| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // Defines the class "ValueNumStore", which maintains value numbers for a compilation. |
| 6 | |
| 7 | // Recall that "value numbering" assigns an integer value number to each expression. The "value |
| 8 | // number property" is that two expressions with the same value number will evaluate to the same value |
| 9 | // at runtime. Expressions with different value numbers may or may not be equivalent. This property |
| 10 | // of value numbers has obvious applications in redundancy-elimination optimizations. |
| 11 | // |
| 12 | // Since value numbers give us a way of talking about the (immutable) values to which expressions |
| 13 | // evaluate, they provide a good "handle" to use for attributing properties to values. For example, |
| 14 | // we might note that some value number represents some particular integer constant -- which has obvious |
| 15 | // application to constant propagation. Or that we know the exact type of some object reference, |
| 16 | // which might be used in devirtualization. |
| 17 | // |
| 18 | // Finally, we will also use value numbers to express control-flow-dependent assertions. Some test may |
| 19 | // imply that after the test, something new is known about a value: that an object reference is non-null |
| 20 | // after a dereference (since control flow continued because no exception was thrown); that an integer value |
| 21 | // is restricted to some subrange in after a comparison test; etc. |
| 22 | |
| 23 | /*****************************************************************************/ |
| 24 | #ifndef _VALUENUM_H_ |
| 25 | #define _VALUENUM_H_ |
| 26 | /*****************************************************************************/ |
| 27 | |
| 28 | #include "vartype.h" |
| 29 | // For "GT_COUNT" |
| 30 | #include "gentree.h" |
| 31 | // Defines the type ValueNum. |
| 32 | #include "valuenumtype.h" |
| 33 | // Defines the type SmallHashTable. |
| 34 | #include "smallhash.h" |
| 35 | |
| 36 | // A "ValueNumStore" represents the "universe" of value numbers used in a single |
| 37 | // compilation. |
| 38 | |
| 39 | // All members of the enumeration genTreeOps are also members of VNFunc. |
| 40 | // (Though some of these may be labeled "illegal"). |
| 41 | enum VNFunc |
| 42 | { |
| 43 | // Implicitly, elements of genTreeOps here. |
| 44 | VNF_Boundary = GT_COUNT, |
| 45 | #define ValueNumFuncDef(nm, arity, commute, knownNonNull, sharedStatic) VNF_##nm, |
| 46 | #include "valuenumfuncs.h" |
| 47 | VNF_COUNT |
| 48 | }; |
| 49 | |
| 50 | enum VNOperKind |
| 51 | { |
| 52 | VOK_Default, |
| 53 | VOK_Unsigned, |
| 54 | VOK_OverflowCheck, |
| 55 | VOK_Unsigned_OverflowCheck |
| 56 | }; |
| 57 | |
| 58 | // Given the bool values isUnsigned and overflowCheck return the proper VNOperKInd enum |
| 59 | // |
| 60 | VNOperKind VNGetOperKind(bool isUnsigned, bool overflowCheck); |
| 61 | |
| 62 | // Given an "oper" and associated flags with it, transform the oper into a |
| 63 | // more accurate oper that can be used in evaluation. |
| 64 | // For example, (GT_ADD, true, false) transforms to GT_ADD_UN |
| 65 | // and (GT_ADD, false, true) transforms to GT_ADD_OVF |
| 66 | // |
| 67 | VNFunc GetVNFuncForOper(genTreeOps oper, VNOperKind operKind); |
| 68 | |
| 69 | // Given a GenTree node return the VNFunc that shodul be used when value numbering |
| 70 | // |
| 71 | VNFunc GetVNFuncForNode(GenTree* node); |
| 72 | |
| 73 | // An instance of this struct represents an application of the function symbol |
| 74 | // "m_func" to the first "m_arity" (<= 4) argument values in "m_args." |
| 75 | struct VNFuncApp |
| 76 | { |
| 77 | VNFunc m_func; |
| 78 | unsigned m_arity; |
| 79 | ValueNum m_args[4]; |
| 80 | |
| 81 | bool Equals(const VNFuncApp& funcApp) |
| 82 | { |
| 83 | if (m_func != funcApp.m_func) |
| 84 | { |
| 85 | return false; |
| 86 | } |
| 87 | if (m_arity != funcApp.m_arity) |
| 88 | { |
| 89 | return false; |
| 90 | } |
| 91 | for (unsigned i = 0; i < m_arity; i++) |
| 92 | { |
| 93 | if (m_args[i] != funcApp.m_args[i]) |
| 94 | { |
| 95 | return false; |
| 96 | } |
| 97 | } |
| 98 | return true; |
| 99 | } |
| 100 | }; |
| 101 | |
| 102 | // We use a unique prefix character when printing value numbers in dumps: i.e. $1c0 |
| 103 | // This define is used with string concatenation to put this in printf format strings |
| 104 | #define FMT_VN "$%x" |
| 105 | |
| 106 | class ValueNumStore |
| 107 | { |
| 108 | |
| 109 | public: |
| 110 | // We will reserve "max unsigned" to represent "not a value number", for maps that might start uninitialized. |
| 111 | static const ValueNum NoVN = UINT32_MAX; |
| 112 | // A second special value, used to indicate that a function evaluation would cause infinite recursion. |
| 113 | static const ValueNum RecursiveVN = UINT32_MAX - 1; |
| 114 | |
| 115 | // ================================================================================================== |
| 116 | // VNMap - map from something to ValueNum, where something is typically a constant value or a VNFunc |
| 117 | // This class has two purposes - to abstract the implementation and to validate the ValueNums |
| 118 | // being stored or retrieved. |
| 119 | template <class fromType, class keyfuncs = JitLargePrimitiveKeyFuncs<fromType>> |
| 120 | class VNMap : public JitHashTable<fromType, keyfuncs, ValueNum> |
| 121 | { |
| 122 | public: |
| 123 | VNMap(CompAllocator alloc) : JitHashTable<fromType, keyfuncs, ValueNum>(alloc) |
| 124 | { |
| 125 | } |
| 126 | ~VNMap() |
| 127 | { |
| 128 | ~VNMap<fromType, keyfuncs>::JitHashTable(); |
| 129 | } |
| 130 | |
| 131 | bool Set(fromType k, ValueNum val) |
| 132 | { |
| 133 | assert(val != RecursiveVN); |
| 134 | return JitHashTable<fromType, keyfuncs, ValueNum>::Set(k, val); |
| 135 | } |
| 136 | bool Lookup(fromType k, ValueNum* pVal = nullptr) const |
| 137 | { |
| 138 | bool result = JitHashTable<fromType, keyfuncs, ValueNum>::Lookup(k, pVal); |
| 139 | assert(!result || *pVal != RecursiveVN); |
| 140 | return result; |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | private: |
| 145 | Compiler* m_pComp; |
| 146 | |
| 147 | // For allocations. (Other things?) |
| 148 | CompAllocator m_alloc; |
| 149 | |
| 150 | // TODO-Cleanup: should transform "attribs" into a struct with bit fields. That would be simpler... |
| 151 | |
| 152 | enum VNFOpAttrib |
| 153 | { |
| 154 | VNFOA_IllegalGenTreeOp = 0x1, // corresponds to a genTreeOps value that is not a legal VN func. |
| 155 | VNFOA_Commutative = 0x2, // 1 iff the function is commutative. |
| 156 | VNFOA_Arity = 0x4, // Bits 2..3 encode the arity. |
| 157 | VNFOA_AfterArity = 0x20, // Makes it clear what value the next flag(s) after Arity should have. |
| 158 | VNFOA_KnownNonNull = 0x20, // 1 iff the result is known to be non-null. |
| 159 | VNFOA_SharedStatic = 0x40, // 1 iff this VNF is represent one of the shared static jit helpers |
| 160 | }; |
| 161 | |
| 162 | static const unsigned VNFOA_ArityShift = 2; |
| 163 | static const unsigned VNFOA_ArityBits = 3; |
| 164 | static const unsigned VNFOA_MaxArity = (1 << VNFOA_ArityBits) - 1; // Max arity we can represent. |
| 165 | static const unsigned VNFOA_ArityMask = VNFOA_AfterArity - VNFOA_Arity; |
| 166 | |
| 167 | // These enum constants are used to encode the cast operation in the lowest bits by VNForCastOper |
| 168 | enum VNFCastAttrib |
| 169 | { |
| 170 | VCA_UnsignedSrc = 0x01, |
| 171 | |
| 172 | VCA_BitCount = 1, // the number of reserved bits |
| 173 | VCA_ReservedBits = 0x01, // i.e. (VCA_UnsignedSrc) |
| 174 | }; |
| 175 | |
| 176 | // An array of length GT_COUNT, mapping genTreeOp values to their VNFOpAttrib. |
| 177 | static UINT8* s_vnfOpAttribs; |
| 178 | |
| 179 | // Returns "true" iff gtOper is a legal value number function. |
| 180 | // (Requires InitValueNumStoreStatics to have been run.) |
| 181 | static bool GenTreeOpIsLegalVNFunc(genTreeOps gtOper); |
| 182 | |
| 183 | // Returns "true" iff "vnf" is a commutative (and thus binary) operator. |
| 184 | // (Requires InitValueNumStoreStatics to have been run.) |
| 185 | static bool VNFuncIsCommutative(VNFunc vnf); |
