1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | // Defines the class "ValueNumStore", which maintains value numbers for a compilation. |
6 | |
7 | // Recall that "value numbering" assigns an integer value number to each expression. The "value |
8 | // number property" is that two expressions with the same value number will evaluate to the same value |
9 | // at runtime. Expressions with different value numbers may or may not be equivalent. This property |
10 | // of value numbers has obvious applications in redundancy-elimination optimizations. |
11 | // |
12 | // Since value numbers give us a way of talking about the (immutable) values to which expressions |
13 | // evaluate, they provide a good "handle" to use for attributing properties to values. For example, |
14 | // we might note that some value number represents some particular integer constant -- which has obvious |
15 | // application to constant propagation. Or that we know the exact type of some object reference, |
16 | // which might be used in devirtualization. |
17 | // |
18 | // Finally, we will also use value numbers to express control-flow-dependent assertions. Some test may |
19 | // imply that after the test, something new is known about a value: that an object reference is non-null |
20 | // after a dereference (since control flow continued because no exception was thrown); that an integer value |
21 | // is restricted to some subrange in after a comparison test; etc. |
22 | |
23 | /*****************************************************************************/ |
24 | #ifndef _VALUENUM_H_ |
25 | #define _VALUENUM_H_ |
26 | /*****************************************************************************/ |
27 | |
28 | #include "vartype.h" |
29 | // For "GT_COUNT" |
30 | #include "gentree.h" |
31 | // Defines the type ValueNum. |
32 | #include "valuenumtype.h" |
33 | // Defines the type SmallHashTable. |
34 | #include "smallhash.h" |
35 | |
36 | // A "ValueNumStore" represents the "universe" of value numbers used in a single |
37 | // compilation. |
38 | |
39 | // All members of the enumeration genTreeOps are also members of VNFunc. |
40 | // (Though some of these may be labeled "illegal"). |
41 | enum VNFunc |
42 | { |
43 | // Implicitly, elements of genTreeOps here. |
44 | VNF_Boundary = GT_COUNT, |
45 | #define ValueNumFuncDef(nm, arity, commute, knownNonNull, sharedStatic) VNF_##nm, |
46 | #include "valuenumfuncs.h" |
47 | VNF_COUNT |
48 | }; |
49 | |
50 | enum VNOperKind |
51 | { |
52 | VOK_Default, |
53 | VOK_Unsigned, |
54 | VOK_OverflowCheck, |
55 | VOK_Unsigned_OverflowCheck |
56 | }; |
57 | |
58 | // Given the bool values isUnsigned and overflowCheck return the proper VNOperKInd enum |
59 | // |
60 | VNOperKind VNGetOperKind(bool isUnsigned, bool overflowCheck); |
61 | |
62 | // Given an "oper" and associated flags with it, transform the oper into a |
63 | // more accurate oper that can be used in evaluation. |
64 | // For example, (GT_ADD, true, false) transforms to GT_ADD_UN |
65 | // and (GT_ADD, false, true) transforms to GT_ADD_OVF |
66 | // |
67 | VNFunc GetVNFuncForOper(genTreeOps oper, VNOperKind operKind); |
68 | |
69 | // Given a GenTree node return the VNFunc that shodul be used when value numbering |
70 | // |
71 | VNFunc GetVNFuncForNode(GenTree* node); |
72 | |
73 | // An instance of this struct represents an application of the function symbol |
74 | // "m_func" to the first "m_arity" (<= 4) argument values in "m_args." |
75 | struct VNFuncApp |
76 | { |
77 | VNFunc m_func; |
78 | unsigned m_arity; |
79 | ValueNum m_args[4]; |
80 | |
81 | bool Equals(const VNFuncApp& funcApp) |
82 | { |
83 | if (m_func != funcApp.m_func) |
84 | { |
85 | return false; |
86 | } |
87 | if (m_arity != funcApp.m_arity) |
88 | { |
89 | return false; |
90 | } |
91 | for (unsigned i = 0; i < m_arity; i++) |
92 | { |
93 | if (m_args[i] != funcApp.m_args[i]) |
94 | { |
95 | return false; |
96 | } |
97 | } |
98 | return true; |
99 | } |
100 | }; |
101 | |
102 | // We use a unique prefix character when printing value numbers in dumps: i.e. $1c0 |
103 | // This define is used with string concatenation to put this in printf format strings |
104 | #define FMT_VN "$%x" |
105 | |
106 | class ValueNumStore |
107 | { |
108 | |
109 | public: |
110 | // We will reserve "max unsigned" to represent "not a value number", for maps that might start uninitialized. |
111 | static const ValueNum NoVN = UINT32_MAX; |
112 | // A second special value, used to indicate that a function evaluation would cause infinite recursion. |
113 | static const ValueNum RecursiveVN = UINT32_MAX - 1; |
114 | |
115 | // ================================================================================================== |
116 | // VNMap - map from something to ValueNum, where something is typically a constant value or a VNFunc |
117 | // This class has two purposes - to abstract the implementation and to validate the ValueNums |
118 | // being stored or retrieved. |
119 | template <class fromType, class keyfuncs = JitLargePrimitiveKeyFuncs<fromType>> |
120 | class VNMap : public JitHashTable<fromType, keyfuncs, ValueNum> |
121 | { |
122 | public: |
123 | VNMap(CompAllocator alloc) : JitHashTable<fromType, keyfuncs, ValueNum>(alloc) |
124 | { |
125 | } |
126 | ~VNMap() |
127 | { |
128 | ~VNMap<fromType, keyfuncs>::JitHashTable(); |
129 | } |
130 | |
131 | bool Set(fromType k, ValueNum val) |
132 | { |
133 | assert(val != RecursiveVN); |
134 | return JitHashTable<fromType, keyfuncs, ValueNum>::Set(k, val); |
135 | } |
136 | bool Lookup(fromType k, ValueNum* pVal = nullptr) const |
137 | { |
138 | bool result = JitHashTable<fromType, keyfuncs, ValueNum>::Lookup(k, pVal); |
139 | assert(!result || *pVal != RecursiveVN); |
140 | return result; |
141 | } |
142 | }; |
143 | |
144 | private: |
145 | Compiler* m_pComp; |
146 | |
147 | // For allocations. (Other things?) |
148 | CompAllocator m_alloc; |
149 | |
150 | // TODO-Cleanup: should transform "attribs" into a struct with bit fields. That would be simpler... |
151 | |
152 | enum VNFOpAttrib |
153 | { |
154 | VNFOA_IllegalGenTreeOp = 0x1, // corresponds to a genTreeOps value that is not a legal VN func. |
155 | VNFOA_Commutative = 0x2, // 1 iff the function is commutative. |
156 | VNFOA_Arity = 0x4, // Bits 2..3 encode the arity. |
157 | VNFOA_AfterArity = 0x20, // Makes it clear what value the next flag(s) after Arity should have. |
158 | VNFOA_KnownNonNull = 0x20, // 1 iff the result is known to be non-null. |
159 | VNFOA_SharedStatic = 0x40, // 1 iff this VNF is represent one of the shared static jit helpers |
160 | }; |
161 | |
162 | static const unsigned VNFOA_ArityShift = 2; |
163 | static const unsigned VNFOA_ArityBits = 3; |
164 | static const unsigned VNFOA_MaxArity = (1 << VNFOA_ArityBits) - 1; // Max arity we can represent. |
165 | static const unsigned VNFOA_ArityMask = VNFOA_AfterArity - VNFOA_Arity; |
166 | |
167 | // These enum constants are used to encode the cast operation in the lowest bits by VNForCastOper |
168 | enum VNFCastAttrib |
169 | { |
170 | VCA_UnsignedSrc = 0x01, |
171 | |
172 | VCA_BitCount = 1, // the number of reserved bits |
173 | VCA_ReservedBits = 0x01, // i.e. (VCA_UnsignedSrc) |
174 | }; |
175 | |
176 | // An array of length GT_COUNT, mapping genTreeOp values to their VNFOpAttrib. |
177 | static UINT8* s_vnfOpAttribs; |
178 | |
179 | // Returns "true" iff gtOper is a legal value number function. |
180 | // (Requires InitValueNumStoreStatics to have been run.) |
181 | static bool GenTreeOpIsLegalVNFunc(genTreeOps gtOper); |
182 | |
183 | // Returns "true" iff "vnf" is a commutative (and thus binary) operator. |
184 | // (Requires InitValueNumStoreStatics to have been run.) |
185 | static bool VNFuncIsCommutative(VNFunc vnf); |
