 | * Funclets set the following registers on exit: |
| 9266 | * |
| 9267 | * catch/filter-handler: rax = the address at which execution should resume (see BBJ_EHCATCHRET) |
| 9268 | * filter: rax = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT) |
| 9269 | * finally/fault: none |
| 9270 | * |
| 9271 | * The AMD64 funclet prolog sequence is: |
| 9272 | * |
| 9273 | * push ebp |
| 9274 | * push callee-saved regs |
| 9275 | * ; TODO-AMD64-CQ: We probably only need to save any callee-save registers that we actually use |
| 9276 | * ; in the funclet. Currently, we save the same set of callee-saved regs calculated for |
| 9277 | * ; the entire function. |
| 9278 | * sub sp, XXX ; Establish the rest of the frame. |
| 9279 | * ; XXX is determined by lvaOutgoingArgSpaceSize plus space for the PSP slot, aligned |
| 9280 | * ; up to preserve stack alignment. If we push an odd number of registers, we also |
| 9281 | * ; generate this, to keep the stack aligned. |
| 9282 | * |
| 9283 | * ; Fill the PSP slot, for use by the VM (it gets reported with the GC info), or by code generation of nested |
| 9284 | * ; filters. |
| 9285 | * ; This is not part of the "OS prolog"; it has no associated unwind data, and is not reversed in the funclet |
| 9286 | * ; epilog. |
| 9287 | * ; Also, re-establish the frame pointer from the PSP. |
| 9288 | * |
| 9289 | * mov rbp, [rcx + PSP_slot_InitialSP_offset] ; Load the PSP (InitialSP of the main function stored in the |
| 9290 | * ; PSP of the dynamically containing funclet or function) |
| 9291 | * mov [rsp + PSP_slot_InitialSP_offset], rbp ; store the PSP in our frame |
| 9292 | * lea ebp, [rbp + Function_InitialSP_to_FP_delta] ; re-establish the frame pointer of the parent frame. If |
| 9293 | * ; Function_InitialSP_to_FP_delta==0, we don't need this |
| 9294 | * ; instruction. |
| 9295 | * |
| 9296 | * The epilog sequence is then: |
| 9297 | * |
| 9298 | * add rsp, XXX |
| 9299 | * pop callee-saved regs ; if necessary |
| 9300 | * pop rbp |
| 9301 | * ret |
| 9302 | * |
| 9303 | * The funclet frame is thus: |
| 9304 | * |
| 9305 | * | | |
| 9306 | * |-----------------------| |
| 9307 | * | incoming | |
| 9308 | * | arguments | |
| 9309 | * +=======================+ <---- Caller's SP |
| 9310 | * | Return address | |
| 9311 | * |-----------------------| |
| 9312 | * | Saved EBP | |
| 9313 | * |-----------------------| |
| 9314 | * |Callee saved registers | |
| 9315 | * |-----------------------| |
| 9316 | * ~ possible 8 byte pad ~ |
| 9317 | * ~ for alignment ~ |
| 9318 | * |-----------------------| |
| 9319 | * | PSP slot | // Omitted in CoreRT ABI |
| 9320 | * |-----------------------| |
| 9321 | * | Outgoing arg space | // this only exists if the function makes a call |
| 9322 | * |-----------------------| <---- Initial SP |
| 9323 | * | | | |
| 9324 | * ~ | Stack grows ~ |
| 9325 | * | | downward | |
| 9326 | * V |
| 9327 | * |
| 9328 | * TODO-AMD64-Bug?: the frame pointer should really point to the PSP slot (the debugger seems to assume this |
| 9329 | * in DacDbiInterfaceImpl::InitParentFrameInfo()), or someplace above Initial-SP. There is an AMD64 |
| 9330 | * UNWIND_INFO restriction that it must be within 240 bytes of Initial-SP. See jit64\amd64\inc\md.h |
| 9331 | * "FRAMEPTR OFFSETS" for details. |
| 9332 | */ |
| 9333 | |
| 9334 | void CodeGen::genFuncletProlog(BasicBlock* block) |
| 9335 | { |
| 9336 | #ifdef DEBUG |
| 9337 | if (verbose) |
| 9338 | { |
| 9339 | printf("*************** In genFuncletProlog()\n" ); |
| 9340 | } |
| 9341 | #endif |
| 9342 | |
| 9343 | assert(!regSet.rsRegsModified(RBM_FPBASE)); |
| 9344 | assert(block != nullptr); |
| 9345 | assert(block->bbFlags & BBF_FUNCLET_BEG); |
| 9346 | assert(isFramePointerUsed()); |
| 9347 | |
| 9348 | ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true); |
| 9349 | |
| 9350 | gcInfo.gcResetForBB(); |
| 9351 | |
| 9352 | compiler->unwindBegProlog(); |
| 9353 | |
| 9354 | // We need to push ebp, since it's callee-saved. |
| 9355 | // We need to push the callee-saved registers. We only need to push the ones that we need, but we don't |
| 9356 | // keep track of that on a per-funclet basis, so we push the same set as in the main function. |
| 9357 | // The only fixed-size frame we need to allocate is whatever is big enough for the PSPSym, since nothing else |
| 9358 | // is stored here (all temps are allocated in the parent frame). |
| 9359 | // We do need to allocate the outgoing argument space, in case there are calls here. This must be the same |
| 9360 | // size as the parent frame's outgoing argument space, to keep the PSPSym offset the same. |
| 9361 | |
| 9362 | inst_RV(INS_push, REG_FPBASE, TYP_REF); |
| 9363 | compiler->unwindPush(REG_FPBASE); |
| 9364 | |
| 9365 | // Callee saved int registers are pushed to stack. |
| 9366 | genPushCalleeSavedRegisters(); |
| 9367 | |
| 9368 | regMaskTP maskArgRegsLiveIn; |
| 9369 | if ((block->bbCatchTyp == BBCT_FINALLY) || (block->bbCatchTyp == BBCT_FAULT)) |
| 9370 | { |
| 9371 | maskArgRegsLiveIn = RBM_ARG_0; |
| 9372 | } |
| 9373 | else |
| 9374 | { |
| 9375 | maskArgRegsLiveIn = RBM_ARG_0 | RBM_ARG_2; |
| 9376 | } |
| 9377 | |
| 9378 | regNumber initReg = REG_EBP; // We already saved EBP, so it can be trashed |
| 9379 | bool initRegZeroed = false; |
| 9380 | |
| 9381 | genAllocLclFrame(genFuncletInfo.fiSpDelta, initReg, &initRegZeroed, maskArgRegsLiveIn); |
| 9382 | |
| 9383 | // Callee saved float registers are copied to stack in their assigned stack slots |
| 9384 | // after allocating space for them as part of funclet frame. |
| 9385 | genPreserveCalleeSavedFltRegs(genFuncletInfo.fiSpDelta); |
| 9386 | |
| 9387 | // This is the end of the OS-reported prolog for purposes of unwinding |
| 9388 | compiler->unwindEndProlog(); |
| 9389 | |
| 9390 | // If there is no PSPSym (CoreRT ABI), we are done. |
| 9391 | if (compiler->lvaPSPSym == BAD_VAR_NUM) |
| 9392 | { |
| 9393 | return; |
| 9394 | } |
| 9395 | |
| 9396 | getEmitter()->emitIns_R_AR(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_ARG_0, genFuncletInfo.fiPSP_slot_InitialSP_offset); |
| 9397 | |
| 9398 | regSet.verifyRegUsed(REG_FPBASE); |
| 9399 | |
| 9400 | getEmitter()->emitIns_AR_R(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, genFuncletInfo.fiPSP_slot_InitialSP_offset); |
| 9401 | |
| 9402 | if (genFuncletInfo.fiFunction_InitialSP_to_FP_delta != 0) |
| 9403 | { |
| 9404 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_FPBASE, REG_FPBASE, |
| 9405 | genFuncletInfo.fiFunction_InitialSP_to_FP_delta); |
| 9406 | } |
| 9407 | |
| 9408 | // We've modified EBP, but not really. Say that we haven't... |
| 9409 | regSet.rsRemoveRegsModified(RBM_FPBASE); |
| 9410 | } |
| 9411 | |
| 9412 | /***************************************************************************** |
| 9413 | * |
| 9414 | * Generates code for an EH funclet epilog. |
| 9415 | * |
| 9416 | * Note that we don't do anything with unwind codes, because AMD64 only cares about unwind codes for the prolog. |
| 9417 | */ |
| 9418 | |
| 9419 | void CodeGen::genFuncletEpilog() |
| 9420 | { |
| 9421 | #ifdef DEBUG |
| 9422 | if (verbose) |
| 9423 | { |
| 9424 | printf("*************** In genFuncletEpilog()\n" ); |
| 9425 | } |
| 9426 | #endif |
| 9427 | |
| 9428 | ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true); |
| 9429 | |
| 9430 | // Restore callee saved XMM regs from their stack slots before modifying SP |
| 9431 | // to position at callee saved int regs. |
| 9432 | genRestoreCalleeSavedFltRegs(genFuncletInfo.fiSpDelta); |
| 9433 | inst_RV_IV(INS_add, REG_SPBASE, genFuncletInfo.fiSpDelta, EA_PTRSIZE); |
| 9434 | genPopCalleeSavedRegisters(); |
| 9435 | inst_RV(INS_pop, REG_EBP, TYP_I_IMPL); |
| 9436 | instGen_Return(0); |
| 9437 | } |
| 9438 | |
| 9439 | /***************************************************************************** |
| 9440 | * |
| 9441 | * Capture the information used to generate the funclet prologs and epilogs. |
| 9442 | */ |
| 9443 | |
| 9444 | void CodeGen::genCaptureFuncletPrologEpilogInfo() |
| 9445 | { |
| 9446 | if (!compiler->ehAnyFunclets()) |
| 9447 | { |
| 9448 | return; |
| 9449 | } |
| 9450 | |
| 9451 | // Note that compLclFrameSize can't be used (for can we call functions that depend on it), |
| 9452 | // because we're not going to allocate the same size frame as the parent. |
| 9453 | |
| 9454 | assert(isFramePointerUsed()); |
| 9455 | assert(compiler->lvaDoneFrameLayout == |
| 9456 | Compiler::FINAL_FRAME_LAYOUT); // The frame size and offsets must be finalized |
| 9457 | assert(compiler->compCalleeFPRegsSavedMask != (regMaskTP)-1); // The float registers to be preserved is finalized |
| 9458 | |
| 9459 | // Even though lvaToInitialSPRelativeOffset() depends on compLclFrameSize, |
| 9460 | // that's ok, because we're figuring out an offset in the parent frame. |
| 9461 | genFuncletInfo.fiFunction_InitialSP_to_FP_delta = |
| 9462 | compiler->lvaToInitialSPRelativeOffset(0, true); // trick to find the Initial-SP-relative offset of the frame |
| 9463 | // pointer. |
| 9464 | |
| 9465 | assert(compiler->lvaOutgoingArgSpaceSize % REGSIZE_BYTES == 0); |
| 9466 | #ifndef UNIX_AMD64_ABI |
| 9467 | // No 4 slots for outgoing params on the stack for System V systems. |
| 9468 | assert((compiler->lvaOutgoingArgSpaceSize == 0) || |
| 9469 | (compiler->lvaOutgoingArgSpaceSize >= (4 * REGSIZE_BYTES))); // On AMD64, we always have 4 outgoing argument |
| 9470 | // slots if there are any calls in the function. |
| 9471 | #endif // UNIX_AMD64_ABI |
| 9472 | unsigned offset = compiler->lvaOutgoingArgSpaceSize; |
| 9473 | |
| 9474 | genFuncletInfo.fiPSP_slot_InitialSP_offset = offset; |
| 9475 | |
| 9476 | // How much stack do we allocate in the funclet? |
| 9477 | // We need to 16-byte align the stack. |
| 9478 | |
| 9479 | unsigned totalFrameSize = |
| 9480 | REGSIZE_BYTES // return address |
| 9481 | + REGSIZE_BYTES // pushed EBP |
| 9482 | + (compiler->compCalleeRegsPushed * REGSIZE_BYTES); // pushed callee-saved int regs, not including EBP |
| 9483 | |
| 9484 | // Entire 128-bits of XMM register is saved to stack due to ABI encoding requirement. |
| 9485 | // Copying entire XMM register to/from memory will be performant if SP is aligned at XMM_REGSIZE_BYTES boundary. |
| 9486 | unsigned calleeFPRegsSavedSize = genCountBits(compiler->compCalleeFPRegsSavedMask) * XMM_REGSIZE_BYTES; |
| 9487 | unsigned FPRegsPad = (calleeFPRegsSavedSize > 0) ? AlignmentPad(totalFrameSize, XMM_REGSIZE_BYTES) : 0; |
| 9488 | |
| 9489 | unsigned PSPSymSize = (compiler->lvaPSPSym != BAD_VAR_NUM) ? REGSIZE_BYTES : 0; |
| 9490 | |
| 9491 | totalFrameSize += FPRegsPad // Padding before pushing entire xmm regs |
| 9492 | + calleeFPRegsSavedSize // pushed callee-saved float regs |
| 9493 | // below calculated 'pad' will go here |
| 9494 | + PSPSymSize // PSPSym |
| 9495 | + compiler->lvaOutgoingArgSpaceSize // outgoing arg space |
| 9496 | ; |
| 9497 | |
| 9498 | unsigned pad = AlignmentPad(totalFrameSize, 16); |
| 9499 | |
| 9500 | genFuncletInfo.fiSpDelta = FPRegsPad // Padding to align SP on XMM_REGSIZE_BYTES boundary |
| 9501 | + calleeFPRegsSavedSize // Callee saved xmm regs |
| 9502 | + pad + PSPSymSize // PSPSym |
| 9503 | + compiler->lvaOutgoingArgSpaceSize // outgoing arg space |
| 9504 | ; |
| 9505 | |
| 9506 | #ifdef DEBUG |
| 9507 | if (verbose) |
| 9508 | { |
| 9509 | printf("\n" ); |
| 9510 | printf("Funclet prolog / epilog info\n" ); |
| 9511 | printf(" Function InitialSP-to-FP delta: %d\n" , genFuncletInfo.fiFunction_InitialSP_to_FP_delta); |
| 9512 | printf(" SP delta: %d\n" , genFuncletInfo.fiSpDelta); |
| 9513 | printf(" PSP slot Initial SP offset: %d\n" , genFuncletInfo.fiPSP_slot_InitialSP_offset); |
| 9514 | } |
| 9515 | |
| 9516 | if (compiler->lvaPSPSym != BAD_VAR_NUM) |
| 9517 | { |
| 9518 | assert(genFuncletInfo.fiPSP_slot_InitialSP_offset == |
| 9519 | compiler->lvaGetInitialSPRelativeOffset(compiler->lvaPSPSym)); // same offset used in main function and |
| 9520 | // funclet! |
| 9521 | } |
| 9522 | #endif // DEBUG |
| 9523 | } |
| 9524 | |
| 9525 | #elif defined(_TARGET_ARM64_) |
| 9526 | |
| 9527 | // Look in CodeGenArm64.cpp |
| 9528 | |
| 9529 | #elif defined(_TARGET_X86_) |
| 9530 | |
| 9531 | /***************************************************************************** |
| 9532 | * |
| 9533 | * Generates code for an EH funclet prolog. |
| 9534 | * |
| 9535 | * |
| 9536 | * Funclets have the following incoming arguments: |
| 9537 | * |
| 9538 | * catch/filter-handler: eax = the exception object that was caught (see GT_CATCH_ARG) |