| 186 | |
| 187 | // Returns "true" iff "vnf" is a comparison (and thus binary) operator. |
| 188 | static bool VNFuncIsComparison(VNFunc vnf); |
| 189 | |
| 190 | // Returns "true" iff "vnf" can be evaluated for constant arguments. |
| 191 | static bool CanEvalForConstantArgs(VNFunc vnf); |
| 192 | |
| 193 | // Returns "true" iff "vnf" should be folded by evaluating the func with constant arguments. |
| 194 | bool VNEvalShouldFold(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN); |
| 195 | |
| 196 | // return vnf(v0) |
| 197 | template <typename T> |
| 198 | static T EvalOp(VNFunc vnf, T v0); |
| 199 | |
| 200 | // returns vnf(v0, v1). |
| 201 | template <typename T> |
| 202 | T EvalOp(VNFunc vnf, T v0, T v1); |
| 203 | |
| 204 | // return vnf(v0) or vnf(v0, v1), respectively (must, of course be unary/binary ops, respectively.) |
| 205 | template <typename T> |
| 206 | static T EvalOpSpecialized(VNFunc vnf, T v0); |
| 207 | template <typename T> |
| 208 | T EvalOpSpecialized(VNFunc vnf, T v0, T v1); |
| 209 | |
| 210 | template <typename T> |
| 211 | static int EvalComparison(VNFunc vnf, T v0, T v1); |
| 212 | |
| 213 | // Should only instantiate (in a non-trivial way) for "int" and "INT64". Returns true iff dividing "v0" by "v1" |
| 214 | // would produce integer overflow (an ArithmeticException -- *not* division by zero, which is separate.) |
| 215 | template <typename T> |
| 216 | static bool IsOverflowIntDiv(T v0, T v1); |
| 217 | |
| 218 | // Should only instantiate (in a non-trivial way) for integral types (signed/unsigned int32/int64). |
| 219 | // Returns true iff v is the zero of the appropriate type. |
| 220 | template <typename T> |
| 221 | static bool IsIntZero(T v); |
| 222 | |
| 223 | // Given an constant value number return its value. |
| 224 | int GetConstantInt32(ValueNum argVN); |
| 225 | INT64 GetConstantInt64(ValueNum argVN); |
| 226 | double GetConstantDouble(ValueNum argVN); |
| 227 | float GetConstantSingle(ValueNum argVN); |
| 228 | |
| 229 | // Assumes that all the ValueNum arguments of each of these functions have been shown to represent constants. |
| 230 | // Assumes that "vnf" is a operator of the appropriate arity (unary for the first, binary for the second). |
| 231 | // Assume that "CanEvalForConstantArgs(vnf)" is true. |
| 232 | // Returns the result of evaluating the function with those constant arguments. |
| 233 | ValueNum EvalFuncForConstantArgs(var_types typ, VNFunc vnf, ValueNum vn0); |
| 234 | ValueNum EvalFuncForConstantArgs(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
| 235 | ValueNum EvalFuncForConstantFPArgs(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
| 236 | ValueNum EvalCastForConstantArgs(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
| 237 | |
| 238 | ValueNum EvalUsingMathIdentity(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
| 239 | |
| 240 | // This is the constant value used for the default value of m_mapSelectBudget |
| 241 | #define DEFAULT_MAP_SELECT_BUDGET 100 // used by JitVNMapSelBudget |
| 242 | |
| 243 | // This is the maximum number of MapSelect terms that can be "considered" as part of evaluation of a top-level |
| 244 | // MapSelect application. |
| 245 | int m_mapSelectBudget; |
| 246 | |
| 247 | public: |
| 248 | // Initializes any static variables of ValueNumStore. |
| 249 | static void InitValueNumStoreStatics(); |
| 250 | |
| 251 | // Initialize an empty ValueNumStore. |
| 252 | ValueNumStore(Compiler* comp, CompAllocator allocator); |
| 253 | |
| 254 | // Returns "true" iff "vnf" (which may have been created by a cast from an integral value) represents |
| 255 | // a legal value number function. |
| 256 | // (Requires InitValueNumStoreStatics to have been run.) |
| 257 | static bool VNFuncIsLegal(VNFunc vnf) |
| 258 | { |
| 259 | return unsigned(vnf) > VNF_Boundary || GenTreeOpIsLegalVNFunc(static_cast<genTreeOps>(vnf)); |
| 260 | } |
| 261 | |
| 262 | // Returns the arity of "vnf". |
| 263 | static unsigned VNFuncArity(VNFunc vnf); |
| 264 | |
| 265 | // Requires "gtOper" to be a genTreeOps legally representing a VNFunc, and returns that |
| 266 | // VNFunc. |
| 267 | // (Requires InitValueNumStoreStatics to have been run.) |
| 268 | static VNFunc GenTreeOpToVNFunc(genTreeOps gtOper) |
| 269 | { |
| 270 | assert(GenTreeOpIsLegalVNFunc(gtOper)); |
| 271 | return static_cast<VNFunc>(gtOper); |
| 272 | } |
| 273 | |
| 274 | #ifdef DEBUG |
| 275 | static void RunTests(Compiler* comp); |
| 276 | #endif // DEBUG |
| 277 | |
| 278 | // This block of methods gets value numbers for constants of primitive types. |
| 279 | |
| 280 | ValueNum VNForIntCon(INT32 cnsVal); |
| 281 | ValueNum VNForLongCon(INT64 cnsVal); |
| 282 | ValueNum VNForFloatCon(float cnsVal); |
| 283 | ValueNum VNForDoubleCon(double cnsVal); |
| 284 | ValueNum VNForByrefCon(INT64 byrefVal); |
| 285 | |
| 286 | #ifdef _TARGET_64BIT_ |
| 287 | ValueNum VNForPtrSizeIntCon(INT64 cnsVal) |
| 288 | { |
| 289 | return VNForLongCon(cnsVal); |
| 290 | } |
| 291 | #else |
| 292 | ValueNum VNForPtrSizeIntCon(INT32 cnsVal) |
| 293 | { |
| 294 | return VNForIntCon(cnsVal); |
| 295 | } |
| 296 | #endif |
| 297 | |
| 298 | ValueNum VNForCastOper(var_types castToType, bool srcIsUnsigned = false); |
| 299 | |
| 300 | // We keep handle values in a separate pool, so we don't confuse a handle with an int constant |
| 301 | // that happens to be the same... |
| 302 | ValueNum VNForHandle(ssize_t cnsVal, unsigned iconFlags); |
| 303 | |
| 304 | // And the single constant for an object reference type. |
| 305 | static ValueNum VNForNull() |
| 306 | { |
| 307 | // We reserve Chunk 0 for "special" VNs. SRC_Null (== 0) is the VN of "null". |
| 308 | return ValueNum(SRC_Null); |
| 309 | } |
| 310 | |
| 311 | // The zero map is the map that returns a zero "for the appropriate type" when indexed at any index. |
| 312 | static ValueNum VNForZeroMap() |
| 313 | { |
| 314 | // We reserve Chunk 0 for "special" VNs. Let SRC_ZeroMap (== 1) be the zero map. |
| 315 | return ValueNum(SRC_ZeroMap); |
| 316 | } |
| 317 | |
| 318 | // The ROH map is the map for the "read-only heap". We assume that this is never mutated, and always |
| 319 | // has the same value number. |
| 320 | static ValueNum VNForROH() |
| 321 | { |
| 322 | // We reserve Chunk 0 for "special" VNs. Let SRC_ReadOnlyHeap (== 3) be the read-only heap. |
| 323 | return ValueNum(SRC_ReadOnlyHeap); |
| 324 | } |
| 325 | |
| 326 | // A special value number for "void" -- sometimes a type-void thing is an argument to a |
| 327 | // GT_LIST, and we want the args to be non-NoVN. |
| 328 | static ValueNum VNForVoid() |
| 329 | { |
| 330 | // We reserve Chunk 0 for "special" VNs. Let SRC_Void (== 4) be the value for "void". |
| 331 | return ValueNum(SRC_Void); |
| 332 | } |
| 333 | static ValueNumPair VNPForVoid() |
| 334 | { |
| 335 | return ValueNumPair(VNForVoid(), VNForVoid()); |
| 336 | } |
| 337 | |
| 338 | // A special value number for the empty set of exceptions. |
| 339 | static ValueNum VNForEmptyExcSet() |
| 340 | { |
| 341 | // We reserve Chunk 0 for "special" VNs. Let SRC_EmptyExcSet (== 5) be the value for the empty set of |
| 342 | // exceptions. |
| 343 | return ValueNum(SRC_EmptyExcSet); |
| 344 | } |
| 345 | static ValueNumPair VNPForEmptyExcSet() |
| 346 | { |
| 347 | return ValueNumPair(VNForEmptyExcSet(), VNForEmptyExcSet()); |
| 348 | } |
| 349 | |
| 350 | // Returns the value number for zero of the given "typ". |
| 351 | // It has an unreached() for a "typ" that has no zero value, such as TYP_BYREF. |
| 352 | ValueNum VNZeroForType(var_types typ); |
| 353 | |
| 354 | // Returns the value number for one of the given "typ". |
| 355 | // It returns NoVN for a "typ" that has no one value, such as TYP_REF. |
| 356 | ValueNum VNOneForType(var_types typ); |
| 357 | |
| 358 | // Create or return the existimg value number representing a singleton exception set |
| 359 | // for the the exception value "x". |
| 360 | ValueNum VNExcSetSingleton(ValueNum x); |
| 361 | ValueNumPair VNPExcSetSingleton(ValueNumPair x); |
| 362 | |
| 363 | // Returns true if the current pair of items are in ascending order and they are not duplicates. |
