| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // |
| 6 | |
| 7 | #include "jitpch.h" |
| 8 | #include "rangecheck.h" |
| 9 | |
| 10 | // Max stack depth (path length) in walking the UD chain. |
| 11 | static const int MAX_SEARCH_DEPTH = 100; |
| 12 | |
| 13 | // Max nodes to visit in the UD chain for the current method being compiled. |
| 14 | static const int MAX_VISIT_BUDGET = 8192; |
| 15 | |
| 16 | // RangeCheck constructor. |
| 17 | RangeCheck::RangeCheck(Compiler* pCompiler) |
| 18 | : m_pOverflowMap(nullptr) |
| 19 | , m_pRangeMap(nullptr) |
| 20 | , m_pSearchPath(nullptr) |
| 21 | #ifdef DEBUG |
| 22 | , m_fMappedDefs(false) |
| 23 | , m_pDefTable(nullptr) |
| 24 | #endif |
| 25 | , m_pCompiler(pCompiler) |
| 26 | , m_alloc(pCompiler->getAllocator(CMK_RangeCheck)) |
| 27 | , m_nVisitBudget(MAX_VISIT_BUDGET) |
| 28 | { |
| 29 | } |
| 30 | |
| 31 | bool RangeCheck::IsOverBudget() |
| 32 | { |
| 33 | return (m_nVisitBudget <= 0); |
| 34 | } |
| 35 | |
| 36 | // Get the range map in which computed ranges are cached. |
| 37 | RangeCheck::RangeMap* RangeCheck::GetRangeMap() |
| 38 | { |
| 39 | if (m_pRangeMap == nullptr) |
| 40 | { |
| 41 | m_pRangeMap = new (m_alloc) RangeMap(m_alloc); |
| 42 | } |
| 43 | return m_pRangeMap; |
| 44 | } |
| 45 | |
| 46 | // Get the overflow map in which computed overflows are cached. |
| 47 | RangeCheck::OverflowMap* RangeCheck::GetOverflowMap() |
| 48 | { |
| 49 | if (m_pOverflowMap == nullptr) |
| 50 | { |
| 51 | m_pOverflowMap = new (m_alloc) OverflowMap(m_alloc); |
| 52 | } |
| 53 | return m_pOverflowMap; |
| 54 | } |
| 55 | |
| 56 | // Get the length of the array vn, if it is new. |
| 57 | int RangeCheck::GetArrLength(ValueNum vn) |
| 58 | { |
| 59 | ValueNum arrRefVN = m_pCompiler->vnStore->GetArrForLenVn(vn); |
| 60 | return m_pCompiler->vnStore->GetNewArrSize(arrRefVN); |
| 61 | } |
| 62 | |
| 63 | // Check if the computed range is within bounds. |
| 64 | bool RangeCheck::BetweenBounds(Range& range, int lower, GenTree* upper) |
| 65 | { |
| 66 | #ifdef DEBUG |
| 67 | if (m_pCompiler->verbose) |
| 68 | { |
| 69 | printf("%s BetweenBounds <%d, " , range.ToString(m_pCompiler->getAllocatorDebugOnly()), lower); |
| 70 | Compiler::printTreeID(upper); |
| 71 | printf(">\n" ); |
| 72 | } |
| 73 | #endif // DEBUG |
| 74 | |
| 75 | ValueNumStore* vnStore = m_pCompiler->vnStore; |
| 76 | |
| 77 | // Get the VN for the upper limit. |
| 78 | ValueNum uLimitVN = vnStore->VNConservativeNormalValue(upper->gtVNPair); |
| 79 | |
| 80 | #ifdef DEBUG |
| 81 | JITDUMP(FMT_VN " upper bound is: " , uLimitVN); |
| 82 | if (m_pCompiler->verbose) |
| 83 | { |
| 84 | vnStore->vnDump(m_pCompiler, uLimitVN); |
| 85 | } |
| 86 | JITDUMP("\n" ); |
| 87 | #endif |
| 88 | |
| 89 | int arrSize = 0; |
| 90 | |
| 91 | if (vnStore->IsVNConstant(uLimitVN)) |
| 92 | { |
| 93 | ssize_t constVal = -1; |
| 94 | unsigned iconFlags = 0; |
| 95 | |
| 96 | if (m_pCompiler->optIsTreeKnownIntValue(true, upper, &constVal, &iconFlags)) |
| 97 | { |
| 98 | arrSize = (int)constVal; |
| 99 | } |
| 100 | } |
| 101 | else if (vnStore->IsVNArrLen(uLimitVN)) |
| 102 | { |
| 103 | // Get the array reference from the length. |
| 104 | ValueNum arrRefVN = vnStore->GetArrForLenVn(uLimitVN); |
| 105 | // Check if array size can be obtained. |
| 106 | arrSize = vnStore->GetNewArrSize(arrRefVN); |
| 107 | } |
| 108 | else if (!vnStore->IsVNCheckedBound(uLimitVN)) |
| 109 | { |
| 110 | // If the upper limit is not length, then bail. |
| 111 | return false; |
| 112 | } |
| 113 | |
| 114 | JITDUMP("Array size is: %d\n" , arrSize); |
| 115 | |
| 116 | // Upper limit: len + ucns (upper limit constant). |
| 117 | if (range.UpperLimit().IsBinOpArray()) |
| 118 | { |
| 119 | if (range.UpperLimit().vn != uLimitVN) |
| 120 | { |
| 121 | return false; |
| 122 | } |
| 123 | |
| 124 | int ucns = range.UpperLimit().GetConstant(); |
| 125 | |
| 126 | // Upper limit: Len + [0..n] |
| 127 | if (ucns >= 0) |
| 128 | { |
| 129 | return false; |
| 130 | } |
| 131 | |
| 132 | // Since upper limit is bounded by the array, return true if lower bound is good. |
| 133 | if (range.LowerLimit().IsConstant() && range.LowerLimit().GetConstant() >= 0) |
| 134 | { |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | // Check if we have the array size allocated by new. |
| 139 | if (arrSize <= 0) |
| 140 | { |
| 141 | return false; |
| 142 | } |
| 143 | |
| 144 | // At this point, |
| 145 | // upper limit = len + ucns. ucns < 0 |
| 146 | // lower limit = len + lcns. |
| 147 | if (range.LowerLimit().IsBinOpArray()) |
| 148 | { |
| 149 | int lcns = range.LowerLimit().GetConstant(); |
| 150 | if (lcns >= 0 || -lcns > arrSize) |
| 151 | { |
| 152 | return false; |
| 153 | } |
| 154 | return (range.LowerLimit().vn == uLimitVN && lcns <= ucns); |
| 155 | } |
| 156 | } |
| 157 | // If upper limit is constant |
| 158 | else if (range.UpperLimit().IsConstant()) |
| 159 | { |
| 160 | if (arrSize <= 0) |
| 161 | { |
| 162 | return false; |
| 163 | } |
| 164 | int ucns = range.UpperLimit().GetConstant(); |
| 165 | if (ucns >= arrSize) |
| 166 | { |
| 167 | return false; |
| 168 | } |
| 169 | if (range.LowerLimit().IsConstant()) |
| 170 | { |
| 171 | int lcns = range.LowerLimit().GetConstant(); |
| 172 | // Make sure lcns < ucns which is already less than arrSize. |
| 173 | return (lcns >= 0 && lcns <= ucns); |
| 174 | } |
| 175 | if (range.LowerLimit().IsBinOpArray()) |
| 176 | { |
| 177 | int lcns = range.LowerLimit().GetConstant(); |
| 178 | // len + lcns, make sure we don't subtract too much from len. |
| 179 | if (lcns >= 0 || -lcns > arrSize) |
| 180 | { |
| 181 | return false; |
| 182 | } |
| 183 | // Make sure a.len + lcns <= ucns. |
| 184 | return (range.LowerLimit().vn == uLimitVN && (arrSize + lcns) <= ucns); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | return false; |
| 189 | } |
| 190 | |
| 191 | void RangeCheck::OptimizeRangeCheck(BasicBlock* block, GenTree* stmt, GenTree* treeParent) |