186 | |
187 | // Returns "true" iff "vnf" is a comparison (and thus binary) operator. |
188 | static bool VNFuncIsComparison(VNFunc vnf); |
189 | |
190 | // Returns "true" iff "vnf" can be evaluated for constant arguments. |
191 | static bool CanEvalForConstantArgs(VNFunc vnf); |
192 | |
193 | // Returns "true" iff "vnf" should be folded by evaluating the func with constant arguments. |
194 | bool VNEvalShouldFold(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN); |
195 | |
196 | // return vnf(v0) |
197 | template <typename T> |
198 | static T EvalOp(VNFunc vnf, T v0); |
199 | |
200 | // returns vnf(v0, v1). |
201 | template <typename T> |
202 | T EvalOp(VNFunc vnf, T v0, T v1); |
203 | |
204 | // return vnf(v0) or vnf(v0, v1), respectively (must, of course be unary/binary ops, respectively.) |
205 | template <typename T> |
206 | static T EvalOpSpecialized(VNFunc vnf, T v0); |
207 | template <typename T> |
208 | T EvalOpSpecialized(VNFunc vnf, T v0, T v1); |
209 | |
210 | template <typename T> |
211 | static int EvalComparison(VNFunc vnf, T v0, T v1); |
212 | |
213 | // Should only instantiate (in a non-trivial way) for "int" and "INT64". Returns true iff dividing "v0" by "v1" |
214 | // would produce integer overflow (an ArithmeticException -- *not* division by zero, which is separate.) |
215 | template <typename T> |
216 | static bool IsOverflowIntDiv(T v0, T v1); |
217 | |
218 | // Should only instantiate (in a non-trivial way) for integral types (signed/unsigned int32/int64). |
219 | // Returns true iff v is the zero of the appropriate type. |
220 | template <typename T> |
221 | static bool IsIntZero(T v); |
222 | |
223 | // Given an constant value number return its value. |
224 | int GetConstantInt32(ValueNum argVN); |
225 | INT64 GetConstantInt64(ValueNum argVN); |
226 | double GetConstantDouble(ValueNum argVN); |
227 | float GetConstantSingle(ValueNum argVN); |
228 | |
229 | // Assumes that all the ValueNum arguments of each of these functions have been shown to represent constants. |
230 | // Assumes that "vnf" is a operator of the appropriate arity (unary for the first, binary for the second). |
231 | // Assume that "CanEvalForConstantArgs(vnf)" is true. |
232 | // Returns the result of evaluating the function with those constant arguments. |
233 | ValueNum EvalFuncForConstantArgs(var_types typ, VNFunc vnf, ValueNum vn0); |
234 | ValueNum EvalFuncForConstantArgs(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
235 | ValueNum EvalFuncForConstantFPArgs(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
236 | ValueNum EvalCastForConstantArgs(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
237 | |
238 | ValueNum EvalUsingMathIdentity(var_types typ, VNFunc vnf, ValueNum vn0, ValueNum vn1); |
239 | |
240 | // This is the constant value used for the default value of m_mapSelectBudget |
241 | #define DEFAULT_MAP_SELECT_BUDGET 100 // used by JitVNMapSelBudget |
242 | |
243 | // This is the maximum number of MapSelect terms that can be "considered" as part of evaluation of a top-level |
244 | // MapSelect application. |
245 | int m_mapSelectBudget; |
246 | |
247 | public: |
248 | // Initializes any static variables of ValueNumStore. |
249 | static void InitValueNumStoreStatics(); |
250 | |
251 | // Initialize an empty ValueNumStore. |
252 | ValueNumStore(Compiler* comp, CompAllocator allocator); |
253 | |
254 | // Returns "true" iff "vnf" (which may have been created by a cast from an integral value) represents |
255 | // a legal value number function. |
256 | // (Requires InitValueNumStoreStatics to have been run.) |
257 | static bool VNFuncIsLegal(VNFunc vnf) |
258 | { |
259 | return unsigned(vnf) > VNF_Boundary || GenTreeOpIsLegalVNFunc(static_cast<genTreeOps>(vnf)); |
260 | } |
261 | |
262 | // Returns the arity of "vnf". |
263 | static unsigned VNFuncArity(VNFunc vnf); |
264 | |
265 | // Requires "gtOper" to be a genTreeOps legally representing a VNFunc, and returns that |
266 | // VNFunc. |
267 | // (Requires InitValueNumStoreStatics to have been run.) |
268 | static VNFunc GenTreeOpToVNFunc(genTreeOps gtOper) |
269 | { |
270 | assert(GenTreeOpIsLegalVNFunc(gtOper)); |
271 | return static_cast<VNFunc>(gtOper); |
272 | } |
273 | |
274 | #ifdef DEBUG |
275 | static void RunTests(Compiler* comp); |
276 | #endif // DEBUG |
277 | |
278 | // This block of methods gets value numbers for constants of primitive types. |
279 | |
280 | ValueNum VNForIntCon(INT32 cnsVal); |
281 | ValueNum VNForLongCon(INT64 cnsVal); |
282 | ValueNum VNForFloatCon(float cnsVal); |
283 | ValueNum VNForDoubleCon(double cnsVal); |
284 | ValueNum VNForByrefCon(INT64 byrefVal); |
285 | |
286 | #ifdef _TARGET_64BIT_ |
287 | ValueNum VNForPtrSizeIntCon(INT64 cnsVal) |
288 | { |
289 | return VNForLongCon(cnsVal); |
290 | } |
291 | #else |
292 | ValueNum VNForPtrSizeIntCon(INT32 cnsVal) |
293 | { |
294 | return VNForIntCon(cnsVal); |
295 | } |
296 | #endif |
297 | |
298 | ValueNum VNForCastOper(var_types castToType, bool srcIsUnsigned = false); |
299 | |
300 | // We keep handle values in a separate pool, so we don't confuse a handle with an int constant |
301 | // that happens to be the same... |
302 | ValueNum VNForHandle(ssize_t cnsVal, unsigned iconFlags); |
303 | |
304 | // And the single constant for an object reference type. |
305 | static ValueNum VNForNull() |
306 | { |
307 | // We reserve Chunk 0 for "special" VNs. SRC_Null (== 0) is the VN of "null". |
308 | return ValueNum(SRC_Null); |
309 | } |
310 | |
311 | // The zero map is the map that returns a zero "for the appropriate type" when indexed at any index. |
312 | static ValueNum VNForZeroMap() |
313 | { |
314 | // We reserve Chunk 0 for "special" VNs. Let SRC_ZeroMap (== 1) be the zero map. |
315 | return ValueNum(SRC_ZeroMap); |
316 | } |
317 | |
318 | // The ROH map is the map for the "read-only heap". We assume that this is never mutated, and always |
319 | // has the same value number. |
320 | static ValueNum VNForROH() |
321 | { |
322 | // We reserve Chunk 0 for "special" VNs. Let SRC_ReadOnlyHeap (== 3) be the read-only heap. |
323 | return ValueNum(SRC_ReadOnlyHeap); |
324 | } |
325 | |
326 | // A special value number for "void" -- sometimes a type-void thing is an argument to a |
327 | // GT_LIST, and we want the args to be non-NoVN. |
328 | static ValueNum VNForVoid() |
329 | { |
330 | // We reserve Chunk 0 for "special" VNs. Let SRC_Void (== 4) be the value for "void". |
331 | return ValueNum(SRC_Void); |
332 | } |
333 | static ValueNumPair VNPForVoid() |
334 | { |
335 | return ValueNumPair(VNForVoid(), VNForVoid()); |
336 | } |
337 | |
338 | // A special value number for the empty set of exceptions. |
339 | static ValueNum VNForEmptyExcSet() |
340 | { |
341 | // We reserve Chunk 0 for "special" VNs. Let SRC_EmptyExcSet (== 5) be the value for the empty set of |
342 | // exceptions. |
343 | return ValueNum(SRC_EmptyExcSet); |
344 | } |
345 | static ValueNumPair VNPForEmptyExcSet() |
346 | { |
347 | return ValueNumPair(VNForEmptyExcSet(), VNForEmptyExcSet()); |
348 | } |
349 | |
350 | // Returns the value number for zero of the given "typ". |
351 | // It has an unreached() for a "typ" that has no zero value, such as TYP_BYREF. |
352 | ValueNum VNZeroForType(var_types typ); |
353 | |
354 | // Returns the value number for one of the given "typ". |
355 | // It returns NoVN for a "typ" that has no one value, such as TYP_REF. |
356 | ValueNum VNOneForType(var_types typ); |
357 | |
358 | // Create or return the existimg value number representing a singleton exception set |
359 | // for the the exception value "x". |
360 | ValueNum VNExcSetSingleton(ValueNum x); |
361 | ValueNumPair VNPExcSetSingleton(ValueNumPair x); |
362 | |