| 9539 | * filter: eax = the exception object that was caught (see GT_CATCH_ARG) |
| 9540 | * finally/fault: none |
| 9541 | * |
| 9542 | * Funclets set the following registers on exit: |
| 9543 | * |
| 9544 | * catch/filter-handler: eax = the address at which execution should resume (see BBJ_EHCATCHRET) |
| 9545 | * filter: eax = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT) |
| 9546 | * finally/fault: none |
| 9547 | * |
| 9548 | * Funclet prolog/epilog sequence and funclet frame layout are TBD. |
| 9549 | * |
| 9550 | */ |
| 9551 | |
| 9552 | void CodeGen::genFuncletProlog(BasicBlock* block) |
| 9553 | { |
| 9554 | #ifdef DEBUG |
| 9555 | if (verbose) |
| 9556 | { |
| 9557 | printf("*************** In genFuncletProlog()\n" ); |
| 9558 | } |
| 9559 | #endif |
| 9560 | |
| 9561 | ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true); |
| 9562 | |
| 9563 | gcInfo.gcResetForBB(); |
| 9564 | |
| 9565 | compiler->unwindBegProlog(); |
| 9566 | |
| 9567 | // This is the end of the OS-reported prolog for purposes of unwinding |
| 9568 | compiler->unwindEndProlog(); |
| 9569 | |
| 9570 | // TODO We may need EBP restore sequence here if we introduce PSPSym |
| 9571 | |
| 9572 | // Add a padding for 16-byte alignment |
| 9573 | inst_RV_IV(INS_sub, REG_SPBASE, 12, EA_PTRSIZE); |
| 9574 | } |
| 9575 | |
| 9576 | /***************************************************************************** |
| 9577 | * |
| 9578 | * Generates code for an EH funclet epilog. |
| 9579 | */ |
| 9580 | |
| 9581 | void CodeGen::genFuncletEpilog() |
| 9582 | { |
| 9583 | #ifdef DEBUG |
| 9584 | if (verbose) |
| 9585 | { |
| 9586 | printf("*************** In genFuncletEpilog()\n" ); |
| 9587 | } |
| 9588 | #endif |
| 9589 | |
| 9590 | ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true); |
| 9591 | |
| 9592 | // Revert a padding that was added for 16-byte alignment |
| 9593 | inst_RV_IV(INS_add, REG_SPBASE, 12, EA_PTRSIZE); |
| 9594 | |
| 9595 | instGen_Return(0); |
| 9596 | } |
| 9597 | |
| 9598 | /***************************************************************************** |
| 9599 | * |
| 9600 | * Capture the information used to generate the funclet prologs and epilogs. |
| 9601 | */ |
| 9602 | |
| 9603 | void CodeGen::genCaptureFuncletPrologEpilogInfo() |
| 9604 | { |
| 9605 | if (!compiler->ehAnyFunclets()) |
| 9606 | { |
| 9607 | return; |
| 9608 | } |
| 9609 | } |
| 9610 | |
| 9611 | #else // _TARGET_* |
| 9612 | |
| 9613 | /***************************************************************************** |
| 9614 | * |
| 9615 | * Generates code for an EH funclet prolog. |
| 9616 | */ |
| 9617 | |
| 9618 | void CodeGen::genFuncletProlog(BasicBlock* block) |
| 9619 | { |
| 9620 | NYI("Funclet prolog" ); |
| 9621 | } |
| 9622 | |
| 9623 | /***************************************************************************** |
| 9624 | * |
| 9625 | * Generates code for an EH funclet epilog. |
| 9626 | */ |
| 9627 | |
| 9628 | void CodeGen::genFuncletEpilog() |
| 9629 | { |
| 9630 | NYI("Funclet epilog" ); |
| 9631 | } |
| 9632 | |
| 9633 | /***************************************************************************** |
| 9634 | * |
| 9635 | * Capture the information used to generate the funclet prologs and epilogs. |
| 9636 | */ |
| 9637 | |
| 9638 | void CodeGen::genCaptureFuncletPrologEpilogInfo() |
| 9639 | { |
| 9640 | if (compiler->ehAnyFunclets()) |
| 9641 | { |
| 9642 | NYI("genCaptureFuncletPrologEpilogInfo()" ); |
| 9643 | } |
| 9644 | } |
| 9645 | |
| 9646 | #endif // _TARGET_* |
| 9647 | |
| 9648 | /*----------------------------------------------------------------------------- |
| 9649 | * |
| 9650 | * Set the main function PSPSym value in the frame. |
| 9651 | * Funclets use different code to load the PSP sym and save it in their frame. |
| 9652 | * See the document "X64 and ARM ABIs.docx" for a full description of the PSPSym. |
| 9653 | * The PSPSym section of that document is copied here. |
| 9654 | * |
| 9655 | *********************************** |
| 9656 | * The name PSPSym stands for Previous Stack Pointer Symbol. It is how a funclet |
| 9657 | * accesses locals from the main function body. |
| 9658 | * |
| 9659 | * First, two definitions. |
| 9660 | * |
| 9661 | * Caller-SP is the value of the stack pointer in a function's caller before the call |
| 9662 | * instruction is executed. That is, when function A calls function B, Caller-SP for B |
| 9663 | * is the value of the stack pointer immediately before the call instruction in A |
| 9664 | * (calling B) was executed. Note that this definition holds for both AMD64, which |
| 9665 | * pushes the return value when a call instruction is executed, and for ARM, which |
| 9666 | * doesn't. For AMD64, Caller-SP is the address above the call return address. |
| 9667 | * |
| 9668 | * Initial-SP is the initial value of the stack pointer after the fixed-size portion of |
| 9669 | * the frame has been allocated. That is, before any "alloca"-type allocations. |
| 9670 | * |
| 9671 | * The PSPSym is a pointer-sized local variable in the frame of the main function and |
| 9672 | * of each funclet. The value stored in PSPSym is the value of Initial-SP/Caller-SP |
| 9673 | * for the main function. The stack offset of the PSPSym is reported to the VM in the |
| 9674 | * GC information header. The value reported in the GC information is the offset of the |
| 9675 | * PSPSym from Initial-SP/Caller-SP. (Note that both the value stored, and the way the |
| 9676 | * value is reported to the VM, differs between architectures. In particular, note that |
| 9677 | * most things in the GC information header are reported as offsets relative to Caller-SP, |
| 9678 | * but PSPSym on AMD64 is one (maybe the only) exception.) |
| 9679 | * |
| 9680 | * The VM uses the PSPSym to find other locals it cares about (such as the generics context |
| 9681 | * in a funclet frame). The JIT uses it to re-establish the frame pointer register, so that |
| 9682 | * the frame pointer is the same value in a funclet as it is in the main function body. |
| 9683 | * |
| 9684 | * When a funclet is called, it is passed the Establisher Frame Pointer. For AMD64 this is |
| 9685 | * true for all funclets and it is passed as the first argument in RCX, but for ARM this is |
| 9686 | * only true for first pass funclets (currently just filters) and it is passed as the second |
| 9687 | * argument in R1. The Establisher Frame Pointer is a stack pointer of an interesting "parent" |
| 9688 | * frame in the exception processing system. For the CLR, it points either to the main function |
| 9689 | * frame or a dynamically enclosing funclet frame from the same function, for the funclet being |
| 9690 | * invoked. The value of the Establisher Frame Pointer is Initial-SP on AMD64, Caller-SP on ARM. |
| 9691 | * |
| 9692 | * Using the establisher frame, the funclet wants to load the value of the PSPSym. Since we |
| 9693 | * don't know if the Establisher Frame is from the main function or a funclet, we design the |
| 9694 | * main function and funclet frame layouts to place the PSPSym at an identical, small, constant |
| 9695 | * offset from the Establisher Frame in each case. (This is also required because we only report |
| 9696 | * a single offset to the PSPSym in the GC information, and that offset must be valid for the main |
| 9697 | * function and all of its funclets). Then, the funclet uses this known offset to compute the |
| 9698 | * PSPSym address and read its value. From this, it can compute the value of the frame pointer |
| 9699 | * (which is a constant offset from the PSPSym value) and set the frame register to be the same |
| 9700 | * as the parent function. Also, the funclet writes the value of the PSPSym to its own frame's |
| 9701 | * PSPSym. This "copying" of the PSPSym happens for every funclet invocation, in particular, |
| 9702 | * for every nested funclet invocation. |
| 9703 | * |
| 9704 | * On ARM, for all second pass funclets (finally, fault, catch, and filter-handler) the VM |
| 9705 | * restores all non-volatile registers to their values within the parent frame. This includes |
| 9706 | * the frame register (R11). Thus, the PSPSym is not used to recompute the frame pointer register |
| 9707 | * in this case, though the PSPSym is copied to the funclet's frame, as for all funclets. |
| 9708 | * |
| 9709 | * Catch, Filter, and Filter-handlers also get an Exception object (GC ref) as an argument |
| 9710 | * (REG_EXCEPTION_OBJECT). On AMD64 it is the second argument and thus passed in RDX. On |
| 9711 | * ARM this is the first argument and passed in R0. |
| 9712 | * |
| 9713 | * (Note that the JIT64 source code contains a comment that says, "The current CLR doesn't always |
| 9714 | * pass the correct establisher frame to the funclet. Funclet may receive establisher frame of |
| 9715 | * funclet when expecting that of original routine." It indicates this is the reason that a PSPSym |
| 9716 | * is required in all funclets as well as the main function, whereas if the establisher frame was |
| 9717 | * correctly reported, the PSPSym could be omitted in some cases.) |
| 9718 | *********************************** |
| 9719 | */ |
| 9720 | void CodeGen::genSetPSPSym(regNumber initReg, bool* pInitRegZeroed) |
| 9721 | { |
| 9722 | assert(compiler->compGeneratingProlog); |
| 9723 | |
| 9724 | if (compiler->lvaPSPSym == BAD_VAR_NUM) |
| 9725 | { |
| 9726 | return; |
| 9727 | } |
| 9728 | |
| 9729 | noway_assert(isFramePointerUsed()); // We need an explicit frame pointer |
| 9730 | |
| 9731 | #if defined(_TARGET_ARM_) |
| 9732 | |
| 9733 | // We either generate: |
| 9734 | // add r1, r11, 8 |
| 9735 | // str r1, [reg + PSPSymOffset] |
| 9736 | // or: |
| 9737 | // add r1, sp, 76 |
| 9738 | // str r1, [reg + PSPSymOffset] |
| 9739 | // depending on the smallest encoding |
| 9740 | |
| 9741 | int SPtoCallerSPdelta = -genCallerSPtoInitialSPdelta(); |
| 9742 | |
| 9743 | int callerSPOffs; |
| 9744 | regNumber regBase; |
| 9745 | |
| 9746 | if (arm_Valid_Imm_For_Add_SP(SPtoCallerSPdelta)) |
| 9747 | { |
| 9748 | // use the "add <reg>, sp, imm" form |
| 9749 | |
| 9750 | callerSPOffs = SPtoCallerSPdelta; |
| 9751 | regBase = REG_SPBASE; |
| 9752 | } |
| 9753 | else |
| 9754 | { |
| 9755 | // use the "add <reg>, r11, imm" form |
| 9756 | |
| 9757 | int FPtoCallerSPdelta = -genCallerSPtoFPdelta(); |
| 9758 | noway_assert(arm_Valid_Imm_For_Add(FPtoCallerSPdelta, INS_FLAGS_DONT_CARE)); |
| 9759 | |
| 9760 | callerSPOffs = FPtoCallerSPdelta; |
| 9761 | regBase = REG_FPBASE; |
| 9762 | } |
| 9763 | |
| 9764 | // We will just use the initReg since it is an available register |
| 9765 | // and we are probably done using it anyway... |
| 9766 | regNumber regTmp = initReg; |
| 9767 | *pInitRegZeroed = false; |
| 9768 | |
| 9769 | getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, regTmp, regBase, callerSPOffs); |
| 9770 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, regTmp, compiler->lvaPSPSym, 0); |
| 9771 | |
| 9772 | #elif defined(_TARGET_ARM64_) |
| 9773 | |
| 9774 | int SPtoCallerSPdelta = -genCallerSPtoInitialSPdelta(); |
| 9775 | |
| 9776 | // We will just use the initReg since it is an available register |
| 9777 | // and we are probably done using it anyway... |
| 9778 | regNumber regTmp = initReg; |
| 9779 | *pInitRegZeroed = false; |
| 9780 | |
| 9781 | getEmitter()->emitIns_R_R_Imm(INS_add, EA_PTRSIZE, regTmp, REG_SPBASE, SPtoCallerSPdelta); |
| 9782 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, regTmp, compiler->lvaPSPSym, 0); |
| 9783 | |
| 9784 | #elif defined(_TARGET_AMD64_) |
| 9785 | |
| 9786 | // The PSP sym value is Initial-SP, not Caller-SP! |
| 9787 | // We assume that RSP is Initial-SP when this function is called. That is, the stack frame |
| 9788 | // has been established. |
| 9789 | // |
| 9790 | // We generate: |
| 9791 | // mov [rbp-20h], rsp // store the Initial-SP (our current rsp) in the PSPsym |
| 9792 | |
| 9793 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaPSPSym, 0); |
| 9794 | |
| 9795 | #else // _TARGET_* |
| 9796 | |
| 9797 | NYI("Set function PSP sym" ); |
| 9798 | |
| 9799 | #endif // _TARGET_* |
| 9800 | } |
| 9801 | |
| 9802 | #endif // FEATURE_EH_FUNCLETS |
| 9803 | |
| 9804 | /***************************************************************************** |
| 9805 | * |
| 9806 | * Generates code for all the function and funclet prologs and epilogs. |
| 9807 | */ |
| 9808 | |
| 9809 | void CodeGen::genGeneratePrologsAndEpilogs() |
| 9810 | { |
| 9811 | #ifdef DEBUG |