| 192 | { |
| 193 | // Check if we are dealing with a bounds check node. |
| 194 | if (treeParent->OperGet() != GT_COMMA) |
| 195 | { |
| 196 | return; |
| 197 | } |
| 198 | |
| 199 | // If we are not looking at array bounds check, bail. |
| 200 | GenTree* tree = treeParent->gtOp.gtOp1; |
| 201 | if (!tree->OperIsBoundsCheck()) |
| 202 | { |
| 203 | return; |
| 204 | } |
| 205 | |
| 206 | GenTreeBoundsChk* bndsChk = tree->AsBoundsChk(); |
| 207 | m_pCurBndsChk = bndsChk; |
| 208 | GenTree* treeIndex = bndsChk->gtIndex; |
| 209 | |
| 210 | // Take care of constant index first, like a[2], for example. |
| 211 | ValueNum idxVn = m_pCompiler->vnStore->VNConservativeNormalValue(treeIndex->gtVNPair); |
| 212 | ValueNum arrLenVn = m_pCompiler->vnStore->VNConservativeNormalValue(bndsChk->gtArrLen->gtVNPair); |
| 213 | int arrSize = 0; |
| 214 | |
| 215 | if (m_pCompiler->vnStore->IsVNConstant(arrLenVn)) |
| 216 | { |
| 217 | ssize_t constVal = -1; |
| 218 | unsigned iconFlags = 0; |
| 219 | |
| 220 | if (m_pCompiler->optIsTreeKnownIntValue(true, bndsChk->gtArrLen, &constVal, &iconFlags)) |
| 221 | { |
| 222 | arrSize = (int)constVal; |
| 223 | } |
| 224 | } |
| 225 | else |
| 226 | #ifdef FEATURE_SIMD |
| 227 | if (tree->gtOper != GT_SIMD_CHK |
| 228 | #ifdef FEATURE_HW_INTRINSICS |
| 229 | && tree->gtOper != GT_HW_INTRINSIC_CHK |
| 230 | #endif // FEATURE_HW_INTRINSICS |
| 231 | ) |
| 232 | #endif // FEATURE_SIMD |
| 233 | { |
| 234 | arrSize = GetArrLength(arrLenVn); |
| 235 | } |
| 236 | |
| 237 | JITDUMP("ArrSize for lengthVN:%03X = %d\n" , arrLenVn, arrSize); |
| 238 | if (m_pCompiler->vnStore->IsVNConstant(idxVn) && (arrSize > 0)) |
| 239 | { |
| 240 | ssize_t idxVal = -1; |
| 241 | unsigned iconFlags = 0; |
| 242 | if (!m_pCompiler->optIsTreeKnownIntValue(true, treeIndex, &idxVal, &iconFlags)) |
| 243 | { |
| 244 | return; |
| 245 | } |
| 246 | |
| 247 | JITDUMP("[RangeCheck::OptimizeRangeCheck] Is index %d in <0, arrLenVn " FMT_VN " sz:%d>.\n" , idxVal, arrLenVn, |
| 248 | arrSize); |
| 249 | if ((idxVal < arrSize) && (idxVal >= 0)) |
| 250 | { |
| 251 | JITDUMP("Removing range check\n" ); |
| 252 | m_pCompiler->optRemoveRangeCheck(treeParent, stmt); |
| 253 | return; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | GetRangeMap()->RemoveAll(); |
| 258 | GetOverflowMap()->RemoveAll(); |
| 259 | m_pSearchPath = new (m_alloc) SearchPath(m_alloc); |
| 260 | |
| 261 | // Get the range for this index. |
| 262 | Range range = GetRange(block, treeIndex, false DEBUGARG(0)); |
| 263 | |
| 264 | // If upper or lower limit is found to be unknown (top), or it was found to |
| 265 | // be unknown because of over budget or a deep search, then return early. |
| 266 | if (range.UpperLimit().IsUnknown() || range.LowerLimit().IsUnknown()) |
| 267 | { |
| 268 | // Note: If we had stack depth too deep in the GetRange call, we'd be |
| 269 | // too deep even in the DoesOverflow call. So return early. |
| 270 | return; |
| 271 | } |
| 272 | |
| 273 | if (DoesOverflow(block, treeIndex)) |
| 274 | { |
| 275 | JITDUMP("Method determined to overflow.\n" ); |
| 276 | return; |
| 277 | } |
| 278 | |
| 279 | JITDUMP("Range value %s\n" , range.ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 280 | m_pSearchPath->RemoveAll(); |
| 281 | Widen(block, treeIndex, &range); |
| 282 | |
| 283 | // If upper or lower limit is unknown, then return. |
| 284 | if (range.UpperLimit().IsUnknown() || range.LowerLimit().IsUnknown()) |
| 285 | { |
| 286 | return; |
| 287 | } |
| 288 | |
| 289 | // Is the range between the lower and upper bound values. |
| 290 | if (BetweenBounds(range, 0, bndsChk->gtArrLen)) |
| 291 | { |
| 292 | JITDUMP("[RangeCheck::OptimizeRangeCheck] Between bounds\n" ); |
| 293 | m_pCompiler->optRemoveRangeCheck(treeParent, stmt); |
| 294 | } |
| 295 | return; |
| 296 | } |
| 297 | |
| 298 | void RangeCheck::Widen(BasicBlock* block, GenTree* tree, Range* pRange) |
| 299 | { |
| 300 | #ifdef DEBUG |
| 301 | if (m_pCompiler->verbose) |
| 302 | { |
| 303 | printf("[RangeCheck::Widen] " FMT_BB ", \n" , block->bbNum); |
| 304 | Compiler::printTreeID(tree); |
| 305 | printf("\n" ); |
| 306 | } |
| 307 | #endif // DEBUG |
| 308 | |
| 309 | Range& range = *pRange; |
| 310 | |
| 311 | // Try to deduce the lower bound, if it is not known already. |
| 312 | if (range.LowerLimit().IsDependent() || range.LowerLimit().IsUnknown()) |
| 313 | { |
| 314 | // To determine the lower bound, ask if the loop increases monotonically. |
| 315 | bool increasing = IsMonotonicallyIncreasing(tree, false); |
| 316 | JITDUMP("IsMonotonicallyIncreasing %d" , increasing); |
| 317 | if (increasing) |
| 318 | { |
| 319 | GetRangeMap()->RemoveAll(); |
| 320 | *pRange = GetRange(block, tree, true DEBUGARG(0)); |
| 321 | } |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | bool RangeCheck::IsBinOpMonotonicallyIncreasing(GenTreeOp* binop) |
| 326 | { |
| 327 | assert(binop->OperIs(GT_ADD)); |
| 328 | |
| 329 | GenTree* op1 = binop->gtGetOp1(); |
| 330 | GenTree* op2 = binop->gtGetOp2(); |
| 331 | |
| 332 | JITDUMP("[RangeCheck::IsBinOpMonotonicallyIncreasing] [%06d], [%06d]\n" , Compiler::dspTreeID(op1), |
| 333 | Compiler::dspTreeID(op2)); |
| 334 | // Check if we have a var + const. |
| 335 | if (op2->OperGet() == GT_LCL_VAR) |
| 336 | { |
| 337 | jitstd::swap(op1, op2); |
| 338 | } |
| 339 | if (op1->OperGet() != GT_LCL_VAR) |
| 340 | { |
| 341 | JITDUMP("Not monotonic because op1 is not lclVar.\n" ); |
| 342 | return false; |
| 343 | } |
| 344 | switch (op2->OperGet()) |
| 345 | { |
| 346 | case GT_LCL_VAR: |
| 347 | // When adding two local variables, we also must ensure that any constant is non-negative. |
| 348 | return IsMonotonicallyIncreasing(op1, true) && IsMonotonicallyIncreasing(op2, true); |
| 349 | |
| 350 | case GT_CNS_INT: |
| 351 | return (op2->AsIntConCommon()->IconValue() >= 0) && IsMonotonicallyIncreasing(op1, false); |