363 | // Returns true if the current pair of items are in ascending order and they are not duplicates. |
364 | // Used to verify that exception sets are in ascending order when processing them. |
365 | bool VNCheckAscending(ValueNum item, ValueNum xs1); |
366 | |
367 | // Returns the VN representing the union of the two exception sets "xs0" and "xs1". |
368 | // These must be VNForEmtpyExcSet() or applications of VNF_ExcSetCons, obeying |
369 | // the ascending order invariant. (which is preserved in the result) |
370 | ValueNum VNExcSetUnion(ValueNum xs0, ValueNum xs1); |
371 | |
372 | ValueNumPair VNPExcSetUnion(ValueNumPair xs0vnp, ValueNumPair xs1vnp); |
373 | |
374 | // Returns the VN representing the intersection of the two exception sets "xs0" and "xs1". |
375 | // These must be applications of VNF_ExcSetCons or the empty set. (i.e VNForEmptyExcSet()) |
376 | // and also must be in ascending order. |
377 | ValueNum VNExcSetIntersection(ValueNum xs0, ValueNum xs1); |
378 | |
379 | ValueNumPair VNPExcSetIntersection(ValueNumPair xs0vnp, ValueNumPair xs1vnp); |
380 | |
381 | // Returns true if every exeception singleton in the vnCandidateSet is also present |
382 | // in the vnFullSet. |
383 | // Both arguments must be either VNForEmptyExcSet() or applications of VNF_ExcSetCons. |
384 | bool VNExcIsSubset(ValueNum vnFullSet, ValueNum vnCandidateSet); |
385 | |
386 | // Returns "true" iff "vn" is an application of "VNF_ValWithExc". |
387 | bool VNHasExc(ValueNum vn) |
388 | { |
389 | VNFuncApp funcApp; |
390 | return GetVNFunc(vn, &funcApp) && funcApp.m_func == VNF_ValWithExc; |
391 | } |
392 | |
393 | // If vn "excSet" is "VNForEmptyExcSet()" we just return "vn" |
394 | // otherwise we use VNExcSetUnion to combine the exception sets of both "vn" and "excSet" |
395 | // and return that ValueNum |
396 | ValueNum VNWithExc(ValueNum vn, ValueNum excSet); |
397 | |
398 | ValueNumPair VNPWithExc(ValueNumPair vnp, ValueNumPair excSetVNP); |
399 | |
400 | // This sets "*pvn" to the Normal value and sets "*pvnx" to Exception set value. |
401 | // "pvnx" represents the set of all exceptions that can happen for the expression |
402 | void VNUnpackExc(ValueNum vnWx, ValueNum* pvn, ValueNum* pvnx); |
403 | |
404 | void VNPUnpackExc(ValueNumPair vnWx, ValueNumPair* pvn, ValueNumPair* pvnx); |
405 | |
406 | // This returns the Union of exceptions from vnWx and vnExcSet |
407 | ValueNum VNUnionExcSet(ValueNum vnWx, ValueNum vnExcSet); |
408 | |
409 | // This returns the Union of exceptions from vnpWx and vnpExcSet |
410 | ValueNumPair VNPUnionExcSet(ValueNumPair vnpWx, ValueNumPair vnpExcSet); |
411 | |
412 | // Sets the normal value to a new unique ValueNum |
413 | // Keeps any Exception set values |
414 | ValueNum VNMakeNormalUnique(ValueNum vn); |
415 | |
416 | // Sets the liberal & conservative |
417 | // Keeps any Exception set values |
418 | ValueNumPair VNPMakeNormalUniquePair(ValueNumPair vnp); |
419 | |
420 | // If "vn" is a "VNF_ValWithExc(norm, excSet)" value, returns the "norm" argument; otherwise, |
421 | // just returns "vn". |
422 | // The Normal value is the value number of the expression when no exceptions occurred |
423 | ValueNum VNNormalValue(ValueNum vn); |
424 | |
425 | // Given a "vnp", get the ValueNum kind based upon vnk, |
426 | // then call VNNormalValue on that ValueNum |
427 | // The Normal value is the value number of the expression when no exceptions occurred |
428 | ValueNum VNNormalValue(ValueNumPair vnp, ValueNumKind vnk); |
429 | |
430 | // Given a "vnp", get the NormalValuew for the VNK_Liberal part of that ValueNum |
431 | // The Normal value is the value number of the expression when no exceptions occurred |
432 | inline ValueNum VNLiberalNormalValue(ValueNumPair vnp) |
433 | { |
434 | return VNNormalValue(vnp, VNK_Liberal); |
435 | } |
436 | |
437 | // Given a "vnp", get the NormalValuew for the VNK_Conservative part of that ValueNum |
438 | // The Normal value is the value number of the expression when no exceptions occurred |
439 | inline ValueNum VNConservativeNormalValue(ValueNumPair vnp) |
440 | { |
441 | return VNNormalValue(vnp, VNK_Conservative); |
442 | } |
443 | |
444 | // Given a "vnp", get the Normal values for both the liberal and conservative parts of "vnp" |
445 | // The Normal value is the value number of the expression when no exceptions occurred |
446 | ValueNumPair VNPNormalPair(ValueNumPair vnp); |
447 | |
448 | // If "vn" is a "VNF_ValWithExc(norm, excSet)" value, returns the "excSet" argument; otherwise, |
449 | // we return a special Value Number representing the empty exception set. |
450 | // The exeception set value is the value number of the set of possible exceptions. |
451 | ValueNum VNExceptionSet(ValueNum vn); |
452 | |
453 | ValueNumPair VNPExceptionSet(ValueNumPair vn); |
454 | |
455 | // True "iff" vn is a value known to be non-null. (For example, the result of an allocation...) |
456 | bool IsKnownNonNull(ValueNum vn); |
457 | |
458 | // True "iff" vn is a value returned by a call to a shared static helper. |
459 | bool IsSharedStatic(ValueNum vn); |
460 | |
461 | // VNForFunc: We have five overloads, for arities 0, 1, 2, 3 and 4 |
462 | ValueNum VNForFunc(var_types typ, VNFunc func); |
463 | ValueNum VNForFunc(var_types typ, VNFunc func, ValueNum opVNwx); |
464 | // This must not be used for VNF_MapSelect applications; instead use VNForMapSelect, below. |
465 | ValueNum VNForFunc(var_types typ, VNFunc func, ValueNum op1VNwx, ValueNum op2VNwx); |
466 | ValueNum VNForFunc(var_types typ, VNFunc func, ValueNum op1VNwx, ValueNum op2VNwx, ValueNum op3VNwx); |
467 | |
468 | // The following four-op VNForFunc is used for VNF_PtrToArrElem, elemTypeEqVN, arrVN, inxVN, fldSeqVN |
469 | ValueNum VNForFunc( |
470 | var_types typ, VNFunc func, ValueNum op1VNwx, ValueNum op2VNwx, ValueNum op3VNwx, ValueNum op4VNwx); |
471 | |
472 | // This requires a "ValueNumKind" because it will attempt, given "select(phi(m1, ..., mk), ind)", to evaluate |
473 | // "select(m1, ind)", ..., "select(mk, ind)" to see if they agree. It needs to know which kind of value number |
474 | // (liberal/conservative) to read from the SSA def referenced in the phi argument. |
475 | ValueNum VNForMapSelect(ValueNumKind vnk, var_types typ, ValueNum op1VN, ValueNum op2VN); |
476 | |
477 | // A method that does the work for VNForMapSelect and may call itself recursively. |
478 | ValueNum VNForMapSelectWork( |
479 | ValueNumKind vnk, var_types typ, ValueNum op1VN, ValueNum op2VN, int* pBudget, bool* pUsedRecursiveVN); |
480 | |
481 | // A specialized version of VNForFunc that is used for VNF_MapStore and provides some logging when verbose is set |
482 | ValueNum VNForMapStore(var_types typ, ValueNum arg0VN, ValueNum arg1VN, ValueNum arg2VN); |
483 | |
484 | // These functions parallel the ones above, except that they take liberal/conservative VN pairs |
485 | // as arguments, and return such a pair (the pair of the function applied to the liberal args, and |
486 | // the function applied to the conservative args). |
487 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func) |
488 | { |
489 | ValueNumPair res; |
490 | res.SetBoth(VNForFunc(typ, func)); |
491 | return res; |
492 | } |
493 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func, ValueNumPair opVN) |
494 | { |
495 | return ValueNumPair(VNForFunc(typ, func, opVN.GetLiberal()), VNForFunc(typ, func, opVN.GetConservative())); |
496 | } |
497 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func, ValueNumPair op1VN, ValueNumPair op2VN) |
498 | { |
499 | return ValueNumPair(VNForFunc(typ, func, op1VN.GetLiberal(), op2VN.GetLiberal()), |
500 | VNForFunc(typ, func, op1VN.GetConservative(), op2VN.GetConservative())); |
501 | } |
502 | ValueNumPair VNPairForFunc(var_types typ, VNFunc func, ValueNumPair op1VN, ValueNumPair op2VN, ValueNumPair op3VN) |
