1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | #include "jitpch.h" |
6 | #include "ssaconfig.h" |
7 | #include "ssarenamestate.h" |
8 | #include "ssabuilder.h" |
9 | |
10 | namespace |
11 | { |
12 | /** |
13 | * Method that finds a common IDom parent, much like least common ancestor. |
14 | * |
15 | * @param finger1 A basic block that might share IDom ancestor with finger2. |
16 | * @param finger2 A basic block that might share IDom ancestor with finger1. |
17 | * |
18 | * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy. |
19 | * |
20 | * @return A basic block whose IDom is the dominator for finger1 and finger2, |
21 | * or else NULL. This may be called while immediate dominators are being |
22 | * computed, and if the input values are members of the same loop (each reachable from the other), |
23 | * then one may not yet have its immediate dominator computed when we are attempting |
24 | * to find the immediate dominator of the other. So a NULL return value means that the |
25 | * the two inputs are in a cycle, not that they don't have a common dominator ancestor. |
26 | */ |
27 | static inline BasicBlock* IntersectDom(BasicBlock* finger1, BasicBlock* finger2) |
28 | { |
29 | while (finger1 != finger2) |
30 | { |
31 | if (finger1 == nullptr || finger2 == nullptr) |
32 | { |
33 | return nullptr; |
34 | } |
35 | while (finger1 != nullptr && finger1->bbPostOrderNum < finger2->bbPostOrderNum) |
36 | { |
37 | finger1 = finger1->bbIDom; |
38 | } |
39 | if (finger1 == nullptr) |
40 | { |
41 | return nullptr; |
42 | } |
43 | while (finger2 != nullptr && finger2->bbPostOrderNum < finger1->bbPostOrderNum) |
44 | { |
45 | finger2 = finger2->bbIDom; |
46 | } |
47 | } |
48 | return finger1; |
49 | } |
50 | |
51 | } // end of anonymous namespace. |
52 | |
53 | // ================================================================================= |
54 | // SSA |
55 | // ================================================================================= |
56 | |
57 | void Compiler::fgSsaBuild() |
58 | { |
59 | // If this is not the first invocation, reset data structures for SSA. |
60 | if (fgSsaPassesCompleted > 0) |
61 | { |
62 | fgResetForSsa(); |
63 | } |
64 | |
65 | SsaBuilder builder(this); |
66 | builder.Build(); |
67 | fgSsaPassesCompleted++; |
68 | #ifdef DEBUG |
69 | JitTestCheckSSA(); |
70 | #endif // DEBUG |
71 | |
72 | #ifdef DEBUG |
73 | if (verbose) |
74 | { |
75 | JITDUMP("\nAfter fgSsaBuild:\n" ); |
76 | fgDispBasicBlocks(/*dumpTrees*/ true); |
77 | } |
78 | #endif // DEBUG |
79 | } |
80 | |
81 | void Compiler::() |
82 | { |
83 | for (unsigned i = 0; i < lvaCount; ++i) |
84 | { |
85 | lvaTable[i].lvPerSsaData.Reset(); |
86 | } |
87 | lvMemoryPerSsaData.Reset(); |
88 | for (MemoryKind memoryKind : allMemoryKinds()) |
89 | { |
90 | m_memorySsaMap[memoryKind] = nullptr; |
91 | } |
92 | |
93 | for (BasicBlock* blk = fgFirstBB; blk != nullptr; blk = blk->bbNext) |
94 | { |
95 | // Eliminate phis. |
96 | for (MemoryKind memoryKind : allMemoryKinds()) |
97 | { |
98 | blk->bbMemorySsaPhiFunc[memoryKind] = nullptr; |
99 | } |
100 | if (blk->bbTreeList != nullptr) |
101 | { |
102 | GenTree* last = blk->bbTreeList->gtPrev; |
103 | blk->bbTreeList = blk->FirstNonPhiDef(); |
104 | if (blk->bbTreeList != nullptr) |
105 | { |
106 | blk->bbTreeList->gtPrev = last; |
107 | } |
108 | } |
109 | |
110 | // Clear post-order numbers and SSA numbers; SSA construction will overwrite these, |
111 | // but only for reachable code, so clear them to avoid analysis getting confused |
112 | // by stale annotations in unreachable code. |
113 | blk->bbPostOrderNum = 0; |
114 | for (GenTreeStmt* stmt = blk->firstStmt(); stmt != nullptr; stmt = stmt->getNextStmt()) |
115 | { |
116 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree != nullptr; tree = tree->gtNext) |
117 | { |
118 | if (tree->IsLocal()) |
119 | { |
120 | tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM); |
121 | continue; |
122 | } |
123 | } |
124 | } |
125 | } |
126 | } |
127 | |
128 | /** |
129 | * Constructor for the SSA builder. |
130 | * |
131 | * @param pCompiler Current compiler instance. |
132 | * |
133 | * @remarks Initializes the class and member pointers/objects that use constructors. |
134 | */ |
135 | SsaBuilder::SsaBuilder(Compiler* pCompiler) |
136 | : m_pCompiler(pCompiler) |
137 | , m_allocator(pCompiler->getAllocator(CMK_SSA)) |
138 | , m_visitedTraits(0, pCompiler) // at this point we do not know the size, SetupBBRoot can add a block |
139 | #ifdef SSA_FEATURE_DOMARR |
140 | , m_pDomPreOrder(nullptr) |
141 | , m_pDomPostOrder(nullptr) |
142 | #endif |
143 | { |
144 | } |
145 | |
146 | //------------------------------------------------------------------------ |
147 | // TopologicalSort: Topologically sort the graph and return the number of nodes visited. |