| 352 | |
| 353 | default: |
| 354 | JITDUMP("Not monotonic because expression is not recognized.\n" ); |
| 355 | return false; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | // The parameter rejectNegativeConst is true when we are adding two local vars (see above) |
| 360 | bool RangeCheck::IsMonotonicallyIncreasing(GenTree* expr, bool rejectNegativeConst) |
| 361 | { |
| 362 | JITDUMP("[RangeCheck::IsMonotonicallyIncreasing] [%06d]\n" , Compiler::dspTreeID(expr)); |
| 363 | |
| 364 | // Add hashtable entry for expr. |
| 365 | bool alreadyPresent = m_pSearchPath->Set(expr, nullptr); |
| 366 | if (alreadyPresent) |
| 367 | { |
| 368 | return true; |
| 369 | } |
| 370 | |
| 371 | // Remove hashtable entry for expr when we exit the present scope. |
| 372 | auto code = [this, expr] { m_pSearchPath->Remove(expr); }; |
| 373 | jitstd::utility::scoped_code<decltype(code)> finally(code); |
| 374 | |
| 375 | if (m_pSearchPath->GetCount() > MAX_SEARCH_DEPTH) |
| 376 | { |
| 377 | return false; |
| 378 | } |
| 379 | |
| 380 | // If expr is constant, then it is not part of the dependency |
| 381 | // loop which has to increase monotonically. |
| 382 | ValueNum vn = expr->gtVNPair.GetConservative(); |
| 383 | if (m_pCompiler->vnStore->IsVNInt32Constant(vn)) |
| 384 | { |
| 385 | if (rejectNegativeConst) |
| 386 | { |
| 387 | int cons = m_pCompiler->vnStore->ConstantValue<int>(vn); |
| 388 | return (cons >= 0); |
| 389 | } |
| 390 | else |
| 391 | { |
| 392 | return true; |
| 393 | } |
| 394 | } |
| 395 | // If the rhs expr is local, then try to find the def of the local. |
| 396 | else if (expr->IsLocal()) |
| 397 | { |
| 398 | BasicBlock* asgBlock; |
| 399 | GenTreeOp* asg = GetSsaDefAsg(expr->AsLclVarCommon(), &asgBlock); |
| 400 | return (asg != nullptr) && IsMonotonicallyIncreasing(asg->gtGetOp2(), rejectNegativeConst); |
| 401 | } |
| 402 | else if (expr->OperGet() == GT_ADD) |
| 403 | { |
| 404 | return IsBinOpMonotonicallyIncreasing(expr->AsOp()); |
| 405 | } |
| 406 | else if (expr->OperGet() == GT_PHI) |
| 407 | { |
| 408 | for (GenTreeArgList* args = expr->gtOp.gtOp1->AsArgList(); args != nullptr; args = args->Rest()) |
| 409 | { |
| 410 | // If the arg is already in the path, skip. |
| 411 | if (m_pSearchPath->Lookup(args->Current())) |
| 412 | { |
| 413 | continue; |
| 414 | } |
| 415 | if (!IsMonotonicallyIncreasing(args->Current(), rejectNegativeConst)) |
| 416 | { |
| 417 | JITDUMP("Phi argument not monotonic\n" ); |
| 418 | return false; |
| 419 | } |
| 420 | } |
| 421 | return true; |
| 422 | } |
| 423 | JITDUMP("Unknown tree type\n" ); |
| 424 | return false; |
| 425 | } |
| 426 | |
| 427 | // Given a lclvar use, try to find the lclvar's defining assignment and its containing block. |
| 428 | GenTreeOp* RangeCheck::GetSsaDefAsg(GenTreeLclVarCommon* lclUse, BasicBlock** asgBlock) |
| 429 | { |
| 430 | unsigned ssaNum = lclUse->GetSsaNum(); |
| 431 | |
| 432 | if (ssaNum == SsaConfig::RESERVED_SSA_NUM) |
| 433 | { |
| 434 | return nullptr; |
| 435 | } |
| 436 | |
| 437 | LclSsaVarDsc* ssaData = m_pCompiler->lvaTable[lclUse->GetLclNum()].GetPerSsaData(ssaNum); |
| 438 | GenTree* lclDef = ssaData->m_defLoc.m_tree; |
| 439 | |
| 440 | if (lclDef == nullptr) |
| 441 | { |
| 442 | return nullptr; |
| 443 | } |
| 444 | |
| 445 | // We have the def node but we also need the assignment node to get its source. |
| 446 | // gtGetParent can be used to get the assignment node but it's rather expensive |
| 447 | // and not strictly necessary here, there shouldn't be any other node between |
| 448 | // the assignment node and its destination node. |
| 449 | GenTree* asg = lclDef->gtNext; |
| 450 | |
| 451 | if (!asg->OperIs(GT_ASG) || (asg->gtGetOp1() != lclDef)) |
| 452 | { |
| 453 | return nullptr; |
| 454 | } |
| 455 | |
| 456 | #ifdef DEBUG |
| 457 | Location* loc = GetDef(lclUse); |
| 458 | assert(loc->parent == asg); |
| 459 | assert(loc->block == ssaData->m_defLoc.m_blk); |
| 460 | #endif |
| 461 | |
| 462 | *asgBlock = ssaData->m_defLoc.m_blk; |
| 463 | return asg->AsOp(); |
| 464 | } |
| 465 | |
| 466 | #ifdef DEBUG |
| 467 | UINT64 RangeCheck::HashCode(unsigned lclNum, unsigned ssaNum) |
| 468 | { |
| 469 | assert(ssaNum != SsaConfig::RESERVED_SSA_NUM); |
| 470 | return UINT64(lclNum) << 32 | ssaNum; |
| 471 | } |
| 472 | |
| 473 | // Get the def location of a given variable. |
| 474 | RangeCheck::Location* RangeCheck::GetDef(unsigned lclNum, unsigned ssaNum) |
| 475 | { |
| 476 | Location* loc = nullptr; |
| 477 | if (ssaNum == SsaConfig::RESERVED_SSA_NUM) |
| 478 | { |
| 479 | return nullptr; |
| 480 | } |
| 481 | if (!m_fMappedDefs) |
| 482 | { |
| 483 | MapMethodDefs(); |
| 484 | } |
| 485 | // No defs. |
| 486 | if (m_pDefTable == nullptr) |
| 487 | { |
| 488 | return nullptr; |
| 489 | } |
| 490 | m_pDefTable->Lookup(HashCode(lclNum, ssaNum), &loc); |
| 491 | return loc; |
| 492 | } |
| 493 | |
| 494 | RangeCheck::Location* RangeCheck::GetDef(GenTreeLclVarCommon* lcl) |
| 495 | { |
| 496 | return GetDef(lcl->GetLclNum(), lcl->GetSsaNum()); |
| 497 | } |
| 498 | |
| 499 | // Add the def location to the hash table. |
| 500 | void RangeCheck::SetDef(UINT64 hash, Location* loc) |
| 501 | { |
| 502 | if (m_pDefTable == nullptr) |
| 503 | { |
| 504 | m_pDefTable = new (m_alloc) VarToLocMap(m_alloc); |
| 505 | } |
| 506 | #ifdef DEBUG |
| 507 | Location* loc2; |
| 508 | if (m_pDefTable->Lookup(hash, &loc2)) |
| 509 | { |
| 510 | JITDUMP("Already have " FMT_BB ", [%06d], [%06d] for hash => %0I64X" , loc2->block->bbNum, |
| 511 | Compiler::dspTreeID(loc2->stmt), Compiler::dspTreeID(loc2->tree), hash); |
| 512 | assert(false); |
| 513 | } |
| 514 | #endif |
| 515 | m_pDefTable->Set(hash, loc); |
| 516 | } |
| 517 | #endif |
| 518 | |
| 519 | // Merge assertions on the edge flowing into the block about a variable. |
| 520 | void RangeCheck::MergeEdgeAssertions(GenTreeLclVarCommon* lcl, ASSERT_VALARG_TP assertions, Range* pRange) |