503 | { |
504 | return ValueNumPair(VNForFunc(typ, func, op1VN.GetLiberal(), op2VN.GetLiberal(), op3VN.GetLiberal()), |
505 | VNForFunc(typ, func, op1VN.GetConservative(), op2VN.GetConservative(), |
506 | op3VN.GetConservative())); |
507 | } |
508 | ValueNumPair VNPairForFunc( |
509 | var_types typ, VNFunc func, ValueNumPair op1VN, ValueNumPair op2VN, ValueNumPair op3VN, ValueNumPair op4VN) |
510 | { |
511 | return ValueNumPair(VNForFunc(typ, func, op1VN.GetLiberal(), op2VN.GetLiberal(), op3VN.GetLiberal(), |
512 | op4VN.GetLiberal()), |
513 | VNForFunc(typ, func, op1VN.GetConservative(), op2VN.GetConservative(), |
514 | op3VN.GetConservative(), op4VN.GetConservative())); |
515 | } |
516 | |
517 | // Get a new, unique value number for an expression that we're not equating to some function, |
518 | // which is the value of a tree in the given block. |
519 | ValueNum VNForExpr(BasicBlock* block, var_types typ = TYP_UNKNOWN); |
520 | |
521 | // This controls extra tracing of the "evaluation" of "VNF_MapSelect" functions. |
522 | #define FEATURE_VN_TRACE_APPLY_SELECTORS 1 |
523 | |
524 | // Return the value number corresponding to constructing "MapSelect(map, f0)", where "f0" is the |
525 | // (value number of) the first field in "fieldSeq". (The type of this application will be the type of "f0".) |
526 | // If there are no remaining fields in "fieldSeq", return that value number; otherwise, return VNApplySelectors |
527 | // applied to that value number and the remainder of "fieldSeq". When the 'fieldSeq' specifies a TYP_STRUCT |
528 | // then the size of the struct is returned by 'wbFinalStructSize' (when it is non-null) |
529 | ValueNum VNApplySelectors(ValueNumKind vnk, |
530 | ValueNum map, |
531 | FieldSeqNode* fieldSeq, |
532 | size_t* wbFinalStructSize = nullptr); |
533 | |
534 | // Used after VNApplySelectors has determined that "selectedVN" is contained in a Map using VNForMapSelect |
535 | // It determines whether the 'selectedVN' is of an appropriate type to be read using and indirection of 'indType' |
536 | // If it is appropriate type then 'selectedVN' is returned, otherwise it may insert a cast to indType |
537 | // or return a unique value number for an incompatible indType. |
538 | ValueNum VNApplySelectorsTypeCheck(ValueNum selectedVN, var_types indType, size_t structSize); |
539 | |
540 | // Assumes that "map" represents a map that is addressable by the fields in "fieldSeq", to get |
541 | // to a value of the type of "rhs". Returns an expression for the RHS of an assignment, in the given "block", |
542 | // to a location containing value "map" that will change the field addressed by "fieldSeq" to "rhs", leaving |
543 | // all other indices in "map" the same. |
544 | ValueNum VNApplySelectorsAssign( |
545 | ValueNumKind vnk, ValueNum map, FieldSeqNode* fieldSeq, ValueNum rhs, var_types indType, BasicBlock* block); |
546 | |
547 | // Used after VNApplySelectorsAssign has determined that "elem" is to be writen into a Map using VNForMapStore |
548 | // It determines whether the 'elem' is of an appropriate type to be writen using using an indirection of 'indType' |
549 | // It may insert a cast to indType or return a unique value number for an incompatible indType. |
550 | ValueNum VNApplySelectorsAssignTypeCoerce(ValueNum elem, var_types indType, BasicBlock* block); |
551 | |
552 | ValueNumPair VNPairApplySelectors(ValueNumPair map, FieldSeqNode* fieldSeq, var_types indType); |
553 | |
554 | ValueNumPair VNPairApplySelectorsAssign( |
555 | ValueNumPair map, FieldSeqNode* fieldSeq, ValueNumPair rhs, var_types indType, BasicBlock* block) |
556 | { |
557 | return ValueNumPair(VNApplySelectorsAssign(VNK_Liberal, map.GetLiberal(), fieldSeq, rhs.GetLiberal(), indType, |
558 | block), |
559 | VNApplySelectorsAssign(VNK_Conservative, map.GetConservative(), fieldSeq, |
560 | rhs.GetConservative(), indType, block)); |
561 | } |
562 | |
563 | // Compute the normal ValueNumber for a cast with no exceptions |
564 | ValueNum VNForCast(ValueNum srcVN, var_types castToType, var_types castFromType, bool srcIsUnsigned = false); |
565 | |
566 | // Compute the ValueNumberPair for a cast |
567 | ValueNumPair VNPairForCast(ValueNumPair srcVNPair, |
568 | var_types castToType, |
569 | var_types castFromType, |
570 | bool srcIsUnsigned = false, |
571 | bool hasOverflowCheck = false); |
572 | |
573 | // Returns true iff the VN represents an application of VNF_NotAField. |
574 | bool IsVNNotAField(ValueNum vn); |
575 | |
576 | // PtrToLoc values need to express a field sequence as one of their arguments. VN for null represents |
577 | // empty sequence, otherwise, "FieldSeq(VN(FieldHandle), restOfSeq)". |
578 | ValueNum VNForFieldSeq(FieldSeqNode* fieldSeq); |
579 | |
580 | // Requires that "vn" represents a field sequence, that is, is the result of a call to VNForFieldSeq. |
581 | // Returns the FieldSequence it represents. |
582 | FieldSeqNode* FieldSeqVNToFieldSeq(ValueNum vn); |
583 | |
584 | // Both argument must represent field sequences; returns the value number representing the |
585 | // concatenation "fsVN1 || fsVN2". |
586 | ValueNum FieldSeqVNAppend(ValueNum fsVN1, ValueNum fsVN2); |
587 | |
588 | // If "opA" has a PtrToLoc, PtrToArrElem, or PtrToStatic application as its value numbers, and "opB" is an integer |
589 | // with a "fieldSeq", returns the VN for the pointer form extended with the field sequence; or else NoVN. |
590 | ValueNum ExtendPtrVN(GenTree* opA, GenTree* opB); |
591 | // If "opA" has a PtrToLoc, PtrToArrElem, or PtrToStatic application as its value numbers, returns the VN for the |
592 | // pointer form extended with "fieldSeq"; or else NoVN. |
593 | ValueNum ExtendPtrVN(GenTree* opA, FieldSeqNode* fieldSeq); |
594 | |
595 | // Queries on value numbers. |
596 | // All queries taking value numbers require that those value numbers are valid, that is, that |
597 | // they have been returned by previous "VNFor..." operations. They can assert false if this is |
598 | // not true. |
599 | |
600 | // Returns TYP_UNKNOWN if the given value number has not been given a type. |
601 | var_types TypeOfVN(ValueNum vn); |
602 | |
603 | // Returns MAX_LOOP_NUM if the given value number's loop nest is unknown or ill-defined. |
604 | BasicBlock::loopNumber LoopOfVN(ValueNum vn); |
605 | |
606 | // Returns true iff the VN represents a (non-handle) constant. |
607 | bool IsVNConstant(ValueNum vn); |
608 | |
609 | // Returns true iff the VN represents an integeral constant. |
610 | bool IsVNInt32Constant(ValueNum vn); |
611 | |
612 | typedef SmallHashTable<ValueNum, bool, 8U> CheckedBoundVNSet; |
613 | |
614 | // Returns true if the VN is known or likely to appear as the conservative value number |
615 | // of the length argument to a GT_ARR_BOUNDS_CHECK node. |
616 | bool IsVNCheckedBound(ValueNum vn); |
617 | |
618 | // Record that a VN is known to appear as the conservative value number of the length |
619 | // argument to a GT_ARR_BOUNDS_CHECK node. |
620 | void SetVNIsCheckedBound(ValueNum vn); |
621 | |
622 | // Information about the individual components of a value number representing an unsigned |
623 | // comparison of some value against a checked bound VN. |
624 | struct UnsignedCompareCheckedBoundInfo |
625 | { |
626 | unsigned cmpOper; |
627 | ValueNum vnIdx; |
628 | ValueNum vnBound; |
629 | |
630 | UnsignedCompareCheckedBoundInfo() : cmpOper(GT_NONE), vnIdx(NoVN), vnBound(NoVN) |
631 | { |
632 | } |
633 | }; |
634 | |
635 | struct CompareCheckedBoundArithInfo |
636 | { |
637 | // (vnBound - 1) > vnOp |
638 | // (vnBound arrOper arrOp) cmpOper cmpOp |
639 | ValueNum vnBound; |
640 | unsigned arrOper; |
641 | ValueNum arrOp; |
642 | unsigned cmpOper; |
643 | ValueNum cmpOp; |