| 364 | // Used to verify that exception sets are in ascending order when processing them. |
| 365 | bool VNCheckAscending(ValueNum item, ValueNum xs1); |
| 366 | |
| 367 | // Returns the VN representing the union of the two exception sets "xs0" and "xs1". |
| 368 | // These must be VNForEmtpyExcSet() or applications of VNF_ExcSetCons, obeying |
| 369 | // the ascending order invariant. (which is preserved in the result) |
| 370 | ValueNum VNExcSetUnion(ValueNum xs0, ValueNum xs1); |
| 371 | |
| 372 | ValueNumPair VNPExcSetUnion(ValueNumPair xs0vnp, ValueNumPair xs1vnp); |
| 373 | |
| 374 | // Returns the VN representing the intersection of the two exception sets "xs0" and "xs1". |
| 375 | // These must be applications of VNF_ExcSetCons or the empty set. (i.e VNForEmptyExcSet()) |
| 376 | // and also must be in ascending order. |
| 377 | ValueNum VNExcSetIntersection(ValueNum xs0, ValueNum xs1); |
| 378 | |
| 379 | ValueNumPair VNPExcSetIntersection(ValueNumPair xs0vnp, ValueNumPair xs1vnp); |
| 380 | |
| 381 | // Returns true if every exeception singleton in the vnCandidateSet is also present |
| 382 | // in the vnFullSet. |
| 383 | // Both arguments must be either VNForEmptyExcSet() or applications of VNF_ExcSetCons. |
| 384 | bool VNExcIsSubset(ValueNum vnFullSet, ValueNum vnCandidateSet); |
| 385 | |
| 386 | // Returns "true" iff "vn" is an application of "VNF_ValWithExc". |
| 387 | bool VNHasExc(ValueNum vn) |
| 388 | { |
| 389 | VNFuncApp funcApp; |
| 390 | return GetVNFunc(vn, &funcApp) && funcApp.m_func == VNF_ValWithExc; |
| 391 | } |
| 392 | |
| 393 | // If vn "excSet" is "VNForEmptyExcSet()" we just return "vn" |
| 394 | // otherwise we use VNExcSetUnion to combine the exception sets of both "vn" and "excSet" |
| 395 | // and return that ValueNum |
| 396 | ValueNum VNWithExc(ValueNum vn, ValueNum excSet); |
| 397 | |
| 398 | ValueNumPair VNPWithExc(ValueNumPair vnp, ValueNumPair excSetVNP); |
| 399 | |
| 400 | // This sets "*pvn" to the Normal value and sets "*pvnx" to Exception set value. |
| 401 | // "pvnx" represents the set of all exceptions that can happen for the expression |
| 402 | void VNUnpackExc(ValueNum vnWx, ValueNum* pvn, ValueNum* pvnx); |
| 403 | |
| 404 | void VNPUnpackExc(ValueNumPair vnWx, ValueNumPair* pvn, ValueNumPair* pvnx); |
| 405 | |
| 406 | // This returns the Union of exceptions from vnWx and vnExcSet |
| 407 | ValueNum VNUnionExcSet(ValueNum vnWx, ValueNum vnExcSet); |
| 408 | |
| 409 | // This returns the Union of exceptions from vnpWx and vnpExcSet |
| 410 | ValueNumPair VNPUnionExcSet(ValueNumPair vnpWx, ValueNumPair vnpExcSet); |
| 411 | |
| 412 | // Sets the normal value to a new unique ValueNum |
| 413 | // Keeps any Exception set values |
| 414 | ValueNum VNMakeNormalUnique(ValueNum vn); |
| 415 | |
| 416 | // Sets the liberal & conservative |
| 417 | // Keeps any Exception set values |
| 418 | ValueNumPair VNPMakeNormalUniquePair(ValueNumPair vnp); |
| 419 | |
| 420 | // If "vn" is a "VNF_ValWithExc(norm, excSet)" value, returns the "norm" argument; otherwise, |
| 421 | // just returns "vn". |
| 422 | // The Normal value is the value number of the expression when no exceptions occurred |
| 423 | ValueNum VNNormalValue(ValueNum vn); |
| 424 | |
| 425 | // Given a "vnp", get the ValueNum kind based upon vnk, |
| 426 | // then call VNNormalValue on that ValueNum |
| 427 | // The Normal value is the value number of the expression when no exceptions occurred |
| 428 | ValueNum VNNormalValue(ValueNumPair vnp, ValueNumKind vnk); |
| 429 | |
| 430 | // Given a "vnp", get the NormalValuew for the VNK_Liberal part of that ValueNum |
| 431 | // The Normal value is the value number of the expression when no exceptions occurred |
| 432 | inline ValueNum VNLiberalNormalValue(ValueNumPair vnp) |
| 433 | { |
| 434 | return VNNormalValue(vnp, VNK_Liberal); |
| 435 | } |
| 436 | |
| 437 | // Given a "vnp", get the NormalValuew for the VNK_Conservative part of that ValueNum |
| 438 | // The Normal value is the value number of the expression when no exceptions occurred |
| 439 | inline ValueNum VNConservativeNormalValue(ValueNumPair vnp) |
| 440 | { |
| 441 | return VNNormalValue(vnp, VNK_Conservative); |
| 442 | } |
| 443 | |
| 444 | // Given a "vnp", get the Normal values for both the liberal and conservative parts of "vnp" |
| 445 | // The Normal value is the value number of the expression when no exceptions occurred |
| 446 | ValueNumPair VNPNormalPair(ValueNumPair vnp); |
| 447 | |
| 448 | // If "vn" is a "VNF_ValWithExc(norm, excSet)" value, returns the "excSet" argument; otherwise, |
| 449 | // we return a special Value Number representing the empty exception set. |
| 450 | // The exeception set value is the value number of the set of possible exceptions. |
| 451 | ValueNum VNExceptionSet(ValueNum vn); |
| 452 | |
| 453 | ValueNumPair VNPExceptionSet(ValueNumPair vn); |
| 454 | |
| 455 | // True "iff" vn is a value known to be non-null. (For example, the result of an allocation...) |
| 456 | bool IsKnownNonNull(ValueNum vn); |
| 457 | |
| 458 | // True "iff" vn is a value returned by a call to a shared static helper. |
| 459 | bool IsSharedStatic(ValueNum vn); |
| 460 | |
| 461 | // VNForFunc: We have five overloads, for arities 0, 1, 2, 3 and 4 |
| 462 | ValueNum VNForFunc(var_types typ, VNFunc func); |
| 463 | ValueNum VNForFunc(var_types typ, VNFunc func, ValueNum opVNwx); |
| 464 | // This must not be used for VNF_MapSelect applications; instead use VNForMapSelect, below. |
| 465 | ValueNum VNForFunc(var_types typ, VNFunc func, ValueNum op1VNwx, ValueNum op2VNwx); |
| 466 | ValueNum VNForFunc(var_types typ, VNFunc func, ValueNum op1VNwx, ValueNum op2VNwx, ValueNum op3VNwx); |
| 467 | |
| 468 | // The following four-op VNForFunc is used for VNF_PtrToArrElem, elemTypeEqVN, arrVN, inxVN, fldSeqVN |
| 469 | ValueNum VNForFunc( |
| 470 | var_types typ, VNFunc func, ValueNum op1VNwx, ValueNum op2VNwx, ValueNum op3VNwx, ValueNum op4VNwx); |
| 471 | |
| 472 | // This requires a "ValueNumKind" because it will attempt, given "select(phi(m1, ..., mk), ind)", to evaluate |
| 473 | // "select(m1, ind)", ..., "select(mk, ind)" to see if they agree. It needs to know which kind of value number |
| 474 | // (liberal/conservative) to read from the SSA def referenced in the phi argument. |
| 475 | ValueNum VNForMapSelect(ValueNumKind vnk, var_types typ, ValueNum op1VN, ValueNum op2VN); |
| 476 | |
| 477 | // A method that does the work for VNForMapSelect and may call itself recursively. |
| 478 | ValueNum VNForMapSelectWork( |
| 479 | ValueNumKind vnk, var_types typ, ValueNum op1VN, ValueNum op2VN, int* pBudget, bool* pUsedRecursiveVN); |
| 480 | |
| 481 | // A specialized version of VNForFunc that is used for VNF_MapStore and provides some logging when verbose is set |
| 482 | ValueNum VNForMapStore(var_types typ, ValueNum arg0VN, ValueNum arg1VN, ValueNum arg2VN); |
| 483 | |
| 484 | // These functions parallel the ones above, except that they take liberal/conservative VN pairs |
| 485 | // as arguments, and return such a pair (the pair of the function applied to the liberal args, and |
| 486 | // the function applied to the conservative args). |
| 487 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func) |
| 488 | { |
| 489 | ValueNumPair res; |
| 490 | res.SetBoth(VNForFunc(typ, func)); |
| 491 | return res; |
| 492 | } |
| 493 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func, ValueNumPair opVN) |
| 494 | { |
| 495 | return ValueNumPair(VNForFunc(typ, func, opVN.GetLiberal()), VNForFunc(typ, func, opVN.GetConservative())); |
| 496 | } |
| 497 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func, ValueNumPair op1VN, ValueNumPair op2VN) |
| 498 | { |
| 499 | return ValueNumPair(VNForFunc(typ, func, op1VN.GetLiberal(), op2VN.GetLiberal()), |
| 500 | VNForFunc(typ, func, op1VN.GetConservative(), op2VN.GetConservative())); |
| 501 | } |
| 502 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func, ValueNumPair op1VN, ValueNumPair op2VN, ValueNumPair op3VN) |
| 503 | { |
| 504 | return ValueNumPair(VNForFunc(typ, func, op1VN.GetLiberal(), op2VN.GetLiberal(), op3VN.GetLiberal()), |