| 521 | { |
| 522 | if (BitVecOps::IsEmpty(m_pCompiler->apTraits, assertions)) |
| 523 | { |
| 524 | return; |
| 525 | } |
| 526 | |
| 527 | if (lcl->gtSsaNum == SsaConfig::RESERVED_SSA_NUM) |
| 528 | { |
| 529 | return; |
| 530 | } |
| 531 | // Walk through the "assertions" to check if the apply. |
| 532 | BitVecOps::Iter iter(m_pCompiler->apTraits, assertions); |
| 533 | unsigned index = 0; |
| 534 | while (iter.NextElem(&index)) |
| 535 | { |
| 536 | AssertionIndex assertionIndex = GetAssertionIndex(index); |
| 537 | |
| 538 | Compiler::AssertionDsc* curAssertion = m_pCompiler->optGetAssertion(assertionIndex); |
| 539 | |
| 540 | Limit limit(Limit::keUndef); |
| 541 | genTreeOps cmpOper = GT_NONE; |
| 542 | |
| 543 | LclSsaVarDsc* ssaData = m_pCompiler->lvaTable[lcl->gtLclNum].GetPerSsaData(lcl->gtSsaNum); |
| 544 | ValueNum normalLclVN = m_pCompiler->vnStore->VNConservativeNormalValue(ssaData->m_vnPair); |
| 545 | |
| 546 | // Current assertion is of the form (i < len - cns) != 0 |
| 547 | if (curAssertion->IsCheckedBoundArithBound()) |
| 548 | { |
| 549 | ValueNumStore::CompareCheckedBoundArithInfo info; |
| 550 | |
| 551 | // Get i, len, cns and < as "info." |
| 552 | m_pCompiler->vnStore->GetCompareCheckedBoundArithInfo(curAssertion->op1.vn, &info); |
| 553 | |
| 554 | // If we don't have the same variable we are comparing against, bail. |
| 555 | if (normalLclVN != info.cmpOp) |
| 556 | { |
| 557 | continue; |
| 558 | } |
| 559 | |
| 560 | if ((info.arrOper != GT_ADD) && (info.arrOper != GT_SUB)) |
| 561 | { |
| 562 | continue; |
| 563 | } |
| 564 | |
| 565 | // If the operand that operates on the bound is not constant, then done. |
| 566 | if (!m_pCompiler->vnStore->IsVNInt32Constant(info.arrOp)) |
| 567 | { |
| 568 | continue; |
| 569 | } |
| 570 | |
| 571 | int cons = m_pCompiler->vnStore->ConstantValue<int>(info.arrOp); |
| 572 | limit = Limit(Limit::keBinOpArray, info.vnBound, info.arrOper == GT_SUB ? -cons : cons); |
| 573 | cmpOper = (genTreeOps)info.cmpOper; |
| 574 | } |
| 575 | // Current assertion is of the form (i < len) != 0 |
| 576 | else if (curAssertion->IsCheckedBoundBound()) |
| 577 | { |
| 578 | ValueNumStore::CompareCheckedBoundArithInfo info; |
| 579 | |
| 580 | // Get the info as "i", "<" and "len" |
| 581 | m_pCompiler->vnStore->GetCompareCheckedBound(curAssertion->op1.vn, &info); |
| 582 | |
| 583 | // If we don't have the same variable we are comparing against, bail. |
| 584 | if (normalLclVN != info.cmpOp) |
| 585 | { |
| 586 | continue; |
| 587 | } |
| 588 | |
| 589 | limit = Limit(Limit::keBinOpArray, info.vnBound, 0); |
| 590 | cmpOper = (genTreeOps)info.cmpOper; |
| 591 | } |
| 592 | // Current assertion is of the form (i < 100) != 0 |
| 593 | else if (curAssertion->IsConstantBound()) |
| 594 | { |
| 595 | ValueNumStore::ConstantBoundInfo info; |
| 596 | |
| 597 | // Get the info as "i", "<" and "100" |
| 598 | m_pCompiler->vnStore->GetConstantBoundInfo(curAssertion->op1.vn, &info); |
| 599 | |
| 600 | // If we don't have the same variable we are comparing against, bail. |
| 601 | if (normalLclVN != info.cmpOpVN) |
| 602 | { |
| 603 | continue; |
| 604 | } |
| 605 | |
| 606 | limit = Limit(Limit::keConstant, info.constVal); |
| 607 | cmpOper = (genTreeOps)info.cmpOper; |
| 608 | } |
| 609 | // Current assertion is not supported, ignore it |
| 610 | else |
| 611 | { |
| 612 | continue; |
| 613 | } |
| 614 | |
| 615 | assert(limit.IsBinOpArray() || limit.IsConstant()); |
| 616 | |
| 617 | // Make sure the assertion is of the form != 0 or == 0. |
| 618 | if (curAssertion->op2.vn != m_pCompiler->vnStore->VNZeroForType(TYP_INT)) |
| 619 | { |
| 620 | continue; |
| 621 | } |
| 622 | #ifdef DEBUG |
| 623 | if (m_pCompiler->verbose) |
| 624 | { |
| 625 | m_pCompiler->optPrintAssertion(curAssertion, assertionIndex); |
| 626 | } |
| 627 | #endif |
| 628 | |
| 629 | ValueNum arrLenVN = m_pCompiler->vnStore->VNConservativeNormalValue(m_pCurBndsChk->gtArrLen->gtVNPair); |
| 630 | |
| 631 | if (m_pCompiler->vnStore->IsVNConstant(arrLenVN)) |
| 632 | { |
| 633 | // Set arrLenVN to NoVN; this will make it match the "vn" recorded on |
| 634 | // constant limits (where we explicitly track the constant and don't |
| 635 | // redundantly store its VN in the "vn" field). |
| 636 | arrLenVN = ValueNumStore::NoVN; |
| 637 | } |
| 638 | |
| 639 | // During assertion prop we add assertions of the form: |
| 640 | // |
| 641 | // (i < length) == 0 |
| 642 | // (i < length) != 0 |
| 643 | // (i < 100) == 0 |
| 644 | // (i < 100) != 0 |
| 645 | // |
| 646 | // At this point, we have detected that op1.vn is (i < length) or (i < length + cns) or |
| 647 | // (i < 100) and the op2.vn is 0. |
| 648 | // |
| 649 | // Now, let us check if we are == 0 (i.e., op1 assertion is false) or != 0 (op1 assertion |
| 650 | // is true.), |
| 651 | // |
| 652 | // If we have an assertion of the form == 0 (i.e., equals false), then reverse relop. |
| 653 | // The relop has to be reversed because we have: (i < length) is false which is the same |
| 654 | // as (i >= length). |
| 655 | if (curAssertion->assertionKind == Compiler::OAK_EQUAL) |
| 656 | { |
| 657 | cmpOper = GenTree::ReverseRelop(cmpOper); |
| 658 | } |
| 659 | |
| 660 | // Bounds are inclusive, so add -1 for upper bound when "<". But make sure we won't overflow. |
| 661 | if (cmpOper == GT_LT && !limit.AddConstant(-1)) |
| 662 | { |
| 663 | continue; |
| 664 | } |
| 665 | // Bounds are inclusive, so add +1 for lower bound when ">". But make sure we won't overflow. |
| 666 | if (cmpOper == GT_GT && !limit.AddConstant(1)) |
| 667 | { |
| 668 | continue; |
| 669 | } |
| 670 | |
| 671 | // Doesn't tighten the current bound. So skip. |
| 672 | if (pRange->uLimit.IsConstant() && limit.vn != arrLenVN) |
| 673 | { |
| 674 | continue; |
| 675 | } |
| 676 | |
| 677 | // Check if the incoming limit from assertions tightens the existing upper limit. |