644 | CompareCheckedBoundArithInfo() : vnBound(NoVN), arrOper(GT_NONE), arrOp(NoVN), cmpOper(GT_NONE), cmpOp(NoVN) |
645 | { |
646 | } |
647 | #ifdef DEBUG |
648 | void dump(ValueNumStore* vnStore) |
649 | { |
650 | vnStore->vnDump(vnStore->m_pComp, cmpOp); |
651 | printf(" " ); |
652 | printf(vnStore->VNFuncName((VNFunc)cmpOper)); |
653 | printf(" " ); |
654 | vnStore->vnDump(vnStore->m_pComp, vnBound); |
655 | if (arrOper != GT_NONE) |
656 | { |
657 | printf(vnStore->VNFuncName((VNFunc)arrOper)); |
658 | vnStore->vnDump(vnStore->m_pComp, arrOp); |
659 | } |
660 | } |
661 | #endif |
662 | }; |
663 | |
664 | struct ConstantBoundInfo |
665 | { |
666 | // 100 > vnOp |
667 | int constVal; |
668 | unsigned cmpOper; |
669 | ValueNum cmpOpVN; |
670 | |
671 | ConstantBoundInfo() : constVal(0), cmpOper(GT_NONE), cmpOpVN(NoVN) |
672 | { |
673 | } |
674 | |
675 | #ifdef DEBUG |
676 | void dump(ValueNumStore* vnStore) |
677 | { |
678 | vnStore->vnDump(vnStore->m_pComp, cmpOpVN); |
679 | printf(" " ); |
680 | printf(vnStore->VNFuncName((VNFunc)cmpOper)); |
681 | printf(" " ); |
682 | printf("%d" , constVal); |
683 | } |
684 | #endif |
685 | }; |
686 | |
687 | // Check if "vn" is "new [] (type handle, size)" |
688 | bool IsVNNewArr(ValueNum vn, VNFuncApp* funcApp); |
689 | |
690 | // Check if "vn" IsVNNewArr and return <= 0 if arr size cannot be determined, else array size. |
691 | int GetNewArrSize(ValueNum vn); |
692 | |
693 | // Check if "vn" is "a.len" |
694 | bool IsVNArrLen(ValueNum vn); |
695 | |
696 | // If "vn" is VN(a.len) then return VN(a); NoVN if VN(a) can't be determined. |
697 | ValueNum GetArrForLenVn(ValueNum vn); |
698 | |
699 | // Return true with any Relop except for == and != and one operand has to be a 32-bit integer constant. |
700 | bool IsVNConstantBound(ValueNum vn); |
701 | |
702 | // If "vn" is constant bound, then populate the "info" fields for constVal, cmpOp, cmpOper. |
703 | void GetConstantBoundInfo(ValueNum vn, ConstantBoundInfo* info); |
704 | |
705 | // If "vn" is of the form "(uint)var < (uint)len" (or equivalent) return true. |
706 | bool IsVNUnsignedCompareCheckedBound(ValueNum vn, UnsignedCompareCheckedBoundInfo* info); |
707 | |
708 | // If "vn" is of the form "var < len" or "len <= var" return true. |
709 | bool IsVNCompareCheckedBound(ValueNum vn); |
710 | |
711 | // If "vn" is checked bound, then populate the "info" fields for the boundVn, cmpOp, cmpOper. |
712 | void GetCompareCheckedBound(ValueNum vn, CompareCheckedBoundArithInfo* info); |
713 | |
714 | // If "vn" is of the form "len +/- var" return true. |
715 | bool IsVNCheckedBoundArith(ValueNum vn); |
716 | |
717 | // If "vn" is checked bound arith, then populate the "info" fields for arrOper, arrVn, arrOp. |
718 | void GetCheckedBoundArithInfo(ValueNum vn, CompareCheckedBoundArithInfo* info); |
719 | |
720 | // If "vn" is of the form "var < len +/- k" return true. |
721 | bool IsVNCompareCheckedBoundArith(ValueNum vn); |
722 | |
723 | // If "vn" is checked bound arith, then populate the "info" fields for cmpOp, cmpOper. |
724 | void GetCompareCheckedBoundArithInfo(ValueNum vn, CompareCheckedBoundArithInfo* info); |
725 | |
726 | // Returns the flags on the current handle. GTF_ICON_SCOPE_HDL for example. |
727 | unsigned GetHandleFlags(ValueNum vn); |
728 | |
729 | // Returns true iff the VN represents a handle constant. |
730 | bool IsVNHandle(ValueNum vn); |
731 | |
732 | // Convert a vartype_t to the value number's storage type for that vartype_t. |
733 | // For example, ValueNum of type TYP_LONG are stored in a map of INT64 variables. |
734 | // Lang is the language (C++) type for the corresponding vartype_t. |
735 | template <int N> |
736 | struct VarTypConv |
737 | { |
738 | }; |
739 | |
740 | // Return true if two value numbers would compare equal. |
741 | bool VNIsEqual(ValueNum vn1, ValueNum vn2) |
742 | { |
743 | return (vn1 == vn2) && (vn1 != NoVN) && !varTypeIsFloating(TypeOfVN(vn1)); |
744 | } |
745 | |
746 | private: |
747 | struct Chunk; |
748 | |
749 | template <typename T> |
750 | static T CoerceTypRefToT(Chunk* c, unsigned offset); |
751 | |
752 | // Get the actual value and coerce the actual type c->m_typ to the wanted type T. |
753 | template <typename T> |
754 | FORCEINLINE T SafeGetConstantValue(Chunk* c, unsigned offset); |
755 | |
756 | template <typename T> |
757 | T ConstantValueInternal(ValueNum vn DEBUGARG(bool coerce)) |
758 | { |
759 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
760 | assert(c->m_attribs == CEA_Const || c->m_attribs == CEA_Handle); |
761 | |
762 | unsigned offset = ChunkOffset(vn); |
763 | |
764 | switch (c->m_typ) |
765 | { |
766 | case TYP_REF: |
767 | assert(0 <= offset && offset <= 1); // Null or exception. |
768 | __fallthrough; |
769 | |
770 | case TYP_BYREF: |
771 | |
772 | #ifdef _MSC_VER |
773 | |
774 | assert(&typeid(T) == &typeid(size_t)); // We represent ref/byref constants as size_t's. |
775 | |
776 | #endif // _MSC_VER |
777 | |
778 | __fallthrough; |
779 | |
780 | case TYP_INT: |
781 | case TYP_LONG: |
782 | case TYP_FLOAT: |
783 | case TYP_DOUBLE: |
784 | if (c->m_attribs == CEA_Handle) |
785 | { |
786 | C_ASSERT(offsetof(VNHandle, m_cnsVal) == 0); |
787 | return (T) reinterpret_cast<VNHandle*>(c->m_defs)[offset].m_cnsVal; |
788 | } |
789 | #ifdef DEBUG |
790 | if (!coerce) |
791 | { |
792 | T val1 = reinterpret_cast<T*>(c->m_defs)[offset]; |
793 | T val2 = SafeGetConstantValue<T>(c, offset); |
794 | |
795 | // Detect if there is a mismatch between the VN storage type and explicitly |
796 | // passed-in type T. |
797 | bool mismatch = false; |
798 | if (varTypeIsFloating(c->m_typ)) |
799 | { |
800 | mismatch = (memcmp(&val1, &val2, sizeof(val1)) != 0); |
801 | } |
802 | else |
803 | { |
804 | mismatch = (val1 != val2); |
805 | } |
806 | |
807 | if (mismatch) |
808 | { |
809 | assert( |
810 | !"Called ConstantValue<T>(vn), but type(T) != type(vn); Use CoercedConstantValue instead." ); |
811 | } |
812 | } |
813 | #endif |
814 | return SafeGetConstantValue<T>(c, offset); |
815 | |
816 | default: |
817 | assert(false); // We do not record constants of this typ. |
818 | return (T)0; |
819 | } |
820 | } |
821 | |
822 | public: |
823 | // Requires that "vn" is a constant, and that its type is compatible with the explicitly passed |
824 | // type "T". Also, note that "T" has to have an accurate storage size of the TypeOfVN(vn). |
825 | template <typename T> |
826 | T ConstantValue(ValueNum vn) |
827 | { |
828 | return ConstantValueInternal<T>(vn DEBUGARG(false)); |
829 | } |
830 | |
831 | // Requires that "vn" is a constant, and that its type can be coerced to the explicitly passed |
832 | // type "T". |
833 | template <typename T> |
834 | T CoercedConstantValue(ValueNum vn) |
835 | { |
836 | return ConstantValueInternal<T>(vn DEBUGARG(true)); |
837 | } |
838 | |
839 | // Requires "mthFunc" to be an intrinsic math function (one of the allowable values for the "gtMath" field |
840 | // of a GenTreeMath node). For unary ops, return the value number for the application of this function to |
841 | // "arg0VN". For binary ops, return the value number for the application of this function to "arg0VN" and |
842 | // "arg1VN". |
843 | |
844 | ValueNum EvalMathFuncUnary(var_types typ, CorInfoIntrinsics mthFunc, ValueNum arg0VN); |
845 | |
846 | ValueNum EvalMathFuncBinary(var_types typ, CorInfoIntrinsics mthFunc, ValueNum arg0VN, ValueNum arg1VN); |
847 | |
848 | ValueNumPair EvalMathFuncUnary(var_types typ, CorInfoIntrinsics mthFunc, ValueNumPair arg0VNP) |
849 | { |
850 | return ValueNumPair(EvalMathFuncUnary(typ, mthFunc, arg0VNP.GetLiberal()), |
851 | EvalMathFuncUnary(typ, mthFunc, arg0VNP.GetConservative())); |
852 | } |
853 | |
854 | ValueNumPair EvalMathFuncBinary(var_types typ, |