| 505 | VNForFunc(typ, func, op1VN.GetConservative(), op2VN.GetConservative(), |
| 506 | op3VN.GetConservative())); |
| 507 | } |
| 508 | ValueNumPair VNPairForFunc( |
| 509 | var_types typ, VNFunc func, ValueNumPair op1VN, ValueNumPair op2VN, ValueNumPair op3VN, ValueNumPair op4VN) |
| 510 | { |
| 511 | return ValueNumPair(VNForFunc(typ, func, op1VN.GetLiberal(), op2VN.GetLiberal(), op3VN.GetLiberal(), |
| 512 | op4VN.GetLiberal()), |
| 513 | VNForFunc(typ, func, op1VN.GetConservative(), op2VN.GetConservative(), |
| 514 | op3VN.GetConservative(), op4VN.GetConservative())); |
| 515 | } |
| 516 | |
| 517 | // Get a new, unique value number for an expression that we're not equating to some function, |
| 518 | // which is the value of a tree in the given block. |
| 519 | ValueNum VNForExpr(BasicBlock* block, var_types typ = TYP_UNKNOWN); |
| 520 | |
| 521 | // This controls extra tracing of the "evaluation" of "VNF_MapSelect" functions. |
| 522 | #define FEATURE_VN_TRACE_APPLY_SELECTORS 1 |
| 523 | |
| 524 | // Return the value number corresponding to constructing "MapSelect(map, f0)", where "f0" is the |
| 525 | // (value number of) the first field in "fieldSeq". (The type of this application will be the type of "f0".) |
| 526 | // If there are no remaining fields in "fieldSeq", return that value number; otherwise, return VNApplySelectors |
| 527 | // applied to that value number and the remainder of "fieldSeq". When the 'fieldSeq' specifies a TYP_STRUCT |
| 528 | // then the size of the struct is returned by 'wbFinalStructSize' (when it is non-null) |
| 529 | ValueNum VNApplySelectors(ValueNumKind vnk, |
| 530 | ValueNum map, |
| 531 | FieldSeqNode* fieldSeq, |
| 532 | size_t* wbFinalStructSize = nullptr); |
| 533 | |
| 534 | // Used after VNApplySelectors has determined that "selectedVN" is contained in a Map using VNForMapSelect |
| 535 | // It determines whether the 'selectedVN' is of an appropriate type to be read using and indirection of 'indType' |
| 536 | // If it is appropriate type then 'selectedVN' is returned, otherwise it may insert a cast to indType |
| 537 | // or return a unique value number for an incompatible indType. |
| 538 | ValueNum VNApplySelectorsTypeCheck(ValueNum selectedVN, var_types indType, size_t structSize); |
| 539 | |
| 540 | // Assumes that "map" represents a map that is addressable by the fields in "fieldSeq", to get |
| 541 | // to a value of the type of "rhs". Returns an expression for the RHS of an assignment, in the given "block", |
| 542 | // to a location containing value "map" that will change the field addressed by "fieldSeq" to "rhs", leaving |
| 543 | // all other indices in "map" the same. |
| 544 | ValueNum VNApplySelectorsAssign( |
| 545 | ValueNumKind vnk, ValueNum map, FieldSeqNode* fieldSeq, ValueNum rhs, var_types indType, BasicBlock* block); |
| 546 | |
| 547 | // Used after VNApplySelectorsAssign has determined that "elem" is to be writen into a Map using VNForMapStore |
| 548 | // It determines whether the 'elem' is of an appropriate type to be writen using using an indirection of 'indType' |
| 549 | // It may insert a cast to indType or return a unique value number for an incompatible indType. |
| 550 | ValueNum VNApplySelectorsAssignTypeCoerce(ValueNum elem, var_types indType, BasicBlock* block); |
| 551 | |
| 552 | ValueNumPair VNPairApplySelectors(ValueNumPair map, FieldSeqNode* fieldSeq, var_types indType); |
| 553 | |
| 554 | ValueNumPair VNPairApplySelectorsAssign( |
| 555 | ValueNumPair map, FieldSeqNode* fieldSeq, ValueNumPair rhs, var_types indType, BasicBlock* block) |
| 556 | { |
| 557 | return ValueNumPair(VNApplySelectorsAssign(VNK_Liberal, map.GetLiberal(), fieldSeq, rhs.GetLiberal(), indType, |
| 558 | block), |
| 559 | VNApplySelectorsAssign(VNK_Conservative, map.GetConservative(), fieldSeq, |
| 560 | rhs.GetConservative(), indType, block)); |
| 561 | } |
| 562 | |
| 563 | // Compute the normal ValueNumber for a cast with no exceptions |
| 564 | ValueNum VNForCast(ValueNum srcVN, var_types castToType, var_types castFromType, bool srcIsUnsigned = false); |
| 565 | |
| 566 | // Compute the ValueNumberPair for a cast |
| 567 | ValueNumPair VNPairForCast(ValueNumPair srcVNPair, |
| 568 | var_types castToType, |
| 569 | var_types castFromType, |
| 570 | bool srcIsUnsigned = false, |
| 571 | bool hasOverflowCheck = false); |
| 572 | |
| 573 | // Returns true iff the VN represents an application of VNF_NotAField. |
| 574 | bool IsVNNotAField(ValueNum vn); |
| 575 | |
| 576 | // PtrToLoc values need to express a field sequence as one of their arguments. VN for null represents |
| 577 | // empty sequence, otherwise, "FieldSeq(VN(FieldHandle), restOfSeq)". |
| 578 | ValueNum VNForFieldSeq(FieldSeqNode* fieldSeq); |
| 579 | |
| 580 | // Requires that "vn" represents a field sequence, that is, is the result of a call to VNForFieldSeq. |
| 581 | // Returns the FieldSequence it represents. |
| 582 | FieldSeqNode* FieldSeqVNToFieldSeq(ValueNum vn); |
| 583 | |
| 584 | // Both argument must represent field sequences; returns the value number representing the |
| 585 | // concatenation "fsVN1 || fsVN2". |
| 586 | ValueNum FieldSeqVNAppend(ValueNum fsVN1, ValueNum fsVN2); |
| 587 | |
| 588 | // If "opA" has a PtrToLoc, PtrToArrElem, or PtrToStatic application as its value numbers, and "opB" is an integer |
| 589 | // with a "fieldSeq", returns the VN for the pointer form extended with the field sequence; or else NoVN. |
| 590 | ValueNum ExtendPtrVN(GenTree* opA, GenTree* opB); |
| 591 | // If "opA" has a PtrToLoc, PtrToArrElem, or PtrToStatic application as its value numbers, returns the VN for the |
| 592 | // pointer form extended with "fieldSeq"; or else NoVN. |
| 593 | ValueNum ExtendPtrVN(GenTree* opA, FieldSeqNode* fieldSeq); |
| 594 | |
| 595 | // Queries on value numbers. |
| 596 | // All queries taking value numbers require that those value numbers are valid, that is, that |
| 597 | // they have been returned by previous "VNFor..." operations. They can assert false if this is |
| 598 | // not true. |
| 599 | |
| 600 | // Returns TYP_UNKNOWN if the given value number has not been given a type. |
| 601 | var_types TypeOfVN(ValueNum vn); |
| 602 | |
| 603 | // Returns MAX_LOOP_NUM if the given value number's loop nest is unknown or ill-defined. |
| 604 | BasicBlock::loopNumber LoopOfVN(ValueNum vn); |
| 605 | |
| 606 | // Returns true iff the VN represents a (non-handle) constant. |
| 607 | bool IsVNConstant(ValueNum vn); |
| 608 | |
| 609 | // Returns true iff the VN represents an integeral constant. |
| 610 | bool IsVNInt32Constant(ValueNum vn); |
| 611 | |
| 612 | typedef SmallHashTable<ValueNum, bool, 8U> CheckedBoundVNSet; |
| 613 | |
| 614 | // Returns true if the VN is known or likely to appear as the conservative value number |
| 615 | // of the length argument to a GT_ARR_BOUNDS_CHECK node. |
| 616 | bool IsVNCheckedBound(ValueNum vn); |
| 617 | |
| 618 | // Record that a VN is known to appear as the conservative value number of the length |
| 619 | // argument to a GT_ARR_BOUNDS_CHECK node. |
| 620 | void SetVNIsCheckedBound(ValueNum vn); |
| 621 | |
| 622 | // Information about the individual components of a value number representing an unsigned |
| 623 | // comparison of some value against a checked bound VN. |
| 624 | struct UnsignedCompareCheckedBoundInfo |
| 625 | { |
| 626 | unsigned cmpOper; |
| 627 | ValueNum vnIdx; |
| 628 | ValueNum vnBound; |
| 629 | |
| 630 | UnsignedCompareCheckedBoundInfo() : cmpOper(GT_NONE), vnIdx(NoVN), vnBound(NoVN) |
| 631 | { |
| 632 | } |
| 633 | }; |
| 634 | |
| 635 | struct CompareCheckedBoundArithInfo |
| 636 | { |
| 637 | // (vnBound - 1) > vnOp |
| 638 | // (vnBound arrOper arrOp) cmpOper cmpOp |
| 639 | ValueNum vnBound; |
| 640 | unsigned arrOper; |
| 641 | ValueNum arrOp; |
| 642 | unsigned cmpOper; |
| 643 | ValueNum cmpOp; |
| 644 | CompareCheckedBoundArithInfo() : vnBound(NoVN), arrOper(GT_NONE), arrOp(NoVN), cmpOper(GT_NONE), cmpOp(NoVN) |
| 645 | { |
| 646 | } |
| 647 | #ifdef DEBUG |
| 648 | void dump(ValueNumStore* vnStore) |