| 678 | if (pRange->uLimit.IsBinOpArray() && (pRange->uLimit.vn == arrLenVN)) |
| 679 | { |
| 680 | // We have checked the current range's (pRange's) upper limit is either of the form: |
| 681 | // length + cns |
| 682 | // and length == the bndsChkCandidate's arrLen |
| 683 | // |
| 684 | // We want to check if the incoming limit tightens the bound, and for that |
| 685 | // we need to make sure that incoming limit is also on the same length (or |
| 686 | // length + cns) and not some other length. |
| 687 | |
| 688 | if (limit.vn != arrLenVN) |
| 689 | { |
| 690 | JITDUMP("Array length VN did not match arrLen=" FMT_VN ", limit=" FMT_VN "\n" , arrLenVN, limit.vn); |
| 691 | continue; |
| 692 | } |
| 693 | |
| 694 | int curCns = pRange->uLimit.cns; |
| 695 | int limCns = (limit.IsBinOpArray()) ? limit.cns : 0; |
| 696 | |
| 697 | // Incoming limit doesn't tighten the existing upper limit. |
| 698 | if (limCns >= curCns) |
| 699 | { |
| 700 | JITDUMP("Bound limit %d doesn't tighten current bound %d\n" , limCns, curCns); |
| 701 | continue; |
| 702 | } |
| 703 | } |
| 704 | else |
| 705 | { |
| 706 | // Current range's upper bound is not "length + cns" and the |
| 707 | // incoming limit is not on the same length as the bounds check candidate. |
| 708 | // So we could skip this assertion. But in cases, of Dependent or Unknown |
| 709 | // type of upper limit, the incoming assertion still tightens the upper |
| 710 | // bound to a saner value. So do not skip the assertion. |
| 711 | } |
| 712 | |
| 713 | // cmpOp (loop index i) cmpOper len +/- cns |
| 714 | switch (cmpOper) |
| 715 | { |
| 716 | case GT_LT: |
| 717 | pRange->uLimit = limit; |
| 718 | break; |
| 719 | |
| 720 | case GT_GT: |
| 721 | pRange->lLimit = limit; |
| 722 | break; |
| 723 | |
| 724 | case GT_GE: |
| 725 | pRange->lLimit = limit; |
| 726 | break; |
| 727 | |
| 728 | case GT_LE: |
| 729 | pRange->uLimit = limit; |
| 730 | break; |
| 731 | |
| 732 | default: |
| 733 | // All other 'cmpOper' kinds leave lLimit/uLimit unchanged |
| 734 | break; |
| 735 | } |
| 736 | JITDUMP("The range after edge merging:" ); |
| 737 | JITDUMP(pRange->ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 738 | JITDUMP("\n" ); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | // Merge assertions from the pred edges of the block, i.e., check for any assertions about "op's" value numbers for phi |
| 743 | // arguments. If not a phi argument, check if we assertions about local variables. |
| 744 | void RangeCheck::MergeAssertion(BasicBlock* block, GenTree* op, Range* pRange DEBUGARG(int indent)) |
| 745 | { |
| 746 | JITDUMP("Merging assertions from pred edges of " FMT_BB " for op [%06d] " FMT_VN "\n" , block->bbNum, |
| 747 | Compiler::dspTreeID(op), m_pCompiler->vnStore->VNConservativeNormalValue(op->gtVNPair)); |
| 748 | ASSERT_TP assertions = BitVecOps::UninitVal(); |
| 749 | |
| 750 | // If we have a phi arg, we can get to the block from it and use its assertion out. |
| 751 | if (op->gtOper == GT_PHI_ARG) |
| 752 | { |
| 753 | GenTreePhiArg* arg = (GenTreePhiArg*)op; |
| 754 | BasicBlock* pred = arg->gtPredBB; |
| 755 | if (pred->bbFallsThrough() && pred->bbNext == block) |
| 756 | { |
| 757 | assertions = pred->bbAssertionOut; |
| 758 | JITDUMP("Merge assertions from pred " FMT_BB " edge: %s\n" , pred->bbNum, |
| 759 | BitVecOps::ToString(m_pCompiler->apTraits, assertions)); |
| 760 | } |
| 761 | else if ((pred->bbJumpKind == BBJ_COND || pred->bbJumpKind == BBJ_ALWAYS) && pred->bbJumpDest == block) |
| 762 | { |
| 763 | if (m_pCompiler->bbJtrueAssertionOut != nullptr) |
| 764 | { |
| 765 | assertions = m_pCompiler->bbJtrueAssertionOut[pred->bbNum]; |
| 766 | JITDUMP("Merge assertions from pred " FMT_BB " JTrue edge: %s\n" , pred->bbNum, |
| 767 | BitVecOps::ToString(m_pCompiler->apTraits, assertions)); |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | // Get assertions from bbAssertionIn. |
| 772 | else if (op->IsLocal()) |
| 773 | { |
| 774 | assertions = block->bbAssertionIn; |
| 775 | } |
| 776 | |
| 777 | if (!BitVecOps::MayBeUninit(assertions)) |
| 778 | { |
| 779 | // Perform the merge step to fine tune the range value. |
| 780 | MergeEdgeAssertions(op->AsLclVarCommon(), assertions, pRange); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | // Compute the range for a binary operation. |
| 785 | Range RangeCheck::ComputeRangeForBinOp(BasicBlock* block, GenTreeOp* binop, bool monotonic DEBUGARG(int indent)) |
| 786 | { |
| 787 | assert(binop->OperIs(GT_ADD)); |
| 788 | |
| 789 | GenTree* op1 = binop->gtGetOp1(); |
| 790 | GenTree* op2 = binop->gtGetOp2(); |
| 791 | |
| 792 | Range* op1RangeCached = nullptr; |
| 793 | Range op1Range = Limit(Limit::keUndef); |
| 794 | // Check if the range value is already cached. |
| 795 | if (!GetRangeMap()->Lookup(op1, &op1RangeCached)) |
| 796 | { |
| 797 | // If we already have the op in the path, then, just rely on assertions, else |
| 798 | // find the range. |
| 799 | if (m_pSearchPath->Lookup(op1)) |
| 800 | { |
| 801 | op1Range = Range(Limit(Limit::keDependent)); |
| 802 | } |
| 803 | else |
| 804 | { |
| 805 | op1Range = GetRange(block, op1, monotonic DEBUGARG(indent)); |
| 806 | } |
| 807 | MergeAssertion(block, op1, &op1Range DEBUGARG(indent + 1)); |
| 808 | } |
| 809 | else |
| 810 | { |
| 811 | op1Range = *op1RangeCached; |
| 812 | } |
| 813 | |
| 814 | Range* op2RangeCached; |
| 815 | Range op2Range = Limit(Limit::keUndef); |
| 816 | // Check if the range value is already cached. |
| 817 | if (!GetRangeMap()->Lookup(op2, &op2RangeCached)) |
| 818 | { |
| 819 | // If we already have the op in the path, then, just rely on assertions, else |
| 820 | // find the range. |
| 821 | if (m_pSearchPath->Lookup(op2)) |
| 822 | { |
| 823 | op2Range = Range(Limit(Limit::keDependent)); |
| 824 | } |
| 825 | else |
| 826 | { |
| 827 | op2Range = GetRange(block, op2, monotonic DEBUGARG(indent)); |
| 828 | } |