| 9812 | if (verbose) |
| 9813 | { |
| 9814 | printf("*************** Before prolog / epilog generation\n" ); |
| 9815 | getEmitter()->emitDispIGlist(false); |
| 9816 | } |
| 9817 | #endif |
| 9818 | |
| 9819 | // Before generating the prolog, we need to reset the variable locations to what they will be on entry. |
| 9820 | // This affects our code that determines which untracked locals need to be zero initialized. |
| 9821 | compiler->m_pLinearScan->recordVarLocationsAtStartOfBB(compiler->fgFirstBB); |
| 9822 | |
| 9823 | // Tell the emitter we're done with main code generation, and are going to start prolog and epilog generation. |
| 9824 | |
| 9825 | getEmitter()->emitStartPrologEpilogGeneration(); |
| 9826 | |
| 9827 | gcInfo.gcResetForBB(); |
| 9828 | genFnProlog(); |
| 9829 | |
| 9830 | // Generate all the prologs and epilogs. |
| 9831 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 9832 | |
| 9833 | #if FEATURE_EH_FUNCLETS |
| 9834 | |
| 9835 | // Capture the data we're going to use in the funclet prolog and epilog generation. This is |
| 9836 | // information computed during codegen, or during function prolog generation, like |
| 9837 | // frame offsets. It must run after main function prolog generation. |
| 9838 | |
| 9839 | genCaptureFuncletPrologEpilogInfo(); |
| 9840 | |
| 9841 | #endif // FEATURE_EH_FUNCLETS |
| 9842 | |
| 9843 | // Walk the list of prologs and epilogs and generate them. |
| 9844 | // We maintain a list of prolog and epilog basic blocks in |
| 9845 | // the insGroup structure in the emitter. This list was created |
| 9846 | // during code generation by the genReserve*() functions. |
| 9847 | // |
| 9848 | // TODO: it seems like better design would be to create a list of prologs/epilogs |
| 9849 | // in the code generator (not the emitter), and then walk that list. But we already |
| 9850 | // have the insGroup list, which serves well, so we don't need the extra allocations |
| 9851 | // for a prolog/epilog list in the code generator. |
| 9852 | |
| 9853 | getEmitter()->emitGeneratePrologEpilog(); |
| 9854 | |
| 9855 | // Tell the emitter we're done with all prolog and epilog generation. |
| 9856 | |
| 9857 | getEmitter()->emitFinishPrologEpilogGeneration(); |
| 9858 | |
| 9859 | #ifdef DEBUG |
| 9860 | if (verbose) |
| 9861 | { |
| 9862 | printf("*************** After prolog / epilog generation\n" ); |
| 9863 | getEmitter()->emitDispIGlist(false); |
| 9864 | } |
| 9865 | #endif |
| 9866 | } |
| 9867 | |
| 9868 | /* |
| 9869 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9870 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9871 | XX XX |
| 9872 | XX End Prolog / Epilog XX |
| 9873 | XX XX |
| 9874 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9875 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9876 | */ |
| 9877 | |
| 9878 | #if STACK_PROBES |
| 9879 | void CodeGen::genGenerateStackProbe() |
| 9880 | { |
| 9881 | noway_assert(compiler->opts.compNeedStackProbes); |
| 9882 | |
| 9883 | // If this assert fires, it means somebody has changed the value |
| 9884 | // CORINFO_STACKPROBE_DEPTH. |
| 9885 | // Why does the EE need such a deep probe? It should just need a couple |
| 9886 | // of bytes, to set up a frame in the unmanaged code.. |
| 9887 | |
| 9888 | static_assert_no_msg(CORINFO_STACKPROBE_DEPTH + JIT_RESERVED_STACK < compiler->eeGetPageSize()); |
| 9889 | |
| 9890 | JITDUMP("Emitting stack probe:\n" ); |
| 9891 | getEmitter()->emitIns_AR_R(INS_TEST, EA_PTRSIZE, REG_EAX, REG_SPBASE, |
| 9892 | -(CORINFO_STACKPROBE_DEPTH + JIT_RESERVED_STACK)); |
| 9893 | } |
| 9894 | #endif // STACK_PROBES |
| 9895 | |
| 9896 | #if defined(_TARGET_XARCH_) |
| 9897 | // Save compCalleeFPRegsPushed with the smallest register number saved at [RSP+offset], working |
| 9898 | // down the stack to the largest register number stored at [RSP+offset-(genCountBits(regMask)-1)*XMM_REG_SIZE] |
| 9899 | // Here offset = 16-byte aligned offset after pushing integer registers. |
| 9900 | // |
| 9901 | // Params |
| 9902 | // lclFrameSize - Fixed frame size excluding callee pushed int regs. |
| 9903 | // non-funclet: this will be compLclFrameSize. |
| 9904 | // funclet frames: this will be FuncletInfo.fiSpDelta. |
| 9905 | void CodeGen::genPreserveCalleeSavedFltRegs(unsigned lclFrameSize) |
| 9906 | { |
| 9907 | genVzeroupperIfNeeded(false); |
| 9908 | regMaskTP regMask = compiler->compCalleeFPRegsSavedMask; |
| 9909 | |
| 9910 | // Only callee saved floating point registers should be in regMask |
| 9911 | assert((regMask & RBM_FLT_CALLEE_SAVED) == regMask); |
| 9912 | |
| 9913 | // fast path return |
| 9914 | if (regMask == RBM_NONE) |
| 9915 | { |
| 9916 | return; |
| 9917 | } |
| 9918 | |
| 9919 | #ifdef _TARGET_AMD64_ |
| 9920 | unsigned firstFPRegPadding = compiler->lvaIsCalleeSavedIntRegCountEven() ? REGSIZE_BYTES : 0; |
| 9921 | unsigned offset = lclFrameSize - firstFPRegPadding - XMM_REGSIZE_BYTES; |
| 9922 | |
| 9923 | // Offset is 16-byte aligned since we use movaps for preserving xmm regs. |
| 9924 | assert((offset % 16) == 0); |
| 9925 | instruction copyIns = ins_Copy(TYP_FLOAT); |
| 9926 | #else // !_TARGET_AMD64_ |
| 9927 | unsigned offset = lclFrameSize - XMM_REGSIZE_BYTES; |
| 9928 | instruction copyIns = INS_movupd; |
| 9929 | #endif // !_TARGET_AMD64_ |
| 9930 | |
| 9931 | for (regNumber reg = REG_FLT_CALLEE_SAVED_FIRST; regMask != RBM_NONE; reg = REG_NEXT(reg)) |
| 9932 | { |
| 9933 | regMaskTP regBit = genRegMask(reg); |
| 9934 | if ((regBit & regMask) != 0) |
| 9935 | { |
| 9936 | // ABI requires us to preserve lower 128-bits of YMM register. |
| 9937 | getEmitter()->emitIns_AR_R(copyIns, |
| 9938 | EA_8BYTE, // TODO-XArch-Cleanup: size specified here doesn't matter but should be |
| 9939 | // EA_16BYTE |
| 9940 | reg, REG_SPBASE, offset); |
| 9941 | compiler->unwindSaveReg(reg, offset); |
| 9942 | regMask &= ~regBit; |
| 9943 | offset -= XMM_REGSIZE_BYTES; |
| 9944 | } |
| 9945 | } |
| 9946 | } |
| 9947 | |
| 9948 | // Save/Restore compCalleeFPRegsPushed with the smallest register number saved at [RSP+offset], working |
| 9949 | // down the stack to the largest register number stored at [RSP+offset-(genCountBits(regMask)-1)*XMM_REG_SIZE] |
| 9950 | // Here offset = 16-byte aligned offset after pushing integer registers. |
| 9951 | // |
| 9952 | // Params |
| 9953 | // lclFrameSize - Fixed frame size excluding callee pushed int regs. |
| 9954 | // non-funclet: this will be compLclFrameSize. |
| 9955 | // funclet frames: this will be FuncletInfo.fiSpDelta. |
| 9956 | void CodeGen::genRestoreCalleeSavedFltRegs(unsigned lclFrameSize) |
| 9957 | { |
| 9958 | regMaskTP regMask = compiler->compCalleeFPRegsSavedMask; |
| 9959 | |
| 9960 | // Only callee saved floating point registers should be in regMask |
| 9961 | assert((regMask & RBM_FLT_CALLEE_SAVED) == regMask); |
| 9962 | |
| 9963 | // fast path return |
| 9964 | if (regMask == RBM_NONE) |
| 9965 | { |
| 9966 | genVzeroupperIfNeeded(); |
| 9967 | return; |
| 9968 | } |
| 9969 | |
| 9970 | #ifdef _TARGET_AMD64_ |
| 9971 | unsigned firstFPRegPadding = compiler->lvaIsCalleeSavedIntRegCountEven() ? REGSIZE_BYTES : 0; |
| 9972 | instruction copyIns = ins_Copy(TYP_FLOAT); |
| 9973 | #else // !_TARGET_AMD64_ |
| 9974 | unsigned firstFPRegPadding = 0; |
| 9975 | instruction copyIns = INS_movupd; |
| 9976 | #endif // !_TARGET_AMD64_ |
| 9977 | |
| 9978 | unsigned offset; |
| 9979 | regNumber regBase; |
| 9980 | if (compiler->compLocallocUsed) |
| 9981 | { |
| 9982 | // localloc frame: use frame pointer relative offset |
| 9983 | assert(isFramePointerUsed()); |
| 9984 | regBase = REG_FPBASE; |
| 9985 | offset = lclFrameSize - genSPtoFPdelta() - firstFPRegPadding - XMM_REGSIZE_BYTES; |
| 9986 | } |
| 9987 | else |
| 9988 | { |
| 9989 | regBase = REG_SPBASE; |
| 9990 | offset = lclFrameSize - firstFPRegPadding - XMM_REGSIZE_BYTES; |
| 9991 | } |
| 9992 | |
| 9993 | #ifdef _TARGET_AMD64_ |
| 9994 | // Offset is 16-byte aligned since we use movaps for restoring xmm regs |
| 9995 | assert((offset % 16) == 0); |
| 9996 | #endif // _TARGET_AMD64_ |
| 9997 | |
| 9998 | for (regNumber reg = REG_FLT_CALLEE_SAVED_FIRST; regMask != RBM_NONE; reg = REG_NEXT(reg)) |
| 9999 | { |
| 10000 | regMaskTP regBit = genRegMask(reg); |
| 10001 | if ((regBit & regMask) != 0) |
| 10002 | { |
| 10003 | // ABI requires us to restore lower 128-bits of YMM register. |
| 10004 | getEmitter()->emitIns_R_AR(copyIns, |
| 10005 | EA_8BYTE, // TODO-XArch-Cleanup: size specified here doesn't matter but should be |
| 10006 | // EA_16BYTE |
| 10007 | reg, regBase, offset); |
| 10008 | regMask &= ~regBit; |
| 10009 | offset -= XMM_REGSIZE_BYTES; |
| 10010 | } |
| 10011 | } |
| 10012 | genVzeroupperIfNeeded(); |
| 10013 | } |
| 10014 | |
| 10015 | // Generate Vzeroupper instruction as needed to zero out upper 128b-bit of all YMM registers so that the |
| 10016 | // AVX/Legacy SSE transition penalties can be avoided. This function is been used in genPreserveCalleeSavedFltRegs |
| 10017 | // (prolog) and genRestoreCalleeSavedFltRegs (epilog). Issue VZEROUPPER in Prolog if the method contains |
| 10018 | // 128-bit or 256-bit AVX code, to avoid legacy SSE to AVX transition penalty, which could happen when native |
| 10019 | // code contains legacy SSE code calling into JIT AVX code (e.g. reverse pinvoke). Issue VZEROUPPER in Epilog |
| 10020 | // if the method contains 256-bit AVX code, to avoid AVX to legacy SSE transition penalty. |
| 10021 | // |
| 10022 | // Params |
| 10023 | // check256bitOnly - true to check if the function contains 256-bit AVX instruction and generate Vzeroupper |
| 10024 | // instruction, false to check if the function contains AVX instruciton (either 128-bit or 256-bit). |
| 10025 | // |
| 10026 | void CodeGen::genVzeroupperIfNeeded(bool check256bitOnly /* = true*/) |
| 10027 | { |
| 10028 | bool emitVzeroUpper = false; |
| 10029 | if (check256bitOnly) |
| 10030 | { |
| 10031 | emitVzeroUpper = getEmitter()->Contains256bitAVX(); |
| 10032 | } |
| 10033 | else |
| 10034 | { |
| 10035 | emitVzeroUpper = getEmitter()->ContainsAVX(); |
| 10036 | } |
| 10037 | |
| 10038 | if (emitVzeroUpper) |
| 10039 | { |
| 10040 | assert(compiler->canUseVexEncoding()); |
| 10041 | instGen(INS_vzeroupper); |
| 10042 | } |
| 10043 | } |
| 10044 | |
| 10045 | #endif // defined(_TARGET_XARCH_) |
| 10046 | |
| 10047 | //----------------------------------------------------------------------------------- |
| 10048 | // IsMultiRegReturnedType: Returns true if the type is returned in multiple registers |
| 10049 | // |
| 10050 | // Arguments: |
| 10051 | // hClass - type handle |
| 10052 | // |
| 10053 | // Return Value: |
| 10054 | // true if type is returned in multiple registers, false otherwise. |
| 10055 | // |
| 10056 | bool Compiler::IsMultiRegReturnedType(CORINFO_CLASS_HANDLE hClass) |
| 10057 | { |
| 10058 | if (hClass == NO_CLASS_HANDLE) |
| 10059 | { |
| 10060 | return false; |
| 10061 | } |
| 10062 | |
| 10063 | structPassingKind howToReturnStruct; |
| 10064 | var_types returnType = getReturnTypeForStruct(hClass, &howToReturnStruct); |
| 10065 | |
| 10066 | return (varTypeIsStruct(returnType)); |
| 10067 | } |
| 10068 | |
| 10069 | //---------------------------------------------- |
| 10070 | // Methods that support HFA's for ARM32/ARM64 |
| 10071 | //---------------------------------------------- |
| 10072 | |
| 10073 | bool Compiler::IsHfa(CORINFO_CLASS_HANDLE hClass) |
| 10074 | { |
| 10075 | #ifdef FEATURE_HFA |
| 10076 | return varTypeIsFloating(GetHfaType(hClass)); |
| 10077 | #else |
| 10078 | return false; |
| 10079 | #endif |
| 10080 | } |
| 10081 | |
| 10082 | bool Compiler::IsHfa(GenTree* tree) |
| 10083 | { |
| 10084 | #ifdef FEATURE_HFA |
| 10085 | return IsHfa(gtGetStructHandleIfPresent(tree)); |
| 10086 | #else |
| 10087 | return false; |
| 10088 | #endif |
| 10089 | } |
| 10090 | |
| 10091 | var_types Compiler::GetHfaType(GenTree* tree) |
| 10092 | { |
| 10093 | #ifdef FEATURE_HFA |
| 10094 | return GetHfaType(gtGetStructHandleIfPresent(tree)); |
| 10095 | #else |
| 10096 | return TYP_UNDEF; |
| 10097 | #endif |
| 10098 | } |
| 10099 | |
| 10100 | unsigned Compiler::GetHfaCount(GenTree* tree) |
| 10101 | { |
| 10102 | return GetHfaCount(gtGetStructHandleIfPresent(tree)); |
| 10103 | } |
| 10104 | |
| 10105 | var_types Compiler::GetHfaType(CORINFO_CLASS_HANDLE hClass) |
| 10106 | { |
| 10107 | var_types result = TYP_UNDEF; |
| 10108 | if (hClass != NO_CLASS_HANDLE) |
| 10109 | { |
| 10110 | #ifdef FEATURE_HFA |
| 10111 | CorInfoType corType = info.compCompHnd->getHFAType(hClass); |