| 649 | { |
| 650 | vnStore->vnDump(vnStore->m_pComp, cmpOp); |
| 651 | printf(" " ); |
| 652 | printf(vnStore->VNFuncName((VNFunc)cmpOper)); |
| 653 | printf(" " ); |
| 654 | vnStore->vnDump(vnStore->m_pComp, vnBound); |
| 655 | if (arrOper != GT_NONE) |
| 656 | { |
| 657 | printf(vnStore->VNFuncName((VNFunc)arrOper)); |
| 658 | vnStore->vnDump(vnStore->m_pComp, arrOp); |
| 659 | } |
| 660 | } |
| 661 | #endif |
| 662 | }; |
| 663 | |
| 664 | struct ConstantBoundInfo |
| 665 | { |
| 666 | // 100 > vnOp |
| 667 | int constVal; |
| 668 | unsigned cmpOper; |
| 669 | ValueNum cmpOpVN; |
| 670 | |
| 671 | ConstantBoundInfo() : constVal(0), cmpOper(GT_NONE), cmpOpVN(NoVN) |
| 672 | { |
| 673 | } |
| 674 | |
| 675 | #ifdef DEBUG |
| 676 | void dump(ValueNumStore* vnStore) |
| 677 | { |
| 678 | vnStore->vnDump(vnStore->m_pComp, cmpOpVN); |
| 679 | printf(" " ); |
| 680 | printf(vnStore->VNFuncName((VNFunc)cmpOper)); |
| 681 | printf(" " ); |
| 682 | printf("%d" , constVal); |
| 683 | } |
| 684 | #endif |
| 685 | }; |
| 686 | |
| 687 | // Check if "vn" is "new [] (type handle, size)" |
| 688 | bool IsVNNewArr(ValueNum vn, VNFuncApp* funcApp); |
| 689 | |
| 690 | // Check if "vn" IsVNNewArr and return <= 0 if arr size cannot be determined, else array size. |
| 691 | int GetNewArrSize(ValueNum vn); |
| 692 | |
| 693 | // Check if "vn" is "a.len" |
| 694 | bool IsVNArrLen(ValueNum vn); |
| 695 | |
| 696 | // If "vn" is VN(a.len) then return VN(a); NoVN if VN(a) can't be determined. |
| 697 | ValueNum GetArrForLenVn(ValueNum vn); |
| 698 | |
| 699 | // Return true with any Relop except for == and != and one operand has to be a 32-bit integer constant. |
| 700 | bool IsVNConstantBound(ValueNum vn); |
| 701 | |
| 702 | // If "vn" is constant bound, then populate the "info" fields for constVal, cmpOp, cmpOper. |
| 703 | void GetConstantBoundInfo(ValueNum vn, ConstantBoundInfo* info); |
| 704 | |
| 705 | // If "vn" is of the form "(uint)var < (uint)len" (or equivalent) return true. |
| 706 | bool IsVNUnsignedCompareCheckedBound(ValueNum vn, UnsignedCompareCheckedBoundInfo* info); |
| 707 | |
| 708 | // If "vn" is of the form "var < len" or "len <= var" return true. |
| 709 | bool IsVNCompareCheckedBound(ValueNum vn); |
| 710 | |
| 711 | // If "vn" is checked bound, then populate the "info" fields for the boundVn, cmpOp, cmpOper. |
| 712 | void GetCompareCheckedBound(ValueNum vn, CompareCheckedBoundArithInfo* info); |
| 713 | |
| 714 | // If "vn" is of the form "len +/- var" return true. |
| 715 | bool IsVNCheckedBoundArith(ValueNum vn); |
| 716 | |
| 717 | // If "vn" is checked bound arith, then populate the "info" fields for arrOper, arrVn, arrOp. |
| 718 | void GetCheckedBoundArithInfo(ValueNum vn, CompareCheckedBoundArithInfo* info); |
| 719 | |
| 720 | // If "vn" is of the form "var < len +/- k" return true. |
| 721 | bool IsVNCompareCheckedBoundArith(ValueNum vn); |
| 722 | |
| 723 | // If "vn" is checked bound arith, then populate the "info" fields for cmpOp, cmpOper. |
| 724 | void GetCompareCheckedBoundArithInfo(ValueNum vn, CompareCheckedBoundArithInfo* info); |
| 725 | |
| 726 | // Returns the flags on the current handle. GTF_ICON_SCOPE_HDL for example. |
| 727 | unsigned GetHandleFlags(ValueNum vn); |
| 728 | |
| 729 | // Returns true iff the VN represents a handle constant. |
| 730 | bool IsVNHandle(ValueNum vn); |
| 731 | |
| 732 | // Convert a vartype_t to the value number's storage type for that vartype_t. |
| 733 | // For example, ValueNum of type TYP_LONG are stored in a map of INT64 variables. |
| 734 | // Lang is the language (C++) type for the corresponding vartype_t. |
| 735 | template <int N> |
| 736 | struct VarTypConv |
| 737 | { |
| 738 | }; |
| 739 | |
| 740 | // Return true if two value numbers would compare equal. |
| 741 | bool VNIsEqual(ValueNum vn1, ValueNum vn2) |
| 742 | { |
| 743 | return (vn1 == vn2) && (vn1 != NoVN) && !varTypeIsFloating(TypeOfVN(vn1)); |
| 744 | } |
| 745 | |
| 746 | private: |
| 747 | struct Chunk; |
| 748 | |
| 749 | template <typename T> |
| 750 | static T CoerceTypRefToT(Chunk* c, unsigned offset); |
| 751 | |
| 752 | // Get the actual value and coerce the actual type c->m_typ to the wanted type T. |
| 753 | template <typename T> |
| 754 | FORCEINLINE T SafeGetConstantValue(Chunk* c, unsigned offset); |
| 755 | |
| 756 | template <typename T> |
| 757 | T ConstantValueInternal(ValueNum vn DEBUGARG(bool coerce)) |
| 758 | { |
| 759 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 760 | assert(c->m_attribs == CEA_Const || c->m_attribs == CEA_Handle); |
| 761 | |
| 762 | unsigned offset = ChunkOffset(vn); |
| 763 | |
| 764 | switch (c->m_typ) |
| 765 | { |
| 766 | case TYP_REF: |
| 767 | assert(0 <= offset && offset <= 1); // Null or exception. |
| 768 | __fallthrough; |
| 769 | |
| 770 | case TYP_BYREF: |
| 771 | |
| 772 | #ifdef _MSC_VER |
| 773 | |
| 774 | assert(&typeid(T) == &typeid(size_t)); // We represent ref/byref constants as size_t's. |
| 775 | |
| 776 | #endif // _MSC_VER |
| 777 | |
| 778 | __fallthrough; |
| 779 | |
| 780 | case TYP_INT: |
| 781 | case TYP_LONG: |
| 782 | case TYP_FLOAT: |
| 783 | case TYP_DOUBLE: |
| 784 | if (c->m_attribs == CEA_Handle) |
| 785 | { |
| 786 | C_ASSERT(offsetof(VNHandle, m_cnsVal) == 0); |
| 787 | return (T) reinterpret_cast<VNHandle*>(c->m_defs)[offset].m_cnsVal; |
| 788 | } |
| 789 | #ifdef DEBUG |
| 790 | if (!coerce) |
| 791 | { |
| 792 | T val1 = reinterpret_cast<T*>(c->m_defs)[offset]; |
| 793 | T val2 = SafeGetConstantValue<T>(c, offset); |
| 794 | |
| 795 | // Detect if there is a mismatch between the VN storage type and explicitly |
| 796 | // passed-in type T. |
| 797 | bool mismatch = false; |
| 798 | if (varTypeIsFloating(c->m_typ)) |
| 799 | { |
| 800 | mismatch = (memcmp(&val1, &val2, sizeof(val1)) != 0); |
| 801 | } |
| 802 | else |
| 803 | { |
| 804 | mismatch = (val1 != val2); |
| 805 | } |
| 806 | |
| 807 | if (mismatch) |
| 808 | { |
| 809 | assert( |
| 810 | !"Called ConstantValue<T>(vn), but type(T) != type(vn); Use CoercedConstantValue instead." ); |
| 811 | } |
| 812 | } |
| 813 | #endif |
| 814 | return SafeGetConstantValue<T>(c, offset); |
| 815 | |
| 816 | default: |
| 817 | assert(false); // We do not record constants of this typ. |
| 818 | return (T)0; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | public: |
| 823 | // Requires that "vn" is a constant, and that its type is compatible with the explicitly passed |
| 824 | // type "T". Also, note that "T" has to have an accurate storage size of the TypeOfVN(vn). |
| 825 | template <typename T> |
| 826 | T ConstantValue(ValueNum vn) |
| 827 | { |
| 828 | return ConstantValueInternal<T>(vn DEBUGARG(false)); |
| 829 | } |
| 830 | |
| 831 | // Requires that "vn" is a constant, and that its type can be coerced to the explicitly passed |
| 832 | // type "T". |
| 833 | template <typename T> |
| 834 | T CoercedConstantValue(ValueNum vn) |
| 835 | { |
| 836 | return ConstantValueInternal<T>(vn DEBUGARG(true)); |
| 837 | } |
| 838 | |
| 839 | // Requires "mthFunc" to be an intrinsic math function (one of the allowable values for the "gtMath" field |
| 840 | // of a GenTreeMath node). For unary ops, return the value number for the application of this function to |
| 841 | // "arg0VN". For binary ops, return the value number for the application of this function to "arg0VN" and |
| 842 | // "arg1VN". |
| 843 | |
| 844 | ValueNum EvalMathFuncUnary(var_types typ, CorInfoIntrinsics mthFunc, ValueNum arg0VN); |
| 845 | |
| 846 | ValueNum EvalMathFuncBinary(var_types typ, CorInfoIntrinsics mthFunc, ValueNum arg0VN, ValueNum arg1VN); |
| 847 | |
| 848 | ValueNumPair EvalMathFuncUnary(var_types typ, CorInfoIntrinsics mthFunc, ValueNumPair arg0VNP) |
| 849 | { |
| 850 | return ValueNumPair(EvalMathFuncUnary(typ, mthFunc, arg0VNP.GetLiberal()), |
| 851 | EvalMathFuncUnary(typ, mthFunc, arg0VNP.GetConservative())); |
| 852 | } |
| 853 | |
| 854 | ValueNumPair EvalMathFuncBinary(var_types typ, |
| 855 | CorInfoIntrinsics mthFunc, |
| 856 | ValueNumPair arg0VNP, |
| 857 | ValueNumPair arg1VNP) |
| 858 | { |