| 829 | MergeAssertion(block, op2, &op2Range DEBUGARG(indent + 1)); |
| 830 | } |
| 831 | else |
| 832 | { |
| 833 | op2Range = *op2RangeCached; |
| 834 | } |
| 835 | |
| 836 | Range r = RangeOps::Add(op1Range, op2Range); |
| 837 | JITDUMP("BinOp add ranges %s %s = %s\n" , op1Range.ToString(m_pCompiler->getAllocatorDebugOnly()), |
| 838 | op2Range.ToString(m_pCompiler->getAllocatorDebugOnly()), r.ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 839 | return r; |
| 840 | } |
| 841 | |
| 842 | // Compute the range for a local var definition. |
| 843 | Range RangeCheck::ComputeRangeForLocalDef(BasicBlock* block, |
| 844 | GenTreeLclVarCommon* lcl, |
| 845 | bool monotonic DEBUGARG(int indent)) |
| 846 | { |
| 847 | BasicBlock* asgBlock; |
| 848 | GenTreeOp* asg = GetSsaDefAsg(lcl, &asgBlock); |
| 849 | if (asg == nullptr) |
| 850 | { |
| 851 | return Range(Limit(Limit::keUnknown)); |
| 852 | } |
| 853 | #ifdef DEBUG |
| 854 | if (m_pCompiler->verbose) |
| 855 | { |
| 856 | JITDUMP("----------------------------------------------------\n" ); |
| 857 | m_pCompiler->gtDispTree(asg); |
| 858 | JITDUMP("----------------------------------------------------\n" ); |
| 859 | } |
| 860 | #endif |
| 861 | assert(asg->OperIs(GT_ASG)); |
| 862 | Range range = GetRange(asgBlock, asg->gtGetOp2(), monotonic DEBUGARG(indent)); |
| 863 | if (!BitVecOps::MayBeUninit(block->bbAssertionIn)) |
| 864 | { |
| 865 | JITDUMP("Merge assertions from " FMT_BB ":%s for assignment about [%06d]\n" , block->bbNum, |
| 866 | BitVecOps::ToString(m_pCompiler->apTraits, block->bbAssertionIn), Compiler::dspTreeID(asg->gtGetOp1())); |
| 867 | MergeEdgeAssertions(asg->gtGetOp1()->AsLclVarCommon(), block->bbAssertionIn, &range); |
| 868 | JITDUMP("done merging\n" ); |
| 869 | } |
| 870 | return range; |
| 871 | } |
| 872 | |
| 873 | // https://msdn.microsoft.com/en-us/windows/apps/hh285054.aspx |
| 874 | // CLR throws IDS_EE_ARRAY_DIMENSIONS_EXCEEDED if array length is > INT_MAX. |
| 875 | // new byte[INT_MAX]; still throws OutOfMemoryException on my system with 32 GB RAM. |
| 876 | // I believe practical limits are still smaller than this number. |
| 877 | #define ARRLEN_MAX (0x7FFFFFFF) |
| 878 | |
| 879 | // Get the limit's maximum possible value, treating array length to be ARRLEN_MAX. |
| 880 | bool RangeCheck::GetLimitMax(Limit& limit, int* pMax) |
| 881 | { |
| 882 | int& max1 = *pMax; |
| 883 | switch (limit.type) |
| 884 | { |
| 885 | case Limit::keConstant: |
| 886 | max1 = limit.GetConstant(); |
| 887 | break; |
| 888 | |
| 889 | case Limit::keBinOpArray: |
| 890 | { |
| 891 | int tmp = GetArrLength(limit.vn); |
| 892 | if (tmp <= 0) |
| 893 | { |
| 894 | tmp = ARRLEN_MAX; |
| 895 | } |
| 896 | if (IntAddOverflows(tmp, limit.GetConstant())) |
| 897 | { |
| 898 | return false; |
| 899 | } |
| 900 | max1 = tmp + limit.GetConstant(); |
| 901 | } |
| 902 | break; |
| 903 | |
| 904 | default: |
| 905 | return false; |
| 906 | } |
| 907 | return true; |
| 908 | } |
| 909 | |
| 910 | // Check if the arithmetic overflows. |
| 911 | bool RangeCheck::AddOverflows(Limit& limit1, Limit& limit2) |
| 912 | { |
| 913 | int max1; |
| 914 | if (!GetLimitMax(limit1, &max1)) |
| 915 | { |
| 916 | return true; |
| 917 | } |
| 918 | |
| 919 | int max2; |
| 920 | if (!GetLimitMax(limit2, &max2)) |
| 921 | { |
| 922 | return true; |
| 923 | } |
| 924 | |
| 925 | return IntAddOverflows(max1, max2); |
| 926 | } |
| 927 | |
| 928 | // Does the bin operation overflow. |
| 929 | bool RangeCheck::DoesBinOpOverflow(BasicBlock* block, GenTreeOp* binop) |
| 930 | { |
| 931 | GenTree* op1 = binop->gtGetOp1(); |
| 932 | GenTree* op2 = binop->gtGetOp2(); |
| 933 | |
| 934 | if (!m_pSearchPath->Lookup(op1) && DoesOverflow(block, op1)) |
| 935 | { |
| 936 | return true; |
| 937 | } |
| 938 | |
| 939 | if (!m_pSearchPath->Lookup(op2) && DoesOverflow(block, op2)) |
| 940 | { |
| 941 | return true; |
| 942 | } |
| 943 | |
| 944 | // Get the cached ranges of op1 |
| 945 | Range* op1Range = nullptr; |
| 946 | if (!GetRangeMap()->Lookup(op1, &op1Range)) |
| 947 | { |
| 948 | return true; |
| 949 | } |
| 950 | // Get the cached ranges of op2 |
| 951 | Range* op2Range = nullptr; |
| 952 | if (!GetRangeMap()->Lookup(op2, &op2Range)) |
| 953 | { |
| 954 | return true; |
| 955 | } |
| 956 | |
| 957 | // If dependent, check if we can use some assertions. |
| 958 | if (op1Range->UpperLimit().IsDependent()) |
| 959 | { |
| 960 | MergeAssertion(block, op1, op1Range DEBUGARG(0)); |
| 961 | } |
| 962 | |
| 963 | // If dependent, check if we can use some assertions. |
| 964 | if (op2Range->UpperLimit().IsDependent()) |
| 965 | { |
| 966 | MergeAssertion(block, op2, op2Range DEBUGARG(0)); |
| 967 | } |
| 968 | |
| 969 | JITDUMP("Checking bin op overflow %s %s\n" , op1Range->ToString(m_pCompiler->getAllocatorDebugOnly()), |
| 970 | op2Range->ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 971 | |
| 972 | if (!AddOverflows(op1Range->UpperLimit(), op2Range->UpperLimit())) |
| 973 | { |
| 974 | return false; |
| 975 | } |
| 976 | return true; |
| 977 | } |
| 978 | |
| 979 | // Check if the var definition the rhs involves arithmetic that overflows. |
| 980 | bool RangeCheck::DoesVarDefOverflow(GenTreeLclVarCommon* lcl) |
| 981 | { |
| 982 | BasicBlock* asgBlock; |
| 983 | GenTreeOp* asg = GetSsaDefAsg(lcl, &asgBlock); |
| 984 | return (asg == nullptr) || DoesOverflow(asgBlock, asg->gtGetOp2()); |
| 985 | } |
| 986 | |
| 987 | bool RangeCheck::DoesPhiOverflow(BasicBlock* block, GenTree* expr) |
| 988 | { |
| 989 | for (GenTreeArgList* args = expr->gtOp.gtOp1->AsArgList(); args != nullptr; args = args->Rest()) |
| 990 | { |
| 991 | GenTree* arg = args->Current(); |
| 992 | if (m_pSearchPath->Lookup(arg)) |
| 993 | { |
| 994 | continue; |
| 995 | } |
| 996 | if (DoesOverflow(block, arg)) |
| 997 | { |
| 998 | return true; |
| 999 | } |
| 1000 | } |
| 1001 | return false; |
| 1002 | } |
| 1003 | |
| 1004 | bool RangeCheck::DoesOverflow(BasicBlock* block, GenTree* expr) |