| 10112 | if (corType != CORINFO_TYPE_UNDEF) |
| 10113 | { |
| 10114 | result = JITtype2varType(corType); |
| 10115 | } |
| 10116 | #endif // FEATURE_HFA |
| 10117 | } |
| 10118 | return result; |
| 10119 | } |
| 10120 | |
| 10121 | //------------------------------------------------------------------------ |
| 10122 | // GetHfaCount: Given a class handle for an HFA struct |
| 10123 | // return the number of registers needed to hold the HFA |
| 10124 | // |
| 10125 | // Note that on ARM32 the single precision registers overlap with |
| 10126 | // the double precision registers and for that reason each |
| 10127 | // double register is considered to be two single registers. |
| 10128 | // Thus for ARM32 an HFA of 4 doubles this function will return 8. |
| 10129 | // On ARM64 given an HFA of 4 singles or 4 doubles this function will |
| 10130 | // will return 4 for both. |
| 10131 | // Arguments: |
| 10132 | // hClass: the class handle of a HFA struct |
| 10133 | // |
| 10134 | unsigned Compiler::GetHfaCount(CORINFO_CLASS_HANDLE hClass) |
| 10135 | { |
| 10136 | assert(IsHfa(hClass)); |
| 10137 | #ifdef _TARGET_ARM_ |
| 10138 | // A HFA of doubles is twice as large as an HFA of singles for ARM32 |
| 10139 | // (i.e. uses twice the number of single precison registers) |
| 10140 | return info.compCompHnd->getClassSize(hClass) / REGSIZE_BYTES; |
| 10141 | #else // _TARGET_ARM64_ |
| 10142 | var_types hfaType = GetHfaType(hClass); |
| 10143 | unsigned classSize = info.compCompHnd->getClassSize(hClass); |
| 10144 | // Note that the retail build issues a warning about a potential divsion by zero without the Max function |
| 10145 | unsigned elemSize = Max((unsigned)1, EA_SIZE_IN_BYTES(emitActualTypeSize(hfaType))); |
| 10146 | return classSize / elemSize; |
| 10147 | #endif // _TARGET_ARM64_ |
| 10148 | } |
| 10149 | |
| 10150 | #ifdef _TARGET_XARCH_ |
| 10151 | |
| 10152 | //------------------------------------------------------------------------ |
| 10153 | // genMapShiftInsToShiftByConstantIns: Given a general shift/rotate instruction, |
| 10154 | // map it to the specific x86/x64 shift opcode for a shift/rotate by a constant. |
| 10155 | // X86/x64 has a special encoding for shift/rotate-by-constant-1. |
| 10156 | // |
| 10157 | // Arguments: |
| 10158 | // ins: the base shift/rotate instruction |
| 10159 | // shiftByValue: the constant value by which we are shifting/rotating |
| 10160 | // |
| 10161 | instruction CodeGen::genMapShiftInsToShiftByConstantIns(instruction ins, int shiftByValue) |
| 10162 | { |
| 10163 | assert(ins == INS_rcl || ins == INS_rcr || ins == INS_rol || ins == INS_ror || ins == INS_shl || ins == INS_shr || |
| 10164 | ins == INS_sar); |
| 10165 | |
| 10166 | // Which format should we use? |
| 10167 | |
| 10168 | instruction shiftByConstantIns; |
| 10169 | |
| 10170 | if (shiftByValue == 1) |
| 10171 | { |
| 10172 | // Use the shift-by-one format. |
| 10173 | |
| 10174 | assert(INS_rcl + 1 == INS_rcl_1); |
| 10175 | assert(INS_rcr + 1 == INS_rcr_1); |
| 10176 | assert(INS_rol + 1 == INS_rol_1); |
| 10177 | assert(INS_ror + 1 == INS_ror_1); |
| 10178 | assert(INS_shl + 1 == INS_shl_1); |
| 10179 | assert(INS_shr + 1 == INS_shr_1); |
| 10180 | assert(INS_sar + 1 == INS_sar_1); |
| 10181 | |
| 10182 | shiftByConstantIns = (instruction)(ins + 1); |
| 10183 | } |
| 10184 | else |
| 10185 | { |
| 10186 | // Use the shift-by-NNN format. |
| 10187 | |
| 10188 | assert(INS_rcl + 2 == INS_rcl_N); |
| 10189 | assert(INS_rcr + 2 == INS_rcr_N); |
| 10190 | assert(INS_rol + 2 == INS_rol_N); |
| 10191 | assert(INS_ror + 2 == INS_ror_N); |
| 10192 | assert(INS_shl + 2 == INS_shl_N); |
| 10193 | assert(INS_shr + 2 == INS_shr_N); |
| 10194 | assert(INS_sar + 2 == INS_sar_N); |
| 10195 | |
| 10196 | shiftByConstantIns = (instruction)(ins + 2); |
| 10197 | } |
| 10198 | |
| 10199 | return shiftByConstantIns; |
| 10200 | } |
| 10201 | |
| 10202 | #endif // _TARGET_XARCH_ |
| 10203 | |
| 10204 | //------------------------------------------------------------------------------------------------ // |
| 10205 | // getFirstArgWithStackSlot - returns the first argument with stack slot on the caller's frame. |
| 10206 | // |
| 10207 | // Return value: |
| 10208 | // The number of the first argument with stack slot on the caller's frame. |
| 10209 | // |
| 10210 | // Note: |
| 10211 | // On x64 Windows the caller always creates slots (homing space) in its frame for the |
| 10212 | // first 4 arguments of a callee (register passed args). So, the the variable number |
| 10213 | // (lclNum) for the first argument with a stack slot is always 0. |
| 10214 | // For System V systems or armarch, there is no such calling convention requirement, and the code |
| 10215 | // needs to find the first stack passed argument from the caller. This is done by iterating over |
| 10216 | // all the lvParam variables and finding the first with lvArgReg equals to REG_STK. |
| 10217 | // |
| 10218 | unsigned CodeGen::getFirstArgWithStackSlot() |
| 10219 | { |
| 10220 | #if defined(UNIX_AMD64_ABI) || defined(_TARGET_ARMARCH_) |
| 10221 | unsigned baseVarNum = 0; |
| 10222 | // Iterate over all the lvParam variables in the Lcl var table until we find the first one |
| 10223 | // that's passed on the stack. |
| 10224 | LclVarDsc* varDsc = nullptr; |
| 10225 | for (unsigned i = 0; i < compiler->info.compArgsCount; i++) |
| 10226 | { |
| 10227 | varDsc = &(compiler->lvaTable[i]); |
| 10228 | |
| 10229 | // We should have found a stack parameter (and broken out of this loop) before |
| 10230 | // we find any non-parameters. |
| 10231 | assert(varDsc->lvIsParam); |
| 10232 | |
| 10233 | if (varDsc->lvArgReg == REG_STK) |
| 10234 | { |
| 10235 | baseVarNum = i; |
| 10236 | break; |
| 10237 | } |
| 10238 | } |
| 10239 | assert(varDsc != nullptr); |
| 10240 | |
| 10241 | return baseVarNum; |
| 10242 | #elif defined(_TARGET_AMD64_) |
| 10243 | return 0; |
| 10244 | #else // _TARGET_X86 |
| 10245 | // Not implemented for x86. |
| 10246 | NYI_X86("getFirstArgWithStackSlot not yet implemented for x86." ); |
| 10247 | return BAD_VAR_NUM; |
| 10248 | #endif // _TARGET_X86_ |
| 10249 | } |
| 10250 | |
| 10251 | //------------------------------------------------------------------------ |
| 10252 | // genSinglePush: Report a change in stack level caused by a single word-sized push instruction |
| 10253 | // |
| 10254 | void CodeGen::genSinglePush() |
| 10255 | { |
| 10256 | AddStackLevel(REGSIZE_BYTES); |
| 10257 | } |
| 10258 | |
| 10259 | //------------------------------------------------------------------------ |
| 10260 | // genSinglePop: Report a change in stack level caused by a single word-sized pop instruction |
| 10261 | // |
| 10262 | void CodeGen::genSinglePop() |
| 10263 | { |
| 10264 | SubtractStackLevel(REGSIZE_BYTES); |
| 10265 | } |
| 10266 | |
| 10267 | //------------------------------------------------------------------------ |
| 10268 | // genPushRegs: Push the given registers. |
| 10269 | // |
| 10270 | // Arguments: |
| 10271 | // regs - mask or registers to push |
| 10272 | // byrefRegs - OUT arg. Set to byref registers that were pushed. |
| 10273 | // noRefRegs - OUT arg. Set to non-GC ref registers that were pushed. |
| 10274 | // |
| 10275 | // Return Value: |
| 10276 | // Mask of registers pushed. |
| 10277 | // |
| 10278 | // Notes: |
| 10279 | // This function does not check if the register is marked as used, etc. |
| 10280 | // |
| 10281 | regMaskTP CodeGen::genPushRegs(regMaskTP regs, regMaskTP* byrefRegs, regMaskTP* noRefRegs) |
| 10282 | { |
| 10283 | *byrefRegs = RBM_NONE; |
| 10284 | *noRefRegs = RBM_NONE; |
| 10285 | |
| 10286 | if (regs == RBM_NONE) |
| 10287 | { |
| 10288 | return RBM_NONE; |
| 10289 | } |
| 10290 | |
| 10291 | #if FEATURE_FIXED_OUT_ARGS |
| 10292 | |
| 10293 | NYI("Don't call genPushRegs with real regs!" ); |
| 10294 | return RBM_NONE; |
| 10295 | |
| 10296 | #else // FEATURE_FIXED_OUT_ARGS |
| 10297 | |
| 10298 | noway_assert(genTypeStSz(TYP_REF) == genTypeStSz(TYP_I_IMPL)); |
| 10299 | noway_assert(genTypeStSz(TYP_BYREF) == genTypeStSz(TYP_I_IMPL)); |
| 10300 | |
| 10301 | regMaskTP pushedRegs = regs; |
| 10302 | |
| 10303 | for (regNumber reg = REG_INT_FIRST; regs != RBM_NONE; reg = REG_NEXT(reg)) |
| 10304 | { |
| 10305 | regMaskTP regBit = regMaskTP(1) << reg; |
| 10306 | |
| 10307 | if ((regBit & regs) == RBM_NONE) |
| 10308 | continue; |
| 10309 | |
| 10310 | var_types type; |
| 10311 | if (regBit & gcInfo.gcRegGCrefSetCur) |
| 10312 | { |
| 10313 | type = TYP_REF; |
| 10314 | } |
| 10315 | else if (regBit & gcInfo.gcRegByrefSetCur) |
| 10316 | { |
| 10317 | *byrefRegs |= regBit; |
| 10318 | type = TYP_BYREF; |
| 10319 | } |
| 10320 | else if (noRefRegs != NULL) |
| 10321 | { |
| 10322 | *noRefRegs |= regBit; |
| 10323 | type = TYP_I_IMPL; |
| 10324 | } |
| 10325 | else |
| 10326 | { |
| 10327 | continue; |
| 10328 | } |
| 10329 | |
| 10330 | inst_RV(INS_push, reg, type); |
| 10331 | |
| 10332 | genSinglePush(); |
| 10333 | gcInfo.gcMarkRegSetNpt(regBit); |
| 10334 | |
| 10335 | regs &= ~regBit; |
| 10336 | } |
| 10337 | |
| 10338 | return pushedRegs; |
| 10339 | |
| 10340 | #endif // FEATURE_FIXED_OUT_ARGS |
| 10341 | } |
| 10342 | |
| 10343 | //------------------------------------------------------------------------ |
| 10344 | // genPopRegs: Pop the registers that were pushed by genPushRegs(). |
| 10345 | // |
| 10346 | // Arguments: |
| 10347 | // regs - mask of registers to pop |
| 10348 | // byrefRegs - The byref registers that were pushed by genPushRegs(). |
| 10349 | // noRefRegs - The non-GC ref registers that were pushed by genPushRegs(). |
| 10350 | // |
| 10351 | // Return Value: |
| 10352 | // None |
| 10353 | // |
| 10354 | void CodeGen::genPopRegs(regMaskTP regs, regMaskTP byrefRegs, regMaskTP noRefRegs) |
| 10355 | { |
| 10356 | if (regs == RBM_NONE) |
| 10357 | { |
| 10358 | return; |
| 10359 | } |
| 10360 | |
| 10361 | #if FEATURE_FIXED_OUT_ARGS |
| 10362 | |
| 10363 | NYI("Don't call genPopRegs with real regs!" ); |
| 10364 | |
| 10365 | #else // FEATURE_FIXED_OUT_ARGS |
| 10366 | |
| 10367 | noway_assert((regs & byrefRegs) == byrefRegs); |
| 10368 | noway_assert((regs & noRefRegs) == noRefRegs); |
| 10369 | noway_assert((regs & (gcInfo.gcRegGCrefSetCur | gcInfo.gcRegByrefSetCur)) == RBM_NONE); |
| 10370 | |
| 10371 | noway_assert(genTypeStSz(TYP_REF) == genTypeStSz(TYP_INT)); |
| 10372 | noway_assert(genTypeStSz(TYP_BYREF) == genTypeStSz(TYP_INT)); |
| 10373 | |
| 10374 | // Walk the registers in the reverse order as genPushRegs() |
| 10375 | for (regNumber reg = REG_INT_LAST; regs != RBM_NONE; reg = REG_PREV(reg)) |
| 10376 | { |
| 10377 | regMaskTP regBit = regMaskTP(1) << reg; |
| 10378 | |
| 10379 | if ((regBit & regs) == RBM_NONE) |
| 10380 | continue; |
| 10381 | |
| 10382 | var_types type; |
| 10383 | if (regBit & byrefRegs) |
| 10384 | { |
| 10385 | type = TYP_BYREF; |
| 10386 | } |
| 10387 | else if (regBit & noRefRegs) |
| 10388 | { |
| 10389 | type = TYP_INT; |
| 10390 | } |
| 10391 | else |
| 10392 | { |
| 10393 | type = TYP_REF; |
| 10394 | } |
| 10395 | |
| 10396 | inst_RV(INS_pop, reg, type); |
| 10397 | genSinglePop(); |
| 10398 | |
| 10399 | if (type != TYP_INT) |
| 10400 | gcInfo.gcMarkRegPtrVal(reg, type); |
| 10401 | |
| 10402 | regs &= ~regBit; |
| 10403 | } |
| 10404 | |
| 10405 | #endif // FEATURE_FIXED_OUT_ARGS |
| 10406 | } |
| 10407 | |
| 10408 | /***************************************************************************** |
| 10409 | * genSetScopeInfo |
| 10410 | * |
| 10411 | * This function should be called only after the sizes of the emitter blocks |
| 10412 | * have been finalized. |
| 10413 | */ |
| 10414 | |
| 10415 | void CodeGen::genSetScopeInfo() |
| 10416 | { |
| 10417 | if (!compiler->opts.compScopeInfo) |
| 10418 | { |
| 10419 | return; |
| 10420 | } |
| 10421 | |
| 10422 | #ifdef DEBUG |
| 10423 | if (verbose) |
| 10424 | { |
| 10425 | printf("*************** In genSetScopeInfo()\n" ); |
| 10426 | } |
| 10427 | #endif |
| 10428 | |
| 10429 | if (compiler->info.compVarScopesCount == 0) |
| 10430 | { |
| 10431 | compiler->eeSetLVcount(0); |
| 10432 | compiler->eeSetLVdone(); |
| 10433 | return; |
| 10434 | } |
| 10435 | |
| 10436 | noway_assert(compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0)); |
| 10437 | noway_assert(psiOpenScopeList.scNext == nullptr); |
| 10438 | |
| 10439 | unsigned i; |
| 10440 | unsigned scopeCnt = siScopeCnt + psiScopeCnt; |
| 10441 | |
| 10442 | compiler->eeSetLVcount(scopeCnt); |
| 10443 | |
| 10444 | #ifdef DEBUG |