855 | CorInfoIntrinsics mthFunc, |
856 | ValueNumPair arg0VNP, |
857 | ValueNumPair arg1VNP) |
858 | { |
859 | return ValueNumPair(EvalMathFuncBinary(typ, mthFunc, arg0VNP.GetLiberal(), arg1VNP.GetLiberal()), |
860 | EvalMathFuncBinary(typ, mthFunc, arg0VNP.GetConservative(), arg1VNP.GetConservative())); |
861 | } |
862 | |
863 | // Returns "true" iff "vn" represents a function application. |
864 | bool IsVNFunc(ValueNum vn); |
865 | |
866 | // If "vn" represents a function application, returns "true" and set "*funcApp" to |
867 | // the function application it represents; otherwise, return "false." |
868 | bool GetVNFunc(ValueNum vn, VNFuncApp* funcApp); |
869 | |
870 | // Requires that "vn" represents a "GC heap address" the sum of a "TYP_REF" value and some integer |
871 | // value. Returns the TYP_REF value. |
872 | ValueNum VNForRefInAddr(ValueNum vn); |
873 | |
874 | // Returns "true" iff "vn" is a valid value number -- one that has been previously returned. |
875 | bool VNIsValid(ValueNum vn); |
876 | |
877 | #ifdef DEBUG |
878 | // This controls whether we recursively call vnDump on function arguments. |
879 | #define FEATURE_VN_DUMP_FUNC_ARGS 0 |
880 | |
881 | // Prints, to standard out, a representation of "vn". |
882 | void vnDump(Compiler* comp, ValueNum vn, bool isPtr = false); |
883 | |
884 | // Requires "fieldSeq" to be a field sequence VNFuncApp. |
885 | // Prints a representation (comma-separated list of field names) on standard out. |
886 | void vnDumpFieldSeq(Compiler* comp, VNFuncApp* fieldSeq, bool isHead); |
887 | |
888 | // Requires "mapSelect" to be a map select VNFuncApp. |
889 | // Prints a representation of a MapSelect operation on standard out. |
890 | void vnDumpMapSelect(Compiler* comp, VNFuncApp* mapSelect); |
891 | |
892 | // Requires "mapStore" to be a map store VNFuncApp. |
893 | // Prints a representation of a MapStore operation on standard out. |
894 | void vnDumpMapStore(Compiler* comp, VNFuncApp* mapStore); |
895 | |
896 | // Requires "valWithExc" to be a value with an exeception set VNFuncApp. |
897 | // Prints a representation of the exeception set on standard out. |
898 | void vnDumpValWithExc(Compiler* comp, VNFuncApp* valWithExc); |
899 | |
900 | // Requires "excSeq" to be a ExcSetCons sequence. |
901 | // Prints a representation of the set of exceptions on standard out. |
902 | void vnDumpExcSeq(Compiler* comp, VNFuncApp* excSeq, bool isHead); |
903 | |
904 | // Returns the string name of "vnf". |
905 | static const char* VNFuncName(VNFunc vnf); |
906 | // Used in the implementation of the above. |
907 | static const char* VNFuncNameArr[]; |
908 | |
909 | // Returns the string name of "vn" when it is a reserved value number, nullptr otherwise |
910 | static const char* reservedName(ValueNum vn); |
911 | |
912 | #endif // DEBUG |
913 | |
914 | // Returns true if "vn" is a reserved value number |
915 | static bool isReservedVN(ValueNum); |
916 | |
917 | private: |
918 | // We will allocate value numbers in "chunks". Each chunk will have the same type and "constness". |
919 | static const unsigned LogChunkSize = 6; |
920 | static const unsigned ChunkSize = 1 << LogChunkSize; |
921 | static const unsigned ChunkOffsetMask = ChunkSize - 1; |
922 | |
923 | // A "ChunkNum" is a zero-based index naming a chunk in the Store, or else the special "NoChunk" value. |
924 | typedef UINT32 ChunkNum; |
925 | static const ChunkNum NoChunk = UINT32_MAX; |
926 | |
927 | // Returns the ChunkNum of the Chunk that holds "vn" (which is required to be a valid |
928 | // value number, i.e., one returned by some VN-producing method of this class). |
929 | static ChunkNum GetChunkNum(ValueNum vn) |
930 | { |
931 | return vn >> LogChunkSize; |
932 | } |
933 | |
934 | // Returns the offset of the given "vn" within its chunk. |
935 | static unsigned ChunkOffset(ValueNum vn) |
936 | { |
937 | return vn & ChunkOffsetMask; |
938 | } |
939 | |
940 | // The base VN of the next chunk to be allocated. Should always be a multiple of ChunkSize. |
941 | ValueNum m_nextChunkBase; |
942 | |
943 | enum : BYTE |
944 | { |
945 | CEA_None, // No extra attributes. |
946 | CEA_Const, // This chunk contains constant values. |
947 | CEA_Handle, // This chunk contains handle constants. |
948 | CEA_NotAField, // This chunk contains "not a field" values. |
949 | CEA_Func0, // Represents functions of arity 0. |
950 | CEA_Func1, // ...arity 1. |
951 | CEA_Func2, // ...arity 2. |
952 | CEA_Func3, // ...arity 3. |
953 | CEA_Func4, // ...arity 4. |
954 | CEA_Count |
955 | }; |
956 | |
957 | // A "Chunk" holds "ChunkSize" value numbers, starting at "m_baseVN". All of these share the same |
958 | // "m_typ" and "m_attribs". These properties determine the interpretation of "m_defs", as discussed below. |
959 | struct Chunk |
960 | { |
961 | // If "m_defs" is non-null, it is an array of size ChunkSize, whose element type is determined by the other |
962 | // members. The "m_numUsed" field indicates the number of elements of "m_defs" that are already consumed (the |
963 | // next one to allocate). |
964 | void* m_defs; |
965 | unsigned m_numUsed; |
966 | |
967 | // The value number of the first VN in the chunk. |
968 | ValueNum m_baseVN; |
969 | |
970 | // The common attributes of this chunk. |
971 | var_types m_typ; |
972 | ChunkExtraAttribs m_attribs; |
973 | BasicBlock::loopNumber m_loopNum; |
974 | |
975 | // Initialize a chunk, starting at "*baseVN", for the given "typ", "attribs", and "loopNum" (using "alloc" for |
976 | // allocations). |
977 | // (Increments "*baseVN" by ChunkSize.) |
978 | (CompAllocator alloc, |
979 | ValueNum* baseVN, |
980 | var_types typ, |
981 | ChunkExtraAttribs attribs, |
982 | BasicBlock::loopNumber loopNum); |
983 | |
984 | // Requires that "m_numUsed < ChunkSize." Returns the offset of the allocated VN within the chunk; the |
985 | // actual VN is this added to the "m_baseVN" of the chunk. |
986 | unsigned AllocVN() |
987 | { |
988 | assert(m_numUsed < ChunkSize); |
989 | return m_numUsed++; |
990 | } |
991 | |
992 | template <int N> |
993 | struct Alloc |
994 | { |
995 | typedef typename ValueNumStore::VarTypConv<N>::Type Type; |
996 | }; |
997 | }; |
998 | |
999 | struct VNHandle : public JitKeyFuncsDefEquals<VNHandle> |
1000 | { |
1001 | ssize_t m_cnsVal; |
1002 | unsigned m_flags; |
1003 | // Don't use a constructor to use the default copy constructor for hashtable rehash. |
1004 | static void Initialize(VNHandle* handle, ssize_t m_cnsVal, unsigned m_flags) |
1005 | { |
1006 | handle->m_cnsVal = m_cnsVal; |
1007 | handle->m_flags = m_flags; |
1008 | } |
1009 | bool operator==(const VNHandle& y) const |
1010 | { |
1011 | return m_cnsVal == y.m_cnsVal && m_flags == y.m_flags; |
1012 | } |
1013 | static unsigned GetHashCode(const VNHandle& val) |
1014 | { |
1015 | return static_cast<unsigned>(val.m_cnsVal); |
1016 | } |
1017 | }; |
1018 | |
1019 | struct VNDefFunc0Arg |
1020 | { |
1021 | VNFunc m_func; |
1022 | VNDefFunc0Arg(VNFunc func) : m_func(func) |
1023 | { |
1024 | } |
1025 | |
1026 | VNDefFunc0Arg() : m_func(VNF_COUNT) |
1027 | { |
1028 | } |
1029 | |
1030 | bool operator==(const VNDefFunc0Arg& y) const |
1031 | { |
1032 | return m_func == y.m_func; |
1033 | } |
1034 | }; |
1035 | |
1036 | struct VNDefFunc1Arg : public VNDefFunc0Arg |
1037 | { |
1038 | ValueNum m_arg0; |
1039 | VNDefFunc1Arg(VNFunc func, ValueNum arg0) : VNDefFunc0Arg(func), m_arg0(arg0) |
1040 | { |
1041 | } |
1042 | |
1043 | VNDefFunc1Arg() : VNDefFunc0Arg(), m_arg0(ValueNumStore::NoVN) |
1044 | { |
1045 | } |
1046 | |
1047 | bool operator==(const VNDefFunc1Arg& y) const |
1048 | { |
1049 | return VNDefFunc0Arg::operator==(y) && m_arg0 == y.m_arg0; |
1050 | } |
1051 | }; |
1052 | |
1053 | struct VNDefFunc2Arg : public VNDefFunc1Arg |
1054 | { |