| 1005 | { |
| 1006 | bool overflows = false; |
| 1007 | if (!GetOverflowMap()->Lookup(expr, &overflows)) |
| 1008 | { |
| 1009 | overflows = ComputeDoesOverflow(block, expr); |
| 1010 | } |
| 1011 | return overflows; |
| 1012 | } |
| 1013 | |
| 1014 | bool RangeCheck::ComputeDoesOverflow(BasicBlock* block, GenTree* expr) |
| 1015 | { |
| 1016 | JITDUMP("Does overflow [%06d]?\n" , Compiler::dspTreeID(expr)); |
| 1017 | m_pSearchPath->Set(expr, block); |
| 1018 | |
| 1019 | bool overflows = true; |
| 1020 | |
| 1021 | if (m_pSearchPath->GetCount() > MAX_SEARCH_DEPTH) |
| 1022 | { |
| 1023 | overflows = true; |
| 1024 | } |
| 1025 | // If the definition chain resolves to a constant, it doesn't overflow. |
| 1026 | else if (m_pCompiler->vnStore->IsVNConstant(expr->gtVNPair.GetConservative())) |
| 1027 | { |
| 1028 | overflows = false; |
| 1029 | } |
| 1030 | // Check if the var def has rhs involving arithmetic that overflows. |
| 1031 | else if (expr->IsLocal()) |
| 1032 | { |
| 1033 | overflows = DoesVarDefOverflow(expr->AsLclVarCommon()); |
| 1034 | } |
| 1035 | // Check if add overflows. |
| 1036 | else if (expr->OperGet() == GT_ADD) |
| 1037 | { |
| 1038 | overflows = DoesBinOpOverflow(block, expr->AsOp()); |
| 1039 | } |
| 1040 | // Walk through phi arguments to check if phi arguments involve arithmetic that overflows. |
| 1041 | else if (expr->OperGet() == GT_PHI) |
| 1042 | { |
| 1043 | overflows = DoesPhiOverflow(block, expr); |
| 1044 | } |
| 1045 | GetOverflowMap()->Set(expr, overflows); |
| 1046 | m_pSearchPath->Remove(expr); |
| 1047 | return overflows; |
| 1048 | } |
| 1049 | |
| 1050 | // Compute the range recursively by asking for the range of each variable in the dependency chain. |
| 1051 | // eg.: c = a + b; ask range of "a" and "b" and add the results. |
| 1052 | // If the result cannot be determined i.e., the dependency chain does not terminate in a value, |
| 1053 | // but continues to loop, which will happen with phi nodes. We end the looping by calling the |
| 1054 | // value as "dependent" (dep). |
| 1055 | // If the loop is proven to be "monotonic", then make liberal decisions while merging phi node. |
| 1056 | // eg.: merge((0, dep), (dep, dep)) = (0, dep) |
| 1057 | Range RangeCheck::ComputeRange(BasicBlock* block, GenTree* expr, bool monotonic DEBUGARG(int indent)) |
| 1058 | { |
| 1059 | bool newlyAdded = !m_pSearchPath->Set(expr, block); |
| 1060 | Range range = Limit(Limit::keUndef); |
| 1061 | |
| 1062 | ValueNum vn = m_pCompiler->vnStore->VNConservativeNormalValue(expr->gtVNPair); |
| 1063 | // If newly added in the current search path, then reduce the budget. |
| 1064 | if (newlyAdded) |
| 1065 | { |
| 1066 | // Assert that we are not re-entrant for a node which has been |
| 1067 | // visited and resolved before and not currently on the search path. |
| 1068 | noway_assert(!GetRangeMap()->Lookup(expr)); |
| 1069 | m_nVisitBudget--; |
| 1070 | } |
| 1071 | // Prevent quadratic behavior. |
| 1072 | if (IsOverBudget()) |
| 1073 | { |
| 1074 | // Set to unknown, since an Unknown range resolution, will stop further |
| 1075 | // searches. This is because anything that merges with Unknown will |
| 1076 | // yield Unknown. Unknown is lattice top. |
| 1077 | range = Range(Limit(Limit::keUnknown)); |
| 1078 | JITDUMP("GetRange not tractable within max node visit budget.\n" ); |
| 1079 | } |
| 1080 | // Prevent unbounded recursion. |
| 1081 | else if (m_pSearchPath->GetCount() > MAX_SEARCH_DEPTH) |
| 1082 | { |
| 1083 | // Unknown is lattice top, anything that merges with Unknown will yield Unknown. |
| 1084 | range = Range(Limit(Limit::keUnknown)); |
| 1085 | JITDUMP("GetRange not tractable within max stack depth.\n" ); |
| 1086 | } |
| 1087 | // TODO-CQ: The current implementation is reliant on integer storage types |
| 1088 | // for constants. It could use INT64. Still, representing ULONG constants |
| 1089 | // might require preserving the var_type whether it is a un/signed 64-bit. |
| 1090 | // JIT64 doesn't do anything for "long" either. No asm diffs. |
| 1091 | else if (expr->TypeGet() == TYP_LONG || expr->TypeGet() == TYP_ULONG) |
| 1092 | { |
| 1093 | range = Range(Limit(Limit::keUnknown)); |
| 1094 | JITDUMP("GetRange long or ulong, setting to unknown value.\n" ); |
| 1095 | } |
| 1096 | // If VN is constant return range as constant. |
| 1097 | else if (m_pCompiler->vnStore->IsVNConstant(vn)) |
| 1098 | { |
| 1099 | range = (m_pCompiler->vnStore->TypeOfVN(vn) == TYP_INT) |
| 1100 | ? Range(Limit(Limit::keConstant, m_pCompiler->vnStore->ConstantValue<int>(vn))) |
| 1101 | : Limit(Limit::keUnknown); |
| 1102 | } |
| 1103 | // If local, find the definition from the def map and evaluate the range for rhs. |
| 1104 | else if (expr->IsLocal()) |
| 1105 | { |
| 1106 | range = ComputeRangeForLocalDef(block, expr->AsLclVarCommon(), monotonic DEBUGARG(indent + 1)); |
| 1107 | MergeAssertion(block, expr, &range DEBUGARG(indent + 1)); |
| 1108 | } |
| 1109 | // If add, then compute the range for the operands and add them. |
| 1110 | else if (expr->OperGet() == GT_ADD) |
| 1111 | { |
| 1112 | range = ComputeRangeForBinOp(block, expr->AsOp(), monotonic DEBUGARG(indent + 1)); |
| 1113 | } |
| 1114 | // If phi, then compute the range for arguments, calling the result "dependent" when looping begins. |
| 1115 | else if (expr->OperGet() == GT_PHI) |
| 1116 | { |
| 1117 | for (GenTreeArgList* args = expr->gtOp.gtOp1->AsArgList(); args != nullptr; args = args->Rest()) |
| 1118 | { |
| 1119 | Range argRange = Range(Limit(Limit::keUndef)); |
| 1120 | if (m_pSearchPath->Lookup(args->Current())) |
| 1121 | { |
| 1122 | JITDUMP("PhiArg [%06d] is already being computed\n" , Compiler::dspTreeID(args->Current())); |
| 1123 | argRange = Range(Limit(Limit::keDependent)); |
| 1124 | } |
| 1125 | else |
| 1126 | { |
| 1127 | argRange = GetRange(block, args->Current(), monotonic DEBUGARG(indent + 1)); |