| 10445 | genTrnslLocalVarCount = scopeCnt; |
| 10446 | if (scopeCnt) |
| 10447 | { |
| 10448 | genTrnslLocalVarInfo = new (compiler, CMK_DebugOnly) TrnslLocalVarInfo[scopeCnt]; |
| 10449 | } |
| 10450 | #endif |
| 10451 | |
| 10452 | // Record the scopes found for the parameters over the prolog. |
| 10453 | // The prolog needs to be treated differently as a variable may not |
| 10454 | // have the same info in the prolog block as is given by compiler->lvaTable. |
| 10455 | // eg. A register parameter is actually on the stack, before it is loaded to reg. |
| 10456 | |
| 10457 | CodeGen::psiScope* scopeP; |
| 10458 | |
| 10459 | for (i = 0, scopeP = psiScopeList.scNext; i < psiScopeCnt; i++, scopeP = scopeP->scNext) |
| 10460 | { |
| 10461 | noway_assert(scopeP != nullptr); |
| 10462 | noway_assert(scopeP->scStartLoc.Valid()); |
| 10463 | noway_assert(scopeP->scEndLoc.Valid()); |
| 10464 | |
| 10465 | UNATIVE_OFFSET startOffs = scopeP->scStartLoc.CodeOffset(getEmitter()); |
| 10466 | UNATIVE_OFFSET endOffs = scopeP->scEndLoc.CodeOffset(getEmitter()); |
| 10467 | |
| 10468 | unsigned varNum = scopeP->scSlotNum; |
| 10469 | noway_assert(startOffs <= endOffs); |
| 10470 | |
| 10471 | // The range may be 0 if the prolog is empty. For such a case, |
| 10472 | // report the liveness of arguments to span at least the first |
| 10473 | // instruction in the method. This will be incorrect (except on |
| 10474 | // entry to the method) if the very first instruction of the method |
| 10475 | // is part of a loop. However, this should happen |
| 10476 | // very rarely, and the incorrectness is worth being able to look |
| 10477 | // at the argument on entry to the method. |
| 10478 | if (startOffs == endOffs) |
| 10479 | { |
| 10480 | noway_assert(startOffs == 0); |
| 10481 | endOffs++; |
| 10482 | } |
| 10483 | |
| 10484 | Compiler::siVarLoc varLoc; |
| 10485 | |
| 10486 | if (scopeP->scRegister) |
| 10487 | { |
| 10488 | varLoc.vlType = Compiler::VLT_REG; |
| 10489 | varLoc.vlReg.vlrReg = (regNumber)scopeP->u1.scRegNum; |
| 10490 | } |
| 10491 | else |
| 10492 | { |
| 10493 | varLoc.vlType = Compiler::VLT_STK; |
| 10494 | varLoc.vlStk.vlsBaseReg = (regNumber)scopeP->u2.scBaseReg; |
| 10495 | varLoc.vlStk.vlsOffset = scopeP->u2.scOffset; |
| 10496 | } |
| 10497 | |
| 10498 | genSetScopeInfo(i, startOffs, endOffs - startOffs, varNum, scopeP->scLVnum, true, varLoc); |
| 10499 | } |
| 10500 | |
| 10501 | // Record the scopes for the rest of the method. |
| 10502 | // Check that the LocalVarInfo scopes look OK |
| 10503 | noway_assert(siOpenScopeList.scNext == nullptr); |
| 10504 | |
| 10505 | CodeGen::siScope* scopeL; |
| 10506 | |
| 10507 | for (i = 0, scopeL = siScopeList.scNext; i < siScopeCnt; i++, scopeL = scopeL->scNext) |
| 10508 | { |
| 10509 | noway_assert(scopeL != nullptr); |
| 10510 | noway_assert(scopeL->scStartLoc.Valid()); |
| 10511 | noway_assert(scopeL->scEndLoc.Valid()); |
| 10512 | |
| 10513 | // Find the start and end IP |
| 10514 | |
| 10515 | UNATIVE_OFFSET startOffs = scopeL->scStartLoc.CodeOffset(getEmitter()); |
| 10516 | UNATIVE_OFFSET endOffs = scopeL->scEndLoc.CodeOffset(getEmitter()); |
| 10517 | |
| 10518 | noway_assert(scopeL->scStartLoc != scopeL->scEndLoc); |
| 10519 | |
| 10520 | // For stack vars, find the base register, and offset |
| 10521 | |
| 10522 | regNumber baseReg; |
| 10523 | signed offset = compiler->lvaTable[scopeL->scVarNum].lvStkOffs; |
| 10524 | |
| 10525 | if (!compiler->lvaTable[scopeL->scVarNum].lvFramePointerBased) |
| 10526 | { |
| 10527 | baseReg = REG_SPBASE; |
| 10528 | offset += scopeL->scStackLevel; |
| 10529 | } |
| 10530 | else |
| 10531 | { |
| 10532 | baseReg = REG_FPBASE; |
| 10533 | } |
| 10534 | |
| 10535 | // Now fill in the varLoc |
| 10536 | |
| 10537 | Compiler::siVarLoc varLoc; |
| 10538 | |
| 10539 | // TODO-Review: This only works for always-enregistered variables. With LSRA, a variable might be in a register |
| 10540 | // for part of its lifetime, or in different registers for different parts of its lifetime. |
| 10541 | // This should only matter for non-debug code, where we do variable enregistration. |
| 10542 | // We should store the ranges of variable enregistration in the scope table. |
| 10543 | if (compiler->lvaTable[scopeL->scVarNum].lvIsInReg()) |
| 10544 | { |
| 10545 | var_types type = genActualType(compiler->lvaTable[scopeL->scVarNum].TypeGet()); |
| 10546 | switch (type) |
| 10547 | { |
| 10548 | case TYP_INT: |
| 10549 | case TYP_REF: |
| 10550 | case TYP_BYREF: |
| 10551 | #ifdef _TARGET_64BIT_ |
| 10552 | case TYP_LONG: |
| 10553 | #endif // _TARGET_64BIT_ |
| 10554 | |
| 10555 | varLoc.vlType = Compiler::VLT_REG; |
| 10556 | varLoc.vlReg.vlrReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum; |
| 10557 | break; |
| 10558 | |
| 10559 | #ifndef _TARGET_64BIT_ |
| 10560 | case TYP_LONG: |
| 10561 | #if !CPU_HAS_FP_SUPPORT |
| 10562 | case TYP_DOUBLE: |
| 10563 | #endif |
| 10564 | |
| 10565 | if (compiler->lvaTable[scopeL->scVarNum].lvOtherReg != REG_STK) |
| 10566 | { |
| 10567 | varLoc.vlType = Compiler::VLT_REG_REG; |
| 10568 | varLoc.vlRegReg.vlrrReg1 = compiler->lvaTable[scopeL->scVarNum].lvRegNum; |
| 10569 | varLoc.vlRegReg.vlrrReg2 = compiler->lvaTable[scopeL->scVarNum].lvOtherReg; |
| 10570 | } |
| 10571 | else |
| 10572 | { |
| 10573 | varLoc.vlType = Compiler::VLT_REG_STK; |
| 10574 | varLoc.vlRegStk.vlrsReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum; |
| 10575 | varLoc.vlRegStk.vlrsStk.vlrssBaseReg = baseReg; |
| 10576 | if (!isFramePointerUsed() && varLoc.vlRegStk.vlrsStk.vlrssBaseReg == REG_SPBASE) |
| 10577 | { |
| 10578 | varLoc.vlRegStk.vlrsStk.vlrssBaseReg = (regNumber)ICorDebugInfo::REGNUM_AMBIENT_SP; |
| 10579 | } |
| 10580 | varLoc.vlRegStk.vlrsStk.vlrssOffset = offset + sizeof(int); |
| 10581 | } |
| 10582 | break; |
| 10583 | #endif // !_TARGET_64BIT_ |
| 10584 | |
| 10585 | #ifdef _TARGET_64BIT_ |
| 10586 | |
| 10587 | case TYP_FLOAT: |
| 10588 | case TYP_DOUBLE: |
| 10589 | // TODO-AMD64-Bug: ndp\clr\src\inc\corinfo.h has a definition of RegNum that only goes up to R15, |
| 10590 | // so no XMM registers can get debug information. |
| 10591 | varLoc.vlType = Compiler::VLT_REG_FP; |
| 10592 | varLoc.vlReg.vlrReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum; |
| 10593 | break; |
| 10594 | |
| 10595 | #else // !_TARGET_64BIT_ |
| 10596 | |
| 10597 | #if CPU_HAS_FP_SUPPORT |
| 10598 | case TYP_FLOAT: |
| 10599 | case TYP_DOUBLE: |
| 10600 | if (isFloatRegType(type)) |
| 10601 | { |
| 10602 | varLoc.vlType = Compiler::VLT_FPSTK; |
| 10603 | varLoc.vlFPstk.vlfReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum; |
| 10604 | } |
| 10605 | break; |
| 10606 | #endif // CPU_HAS_FP_SUPPORT |
| 10607 | |
| 10608 | #endif // !_TARGET_64BIT_ |
| 10609 | |
| 10610 | #ifdef FEATURE_SIMD |
| 10611 | case TYP_SIMD8: |
| 10612 | case TYP_SIMD12: |
| 10613 | case TYP_SIMD16: |
| 10614 | case TYP_SIMD32: |
| 10615 | varLoc.vlType = Compiler::VLT_REG_FP; |
| 10616 | |
| 10617 | // TODO-AMD64-Bug: ndp\clr\src\inc\corinfo.h has a definition of RegNum that only goes up to R15, |
| 10618 | // so no XMM registers can get debug information. |
| 10619 | // |
| 10620 | // Note: Need to initialize vlrReg field, otherwise during jit dump hitting an assert |
| 10621 | // in eeDispVar() --> getRegName() that regNumber is valid. |
| 10622 | varLoc.vlReg.vlrReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum; |
| 10623 | break; |
| 10624 | #endif // FEATURE_SIMD |
| 10625 | |
| 10626 | default: |
| 10627 | noway_assert(!"Invalid type" ); |
| 10628 | } |
| 10629 | } |
| 10630 | else |
| 10631 | { |
| 10632 | assert(offset != BAD_STK_OFFS); |
| 10633 | LclVarDsc* varDsc = compiler->lvaTable + scopeL->scVarNum; |
| 10634 | switch (genActualType(varDsc->TypeGet())) |
| 10635 | { |
| 10636 | case TYP_INT: |
| 10637 | case TYP_REF: |
| 10638 | case TYP_BYREF: |
| 10639 | case TYP_FLOAT: |
| 10640 | case TYP_STRUCT: |
| 10641 | case TYP_BLK: // Needed because of the TYP_BLK stress mode |
| 10642 | #ifdef FEATURE_SIMD |
| 10643 | case TYP_SIMD8: |
| 10644 | case TYP_SIMD12: |
| 10645 | case TYP_SIMD16: |
| 10646 | case TYP_SIMD32: |
| 10647 | #endif |
| 10648 | #ifdef _TARGET_64BIT_ |
| 10649 | case TYP_LONG: |
| 10650 | case TYP_DOUBLE: |
| 10651 | #endif // _TARGET_64BIT_ |
| 10652 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 10653 | // In the AMD64 ABI we are supposed to pass a struct by reference when its |
| 10654 | // size is not 1, 2, 4 or 8 bytes in size. During fgMorph, the compiler modifies |
| 10655 | // the IR to comply with the ABI and therefore changes the type of the lclVar |
| 10656 | // that holds the struct from TYP_STRUCT to TYP_BYREF but it gives us a hint that |
| 10657 | // this is still a struct by setting the lvIsTemp flag. |
| 10658 | // The same is true for ARM64 and structs > 16 bytes. |
| 10659 | // (See Compiler::fgMarkImplicitByRefArgs in Morph.cpp for further detail) |
| 10660 | // Now, the VM expects a special enum for these type of local vars: VLT_STK_BYREF |
| 10661 | // to accomodate for this situation. |
| 10662 | if (varDsc->lvType == TYP_BYREF && varDsc->lvIsTemp) |
| 10663 | { |
| 10664 | assert(varDsc->lvIsParam); |
| 10665 | varLoc.vlType = Compiler::VLT_STK_BYREF; |
| 10666 | } |
| 10667 | else |
| 10668 | #endif // defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 10669 | { |
| 10670 | varLoc.vlType = Compiler::VLT_STK; |
| 10671 | } |
| 10672 | varLoc.vlStk.vlsBaseReg = baseReg; |
| 10673 | varLoc.vlStk.vlsOffset = offset; |
| 10674 | if (!isFramePointerUsed() && varLoc.vlStk.vlsBaseReg == REG_SPBASE) |
| 10675 | { |
| 10676 | varLoc.vlStk.vlsBaseReg = (regNumber)ICorDebugInfo::REGNUM_AMBIENT_SP; |
| 10677 | } |
| 10678 | break; |
| 10679 | |
| 10680 | #ifndef _TARGET_64BIT_ |
| 10681 | case TYP_LONG: |
| 10682 | case TYP_DOUBLE: |
| 10683 | varLoc.vlType = Compiler::VLT_STK2; |
| 10684 | varLoc.vlStk2.vls2BaseReg = baseReg; |
| 10685 | varLoc.vlStk2.vls2Offset = offset; |
| 10686 | if (!isFramePointerUsed() && varLoc.vlStk2.vls2BaseReg == REG_SPBASE) |
| 10687 | { |
| 10688 | varLoc.vlStk2.vls2BaseReg = (regNumber)ICorDebugInfo::REGNUM_AMBIENT_SP; |
| 10689 | } |
| 10690 | break; |
| 10691 | #endif // !_TARGET_64BIT_ |
| 10692 | |
| 10693 | default: |
| 10694 | noway_assert(!"Invalid type" ); |
| 10695 | } |
| 10696 | } |
| 10697 | |
| 10698 | genSetScopeInfo(psiScopeCnt + i, startOffs, endOffs - startOffs, scopeL->scVarNum, scopeL->scLVnum, |
| 10699 | scopeL->scAvailable, varLoc); |
| 10700 | } |
| 10701 | |
| 10702 | compiler->eeSetLVdone(); |
| 10703 | } |
| 10704 | |
| 10705 | //------------------------------------------------------------------------ |
| 10706 | // genSetScopeInfo: Record scope information for debug info |
| 10707 | // |
| 10708 | // Arguments: |
| 10709 | // which |
| 10710 | // startOffs - the starting offset for this scope |
| 10711 | // length - the length of this scope |
| 10712 | // varNum - the lclVar for this scope info |
| 10713 | // LVnum |
| 10714 | // avail |
| 10715 | // varLoc |
| 10716 | // |
| 10717 | // Notes: |
| 10718 | // Called for every scope info piece to record by the main genSetScopeInfo() |
| 10719 | |
| 10720 | void CodeGen::genSetScopeInfo(unsigned which, |
| 10721 | UNATIVE_OFFSET startOffs, |
| 10722 | UNATIVE_OFFSET length, |
| 10723 | unsigned varNum, |
| 10724 | unsigned LVnum, |
| 10725 | bool avail, |
| 10726 | Compiler::siVarLoc& varLoc) |
| 10727 | { |
| 10728 | // We need to do some mapping while reporting back these variables. |
| 10729 | |
| 10730 | unsigned ilVarNum = compiler->compMap2ILvarNum(varNum); |
| 10731 | noway_assert((int)ilVarNum != ICorDebugInfo::UNKNOWN_ILNUM); |
| 10732 | |
| 10733 | #ifdef _TARGET_X86_ |
| 10734 | // Non-x86 platforms are allowed to access all arguments directly |
| 10735 | // so we don't need this code. |
| 10736 | |
| 10737 | // Is this a varargs function? |
| 10738 | |
| 10739 | if (compiler->info.compIsVarArgs && varNum != compiler->lvaVarargsHandleArg && |
| 10740 | varNum < compiler->info.compArgsCount && !compiler->lvaTable[varNum].lvIsRegArg) |
| 10741 | { |
| 10742 | noway_assert(varLoc.vlType == Compiler::VLT_STK || varLoc.vlType == Compiler::VLT_STK2); |
| 10743 | |
| 10744 | // All stack arguments (except the varargs handle) have to be |
| 10745 | // accessed via the varargs cookie. Discard generated info, |
| 10746 | // and just find its position relative to the varargs handle |
| 10747 | |
| 10748 | PREFIX_ASSUME(compiler->lvaVarargsHandleArg < compiler->info.compArgsCount); |