1055 | ValueNum m_arg1; |
1056 | VNDefFunc2Arg(VNFunc func, ValueNum arg0, ValueNum arg1) : VNDefFunc1Arg(func, arg0), m_arg1(arg1) |
1057 | { |
1058 | } |
1059 | |
1060 | VNDefFunc2Arg() : m_arg1(ValueNumStore::NoVN) |
1061 | { |
1062 | } |
1063 | |
1064 | bool operator==(const VNDefFunc2Arg& y) const |
1065 | { |
1066 | return VNDefFunc1Arg::operator==(y) && m_arg1 == y.m_arg1; |
1067 | } |
1068 | }; |
1069 | |
1070 | struct VNDefFunc3Arg : public VNDefFunc2Arg |
1071 | { |
1072 | ValueNum m_arg2; |
1073 | VNDefFunc3Arg(VNFunc func, ValueNum arg0, ValueNum arg1, ValueNum arg2) |
1074 | : VNDefFunc2Arg(func, arg0, arg1), m_arg2(arg2) |
1075 | { |
1076 | } |
1077 | VNDefFunc3Arg() : m_arg2(ValueNumStore::NoVN) |
1078 | { |
1079 | } |
1080 | |
1081 | bool operator==(const VNDefFunc3Arg& y) const |
1082 | { |
1083 | return VNDefFunc2Arg::operator==(y) && m_arg2 == y.m_arg2; |
1084 | } |
1085 | }; |
1086 | |
1087 | struct VNDefFunc4Arg : public VNDefFunc3Arg |
1088 | { |
1089 | ValueNum m_arg3; |
1090 | VNDefFunc4Arg(VNFunc func, ValueNum arg0, ValueNum arg1, ValueNum arg2, ValueNum arg3) |
1091 | : VNDefFunc3Arg(func, arg0, arg1, arg2), m_arg3(arg3) |
1092 | { |
1093 | } |
1094 | VNDefFunc4Arg() : m_arg3(ValueNumStore::NoVN) |
1095 | { |
1096 | } |
1097 | |
1098 | bool operator==(const VNDefFunc4Arg& y) const |
1099 | { |
1100 | return VNDefFunc3Arg::operator==(y) && m_arg3 == y.m_arg3; |
1101 | } |
1102 | }; |
1103 | |
1104 | // When we evaluate "select(m, i)", if "m" is a the value of a phi definition, we look at |
1105 | // all the values of the phi args, and see if doing the "select" on each of them yields identical |
1106 | // results. If so, that is the result of the entire "select" form. We have to be careful, however, |
1107 | // because phis may be recursive in the presence of loop structures -- the VN for the phi may be (or be |
1108 | // part of the definition of) the VN's of some of the arguments. But there will be at least one |
1109 | // argument that does *not* depend on the outer phi VN -- after all, we had to get into the loop somehow. |
1110 | // So we have to be careful about breaking infinite recursion. We can ignore "recursive" results -- if all the |
1111 | // non-recursive results are the same, the recursion indicates that the loop structure didn't alter the result. |
1112 | // This stack represents the set of outer phis such that select(phi, ind) is being evaluated. |
1113 | JitExpandArrayStack<VNDefFunc2Arg> m_fixedPointMapSels; |
1114 | |
1115 | #ifdef DEBUG |
1116 | // Returns "true" iff "m_fixedPointMapSels" is non-empty, and it's top element is |
1117 | // "select(map, index)". |
1118 | bool FixedPointMapSelsTopHasValue(ValueNum map, ValueNum index); |
1119 | #endif |
1120 | |
1121 | // Returns true if "sel(map, ind)" is a member of "m_fixedPointMapSels". |
1122 | bool SelectIsBeingEvaluatedRecursively(ValueNum map, ValueNum ind); |
1123 | |
1124 | // This is the set of value numbers that have been flagged as arguments to bounds checks, in the length position. |
1125 | CheckedBoundVNSet m_checkedBoundVNs; |
1126 | |
1127 | // This is a map from "chunk number" to the attributes of the chunk. |
1128 | JitExpandArrayStack<Chunk*> m_chunks; |
1129 | |
1130 | // These entries indicate the current allocation chunk, if any, for each valid combination of <var_types, |
1131 | // ChunkExtraAttribute, loopNumber>. Valid combinations require attribs==CEA_None or loopNum==MAX_LOOP_NUM. |
1132 | // If the value is NoChunk, it indicates that there is no current allocation chunk for that pair, otherwise |
1133 | // it is the index in "m_chunks" of a chunk with the given attributes, in which the next allocation should |
1134 | // be attempted. |
1135 | ChunkNum m_curAllocChunk[TYP_COUNT][CEA_Count + MAX_LOOP_NUM + 1]; |
1136 | |
1137 | // Returns a (pointer to a) chunk in which a new value number may be allocated. |
1138 | Chunk* (var_types typ, ChunkExtraAttribs attribs, BasicBlock::loopNumber loopNum = MAX_LOOP_NUM); |
1139 | |
1140 | // First, we need mechanisms for mapping from constants to value numbers. |
1141 | // For small integers, we'll use an array. |
1142 | static const int SmallIntConstMin = -1; |
1143 | static const int SmallIntConstMax = 10; |
1144 | static const unsigned SmallIntConstNum = SmallIntConstMax - SmallIntConstMin + 1; |
1145 | static bool IsSmallIntConst(int i) |
1146 | { |
1147 | return SmallIntConstMin <= i && i <= SmallIntConstMax; |
1148 | } |
1149 | ValueNum m_VNsForSmallIntConsts[SmallIntConstNum]; |
1150 | |
1151 | struct ValueNumList |
1152 | { |
1153 | ValueNum vn; |
1154 | ValueNumList* next; |
1155 | ValueNumList(const ValueNum& v, ValueNumList* n = nullptr) : vn(v), next(n) |
1156 | { |
1157 | } |
1158 | }; |
1159 | |
1160 | // Keeps track of value numbers that are integer constants and also handles (GTG_ICON_HDL_MASK.) |
1161 | ValueNumList* m_intConHandles; |
1162 | |
1163 | typedef VNMap<INT32> IntToValueNumMap; |
1164 | IntToValueNumMap* m_intCnsMap; |
1165 | IntToValueNumMap* GetIntCnsMap() |
1166 | { |
1167 | if (m_intCnsMap == nullptr) |
1168 | { |
1169 | m_intCnsMap = new (m_alloc) IntToValueNumMap(m_alloc); |
1170 | } |
1171 | return m_intCnsMap; |
1172 | } |
1173 | |
1174 | ValueNum GetVNForIntCon(INT32 cnsVal) |
1175 | { |
1176 | ValueNum res; |
1177 | if (GetIntCnsMap()->Lookup(cnsVal, &res)) |
1178 | { |
1179 | return res; |
1180 | } |
1181 | else |
1182 | { |
1183 | Chunk* c = GetAllocChunk(TYP_INT, CEA_Const); |
1184 | unsigned offsetWithinChunk = c->AllocVN(); |
1185 | res = c->m_baseVN + offsetWithinChunk; |
1186 | reinterpret_cast<INT32*>(c->m_defs)[offsetWithinChunk] = cnsVal; |
1187 | GetIntCnsMap()->Set(cnsVal, res); |
1188 | return res; |
1189 | } |
1190 | } |
1191 | |
1192 | typedef VNMap<INT64> LongToValueNumMap; |
1193 | LongToValueNumMap* m_longCnsMap; |
1194 | LongToValueNumMap* GetLongCnsMap() |
1195 | { |
1196 | if (m_longCnsMap == nullptr) |
1197 | { |
1198 | m_longCnsMap = new (m_alloc) LongToValueNumMap(m_alloc); |
1199 | } |
1200 | return m_longCnsMap; |
1201 | } |
1202 | |
1203 | typedef VNMap<VNHandle, VNHandle> HandleToValueNumMap; |
1204 | HandleToValueNumMap* m_handleMap; |
1205 | HandleToValueNumMap* GetHandleMap() |
1206 | { |
1207 | if (m_handleMap == nullptr) |
1208 | { |
1209 | m_handleMap = new (m_alloc) HandleToValueNumMap(m_alloc); |
1210 | } |
1211 | return m_handleMap; |
1212 | } |
1213 | |
1214 | struct LargePrimitiveKeyFuncsFloat : public JitLargePrimitiveKeyFuncs<float> |
1215 | { |
1216 | static bool Equals(float x, float y) |
1217 | { |
1218 | return *(unsigned*)&x == *(unsigned*)&y; |
1219 | } |
1220 | }; |
1221 | |
1222 | typedef VNMap<float, LargePrimitiveKeyFuncsFloat> FloatToValueNumMap; |
1223 | FloatToValueNumMap* m_floatCnsMap; |
1224 | FloatToValueNumMap* GetFloatCnsMap() |
1225 | { |
1226 | if (m_floatCnsMap == nullptr) |
1227 | { |
1228 | m_floatCnsMap = new (m_alloc) FloatToValueNumMap(m_alloc); |
1229 | } |
1230 | return m_floatCnsMap; |
1231 | } |
1232 | |
1233 | // In the JIT we need to distinguish -0.0 and 0.0 for optimizations. |
1234 | struct LargePrimitiveKeyFuncsDouble : public JitLargePrimitiveKeyFuncs<double> |
1235 | { |
1236 | static bool Equals(double x, double y) |
1237 | { |
1238 | return *(__int64*)&x == *(__int64*)&y; |
1239 | } |
1240 | }; |
1241 | |
1242 | typedef VNMap<double, LargePrimitiveKeyFuncsDouble> DoubleToValueNumMap; |
1243 | DoubleToValueNumMap* m_doubleCnsMap; |
1244 | DoubleToValueNumMap* GetDoubleCnsMap() |
1245 | { |
1246 | if (m_doubleCnsMap == nullptr) |
1247 | { |
1248 | m_doubleCnsMap = new (m_alloc) DoubleToValueNumMap(m_alloc); |
1249 | } |
1250 | return m_doubleCnsMap; |
1251 | } |
1252 | |
1253 | LongToValueNumMap* m_byrefCnsMap; |
1254 | LongToValueNumMap* GetByrefCnsMap() |