| 1128 | } |
| 1129 | assert(!argRange.LowerLimit().IsUndef()); |
| 1130 | assert(!argRange.UpperLimit().IsUndef()); |
| 1131 | MergeAssertion(block, args->Current(), &argRange DEBUGARG(indent + 1)); |
| 1132 | JITDUMP("Merging ranges %s %s:" , range.ToString(m_pCompiler->getAllocatorDebugOnly()), |
| 1133 | argRange.ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 1134 | range = RangeOps::Merge(range, argRange, monotonic); |
| 1135 | JITDUMP("%s\n" , range.ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 1136 | } |
| 1137 | } |
| 1138 | else |
| 1139 | { |
| 1140 | // The expression is not recognized, so the result is unknown. |
| 1141 | range = Range(Limit(Limit::keUnknown)); |
| 1142 | } |
| 1143 | |
| 1144 | GetRangeMap()->Set(expr, new (m_alloc) Range(range)); |
| 1145 | m_pSearchPath->Remove(expr); |
| 1146 | return range; |
| 1147 | } |
| 1148 | |
| 1149 | #ifdef DEBUG |
| 1150 | void Indent(int indent) |
| 1151 | { |
| 1152 | for (int i = 0; i < indent; ++i) |
| 1153 | { |
| 1154 | JITDUMP(" " ); |
| 1155 | } |
| 1156 | } |
| 1157 | #endif |
| 1158 | |
| 1159 | // Get the range, if it is already computed, use the cached range value, else compute it. |
| 1160 | Range RangeCheck::GetRange(BasicBlock* block, GenTree* expr, bool monotonic DEBUGARG(int indent)) |
| 1161 | { |
| 1162 | #ifdef DEBUG |
| 1163 | if (m_pCompiler->verbose) |
| 1164 | { |
| 1165 | Indent(indent); |
| 1166 | JITDUMP("[RangeCheck::GetRange] " FMT_BB, block->bbNum); |
| 1167 | m_pCompiler->gtDispTree(expr); |
| 1168 | Indent(indent); |
| 1169 | JITDUMP("{\n" , expr); |
| 1170 | } |
| 1171 | #endif |
| 1172 | |
| 1173 | Range* pRange = nullptr; |
| 1174 | Range range = |
| 1175 | GetRangeMap()->Lookup(expr, &pRange) ? *pRange : ComputeRange(block, expr, monotonic DEBUGARG(indent)); |
| 1176 | |
| 1177 | #ifdef DEBUG |
| 1178 | if (m_pCompiler->verbose) |
| 1179 | { |
| 1180 | Indent(indent); |
| 1181 | JITDUMP(" %s Range [%06d] => %s\n" , (pRange == nullptr) ? "Computed" : "Cached" , Compiler::dspTreeID(expr), |
| 1182 | range.ToString(m_pCompiler->getAllocatorDebugOnly())); |
| 1183 | Indent(indent); |
| 1184 | JITDUMP("}\n" , expr); |
| 1185 | } |
| 1186 | #endif |
| 1187 | return range; |
| 1188 | } |
| 1189 | |
| 1190 | #ifdef DEBUG |
| 1191 | // If this is a tree local definition add its location to the def map. |
| 1192 | void RangeCheck::MapStmtDefs(const Location& loc) |
| 1193 | { |
| 1194 | GenTreeLclVarCommon* tree = loc.tree; |
| 1195 | |
| 1196 | unsigned lclNum = tree->GetLclNum(); |
| 1197 | unsigned ssaNum = tree->GetSsaNum(); |
| 1198 | if (ssaNum == SsaConfig::RESERVED_SSA_NUM) |
| 1199 | { |
| 1200 | return; |
| 1201 | } |
| 1202 | |
| 1203 | // If useasg then get the correct ssaNum to add to the map. |
| 1204 | if (tree->gtFlags & GTF_VAR_USEASG) |
| 1205 | { |
| 1206 | unsigned ssaNum = m_pCompiler->GetSsaNumForLocalVarDef(tree); |
| 1207 | if (ssaNum != SsaConfig::RESERVED_SSA_NUM) |
| 1208 | { |
| 1209 | // To avoid ind(addr) use asgs |
| 1210 | if (loc.parent->OperIs(GT_ASG)) |
| 1211 | { |
| 1212 | SetDef(HashCode(lclNum, ssaNum), new (m_alloc) Location(loc)); |
| 1213 | } |
| 1214 | } |
| 1215 | } |
| 1216 | // If def get the location and store it against the variable's ssaNum. |
| 1217 | else if (tree->gtFlags & GTF_VAR_DEF) |
| 1218 | { |
| 1219 | if (loc.parent->OperGet() == GT_ASG) |
| 1220 | { |
| 1221 | SetDef(HashCode(lclNum, ssaNum), new (m_alloc) Location(loc)); |
| 1222 | } |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | struct MapMethodDefsData |
| 1227 | { |
| 1228 | RangeCheck* rc; |
| 1229 | BasicBlock* block; |
| 1230 | GenTree* stmt; |
| 1231 | |
| 1232 | MapMethodDefsData(RangeCheck* rc, BasicBlock* block, GenTree* stmt) : rc(rc), block(block), stmt(stmt) |
| 1233 | { |
| 1234 | } |
| 1235 | }; |
| 1236 | |
| 1237 | Compiler::fgWalkResult MapMethodDefsVisitor(GenTree** ptr, Compiler::fgWalkData* data) |
| 1238 | { |
| 1239 | GenTree* tree = *ptr; |
| 1240 | MapMethodDefsData* rcd = ((MapMethodDefsData*)data->pCallbackData); |
| 1241 | |
| 1242 | if (tree->IsLocal()) |
| 1243 | { |
| 1244 | rcd->rc->MapStmtDefs(RangeCheck::Location(rcd->block, rcd->stmt, tree->AsLclVarCommon(), data->parent)); |
| 1245 | } |
| 1246 | |
| 1247 | return Compiler::WALK_CONTINUE; |
| 1248 | } |
| 1249 | |
| 1250 | void RangeCheck::MapMethodDefs() |
| 1251 | { |
| 1252 | // First, gather where all definitions occur in the program and store it in a map. |
| 1253 | for (BasicBlock* block = m_pCompiler->fgFirstBB; block; block = block->bbNext) |
| 1254 | { |
| 1255 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
| 1256 | { |
| 1257 | MapMethodDefsData data(this, block, stmt); |
| 1258 | m_pCompiler->fgWalkTreePre(&stmt->gtStmt.gtStmtExpr, MapMethodDefsVisitor, &data, false, true); |
| 1259 | } |
| 1260 | } |
| 1261 | m_fMappedDefs = true; |
| 1262 | } |
| 1263 | #endif |
| 1264 | |
| 1265 | // Entry point to range check optimizations. |
| 1266 | void RangeCheck::OptimizeRangeChecks() |
| 1267 | { |
| 1268 | if (m_pCompiler->fgSsaPassesCompleted == 0) |
| 1269 | { |
| 1270 | return; |
| 1271 | } |
| 1272 | #ifdef DEBUG |
| 1273 | if (m_pCompiler->verbose) |
| 1274 | { |
| 1275 | JITDUMP("*************** In OptimizeRangeChecks()\n" ); |
| 1276 | JITDUMP("Blocks/trees before phase\n" ); |
| 1277 | m_pCompiler->fgDispBasicBlocks(true); |
| 1278 | } |
| 1279 | #endif |
| 1280 | |
| 1281 | // Walk through trees looking for arrBndsChk node and check if it can be optimized. |
| 1282 | for (BasicBlock* block = m_pCompiler->fgFirstBB; block; block = block->bbNext) |
| 1283 | { |
| 1284 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
| 1285 | { |
| 1286 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
| 1287 | { |
| 1288 | if (IsOverBudget()) |
| 1289 | { |
| 1290 | return; |
| 1291 | } |
| 1292 | OptimizeRangeCheck(block, stmt, tree); |
| 1293 | } |
| 1294 | } |
| 1295 | } |
| 1296 | } |
| 1297 | |