| 859 | return ValueNumPair(EvalMathFuncBinary(typ, mthFunc, arg0VNP.GetLiberal(), arg1VNP.GetLiberal()), |
| 860 | EvalMathFuncBinary(typ, mthFunc, arg0VNP.GetConservative(), arg1VNP.GetConservative())); |
| 861 | } |
| 862 | |
| 863 | // Returns "true" iff "vn" represents a function application. |
| 864 | bool IsVNFunc(ValueNum vn); |
| 865 | |
| 866 | // If "vn" represents a function application, returns "true" and set "*funcApp" to |
| 867 | // the function application it represents; otherwise, return "false." |
| 868 | bool GetVNFunc(ValueNum vn, VNFuncApp* funcApp); |
| 869 | |
| 870 | // Requires that "vn" represents a "GC heap address" the sum of a "TYP_REF" value and some integer |
| 871 | // value. Returns the TYP_REF value. |
| 872 | ValueNum VNForRefInAddr(ValueNum vn); |
| 873 | |
| 874 | // Returns "true" iff "vn" is a valid value number -- one that has been previously returned. |
| 875 | bool VNIsValid(ValueNum vn); |
| 876 | |
| 877 | #ifdef DEBUG |
| 878 | // This controls whether we recursively call vnDump on function arguments. |
| 879 | #define FEATURE_VN_DUMP_FUNC_ARGS 0 |
| 880 | |
| 881 | // Prints, to standard out, a representation of "vn". |
| 882 | void vnDump(Compiler* comp, ValueNum vn, bool isPtr = false); |
| 883 | |
| 884 | // Requires "fieldSeq" to be a field sequence VNFuncApp. |
| 885 | // Prints a representation (comma-separated list of field names) on standard out. |
| 886 | void vnDumpFieldSeq(Compiler* comp, VNFuncApp* fieldSeq, bool isHead); |
| 887 | |
| 888 | // Requires "mapSelect" to be a map select VNFuncApp. |
| 889 | // Prints a representation of a MapSelect operation on standard out. |
| 890 | void vnDumpMapSelect(Compiler* comp, VNFuncApp* mapSelect); |
| 891 | |
| 892 | // Requires "mapStore" to be a map store VNFuncApp. |
| 893 | // Prints a representation of a MapStore operation on standard out. |
| 894 | void vnDumpMapStore(Compiler* comp, VNFuncApp* mapStore); |
| 895 | |
| 896 | // Requires "valWithExc" to be a value with an exeception set VNFuncApp. |
| 897 | // Prints a representation of the exeception set on standard out. |
| 898 | void vnDumpValWithExc(Compiler* comp, VNFuncApp* valWithExc); |
| 899 | |
| 900 | // Requires "excSeq" to be a ExcSetCons sequence. |
| 901 | // Prints a representation of the set of exceptions on standard out. |
| 902 | void vnDumpExcSeq(Compiler* comp, VNFuncApp* excSeq, bool isHead); |
| 903 | |
| 904 | // Returns the string name of "vnf". |
| 905 | static const char* VNFuncName(VNFunc vnf); |
| 906 | // Used in the implementation of the above. |
| 907 | static const char* VNFuncNameArr[]; |
| 908 | |
| 909 | // Returns the string name of "vn" when it is a reserved value number, nullptr otherwise |
| 910 | static const char* reservedName(ValueNum vn); |
| 911 | |
| 912 | #endif // DEBUG |
| 913 | |
| 914 | // Returns true if "vn" is a reserved value number |
| 915 | static bool isReservedVN(ValueNum); |
| 916 | |
| 917 | private: |
| 918 | // We will allocate value numbers in "chunks". Each chunk will have the same type and "constness". |
| 919 | static const unsigned LogChunkSize = 6; |
| 920 | static const unsigned ChunkSize = 1 << LogChunkSize; |
| 921 | static const unsigned ChunkOffsetMask = ChunkSize - 1; |
| 922 | |
| 923 | // A "ChunkNum" is a zero-based index naming a chunk in the Store, or else the special "NoChunk" value. |
| 924 | typedef UINT32 ChunkNum; |
| 925 | static const ChunkNum NoChunk = UINT32_MAX; |
| 926 | |
| 927 | // Returns the ChunkNum of the Chunk that holds "vn" (which is required to be a valid |
| 928 | // value number, i.e., one returned by some VN-producing method of this class). |
| 929 | static ChunkNum GetChunkNum(ValueNum vn) |
| 930 | { |
| 931 | return vn >> LogChunkSize; |
| 932 | } |
| 933 | |
| 934 | // Returns the offset of the given "vn" within its chunk. |
| 935 | static unsigned ChunkOffset(ValueNum vn) |
| 936 | { |
| 937 | return vn & ChunkOffsetMask; |
| 938 | } |
| 939 | |
| 940 | // The base VN of the next chunk to be allocated. Should always be a multiple of ChunkSize. |
| 941 | ValueNum m_nextChunkBase; |
| 942 | |
| 943 | enum : BYTE |
| 944 | { |
| 945 | CEA_None, // No extra attributes. |
| 946 | CEA_Const, // This chunk contains constant values. |
| 947 | CEA_Handle, // This chunk contains handle constants. |
| 948 | CEA_NotAField, // This chunk contains "not a field" values. |
| 949 | CEA_Func0, // Represents functions of arity 0. |
| 950 | CEA_Func1, // ...arity 1. |
| 951 | CEA_Func2, // ...arity 2. |
| 952 | CEA_Func3, // ...arity 3. |
| 953 | CEA_Func4, // ...arity 4. |
| 954 | CEA_Count |
| 955 | }; |
| 956 | |
| 957 | // A "Chunk" holds "ChunkSize" value numbers, starting at "m_baseVN". All of these share the same |
| 958 | // "m_typ" and "m_attribs". These properties determine the interpretation of "m_defs", as discussed below. |
| 959 | struct Chunk |
| 960 | { |
| 961 | // If "m_defs" is non-null, it is an array of size ChunkSize, whose element type is determined by the other |
| 962 | // members. The "m_numUsed" field indicates the number of elements of "m_defs" that are already consumed (the |
| 963 | // next one to allocate). |
| 964 | void* m_defs; |
| 965 | unsigned m_numUsed; |
| 966 | |
| 967 | // The value number of the first VN in the chunk. |
| 968 | ValueNum m_baseVN; |
| 969 | |
| 970 | // The common attributes of this chunk. |
| 971 | var_types m_typ; |
| 972 | ChunkExtraAttribs m_attribs; |
| 973 | BasicBlock::loopNumber m_loopNum; |
| 974 | |
| 975 | // Initialize a chunk, starting at "*baseVN", for the given "typ", "attribs", and "loopNum" (using "alloc" for |
| 976 | // allocations). |
| 977 | // (Increments "*baseVN" by ChunkSize.) |
| 978 | (CompAllocator alloc, |
| 979 | ValueNum* baseVN, |
| 980 | var_types typ, |
| 981 | ChunkExtraAttribs attribs, |
| 982 | BasicBlock::loopNumber loopNum); |
| 983 | |
| 984 | // Requires that "m_numUsed < ChunkSize." Returns the offset of the allocated VN within the chunk; the |
| 985 | // actual VN is this added to the "m_baseVN" of the chunk. |
| 986 | unsigned AllocVN() |
| 987 | { |
| 988 | assert(m_numUsed < ChunkSize); |
| 989 | return m_numUsed++; |
| 990 | } |
| 991 | |
| 992 | template <int N> |
| 993 | struct Alloc |
| 994 | { |
| 995 | typedef typename ValueNumStore::VarTypConv<N>::Type Type; |
| 996 | }; |
| 997 | }; |
| 998 | |
| 999 | struct VNHandle : public JitKeyFuncsDefEquals<VNHandle> |
| 1000 | { |
| 1001 | ssize_t m_cnsVal; |
| 1002 | unsigned m_flags; |
| 1003 | // Don't use a constructor to use the default copy constructor for hashtable rehash. |
| 1004 | static void Initialize(VNHandle* handle, ssize_t m_cnsVal, unsigned m_flags) |
| 1005 | { |
| 1006 | handle->m_cnsVal = m_cnsVal; |
| 1007 | handle->m_flags = m_flags; |
| 1008 | } |
| 1009 | bool operator==(const VNHandle& y) const |
| 1010 | { |
| 1011 | return m_cnsVal == y.m_cnsVal && m_flags == y.m_flags; |
| 1012 | } |
| 1013 | static unsigned GetHashCode(const VNHandle& val) |
| 1014 | { |
| 1015 | return static_cast<unsigned>(val.m_cnsVal); |
| 1016 | } |
| 1017 | }; |
| 1018 | |
| 1019 | struct VNDefFunc0Arg |
| 1020 | { |
| 1021 | VNFunc m_func; |
| 1022 | VNDefFunc0Arg(VNFunc func) : m_func(func) |
| 1023 | { |
| 1024 | } |
| 1025 | |
| 1026 | VNDefFunc0Arg() : m_func(VNF_COUNT) |
| 1027 | { |
| 1028 | } |
| 1029 | |
| 1030 | bool operator==(const VNDefFunc0Arg& y) const |
| 1031 | { |
| 1032 | return m_func == y.m_func; |
| 1033 | } |
| 1034 | }; |
| 1035 | |
| 1036 | struct VNDefFunc1Arg : public VNDefFunc0Arg |
| 1037 | { |
| 1038 | ValueNum m_arg0; |
| 1039 | VNDefFunc1Arg(VNFunc func, ValueNum arg0) : VNDefFunc0Arg(func), m_arg0(arg0) |
| 1040 | { |
| 1041 | } |
| 1042 | |
| 1043 | VNDefFunc1Arg() : VNDefFunc0Arg(), m_arg0(ValueNumStore::NoVN) |
| 1044 | { |
| 1045 | } |
| 1046 | |
| 1047 | bool operator==(const VNDefFunc1Arg& y) const |
| 1048 | { |
| 1049 | return VNDefFunc0Arg::operator==(y) && m_arg0 == y.m_arg0; |
| 1050 | } |
| 1051 | }; |
| 1052 | |
| 1053 | struct VNDefFunc2Arg : public VNDefFunc1Arg |
| 1054 | { |
| 1055 | ValueNum m_arg1; |
| 1056 | VNDefFunc2Arg(VNFunc func, ValueNum arg0, ValueNum arg1) : VNDefFunc1Arg(func, arg0), m_arg1(arg1) |