| 10749 | if (!compiler->lvaTable[compiler->lvaVarargsHandleArg].lvOnFrame) |
| 10750 | { |
| 10751 | noway_assert(!compiler->opts.compDbgCode); |
| 10752 | return; |
| 10753 | } |
| 10754 | |
| 10755 | // Can't check compiler->lvaTable[varNum].lvOnFrame as we don't set it for |
| 10756 | // arguments of vararg functions to avoid reporting them to GC. |
| 10757 | noway_assert(!compiler->lvaTable[varNum].lvRegister); |
| 10758 | unsigned cookieOffset = compiler->lvaTable[compiler->lvaVarargsHandleArg].lvStkOffs; |
| 10759 | unsigned varOffset = compiler->lvaTable[varNum].lvStkOffs; |
| 10760 | |
| 10761 | noway_assert(cookieOffset < varOffset); |
| 10762 | unsigned offset = varOffset - cookieOffset; |
| 10763 | unsigned stkArgSize = compiler->compArgSize - intRegState.rsCalleeRegArgCount * REGSIZE_BYTES; |
| 10764 | noway_assert(offset < stkArgSize); |
| 10765 | offset = stkArgSize - offset; |
| 10766 | |
| 10767 | varLoc.vlType = Compiler::VLT_FIXED_VA; |
| 10768 | varLoc.vlFixedVarArg.vlfvOffset = offset; |
| 10769 | } |
| 10770 | |
| 10771 | #endif // _TARGET_X86_ |
| 10772 | |
| 10773 | VarName name = nullptr; |
| 10774 | |
| 10775 | #ifdef DEBUG |
| 10776 | |
| 10777 | for (unsigned scopeNum = 0; scopeNum < compiler->info.compVarScopesCount; scopeNum++) |
| 10778 | { |
| 10779 | if (LVnum == compiler->info.compVarScopes[scopeNum].vsdLVnum) |
| 10780 | { |
| 10781 | name = compiler->info.compVarScopes[scopeNum].vsdName; |
| 10782 | } |
| 10783 | } |
| 10784 | |
| 10785 | // Hang on to this compiler->info. |
| 10786 | |
| 10787 | TrnslLocalVarInfo& tlvi = genTrnslLocalVarInfo[which]; |
| 10788 | |
| 10789 | tlvi.tlviVarNum = ilVarNum; |
| 10790 | tlvi.tlviLVnum = LVnum; |
| 10791 | tlvi.tlviName = name; |
| 10792 | tlvi.tlviStartPC = startOffs; |
| 10793 | tlvi.tlviLength = length; |
| 10794 | tlvi.tlviAvailable = avail; |
| 10795 | tlvi.tlviVarLoc = varLoc; |
| 10796 | |
| 10797 | #endif // DEBUG |
| 10798 | |
| 10799 | compiler->eeSetLVinfo(which, startOffs, length, ilVarNum, LVnum, name, avail, varLoc); |
| 10800 | } |
| 10801 | |
| 10802 | /*****************************************************************************/ |
| 10803 | #ifdef LATE_DISASM |
| 10804 | #if defined(DEBUG) |
| 10805 | /***************************************************************************** |
| 10806 | * CompilerRegName |
| 10807 | * |
| 10808 | * Can be called only after lviSetLocalVarInfo() has been called |
| 10809 | */ |
| 10810 | |
| 10811 | /* virtual */ |
| 10812 | const char* CodeGen::siRegVarName(size_t offs, size_t size, unsigned reg) |
| 10813 | { |
| 10814 | if (!compiler->opts.compScopeInfo) |
| 10815 | return nullptr; |
| 10816 | |
| 10817 | if (compiler->info.compVarScopesCount == 0) |
| 10818 | return nullptr; |
| 10819 | |
| 10820 | noway_assert(genTrnslLocalVarCount == 0 || genTrnslLocalVarInfo); |
| 10821 | |
| 10822 | for (unsigned i = 0; i < genTrnslLocalVarCount; i++) |
| 10823 | { |
| 10824 | if ((genTrnslLocalVarInfo[i].tlviVarLoc.vlIsInReg((regNumber)reg)) && |
| 10825 | (genTrnslLocalVarInfo[i].tlviAvailable == true) && (genTrnslLocalVarInfo[i].tlviStartPC <= offs + size) && |
| 10826 | (genTrnslLocalVarInfo[i].tlviStartPC + genTrnslLocalVarInfo[i].tlviLength > offs)) |
| 10827 | { |
| 10828 | return genTrnslLocalVarInfo[i].tlviName ? compiler->VarNameToStr(genTrnslLocalVarInfo[i].tlviName) : NULL; |
| 10829 | } |
| 10830 | } |
| 10831 | |
| 10832 | return NULL; |
| 10833 | } |
| 10834 | |
| 10835 | /***************************************************************************** |
| 10836 | * CompilerStkName |
| 10837 | * |
| 10838 | * Can be called only after lviSetLocalVarInfo() has been called |
| 10839 | */ |
| 10840 | |
| 10841 | /* virtual */ |
| 10842 | const char* CodeGen::siStackVarName(size_t offs, size_t size, unsigned reg, unsigned stkOffs) |
| 10843 | { |
| 10844 | if (!compiler->opts.compScopeInfo) |
| 10845 | return nullptr; |
| 10846 | |
| 10847 | if (compiler->info.compVarScopesCount == 0) |
| 10848 | return nullptr; |
| 10849 | |
| 10850 | noway_assert(genTrnslLocalVarCount == 0 || genTrnslLocalVarInfo); |
| 10851 | |
| 10852 | for (unsigned i = 0; i < genTrnslLocalVarCount; i++) |
| 10853 | { |
| 10854 | if ((genTrnslLocalVarInfo[i].tlviVarLoc.vlIsOnStk((regNumber)reg, stkOffs)) && |
| 10855 | (genTrnslLocalVarInfo[i].tlviAvailable == true) && (genTrnslLocalVarInfo[i].tlviStartPC <= offs + size) && |
| 10856 | (genTrnslLocalVarInfo[i].tlviStartPC + genTrnslLocalVarInfo[i].tlviLength > offs)) |
| 10857 | { |
| 10858 | return genTrnslLocalVarInfo[i].tlviName ? compiler->VarNameToStr(genTrnslLocalVarInfo[i].tlviName) : NULL; |
| 10859 | } |
| 10860 | } |
| 10861 | |
| 10862 | return NULL; |
| 10863 | } |
| 10864 | |
| 10865 | /*****************************************************************************/ |
| 10866 | #endif // defined(DEBUG) |
| 10867 | #endif // LATE_DISASM |
| 10868 | |
| 10869 | #ifdef DEBUG |
| 10870 | |
| 10871 | /***************************************************************************** |
| 10872 | * Display a IPmappingDsc. Pass -1 as mappingNum to not display a mapping number. |
| 10873 | */ |
| 10874 | |
| 10875 | void CodeGen::genIPmappingDisp(unsigned mappingNum, Compiler::IPmappingDsc* ipMapping) |
| 10876 | { |
| 10877 | if (mappingNum != unsigned(-1)) |
| 10878 | { |
| 10879 | printf("%d: " , mappingNum); |
| 10880 | } |
| 10881 | |
| 10882 | IL_OFFSETX offsx = ipMapping->ipmdILoffsx; |
| 10883 | |
| 10884 | if (offsx == BAD_IL_OFFSET) |
| 10885 | { |
| 10886 | printf("???" ); |
| 10887 | } |
| 10888 | else |
| 10889 | { |
| 10890 | Compiler::eeDispILOffs(jitGetILoffsAny(offsx)); |
| 10891 | |
| 10892 | if (jitIsStackEmpty(offsx)) |
| 10893 | { |
| 10894 | printf(" STACK_EMPTY" ); |
| 10895 | } |
| 10896 | |
| 10897 | if (jitIsCallInstruction(offsx)) |
| 10898 | { |
| 10899 | printf(" CALL_INSTRUCTION" ); |
| 10900 | } |
| 10901 | } |
| 10902 | |
| 10903 | printf(" " ); |
| 10904 | ipMapping->ipmdNativeLoc.Print(); |
| 10905 | // We can only call this after code generation. Is there any way to tell when it's legal to call? |
| 10906 | // printf(" [%x]", ipMapping->ipmdNativeLoc.CodeOffset(getEmitter())); |
| 10907 | |
| 10908 | if (ipMapping->ipmdIsLabel) |
| 10909 | { |
| 10910 | printf(" label" ); |
| 10911 | } |
| 10912 | |
| 10913 | printf("\n" ); |
| 10914 | } |
| 10915 | |
| 10916 | void CodeGen::genIPmappingListDisp() |
| 10917 | { |
| 10918 | unsigned mappingNum = 0; |
| 10919 | Compiler::IPmappingDsc* ipMapping; |
| 10920 | |
| 10921 | for (ipMapping = compiler->genIPmappingList; ipMapping != nullptr; ipMapping = ipMapping->ipmdNext) |
| 10922 | { |
| 10923 | genIPmappingDisp(mappingNum, ipMapping); |
| 10924 | ++mappingNum; |
| 10925 | } |
| 10926 | } |
| 10927 | |
| 10928 | #endif // DEBUG |
| 10929 | |
| 10930 | /***************************************************************************** |
| 10931 | * |
| 10932 | * Append an IPmappingDsc struct to the list that we're maintaining |
| 10933 | * for the debugger. |
| 10934 | * Record the instr offset as being at the current code gen position. |
| 10935 | */ |
| 10936 | |
| 10937 | void CodeGen::genIPmappingAdd(IL_OFFSETX offsx, bool isLabel) |
| 10938 | { |
| 10939 | if (!compiler->opts.compDbgInfo) |
| 10940 | { |
| 10941 | return; |
| 10942 | } |
| 10943 | |
| 10944 | assert(offsx != BAD_IL_OFFSET); |
| 10945 | |
| 10946 | switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed. |
| 10947 | { |
| 10948 | case ICorDebugInfo::PROLOG: |
| 10949 | case ICorDebugInfo::EPILOG: |
| 10950 | break; |
| 10951 | |
| 10952 | default: |
| 10953 | |
| 10954 | if (offsx != ICorDebugInfo::NO_MAPPING) |
| 10955 | { |
| 10956 | noway_assert(jitGetILoffs(offsx) <= compiler->info.compILCodeSize); |
| 10957 | } |
| 10958 | |
| 10959 | // Ignore this one if it's the same IL offset as the last one we saw. |
| 10960 | // Note that we'll let through two identical IL offsets if the flag bits |
| 10961 | // differ, or two identical "special" mappings (e.g., PROLOG). |
| 10962 | if ((compiler->genIPmappingLast != nullptr) && (offsx == compiler->genIPmappingLast->ipmdILoffsx)) |
| 10963 | { |
| 10964 | JITDUMP("genIPmappingAdd: ignoring duplicate IL offset 0x%x\n" , offsx); |
| 10965 | return; |
| 10966 | } |
| 10967 | break; |
| 10968 | } |
| 10969 | |
| 10970 | /* Create a mapping entry and append it to the list */ |
| 10971 | |
| 10972 | Compiler::IPmappingDsc* addMapping = compiler->getAllocator(CMK_DebugInfo).allocate<Compiler::IPmappingDsc>(1); |
| 10973 | addMapping->ipmdNativeLoc.CaptureLocation(getEmitter()); |
| 10974 | addMapping->ipmdILoffsx = offsx; |
| 10975 | addMapping->ipmdIsLabel = isLabel; |
| 10976 | addMapping->ipmdNext = nullptr; |
| 10977 | |
| 10978 | if (compiler->genIPmappingList != nullptr) |
| 10979 | { |
| 10980 | assert(compiler->genIPmappingLast != nullptr); |
| 10981 | assert(compiler->genIPmappingLast->ipmdNext == nullptr); |
| 10982 | compiler->genIPmappingLast->ipmdNext = addMapping; |
| 10983 | } |
| 10984 | else |
| 10985 | { |
| 10986 | assert(compiler->genIPmappingLast == nullptr); |
| 10987 | compiler->genIPmappingList = addMapping; |
| 10988 | } |
| 10989 | |
| 10990 | compiler->genIPmappingLast = addMapping; |
| 10991 | |
| 10992 | #ifdef DEBUG |
| 10993 | if (verbose) |
| 10994 | { |
| 10995 | printf("Added IP mapping: " ); |
| 10996 | genIPmappingDisp(unsigned(-1), addMapping); |
| 10997 | } |
| 10998 | #endif // DEBUG |
| 10999 | } |
| 11000 | |
| 11001 | /***************************************************************************** |
| 11002 | * |
| 11003 | * Prepend an IPmappingDsc struct to the list that we're maintaining |
| 11004 | * for the debugger. |
| 11005 | * Record the instr offset as being at the current code gen position. |
| 11006 | */ |
| 11007 | void CodeGen::genIPmappingAddToFront(IL_OFFSETX offsx) |
| 11008 | { |
| 11009 | if (!compiler->opts.compDbgInfo) |
| 11010 | { |
| 11011 | return; |
| 11012 | } |
| 11013 | |
| 11014 | assert(offsx != BAD_IL_OFFSET); |
| 11015 | assert(compiler->compGeneratingProlog); // We only ever do this during prolog generation. |
| 11016 | |
| 11017 | switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed. |
| 11018 | { |
| 11019 | case ICorDebugInfo::NO_MAPPING: |
| 11020 | case ICorDebugInfo::PROLOG: |
| 11021 | case ICorDebugInfo::EPILOG: |
| 11022 | break; |
| 11023 | |
| 11024 | default: |
| 11025 | noway_assert(jitGetILoffs(offsx) <= compiler->info.compILCodeSize); |
| 11026 | break; |
| 11027 | } |
| 11028 | |
| 11029 | /* Create a mapping entry and prepend it to the list */ |
| 11030 | |
| 11031 | Compiler::IPmappingDsc* addMapping = compiler->getAllocator(CMK_DebugInfo).allocate<Compiler::IPmappingDsc>(1); |
| 11032 | addMapping->ipmdNativeLoc.CaptureLocation(getEmitter()); |
| 11033 | addMapping->ipmdILoffsx = offsx; |
| 11034 | addMapping->ipmdIsLabel = true; |
| 11035 | addMapping->ipmdNext = nullptr; |
| 11036 | |
| 11037 | addMapping->ipmdNext = compiler->genIPmappingList; |
| 11038 | compiler->genIPmappingList = addMapping; |
| 11039 | |
| 11040 | if (compiler->genIPmappingLast == nullptr) |
| 11041 | { |
| 11042 | compiler->genIPmappingLast = addMapping; |
| 11043 | } |
| 11044 | |
| 11045 | #ifdef DEBUG |
| 11046 | if (verbose) |
| 11047 | { |
| 11048 | printf("Added IP mapping to front: " ); |
| 11049 | genIPmappingDisp(unsigned(-1), addMapping); |
| 11050 | } |
| 11051 | #endif // DEBUG |
| 11052 | } |
| 11053 | |
| 11054 | /*****************************************************************************/ |
| 11055 | |
| 11056 | C_ASSERT(IL_OFFSETX(ICorDebugInfo::NO_MAPPING) != IL_OFFSETX(BAD_IL_OFFSET)); |
| 11057 | C_ASSERT(IL_OFFSETX(ICorDebugInfo::PROLOG) != IL_OFFSETX(BAD_IL_OFFSET)); |
| 11058 | C_ASSERT(IL_OFFSETX(ICorDebugInfo::EPILOG) != IL_OFFSETX(BAD_IL_OFFSET)); |
| 11059 | |
| 11060 | C_ASSERT(IL_OFFSETX(BAD_IL_OFFSET) > MAX_IL_OFFSET); |
| 11061 | C_ASSERT(IL_OFFSETX(ICorDebugInfo::NO_MAPPING) > MAX_IL_OFFSET); |
| 11062 | C_ASSERT(IL_OFFSETX(ICorDebugInfo::PROLOG) > MAX_IL_OFFSET); |
| 11063 | C_ASSERT(IL_OFFSETX(ICorDebugInfo::EPILOG) > MAX_IL_OFFSET); |
| 11064 | |
| 11065 | //------------------------------------------------------------------------ |
| 11066 | // jitGetILoffs: Returns the IL offset portion of the IL_OFFSETX type. |
| 11067 | // Asserts if any ICorDebugInfo distinguished value (like ICorDebugInfo::NO_MAPPING) |
| 11068 | // is seen; these are unexpected here. Also asserts if passed BAD_IL_OFFSET. |
| 11069 | // |
| 11070 | // Arguments: |
| 11071 | // offsx - the IL_OFFSETX value with the IL offset to extract. |