1255 | { |
1256 | if (m_byrefCnsMap == nullptr) |
1257 | { |
1258 | m_byrefCnsMap = new (m_alloc) LongToValueNumMap(m_alloc); |
1259 | } |
1260 | return m_byrefCnsMap; |
1261 | } |
1262 | |
1263 | struct VNDefFunc0ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc1Arg> |
1264 | { |
1265 | static unsigned GetHashCode(VNDefFunc1Arg val) |
1266 | { |
1267 | return (val.m_func << 24) + val.m_arg0; |
1268 | } |
1269 | }; |
1270 | typedef VNMap<VNFunc> VNFunc0ToValueNumMap; |
1271 | VNFunc0ToValueNumMap* m_VNFunc0Map; |
1272 | VNFunc0ToValueNumMap* GetVNFunc0Map() |
1273 | { |
1274 | if (m_VNFunc0Map == nullptr) |
1275 | { |
1276 | m_VNFunc0Map = new (m_alloc) VNFunc0ToValueNumMap(m_alloc); |
1277 | } |
1278 | return m_VNFunc0Map; |
1279 | } |
1280 | |
1281 | struct VNDefFunc1ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc1Arg> |
1282 | { |
1283 | static unsigned GetHashCode(VNDefFunc1Arg val) |
1284 | { |
1285 | return (val.m_func << 24) + val.m_arg0; |
1286 | } |
1287 | }; |
1288 | typedef VNMap<VNDefFunc1Arg, VNDefFunc1ArgKeyFuncs> VNFunc1ToValueNumMap; |
1289 | VNFunc1ToValueNumMap* m_VNFunc1Map; |
1290 | VNFunc1ToValueNumMap* GetVNFunc1Map() |
1291 | { |
1292 | if (m_VNFunc1Map == nullptr) |
1293 | { |
1294 | m_VNFunc1Map = new (m_alloc) VNFunc1ToValueNumMap(m_alloc); |
1295 | } |
1296 | return m_VNFunc1Map; |
1297 | } |
1298 | |
1299 | struct VNDefFunc2ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc2Arg> |
1300 | { |
1301 | static unsigned GetHashCode(VNDefFunc2Arg val) |
1302 | { |
1303 | return (val.m_func << 24) + (val.m_arg0 << 8) + val.m_arg1; |
1304 | } |
1305 | }; |
1306 | typedef VNMap<VNDefFunc2Arg, VNDefFunc2ArgKeyFuncs> VNFunc2ToValueNumMap; |
1307 | VNFunc2ToValueNumMap* m_VNFunc2Map; |
1308 | VNFunc2ToValueNumMap* GetVNFunc2Map() |
1309 | { |
1310 | if (m_VNFunc2Map == nullptr) |
1311 | { |
1312 | m_VNFunc2Map = new (m_alloc) VNFunc2ToValueNumMap(m_alloc); |
1313 | } |
1314 | return m_VNFunc2Map; |
1315 | } |
1316 | |
1317 | struct VNDefFunc3ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc3Arg> |
1318 | { |
1319 | static unsigned GetHashCode(VNDefFunc3Arg val) |
1320 | { |
1321 | return (val.m_func << 24) + (val.m_arg0 << 16) + (val.m_arg1 << 8) + val.m_arg2; |
1322 | } |
1323 | }; |
1324 | typedef VNMap<VNDefFunc3Arg, VNDefFunc3ArgKeyFuncs> VNFunc3ToValueNumMap; |
1325 | VNFunc3ToValueNumMap* m_VNFunc3Map; |
1326 | VNFunc3ToValueNumMap* GetVNFunc3Map() |
1327 | { |
1328 | if (m_VNFunc3Map == nullptr) |
1329 | { |
1330 | m_VNFunc3Map = new (m_alloc) VNFunc3ToValueNumMap(m_alloc); |
1331 | } |
1332 | return m_VNFunc3Map; |
1333 | } |
1334 | |
1335 | struct VNDefFunc4ArgKeyFuncs : public JitKeyFuncsDefEquals<VNDefFunc4Arg> |
1336 | { |
1337 | static unsigned GetHashCode(VNDefFunc4Arg val) |
1338 | { |
1339 | return (val.m_func << 24) + (val.m_arg0 << 16) + (val.m_arg1 << 8) + val.m_arg2 + (val.m_arg3 << 12); |
1340 | } |
1341 | }; |
1342 | typedef VNMap<VNDefFunc4Arg, VNDefFunc4ArgKeyFuncs> VNFunc4ToValueNumMap; |
1343 | VNFunc4ToValueNumMap* m_VNFunc4Map; |
1344 | VNFunc4ToValueNumMap* GetVNFunc4Map() |
1345 | { |
1346 | if (m_VNFunc4Map == nullptr) |
1347 | { |
1348 | m_VNFunc4Map = new (m_alloc) VNFunc4ToValueNumMap(m_alloc); |
1349 | } |
1350 | return m_VNFunc4Map; |
1351 | } |
1352 | |
1353 | enum SpecialRefConsts |
1354 | { |
1355 | SRC_Null, |
1356 | SRC_ZeroMap, |
1357 | SRC_ReadOnlyHeap, |
1358 | SRC_Void, |
1359 | SRC_EmptyExcSet, |
1360 | |
1361 | SRC_NumSpecialRefConsts |
1362 | }; |
1363 | |
1364 | // The "values" of special ref consts will be all be "null" -- their differing meanings will |
1365 | // be carried by the distinct value numbers. |
1366 | static class Object* s_specialRefConsts[SRC_NumSpecialRefConsts]; |
1367 | static class Object* s_nullConst; |
1368 | |
1369 | #ifdef DEBUG |
1370 | // This helps test some performance pathologies related to "evaluation" of VNF_MapSelect terms, |
1371 | // especially relating to GcHeap/ByrefExposed. We count the number of applications of such terms we consider, |
1372 | // and if this exceeds a limit, indicated by a COMPlus_ variable, we assert. |
1373 | unsigned m_numMapSels; |
1374 | #endif |
1375 | }; |
1376 | |
1377 | template <> |
1378 | struct ValueNumStore::VarTypConv<TYP_INT> |
1379 | { |
1380 | typedef INT32 Type; |
1381 | typedef int Lang; |
1382 | }; |
1383 | template <> |
1384 | struct ValueNumStore::VarTypConv<TYP_FLOAT> |
1385 | { |
1386 | typedef INT32 Type; |
1387 | typedef float Lang; |
1388 | }; |
1389 | template <> |
1390 | struct ValueNumStore::VarTypConv<TYP_LONG> |
1391 | { |
1392 | typedef INT64 Type; |
1393 | typedef INT64 Lang; |
1394 | }; |
1395 | template <> |
1396 | struct ValueNumStore::VarTypConv<TYP_DOUBLE> |
1397 | { |
1398 | typedef INT64 Type; |
1399 | typedef double Lang; |
1400 | }; |
1401 | template <> |
1402 | struct ValueNumStore::VarTypConv<TYP_BYREF> |
1403 | { |
1404 | typedef INT64 Type; |
1405 | typedef void* Lang; |
1406 | }; |
1407 | template <> |
1408 | struct ValueNumStore::VarTypConv<TYP_REF> |
1409 | { |
1410 | typedef class Object* Type; |
1411 | typedef class Object* Lang; |
1412 | }; |
1413 | |
1414 | // Get the actual value and coerce the actual type c->m_typ to the wanted type T. |
1415 | template <typename T> |
1416 | FORCEINLINE T ValueNumStore::SafeGetConstantValue(Chunk* c, unsigned offset) |
1417 | { |
1418 | switch (c->m_typ) |
1419 | { |
1420 | case TYP_REF: |
1421 | return CoerceTypRefToT<T>(c, offset); |
1422 | case TYP_BYREF: |
1423 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_BYREF>::Type*>(c->m_defs)[offset]); |
1424 | case TYP_INT: |
1425 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_INT>::Type*>(c->m_defs)[offset]); |
1426 | case TYP_LONG: |
1427 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_LONG>::Type*>(c->m_defs)[offset]); |
1428 | case TYP_FLOAT: |
1429 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_FLOAT>::Lang*>(c->m_defs)[offset]); |
1430 | case TYP_DOUBLE: |
1431 | return static_cast<T>(reinterpret_cast<VarTypConv<TYP_DOUBLE>::Lang*>(c->m_defs)[offset]); |
1432 | default: |
1433 | assert(false); |
1434 | return (T)0; |
1435 | } |
1436 | } |
1437 | |
1438 | // Inline functions. |
1439 | |
1440 | // static |
1441 | inline bool ValueNumStore::GenTreeOpIsLegalVNFunc(genTreeOps gtOper) |
1442 | { |
1443 | return (s_vnfOpAttribs[gtOper] & VNFOA_IllegalGenTreeOp) == 0; |
1444 | } |
1445 | |
1446 | // static |
1447 | inline bool ValueNumStore::VNFuncIsCommutative(VNFunc vnf) |
1448 | { |
1449 | return (s_vnfOpAttribs[vnf] & VNFOA_Commutative) != 0; |
1450 | } |
1451 | |
1452 | inline bool ValueNumStore::VNFuncIsComparison(VNFunc vnf) |
1453 | { |
1454 | if (vnf >= VNF_Boundary) |
1455 | { |
1456 | // For integer types we have unsigned comparisions, and |
1457 | // for floating point types these are the unordered variants. |
1458 | // |
1459 | return ((vnf == VNF_LT_UN) || (vnf == VNF_LE_UN) || (vnf == VNF_GE_UN) || (vnf == VNF_GT_UN)); |
1460 | } |
1461 | genTreeOps gtOp = genTreeOps(vnf); |
1462 | return GenTree::OperIsCompare(gtOp) != 0; |
1463 | } |
1464 | |
1465 | template <> |
1466 | inline size_t ValueNumStore::CoerceTypRefToT(Chunk* c, unsigned offset) |
1467 | { |
1468 | return reinterpret_cast<size_t>(reinterpret_cast<VarTypConv<TYP_REF>::Type*>(c->m_defs)[offset]); |
1469 | } |
1470 | |
1471 | template <typename T> |
1472 | inline T ValueNumStore::CoerceTypRefToT(Chunk* c, unsigned offset) |
1473 | { |
1474 | noway_assert(sizeof(T) >= sizeof(VarTypConv<TYP_REF>::Type)); |
1475 | unreached(); |
1476 | } |
1477 | |
1478 | /*****************************************************************************/ |
1479 | #endif // _VALUENUM_H_ |
1480 | /*****************************************************************************/ |
1481 | |