| 1057 | { |
| 1058 | } |
| 1059 | |
| 1060 | VNDefFunc2Arg() : m_arg1(ValueNumStore::NoVN) |
| 1061 | { |
| 1062 | } |
| 1063 | |
| 1064 | bool operator==(const VNDefFunc2Arg& y) const |
| 1065 | { |
| 1066 | return VNDefFunc1Arg::operator==(y) && m_arg1 == y.m_arg1; |
| 1067 | } |
| 1068 | }; |
| 1069 | |
| 1070 | struct VNDefFunc3Arg : public VNDefFunc2Arg |
| 1071 | { |
| 1072 | ValueNum m_arg2; |
| 1073 | VNDefFunc3Arg(VNFunc func, ValueNum arg0, ValueNum arg1, ValueNum arg2) |
| 1074 | : VNDefFunc2Arg(func, arg0, arg1), m_arg2(arg2) |
| 1075 | { |
| 1076 | } |
| 1077 | VNDefFunc3Arg() : m_arg2(ValueNumStore::NoVN) |
| 1078 | { |
| 1079 | } |
| 1080 | |
| 1081 | bool operator==(const VNDefFunc3Arg& y) const |
| 1082 | { |
| 1083 | return VNDefFunc2Arg::operator==(y) && m_arg2 == y.m_arg2; |
| 1084 | } |
| 1085 | }; |
| 1086 | |
| 1087 | struct VNDefFunc4Arg : public VNDefFunc3Arg |
| 1088 | { |
| 1089 | ValueNum m_arg3; |
| 1090 | VNDefFunc4Arg(VNFunc func, ValueNum arg0, ValueNum arg1, ValueNum arg2, ValueNum arg3) |
| 1091 | : VNDefFunc3Arg(func, arg0, arg1, arg2), m_arg3(arg3) |
| 1092 | { |
| 1093 | } |
| 1094 | VNDefFunc4Arg() : m_arg3(ValueNumStore::NoVN) |
| 1095 | { |
| 1096 | } |
| 1097 | |
| 1098 | bool operator==(const VNDefFunc4Arg& y) const |
| 1099 | { |
| 1100 | return VNDefFunc3Arg::operator==(y) && m_arg3 == y.m_arg3; |
| 1101 | } |
| 1102 | }; |
| 1103 | |
| 1104 | // When we evaluate "select(m, i)", if "m" is a the value of a phi definition, we look at |
| 1105 | // all the values of the phi args, and see if doing the "select" on each of them yields identical |
| 1106 | // results. If so, that is the result of the entire "select" form. We have to be careful, however, |
| 1107 | // because phis may be recursive in the presence of loop structures -- the VN for the phi may be (or be |
| 1108 | // part of the definition of) the VN's of some of the arguments. But there will be at least one |
| 1109 | // argument that does *not* depend on the outer phi VN -- after all, we had to get into the loop somehow. |
| 1110 | // So we have to be careful about breaking infinite recursion. We can ignore "recursive" results -- if all the |
| 1111 | // non-recursive results are the same, the recursion indicates that the loop structure didn't alter the result. |
| 1112 | // This stack represents the set of outer phis such that select(phi, ind) is being evaluated. |
| 1113 | JitExpandArrayStack<VNDefFunc2Arg> m_fixedPointMapSels; |
| 1114 | |
| 1115 | #ifdef DEBUG |
| 1116 | // Returns "true" iff "m_fixedPointMapSels" is non-empty, and it's top element is |
| 1117 | // "select(map, index)". |
| 1118 | bool FixedPointMapSelsTopHasValue(ValueNum map, ValueNum index); |
| 1119 | #endif |
| 1120 | |
| 1121 | // Returns true if "sel(map, ind)" is a member of "m_fixedPointMapSels". |
| 1122 | bool SelectIsBeingEvaluatedRecursively(ValueNum map, ValueNum ind); |
| 1123 | |
| 1124 | // This is the set of value numbers that have been flagged as arguments to bounds checks, in the length position. |
| 1125 | CheckedBoundVNSet m_checkedBoundVNs; |
| 1126 | |
| 1127 | // This is a map from "chunk number" to the attributes of the chunk. |
| 1128 | JitExpandArrayStack<Chunk*> m_chunks; |
| 1129 | |
| 1130 | // These entries indicate the current allocation chunk, if any, for each valid combination of <var_types, |
| 1131 | // ChunkExtraAttribute, loopNumber>. Valid combinations require attribs==CEA_None or loopNum==MAX_LOOP_NUM. |
| 1132 | // If the value is NoChunk, it indicates that there is no current allocation chunk for that pair, otherwise |
| 1133 | // it is the index in "m_chunks" of a chunk with the given attributes, in which the next allocation should |
| 1134 | // be attempted. |
| 1135 | ChunkNum m_curAllocChunk[TYP_COUNT][CEA_Count + MAX_LOOP_NUM + 1]; |
| 1136 | |
| 1137 | // Returns a (pointer to a) chunk in which a new value number may be allocated. |
| 1138 | Chunk* (var_types typ, ChunkExtraAttribs attribs, BasicBlock::loopNumber loopNum = MAX_LOOP_NUM); |
| 1139 | |
| 1140 | // First, we need mechanisms for mapping from constants to value numbers. |
| 1141 | // For small integers, we'll use an array. |
| 1142 | static const int SmallIntConstMin = -1; |
| 1143 | static const int SmallIntConstMax = 10; |
| 1144 | static const unsigned SmallIntConstNum = SmallIntConstMax - SmallIntConstMin + 1; |
| 1145 | static bool IsSmallIntConst(int i) |
| 1146 | { |
| 1147 | return SmallIntConstMin <= i && i <= SmallIntConstMax; |
| 1148 | } |
| 1149 | ValueNum m_VNsForSmallIntConsts[SmallIntConstNum]; |
| 1150 | |
| 1151 | struct ValueNumList |
| 1152 | { |
| 1153 | ValueNum vn; |
| 1154 | ValueNumList* next; |
| 1155 | ValueNumList(const ValueNum& v, ValueNumList* n = nullptr) : vn(v), next(n) |
| 1156 | { |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | // Keeps track of value numbers that are integer constants and also handles (GTG_ICON_HDL_MASK.) |
| 1161 | ValueNumList* m_intConHandles; |
| 1162 | |
| 1163 | typedef VNMap<INT32> IntToValueNumMap; |
| 1164 | IntToValueNumMap* m_intCnsMap; |
| 1165 | IntToValueNumMap* GetIntCnsMap() |
| 1166 | { |
| 1167 | if (m_intCnsMap == nullptr) |
| 1168 | { |
| 1169 | m_intCnsMap = new (m_alloc) IntToValueNumMap(m_alloc); |
| 1170 | } |
| 1171 | return m_intCnsMap; |
| 1172 | } |
| 1173 | |
| 1174 | ValueNum GetVNForIntCon(INT32 cnsVal) |
| 1175 | { |
| 1176 | ValueNum res; |
| 1177 | if (GetIntCnsMap()->Lookup(cnsVal, &res)) |
| 1178 | { |
| 1179 | return res; |
| 1180 | } |
| 1181 | else |
| 1182 | { |
| 1183 | Chunk* c = GetAllocChunk(TYP_INT, CEA_Const); |
| 1184 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1185 | res = c->m_baseVN + offsetWithinChunk; |
| 1186 | reinterpret_cast<INT32*>(c->m_defs)[offsetWithinChunk] = cnsVal; |
| 1187 | GetIntCnsMap()->Set(cnsVal, res); |
| 1188 | return res; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | typedef VNMap<INT64> LongToValueNumMap; |
| 1193 | LongToValueNumMap* m_longCnsMap; |
| 1194 | LongToValueNumMap* GetLongCnsMap() |
| 1195 | { |
| 1196 | if (m_longCnsMap == nullptr) |
| 1197 | { |
| 1198 | m_longCnsMap = new (m_alloc) LongToValueNumMap(m_alloc); |
| 1199 | } |
| 1200 | return m_longCnsMap; |
| 1201 | } |
| 1202 | |
| 1203 | typedef VNMap<VNHandle, VNHandle> HandleToValueNumMap; |
| 1204 | HandleToValueNumMap* m_handleMap; |
| 1205 | HandleToValueNumMap* GetHandleMap() |
| 1206 | { |
| 1207 | if (m_handleMap == nullptr) |
| 1208 | { |
| 1209 | m_handleMap = new (m_alloc) HandleToValueNumMap(m_alloc); |
| 1210 | } |
| 1211 | return m_handleMap; |
| 1212 | } |
| 1213 | |
| 1214 | struct LargePrimitiveKeyFuncsFloat : public JitLargePrimitiveKeyFuncs<float> |
| 1215 | { |
| 1216 | static bool Equals(float x, float y) |
| 1217 | { |
| 1218 | return *(unsigned*)&x == *(unsigned*)&y; |
| 1219 | } |
| 1220 | }; |
| 1221 | |
| 1222 | typedef VNMap<float, LargePrimitiveKeyFuncsFloat> FloatToValueNumMap; |
| 1223 | FloatToValueNumMap* m_floatCnsMap; |
| 1224 | FloatToValueNumMap* GetFloatCnsMap() |
| 1225 | { |
| 1226 | if (m_floatCnsMap == nullptr) |
| 1227 | { |
| 1228 | m_floatCnsMap = new (m_alloc) FloatToValueNumMap(m_alloc); |
| 1229 | } |
| 1230 | return m_floatCnsMap; |
| 1231 | } |
| 1232 | |
| 1233 | // In the JIT we need to distinguish -0.0 and 0.0 for optimizations. |
| 1234 | struct LargePrimitiveKeyFuncsDouble : public JitLargePrimitiveKeyFuncs<double> |
| 1235 | { |
| 1236 | static bool Equals(double x, double y) |
| 1237 | { |
| 1238 | return *(__int64*)&x == *(__int64*)&y; |
| 1239 | } |
| 1240 | }; |
| 1241 | |
| 1242 | typedef VNMap<double, LargePrimitiveKeyFuncsDouble> DoubleToValueNumMap; |
| 1243 | DoubleToValueNumMap* m_doubleCnsMap; |
| 1244 | DoubleToValueNumMap* GetDoubleCnsMap() |
| 1245 | { |
| 1246 | if (m_doubleCnsMap == nullptr) |
| 1247 | { |
| 1248 | m_doubleCnsMap = new (m_alloc) DoubleToValueNumMap(m_alloc); |
| 1249 | } |
| 1250 | return m_doubleCnsMap; |
| 1251 | } |
| 1252 | |
| 1253 | LongToValueNumMap* m_byrefCnsMap; |
| 1254 | LongToValueNumMap* GetByrefCnsMap() |
| 1255 | { |
| 1256 | if (m_byrefCnsMap == nullptr) |
| 1257 | { |