| 11072 | // |
| 11073 | // Return Value: |
| 11074 | // The IL offset. |
| 11075 | |
| 11076 | IL_OFFSET jitGetILoffs(IL_OFFSETX offsx) |
| 11077 | { |
| 11078 | assert(offsx != BAD_IL_OFFSET); |
| 11079 | |
| 11080 | switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed. |
| 11081 | { |
| 11082 | case ICorDebugInfo::NO_MAPPING: |
| 11083 | case ICorDebugInfo::PROLOG: |
| 11084 | case ICorDebugInfo::EPILOG: |
| 11085 | unreached(); |
| 11086 | |
| 11087 | default: |
| 11088 | return IL_OFFSET(offsx & ~IL_OFFSETX_BITS); |
| 11089 | } |
| 11090 | } |
| 11091 | |
| 11092 | //------------------------------------------------------------------------ |
| 11093 | // jitGetILoffsAny: Similar to jitGetILoffs(), but passes through ICorDebugInfo |
| 11094 | // distinguished values. Asserts if passed BAD_IL_OFFSET. |
| 11095 | // |
| 11096 | // Arguments: |
| 11097 | // offsx - the IL_OFFSETX value with the IL offset to extract. |
| 11098 | // |
| 11099 | // Return Value: |
| 11100 | // The IL offset. |
| 11101 | |
| 11102 | IL_OFFSET jitGetILoffsAny(IL_OFFSETX offsx) |
| 11103 | { |
| 11104 | assert(offsx != BAD_IL_OFFSET); |
| 11105 | |
| 11106 | switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed. |
| 11107 | { |
| 11108 | case ICorDebugInfo::NO_MAPPING: |
| 11109 | case ICorDebugInfo::PROLOG: |
| 11110 | case ICorDebugInfo::EPILOG: |
| 11111 | return IL_OFFSET(offsx); |
| 11112 | |
| 11113 | default: |
| 11114 | return IL_OFFSET(offsx & ~IL_OFFSETX_BITS); |
| 11115 | } |
| 11116 | } |
| 11117 | |
| 11118 | //------------------------------------------------------------------------ |
| 11119 | // jitIsStackEmpty: Does the IL offset have the stack empty bit set? |
| 11120 | // Asserts if passed BAD_IL_OFFSET. |
| 11121 | // |
| 11122 | // Arguments: |
| 11123 | // offsx - the IL_OFFSETX value to check |
| 11124 | // |
| 11125 | // Return Value: |
| 11126 | // 'true' if the stack empty bit is set; 'false' otherwise. |
| 11127 | |
| 11128 | bool jitIsStackEmpty(IL_OFFSETX offsx) |
| 11129 | { |
| 11130 | assert(offsx != BAD_IL_OFFSET); |
| 11131 | |
| 11132 | switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed. |
| 11133 | { |
| 11134 | case ICorDebugInfo::NO_MAPPING: |
| 11135 | case ICorDebugInfo::PROLOG: |
| 11136 | case ICorDebugInfo::EPILOG: |
| 11137 | return true; |
| 11138 | |
| 11139 | default: |
| 11140 | return (offsx & IL_OFFSETX_STKBIT) == 0; |
| 11141 | } |
| 11142 | } |
| 11143 | |
| 11144 | //------------------------------------------------------------------------ |
| 11145 | // jitIsCallInstruction: Does the IL offset have the call instruction bit set? |
| 11146 | // Asserts if passed BAD_IL_OFFSET. |
| 11147 | // |
| 11148 | // Arguments: |
| 11149 | // offsx - the IL_OFFSETX value to check |
| 11150 | // |
| 11151 | // Return Value: |
| 11152 | // 'true' if the call instruction bit is set; 'false' otherwise. |
| 11153 | |
| 11154 | bool jitIsCallInstruction(IL_OFFSETX offsx) |
| 11155 | { |
| 11156 | assert(offsx != BAD_IL_OFFSET); |
| 11157 | |
| 11158 | switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed. |
| 11159 | { |
| 11160 | case ICorDebugInfo::NO_MAPPING: |
| 11161 | case ICorDebugInfo::PROLOG: |
| 11162 | case ICorDebugInfo::EPILOG: |
| 11163 | return false; |
| 11164 | |
| 11165 | default: |
| 11166 | return (offsx & IL_OFFSETX_CALLINSTRUCTIONBIT) != 0; |
| 11167 | } |
| 11168 | } |
| 11169 | |
| 11170 | /*****************************************************************************/ |
| 11171 | |
| 11172 | void CodeGen::genEnsureCodeEmitted(IL_OFFSETX offsx) |
| 11173 | { |
| 11174 | if (!compiler->opts.compDbgCode) |
| 11175 | { |
| 11176 | return; |
| 11177 | } |
| 11178 | |
| 11179 | if (offsx == BAD_IL_OFFSET) |
| 11180 | { |
| 11181 | return; |
| 11182 | } |
| 11183 | |
| 11184 | /* If other IL were offsets reported, skip */ |
| 11185 | |
| 11186 | if (compiler->genIPmappingLast == nullptr) |
| 11187 | { |
| 11188 | return; |
| 11189 | } |
| 11190 | |
| 11191 | if (compiler->genIPmappingLast->ipmdILoffsx != offsx) |
| 11192 | { |
| 11193 | return; |
| 11194 | } |
| 11195 | |
| 11196 | /* offsx was the last reported offset. Make sure that we generated native code */ |
| 11197 | |
| 11198 | if (compiler->genIPmappingLast->ipmdNativeLoc.IsCurrentLocation(getEmitter())) |
| 11199 | { |
| 11200 | instGen(INS_nop); |
| 11201 | } |
| 11202 | } |
| 11203 | |
| 11204 | /***************************************************************************** |
| 11205 | * |
| 11206 | * Shut down the IP-mapping logic, report the info to the EE. |
| 11207 | */ |
| 11208 | |
| 11209 | void CodeGen::genIPmappingGen() |
| 11210 | { |
| 11211 | if (!compiler->opts.compDbgInfo) |
| 11212 | { |
| 11213 | return; |
| 11214 | } |
| 11215 | |
| 11216 | #ifdef DEBUG |
| 11217 | if (verbose) |
| 11218 | { |
| 11219 | printf("*************** In genIPmappingGen()\n" ); |
| 11220 | } |
| 11221 | #endif |
| 11222 | |
| 11223 | if (compiler->genIPmappingList == nullptr) |
| 11224 | { |
| 11225 | compiler->eeSetLIcount(0); |
| 11226 | compiler->eeSetLIdone(); |
| 11227 | return; |
| 11228 | } |
| 11229 | |
| 11230 | Compiler::IPmappingDsc* tmpMapping; |
| 11231 | Compiler::IPmappingDsc* prevMapping; |
| 11232 | unsigned mappingCnt; |
| 11233 | UNATIVE_OFFSET lastNativeOfs; |
| 11234 | |
| 11235 | /* First count the number of distinct mapping records */ |
| 11236 | |
| 11237 | mappingCnt = 0; |
| 11238 | lastNativeOfs = UNATIVE_OFFSET(~0); |
| 11239 | |
| 11240 | for (prevMapping = nullptr, tmpMapping = compiler->genIPmappingList; tmpMapping != nullptr; |
| 11241 | tmpMapping = tmpMapping->ipmdNext) |
| 11242 | { |
| 11243 | IL_OFFSETX srcIP = tmpMapping->ipmdILoffsx; |
| 11244 | |
| 11245 | // Managed RetVal - since new sequence points are emitted to identify IL calls, |
| 11246 | // make sure that those are not filtered and do not interfere with filtering of |
| 11247 | // other sequence points. |
| 11248 | if (jitIsCallInstruction(srcIP)) |
| 11249 | { |
| 11250 | mappingCnt++; |
| 11251 | continue; |
| 11252 | } |
| 11253 | |
| 11254 | UNATIVE_OFFSET nextNativeOfs = tmpMapping->ipmdNativeLoc.CodeOffset(getEmitter()); |
| 11255 | |
| 11256 | if (nextNativeOfs != lastNativeOfs) |
| 11257 | { |
| 11258 | mappingCnt++; |
| 11259 | lastNativeOfs = nextNativeOfs; |
| 11260 | prevMapping = tmpMapping; |
| 11261 | continue; |
| 11262 | } |
| 11263 | |
| 11264 | /* If there are mappings with the same native offset, then: |
| 11265 | o If one of them is NO_MAPPING, ignore it |
| 11266 | o If one of them is a label, report that and ignore the other one |
| 11267 | o Else report the higher IL offset |
| 11268 | */ |
| 11269 | |
| 11270 | PREFIX_ASSUME(prevMapping != nullptr); // We would exit before if this was true |
| 11271 | if (prevMapping->ipmdILoffsx == (IL_OFFSETX)ICorDebugInfo::NO_MAPPING) |
| 11272 | { |
| 11273 | // If the previous entry was NO_MAPPING, ignore it |
| 11274 | prevMapping->ipmdNativeLoc.Init(); |
| 11275 | prevMapping = tmpMapping; |
| 11276 | } |
| 11277 | else if (srcIP == (IL_OFFSETX)ICorDebugInfo::NO_MAPPING) |
| 11278 | { |
| 11279 | // If the current entry is NO_MAPPING, ignore it |
| 11280 | // Leave prevMapping unchanged as tmpMapping is no longer valid |
| 11281 | tmpMapping->ipmdNativeLoc.Init(); |
| 11282 | } |
| 11283 | else if (srcIP == (IL_OFFSETX)ICorDebugInfo::EPILOG || srcIP == 0) |
| 11284 | { |
| 11285 | // counting for special cases: see below |
| 11286 | mappingCnt++; |
| 11287 | prevMapping = tmpMapping; |
| 11288 | } |
| 11289 | else |
| 11290 | { |
| 11291 | noway_assert(prevMapping != nullptr); |
| 11292 | noway_assert(!prevMapping->ipmdNativeLoc.Valid() || |
| 11293 | lastNativeOfs == prevMapping->ipmdNativeLoc.CodeOffset(getEmitter())); |
| 11294 | |
| 11295 | /* The previous block had the same native offset. We have to |
| 11296 | discard one of the mappings. Simply reinitialize ipmdNativeLoc |
| 11297 | and prevMapping will be ignored later. */ |
| 11298 | |
| 11299 | if (prevMapping->ipmdIsLabel) |
| 11300 | { |
| 11301 | // Leave prevMapping unchanged as tmpMapping is no longer valid |
| 11302 | tmpMapping->ipmdNativeLoc.Init(); |
| 11303 | } |
| 11304 | else |
| 11305 | { |
| 11306 | prevMapping->ipmdNativeLoc.Init(); |
| 11307 | prevMapping = tmpMapping; |
| 11308 | } |
| 11309 | } |
| 11310 | } |
| 11311 | |
| 11312 | /* Tell them how many mapping records we've got */ |
| 11313 | |
| 11314 | compiler->eeSetLIcount(mappingCnt); |
| 11315 | |
| 11316 | /* Now tell them about the mappings */ |
| 11317 | |
| 11318 | mappingCnt = 0; |
| 11319 | lastNativeOfs = UNATIVE_OFFSET(~0); |
| 11320 | |
| 11321 | for (tmpMapping = compiler->genIPmappingList; tmpMapping != nullptr; tmpMapping = tmpMapping->ipmdNext) |
| 11322 | { |
| 11323 | // Do we have to skip this record ? |
| 11324 | if (!tmpMapping->ipmdNativeLoc.Valid()) |
| 11325 | { |
| 11326 | continue; |
| 11327 | } |
| 11328 | |
| 11329 | UNATIVE_OFFSET nextNativeOfs = tmpMapping->ipmdNativeLoc.CodeOffset(getEmitter()); |
| 11330 | IL_OFFSETX srcIP = tmpMapping->ipmdILoffsx; |
| 11331 | |
| 11332 | if (jitIsCallInstruction(srcIP)) |
| 11333 | { |
| 11334 | compiler->eeSetLIinfo(mappingCnt++, nextNativeOfs, jitGetILoffs(srcIP), jitIsStackEmpty(srcIP), true); |
| 11335 | } |
| 11336 | else if (nextNativeOfs != lastNativeOfs) |
| 11337 | { |
| 11338 | compiler->eeSetLIinfo(mappingCnt++, nextNativeOfs, jitGetILoffsAny(srcIP), jitIsStackEmpty(srcIP), false); |
| 11339 | lastNativeOfs = nextNativeOfs; |
| 11340 | } |
| 11341 | else if (srcIP == (IL_OFFSETX)ICorDebugInfo::EPILOG || srcIP == 0) |
| 11342 | { |
| 11343 | // For the special case of an IL instruction with no body |
| 11344 | // followed by the epilog (say ret void immediately preceding |
| 11345 | // the method end), we put two entries in, so that we'll stop |
| 11346 | // at the (empty) ret statement if the user tries to put a |
| 11347 | // breakpoint there, and then have the option of seeing the |
| 11348 | // epilog or not based on SetUnmappedStopMask for the stepper. |
| 11349 | compiler->eeSetLIinfo(mappingCnt++, nextNativeOfs, jitGetILoffsAny(srcIP), jitIsStackEmpty(srcIP), false); |
| 11350 | } |
| 11351 | } |
| 11352 | |
| 11353 | #if 0 |
| 11354 | // TODO-Review: |
| 11355 | //This check is disabled. It is always true that any time this check asserts, the debugger would have a |
| 11356 | //problem with IL source level debugging. However, for a C# file, it only matters if things are on |
| 11357 | //different source lines. As a result, we have all sorts of latent problems with how we emit debug |
| 11358 | //info, but very few actual ones. Whenever someone wants to tackle that problem in general, turn this |
| 11359 | //assert back on. |
| 11360 | if (compiler->opts.compDbgCode) |
| 11361 | { |
| 11362 | //Assert that the first instruction of every basic block with more than one incoming edge has a |
| 11363 | //different sequence point from each incoming block. |
| 11364 | // |
| 11365 | //It turns out that the only thing we really have to assert is that the first statement in each basic |
| 11366 | //block has an IL offset and appears in eeBoundaries. |
| 11367 | for (BasicBlock * block = compiler->fgFirstBB; block != nullptr; block = block->bbNext) |
| 11368 | { |
| 11369 | if ((block->bbRefs > 1) && (block->bbTreeList != nullptr)) |
| 11370 | { |
| 11371 | noway_assert(block->bbTreeList->gtOper == GT_STMT); |
| 11372 | bool found = false; |
| 11373 | if (block->bbTreeList->gtStmt.gtStmtILoffsx != BAD_IL_OFFSET) |
| 11374 | { |
| 11375 | IL_OFFSET ilOffs = jitGetILoffs(block->bbTreeList->gtStmt.gtStmtILoffsx); |
| 11376 | for (unsigned i = 0; i < eeBoundariesCount; ++i) |
| 11377 | { |
| 11378 | if (eeBoundaries[i].ilOffset == ilOffs) |
| 11379 | { |
| 11380 | found = true; |
| 11381 | break; |
| 11382 | } |
| 11383 | } |
| 11384 | } |
| 11385 | noway_assert(found && "A basic block that is a jump target did not start a new sequence point." ); |
| 11386 | } |
| 11387 | } |
| 11388 | } |
| 11389 | #endif // 0 |
| 11390 | |
| 11391 | compiler->eeSetLIdone(); |
| 11392 | } |
| 11393 | |
| 11394 | /*============================================================================ |
| 11395 | * |
| 11396 | * These are empty stubs to help the late dis-assembler to compile |
| 11397 | * if the late disassembler is being built into a non-DEBUG build. |
| 11398 | * |
| 11399 | *============================================================================ |
| 11400 | */ |
| 11401 | |
| 11402 | #if defined(LATE_DISASM) |
| 11403 | #if !defined(DEBUG) |
| 11404 | |