| 1258 | m_byrefCnsMap = new (m_alloc) LongToValueNumMap(m_alloc); |
| 1259 | } |
| 1260 | return m_byrefCnsMap; |
| 1261 | } |
| 1262 | |
| 1263 | struct VNDefFunc0ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc1Arg> |
| 1264 | { |
| 1265 | static unsigned GetHashCode(VNDefFunc1Arg val) |
| 1266 | { |
| 1267 | return (val.m_func << 24) + val.m_arg0; |
| 1268 | } |
| 1269 | }; |
| 1270 | typedef VNMap<VNFunc> VNFunc0ToValueNumMap; |
| 1271 | VNFunc0ToValueNumMap* m_VNFunc0Map; |
| 1272 | VNFunc0ToValueNumMap* GetVNFunc0Map() |
| 1273 | { |
| 1274 | if (m_VNFunc0Map == nullptr) |
| 1275 | { |
| 1276 | m_VNFunc0Map = new (m_alloc) VNFunc0ToValueNumMap(m_alloc); |
| 1277 | } |
| 1278 | return m_VNFunc0Map; |
| 1279 | } |
| 1280 | |
| 1281 | struct VNDefFunc1ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc1Arg> |
| 1282 | { |
| 1283 | static unsigned GetHashCode(VNDefFunc1Arg val) |
| 1284 | { |
| 1285 | return (val.m_func << 24) + val.m_arg0; |
| 1286 | } |
| 1287 | }; |
| 1288 | typedef VNMap<VNDefFunc1Arg, VNDefFunc1ArgKeyFuncs> VNFunc1ToValueNumMap; |
| 1289 | VNFunc1ToValueNumMap* m_VNFunc1Map; |
| 1290 | VNFunc1ToValueNumMap* GetVNFunc1Map() |
| 1291 | { |
| 1292 | if (m_VNFunc1Map == nullptr) |
| 1293 | { |
| 1294 | m_VNFunc1Map = new (m_alloc) VNFunc1ToValueNumMap(m_alloc); |
| 1295 | } |
| 1296 | return m_VNFunc1Map; |
| 1297 | } |
| 1298 | |
| 1299 | struct VNDefFunc2ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc2Arg> |
| 1300 | { |
| 1301 | static unsigned GetHashCode(VNDefFunc2Arg val) |
| 1302 | { |
| 1303 | return (val.m_func << 24) + (val.m_arg0 << 8) + val.m_arg1; |
| 1304 | } |
| 1305 | }; |
| 1306 | typedef VNMap<VNDefFunc2Arg, VNDefFunc2ArgKeyFuncs> VNFunc2ToValueNumMap; |
| 1307 | VNFunc2ToValueNumMap* m_VNFunc2Map; |
| 1308 | VNFunc2ToValueNumMap* GetVNFunc2Map() |
| 1309 | { |
| 1310 | if (m_VNFunc2Map == nullptr) |
| 1311 | { |
| 1312 | m_VNFunc2Map = new (m_alloc) VNFunc2ToValueNumMap(m_alloc); |
| 1313 | } |
| 1314 | return m_VNFunc2Map; |
| 1315 | } |
| 1316 | |
| 1317 | struct VNDefFunc3ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc3Arg> |
| 1318 | { |
| 1319 | static unsigned GetHashCode(VNDefFunc3Arg val) |
| 1320 | { |
| 1321 | return (val.m_func << 24) + (val.m_arg0 << 16) + (val.m_arg1 << 8) + val.m_arg2; |
| 1322 | } |
| 1323 | }; |
| 1324 | typedef VNMap<VNDefFunc3Arg, VNDefFunc3ArgKeyFuncs> VNFunc3ToValueNumMap; |
| 1325 | VNFunc3ToValueNumMap* m_VNFunc3Map; |
| 1326 | VNFunc3ToValueNumMap* GetVNFunc3Map() |
| 1327 | { |
| 1328 | if (m_VNFunc3Map == nullptr) |
| 1329 | { |
| 1330 | m_VNFunc3Map = new (m_alloc) VNFunc3ToValueNumMap(m_alloc); |
| 1331 | } |
| 1332 | return m_VNFunc3Map; |
| 1333 | } |
| 1334 | |
| 1335 | struct VNDefFunc4ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc4Arg> |
| 1336 | { |
| 1337 | static unsigned GetHashCode(VNDefFunc4Arg val) |
| 1338 | { |
| 1339 | return (val.m_func << 24) + (val.m_arg0 << 16) + (val.m_arg1 << 8) + val.m_arg2 + (val.m_arg3 << 12); |
| 1340 | } |
| 1341 | }; |
| 1342 | typedef VNMap<VNDefFunc4Arg, VNDefFunc4ArgKeyFuncs> VNFunc4ToValueNumMap; |
| 1343 | VNFunc4ToValueNumMap* m_VNFunc4Map; |
| 1344 | VNFunc4ToValueNumMap* GetVNFunc4Map() |
| 1345 | { |
| 1346 | if (m_VNFunc4Map == nullptr) |
| 1347 | { |
| 1348 | m_VNFunc4Map = new (m_alloc) VNFunc4ToValueNumMap(m_alloc); |
| 1349 | } |
| 1350 | return m_VNFunc4Map; |
| 1351 | } |
| 1352 | |
| 1353 | enum SpecialRefConsts |
| 1354 | { |
| 1355 | SRC_Null, |
| 1356 | SRC_ZeroMap, |
| 1357 | SRC_ReadOnlyHeap, |
| 1358 | SRC_Void, |
| 1359 | SRC_EmptyExcSet, |
| 1360 | |
| 1361 | SRC_NumSpecialRefConsts |
| 1362 | }; |
| 1363 | |
| 1364 | // The "values" of special ref consts will be all be "null" -- their differing meanings will |
| 1365 | // be carried by the distinct value numbers. |
| 1366 | static class Object* s_specialRefConsts[SRC_NumSpecialRefConsts]; |
| 1367 | static class Object* s_nullConst; |
| 1368 | |
| 1369 | #ifdef DEBUG |
| 1370 | // This helps test some performance pathologies related to "evaluation" of VNF_MapSelect terms, |
| 1371 | // especially relating to GcHeap/ByrefExposed. We count the number of applications of such terms we consider, |
| 1372 | // and if this exceeds a limit, indicated by a COMPlus_ variable, we assert. |
| 1373 | unsigned m_numMapSels; |
| 1374 | #endif |
| 1375 | }; |
| 1376 | |
| 1377 | template <> |
| 1378 | struct ValueNumStore::VarTypConv<TYP_INT> |
| 1379 | { |
| 1380 | typedef INT32 Type; |
| 1381 | typedef int Lang; |
| 1382 | }; |
| 1383 | template <> |
| 1384 | struct ValueNumStore::VarTypConv<TYP_FLOAT> |
| 1385 | { |
| 1386 | typedef INT32 Type; |
| 1387 | typedef float Lang; |
| 1388 | }; |
| 1389 | template <> |
| 1390 | struct ValueNumStore::VarTypConv<TYP_LONG> |
| 1391 | { |
| 1392 | typedef INT64 Type; |
| 1393 | typedef INT64 Lang; |
| 1394 | }; |
| 1395 | template <> |
| 1396 | struct ValueNumStore::VarTypConv<TYP_DOUBLE> |
| 1397 | { |
| 1398 | typedef INT64 Type; |
| 1399 | typedef double Lang; |
| 1400 | }; |
| 1401 | template <> |
| 1402 | struct ValueNumStore::VarTypConv<TYP_BYREF> |
| 1403 | { |
| 1404 | typedef INT64 Type; |
| 1405 | typedef void* Lang; |
| 1406 | }; |
| 1407 | template <> |
| 1408 | struct ValueNumStore::VarTypConv<TYP_REF> |
| 1409 | { |
| 1410 | typedef class Object* Type; |
| 1411 | typedef class Object* Lang; |
| 1412 | }; |
| 1413 | |
| 1414 | // Get the actual value and coerce the actual type c->m_typ to the wanted type T. |
| 1415 | template <typename T> |
| 1416 | FORCEINLINE T ValueNumStore::SafeGetConstantValue(Chunk* c, unsigned offset) |
| 1417 | { |
| 1418 | switch (c->m_typ) |
| 1419 | { |
| 1420 | case TYP_REF: |
| 1421 | return CoerceTypRefToT<T>(c, offset); |
| 1422 | case TYP_BYREF: |
| 1423 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_BYREF>::Type*>(c->m_defs)[offset]); |
| 1424 | case TYP_INT: |
| 1425 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_INT>::Type*>(c->m_defs)[offset]); |
| 1426 | case TYP_LONG: |
| 1427 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_LONG>::Type*>(c->m_defs)[offset]); |
| 1428 | case TYP_FLOAT: |
| 1429 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_FLOAT>::Lang*>(c->m_defs)[offset]); |
| 1430 | case TYP_DOUBLE: |
| 1431 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_DOUBLE>::Lang*>(c->m_defs)[offset]); |
| 1432 | default: |
| 1433 | assert(false); |
| 1434 | return (T)0; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | // Inline functions. |
| 1439 | |
| 1440 | // static |
| 1441 | inline bool ValueNumStore::GenTreeOpIsLegalVNFunc(genTreeOps gtOper) |
| 1442 | { |
| 1443 | return (s_vnfOpAttribs[gtOper] & VNFOA_IllegalGenTreeOp) == 0; |
| 1444 | } |
| 1445 | |
| 1446 | // static |
| 1447 | inline bool ValueNumStore::VNFuncIsCommutative(VNFunc vnf) |
| 1448 | { |
| 1449 | return (s_vnfOpAttribs[vnf] & VNFOA_Commutative) != 0; |
| 1450 | } |
| 1451 | |
| 1452 | inline bool ValueNumStore::VNFuncIsComparison(VNFunc vnf) |
| 1453 | { |
| 1454 | if (vnf >= VNF_Boundary) |
| 1455 | { |
| 1456 | // For integer types we have unsigned comparisions, and |
| 1457 | // for floating point types these are the unordered variants. |
| 1458 | // |
| 1459 | return ((vnf == VNF_LT_UN) || (vnf == VNF_LE_UN) || (vnf == VNF_GE_UN) || (vnf == VNF_GT_UN)); |
| 1460 | } |
| 1461 | genTreeOps gtOp = genTreeOps(vnf); |
| 1462 | return GenTree::OperIsCompare(gtOp) != 0; |
| 1463 | } |
| 1464 | |
| 1465 | template <> |
| 1466 | inline size_t ValueNumStore::CoerceTypRefToT(Chunk* c, unsigned offset) |
| 1467 | { |
| 1468 | return reinterpret_cast<size_t>(reinterpret_cast<VarTypConv<TYP_REF>::Type*>(c->m_defs)[offset]); |
| 1469 | } |
| 1470 | |
| 1471 | template <typename T> |
| 1472 | inline T ValueNumStore::CoerceTypRefToT(Chunk* c, unsigned offset) |
| 1473 | { |
| 1474 | noway_assert(sizeof(T) >= sizeof(VarTypConv<TYP_REF>::Type)); |
| 1475 | unreached(); |
| 1476 | } |
| 1477 | |
| 1478 | /*****************************************************************************/ |
| 1479 | #endif // _VALUENUM_H_ |
| 1480 | /*****************************************************************************/ |
| 1481 | |