| 11405 | /* virtual */ |
| 11406 | const char* CodeGen::siRegVarName(size_t offs, size_t size, unsigned reg) |
| 11407 | { |
| 11408 | return NULL; |
| 11409 | } |
| 11410 | |
| 11411 | /* virtual */ |
| 11412 | const char* CodeGen::siStackVarName(size_t offs, size_t size, unsigned reg, unsigned stkOffs) |
| 11413 | { |
| 11414 | return NULL; |
| 11415 | } |
| 11416 | |
| 11417 | /*****************************************************************************/ |
| 11418 | #endif // !defined(DEBUG) |
| 11419 | #endif // defined(LATE_DISASM) |
| 11420 | /*****************************************************************************/ |
| 11421 | |
| 11422 | //------------------------------------------------------------------------ |
| 11423 | // indirForm: Make a temporary indir we can feed to pattern matching routines |
| 11424 | // in cases where we don't want to instantiate all the indirs that happen. |
| 11425 | // |
| 11426 | GenTreeIndir CodeGen::indirForm(var_types type, GenTree* base) |
| 11427 | { |
| 11428 | GenTreeIndir i(GT_IND, type, base, nullptr); |
| 11429 | i.gtRegNum = REG_NA; |
| 11430 | i.SetContained(); |
| 11431 | return i; |
| 11432 | } |
| 11433 | |
| 11434 | //------------------------------------------------------------------------ |
| 11435 | // intForm: Make a temporary int we can feed to pattern matching routines |
| 11436 | // in cases where we don't want to instantiate. |
| 11437 | // |
| 11438 | GenTreeIntCon CodeGen::intForm(var_types type, ssize_t value) |
| 11439 | { |
| 11440 | GenTreeIntCon i(type, value); |
| 11441 | i.gtRegNum = REG_NA; |
| 11442 | return i; |
| 11443 | } |
| 11444 | |
| 11445 | #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 11446 | //------------------------------------------------------------------------ |
| 11447 | // genLongReturn: Generates code for long return statement for x86 and arm. |
| 11448 | // |
| 11449 | // Note: treeNode's and op1's registers are already consumed. |
| 11450 | // |
| 11451 | // Arguments: |
| 11452 | // treeNode - The GT_RETURN or GT_RETFILT tree node with LONG return type. |
| 11453 | // |
| 11454 | // Return Value: |
| 11455 | // None |
| 11456 | // |
| 11457 | void CodeGen::genLongReturn(GenTree* treeNode) |
| 11458 | { |
| 11459 | assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT); |
| 11460 | assert(treeNode->TypeGet() == TYP_LONG); |
| 11461 | GenTree* op1 = treeNode->gtGetOp1(); |
| 11462 | var_types targetType = treeNode->TypeGet(); |
| 11463 | |
| 11464 | assert(op1 != nullptr); |
| 11465 | assert(op1->OperGet() == GT_LONG); |
| 11466 | GenTree* loRetVal = op1->gtGetOp1(); |
| 11467 | GenTree* hiRetVal = op1->gtGetOp2(); |
| 11468 | assert((loRetVal->gtRegNum != REG_NA) && (hiRetVal->gtRegNum != REG_NA)); |
| 11469 | |
| 11470 | genConsumeReg(loRetVal); |
| 11471 | genConsumeReg(hiRetVal); |
| 11472 | if (loRetVal->gtRegNum != REG_LNGRET_LO) |
| 11473 | { |
| 11474 | inst_RV_RV(ins_Copy(targetType), REG_LNGRET_LO, loRetVal->gtRegNum, TYP_INT); |
| 11475 | } |
| 11476 | if (hiRetVal->gtRegNum != REG_LNGRET_HI) |
| 11477 | { |
| 11478 | inst_RV_RV(ins_Copy(targetType), REG_LNGRET_HI, hiRetVal->gtRegNum, TYP_INT); |
| 11479 | } |
| 11480 | } |
| 11481 | #endif // _TARGET_X86_ || _TARGET_ARM_ |
| 11482 | |
| 11483 | //------------------------------------------------------------------------ |
| 11484 | // genReturn: Generates code for return statement. |
| 11485 | // In case of struct return, delegates to the genStructReturn method. |
| 11486 | // |
| 11487 | // Arguments: |
| 11488 | // treeNode - The GT_RETURN or GT_RETFILT tree node. |
| 11489 | // |
| 11490 | // Return Value: |
| 11491 | // None |
| 11492 | // |
| 11493 | void CodeGen::genReturn(GenTree* treeNode) |
| 11494 | { |
| 11495 | assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT); |
| 11496 | GenTree* op1 = treeNode->gtGetOp1(); |
| 11497 | var_types targetType = treeNode->TypeGet(); |
| 11498 | |
| 11499 | // A void GT_RETFILT is the end of a finally. For non-void filter returns we need to load the result in the return |
| 11500 | // register, if it's not already there. The processing is the same as GT_RETURN. For filters, the IL spec says the |
| 11501 | // result is type int32. Further, the only legal values are 0 or 1; the use of other values is "undefined". |
| 11502 | assert(!treeNode->OperIs(GT_RETFILT) || (targetType == TYP_VOID) || (targetType == TYP_INT)); |
| 11503 | |
| 11504 | #ifdef DEBUG |
| 11505 | if (targetType == TYP_VOID) |
| 11506 | { |
| 11507 | assert(op1 == nullptr); |
| 11508 | } |
| 11509 | #endif // DEBUG |
| 11510 | |
| 11511 | #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 11512 | if (targetType == TYP_LONG) |
| 11513 | { |
| 11514 | genLongReturn(treeNode); |
| 11515 | } |
| 11516 | else |
| 11517 | #endif // _TARGET_X86_ || _TARGET_ARM_ |
| 11518 | { |
| 11519 | if (isStructReturn(treeNode)) |
| 11520 | { |
| 11521 | genStructReturn(treeNode); |
| 11522 | } |
| 11523 | else if (targetType != TYP_VOID) |
| 11524 | { |
| 11525 | assert(op1 != nullptr); |
| 11526 | noway_assert(op1->gtRegNum != REG_NA); |
| 11527 | |
| 11528 | // !! NOTE !! genConsumeReg will clear op1 as GC ref after it has |
| 11529 | // consumed a reg for the operand. This is because the variable |
| 11530 | // is dead after return. But we are issuing more instructions |
| 11531 | // like "profiler leave callback" after this consumption. So |
| 11532 | // if you are issuing more instructions after this point, |
| 11533 | // remember to keep the variable live up until the new method |
| 11534 | // exit point where it is actually dead. |
| 11535 | genConsumeReg(op1); |
| 11536 | |
| 11537 | #if defined(_TARGET_ARM64_) |
| 11538 | genSimpleReturn(treeNode); |
| 11539 | #else // !_TARGET_ARM64_ |
| 11540 | #if defined(_TARGET_X86_) |
| 11541 | if (varTypeIsFloating(treeNode)) |
| 11542 | { |
| 11543 | genFloatReturn(treeNode); |
| 11544 | } |
| 11545 | else |
| 11546 | #elif defined(_TARGET_ARM_) |
| 11547 | if (varTypeIsFloating(treeNode) && (compiler->opts.compUseSoftFP || compiler->info.compIsVarArgs)) |
| 11548 | { |
| 11549 | if (targetType == TYP_FLOAT) |
| 11550 | { |
| 11551 | getEmitter()->emitIns_R_R(INS_vmov_f2i, EA_4BYTE, REG_INTRET, op1->gtRegNum); |
| 11552 | } |
| 11553 | else |
| 11554 | { |
| 11555 | assert(targetType == TYP_DOUBLE); |
| 11556 | getEmitter()->emitIns_R_R_R(INS_vmov_d2i, EA_8BYTE, REG_INTRET, REG_NEXT(REG_INTRET), |
| 11557 | op1->gtRegNum); |
| 11558 | } |
| 11559 | } |
| 11560 | else |
| 11561 | #endif // _TARGET_ARM_ |
| 11562 | { |
| 11563 | regNumber retReg = varTypeIsFloating(treeNode) ? REG_FLOATRET : REG_INTRET; |
| 11564 | if (op1->gtRegNum != retReg) |
| 11565 | { |
| 11566 | inst_RV_RV(ins_Move_Extend(targetType, true), retReg, op1->gtRegNum, targetType); |
| 11567 | } |
| 11568 | } |
| 11569 | #endif // !_TARGET_ARM64_ |
| 11570 | } |
| 11571 | } |
| 11572 | |
| 11573 | #ifdef PROFILING_SUPPORTED |
| 11574 | // !! Note !! |
| 11575 | // TODO-AMD64-Unix: If the profiler hook is implemented on *nix, make sure for 2 register returned structs |
| 11576 | // the RAX and RDX needs to be kept alive. Make the necessary changes in lowerxarch.cpp |
| 11577 | // in the handling of the GT_RETURN statement. |
| 11578 | // Such structs containing GC pointers need to be handled by calling gcInfo.gcMarkRegSetNpt |
| 11579 | // for the return registers containing GC refs. |
| 11580 | |
| 11581 | // There will be a single return block while generating profiler ELT callbacks. |
| 11582 | // |
| 11583 | // Reason for not materializing Leave callback as a GT_PROF_HOOK node after GT_RETURN: |
| 11584 | // In flowgraph and other places assert that the last node of a block marked as |
| 11585 | // BBJ_RETURN is either a GT_RETURN or GT_JMP or a tail call. It would be nice to |
| 11586 | // maintain such an invariant irrespective of whether profiler hook needed or not. |
| 11587 | // Also, there is not much to be gained by materializing it as an explicit node. |
| 11588 | if (compiler->compCurBB == compiler->genReturnBB) |
| 11589 | { |
| 11590 | // !! NOTE !! |
| 11591 | // Since we are invalidating the assumption that we would slip into the epilog |
| 11592 | // right after the "return", we need to preserve the return reg's GC state |
| 11593 | // across the call until actual method return. |
| 11594 | ReturnTypeDesc retTypeDesc; |
| 11595 | unsigned regCount = 0; |
| 11596 | if (compiler->compMethodReturnsMultiRegRetType()) |
| 11597 | { |
| 11598 | if (varTypeIsLong(compiler->info.compRetNativeType)) |
| 11599 | { |
| 11600 | retTypeDesc.InitializeLongReturnType(compiler); |
| 11601 | } |
| 11602 | else // we must have a struct return type |
| 11603 | { |
| 11604 | retTypeDesc.InitializeStructReturnType(compiler, compiler->info.compMethodInfo->args.retTypeClass); |
| 11605 | } |
| 11606 | regCount = retTypeDesc.GetReturnRegCount(); |
| 11607 | } |
| 11608 | |
| 11609 | if (varTypeIsGC(compiler->info.compRetType)) |
| 11610 | { |
| 11611 | gcInfo.gcMarkRegPtrVal(REG_INTRET, compiler->info.compRetType); |
| 11612 | } |
| 11613 | else if (compiler->compMethodReturnsMultiRegRetType()) |
| 11614 | { |
| 11615 | for (unsigned i = 0; i < regCount; ++i) |
| 11616 | { |
| 11617 | if (varTypeIsGC(retTypeDesc.GetReturnRegType(i))) |
| 11618 | { |
| 11619 | gcInfo.gcMarkRegPtrVal(retTypeDesc.GetABIReturnReg(i), retTypeDesc.GetReturnRegType(i)); |
| 11620 | } |
| 11621 | } |
| 11622 | } |
| 11623 | |
| 11624 | genProfilingLeaveCallback(); |
| 11625 | |
| 11626 | if (varTypeIsGC(compiler->info.compRetType)) |
| 11627 | { |
| 11628 | gcInfo.gcMarkRegSetNpt(genRegMask(REG_INTRET)); |
| 11629 | } |
| 11630 | else if (compiler->compMethodReturnsMultiRegRetType()) |
| 11631 | { |
| 11632 | for (unsigned i = 0; i < regCount; ++i) |
| 11633 | { |
| 11634 | if (varTypeIsGC(retTypeDesc.GetReturnRegType(i))) |
| 11635 | { |
| 11636 | gcInfo.gcMarkRegSetNpt(genRegMask(retTypeDesc.GetABIReturnReg(i))); |
| 11637 | } |
| 11638 | } |
| 11639 | } |
| 11640 | } |
| 11641 | #endif // PROFILING_SUPPORTED |
| 11642 | |
| 11643 | #if defined(DEBUG) && defined(_TARGET_XARCH_) |
| 11644 | bool doStackPointerCheck = compiler->opts.compStackCheckOnRet; |
| 11645 | |
| 11646 | #if FEATURE_EH_FUNCLETS |
| 11647 | // Don't do stack pointer check at the return from a funclet; only for the main function. |
| 11648 | if (compiler->funCurrentFunc()->funKind != FUNC_ROOT) |
| 11649 | { |
| 11650 | doStackPointerCheck = false; |
| 11651 | } |
| 11652 | #else // !FEATURE_EH_FUNCLETS |
| 11653 | // Don't generate stack checks for x86 finally/filter EH returns: these are not invoked |
| 11654 | // with the same SP as the main function. See also CodeGen::genEHFinallyOrFilterRet(). |
| 11655 | if ((compiler->compCurBB->bbJumpKind == BBJ_EHFINALLYRET) || (compiler->compCurBB->bbJumpKind == BBJ_EHFILTERRET)) |
| 11656 | { |
| 11657 | doStackPointerCheck = false; |
| 11658 | } |
| 11659 | #endif // !FEATURE_EH_FUNCLETS |
| 11660 | |
| 11661 | genStackPointerCheck(doStackPointerCheck, compiler->lvaReturnSpCheck); |
| 11662 | #endif // defined(DEBUG) && defined(_TARGET_XARCH_) |
| 11663 | } |
| 11664 | |
| 11665 | #if defined(DEBUG) && defined(_TARGET_XARCH_) |
| 11666 | |
| 11667 | //------------------------------------------------------------------------ |
| 11668 | // genStackPointerCheck: Generate code to check the stack pointer against a saved value. |
| 11669 | // This is a debug check. |
| 11670 | // |
| 11671 | // Arguments: |
| 11672 | // doStackPointerCheck - If true, do the stack pointer check, otherwise do nothing. |
| 11673 | // lvaStackPointerVar - The local variable number that holds the value of the stack pointer |
| 11674 | // we are comparing against. |
| 11675 | // |
| 11676 | // Return Value: |
| 11677 | // None |
| 11678 | // |
| 11679 | void CodeGen::genStackPointerCheck(bool doStackPointerCheck, unsigned lvaStackPointerVar) |
| 11680 | { |
| 11681 | if (doStackPointerCheck) |
| 11682 | { |
| 11683 | noway_assert(lvaStackPointerVar != 0xCCCCCCCC && compiler->lvaTable[lvaStackPointerVar].lvDoNotEnregister && |
| 11684 | compiler->lvaTable[lvaStackPointerVar].lvOnFrame); |
| 11685 | getEmitter()->emitIns_S_R(INS_cmp, EA_PTRSIZE, REG_SPBASE, lvaStackPointerVar, 0); |
| 11686 | |
| 11687 | BasicBlock* sp_check = genCreateTempLabel(); |
| 11688 | getEmitter()->emitIns_J(INS_je, sp_check); |
| 11689 | instGen(INS_BREAKPOINT); |
| 11690 | genDefineTempLabel(sp_check); |
| 11691 | } |
| 11692 | } |
| 11693 | |
| 11694 | #endif // defined(DEBUG) && defined(_TARGET_XARCH_) |
| 11695 | |