148 | // |
149 | // Arguments: |
150 | // postOrder - The array in which the arranged basic blocks have to be returned. |
151 | // count - The size of the postOrder array. |
152 | // |
153 | // Return Value: |
154 | // The number of nodes visited while performing DFS on the graph. |
155 | |
156 | int SsaBuilder::TopologicalSort(BasicBlock** postOrder, int count) |
157 | { |
158 | Compiler* comp = m_pCompiler; |
159 | |
160 | // TopologicalSort is called first so m_visited should already be empty |
161 | assert(BitVecOps::IsEmpty(&m_visitedTraits, m_visited)); |
162 | |
163 | // Display basic blocks. |
164 | DBEXEC(VERBOSE, comp->fgDispBasicBlocks()); |
165 | DBEXEC(VERBOSE, comp->fgDispHandlerTab()); |
166 | |
167 | auto DumpBlockAndSuccessors = [](Compiler* comp, BasicBlock* block) { |
168 | #ifdef DEBUG |
169 | if (comp->verboseSsa) |
170 | { |
171 | printf("[SsaBuilder::TopologicalSort] Pushing " FMT_BB ": [" , block->bbNum); |
172 | AllSuccessorEnumerator successors(comp, block); |
173 | unsigned index = 0; |
174 | while (true) |
175 | { |
176 | bool isEHsucc = successors.IsNextEHSuccessor(); |
177 | BasicBlock* succ = successors.NextSuccessor(comp); |
178 | |
179 | if (succ == nullptr) |
180 | { |
181 | break; |
182 | } |
183 | |
184 | printf("%s%s" FMT_BB, (index++ ? ", " : "" ), (isEHsucc ? "[EH]" : "" ), succ->bbNum); |
185 | } |
186 | printf("]\n" ); |
187 | } |
188 | #endif |
189 | }; |
190 | |
191 | // Compute order. |
192 | int postIndex = 0; |
193 | BasicBlock* block = comp->fgFirstBB; |
194 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, block->bbNum); |
195 | |
196 | ArrayStack<AllSuccessorEnumerator> blocks(m_allocator); |
197 | blocks.Emplace(comp, block); |
198 | DumpBlockAndSuccessors(comp, block); |
199 | |
200 | while (!blocks.Empty()) |
201 | { |
202 | BasicBlock* block = blocks.TopRef().Block(); |
203 | BasicBlock* succ = blocks.TopRef().NextSuccessor(comp); |
204 | |
205 | if (succ != nullptr) |
206 | { |
207 | // if the block on TOS still has unreached successors, visit them |
208 | if (BitVecOps::TryAddElemD(&m_visitedTraits, m_visited, succ->bbNum)) |
209 | { |
210 | blocks.Emplace(comp, succ); |
211 | DumpBlockAndSuccessors(comp, succ); |
212 | } |
213 | } |
214 | else |
215 | { |
216 | // all successors have been visited |
217 | blocks.Pop(); |
218 | |
219 | DBG_SSA_JITDUMP("[SsaBuilder::TopologicalSort] postOrder[%d] = " FMT_BB "\n" , postIndex, block->bbNum); |
220 | postOrder[postIndex] = block; |
221 | block->bbPostOrderNum = postIndex; |
222 | postIndex += 1; |
223 | } |
224 | } |
225 | |
226 | // In the absence of EH (because catch/finally have no preds), this should be valid. |
227 | // assert(postIndex == (count - 1)); |
228 | |
229 | return postIndex; |
230 | } |
231 | |
232 | /** |
233 | * Computes the immediate dominator IDom for each block iteratively. |
234 | * |
235 | * @param postOrder The array of basic blocks arranged in postOrder. |
236 | * @param count The size of valid elements in the postOrder array. |
237 | * |
238 | * @see "A simple, fast dominance algorithm." paper. |
239 | */ |
240 | void SsaBuilder::ComputeImmediateDom(BasicBlock** postOrder, int count) |
241 | { |
242 | JITDUMP("[SsaBuilder::ComputeImmediateDom]\n" ); |
243 | |
244 | // TODO-Cleanup: We currently have two dominance computations happening. We should unify them; for |
245 | // now, at least forget the results of the first. |
246 | for (BasicBlock* blk = m_pCompiler->fgFirstBB; blk != nullptr; blk = blk->bbNext) |
247 | { |
248 | blk->bbIDom = nullptr; |
249 | } |
250 | |
251 | // Add entry point to visited as its IDom is NULL. |
252 | BitVecOps::ClearD(&m_visitedTraits, m_visited); |
253 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, m_pCompiler->fgFirstBB->bbNum); |
254 | |
255 | assert(postOrder[count - 1] == m_pCompiler->fgFirstBB); |
256 | |
257 | bool changed = true; |
258 | while (changed) |
259 | { |
260 | changed = false; |
261 | |
262 | // In reverse post order, except for the entry block (count - 1 is entry BB). |
263 | for (int i = count - 2; i >= 0; --i) |
264 | { |
265 | BasicBlock* block = postOrder[i]; |
266 | |
267 | DBG_SSA_JITDUMP("Visiting in reverse post order: " FMT_BB ".\n" , block->bbNum); |
268 | |
269 | // Find the first processed predecessor block. |
270 | BasicBlock* predBlock = nullptr; |
271 | for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext) |
272 | { |
273 | if (BitVecOps::IsMember(&m_visitedTraits, m_visited, pred->flBlock->bbNum)) |
274 | { |
275 | predBlock = pred->flBlock; |
276 | break; |
277 | } |
278 | } |
279 | |
280 | // There could just be a single basic block, so just check if there were any preds. |
281 | if (predBlock != nullptr) |
282 | { |
283 | DBG_SSA_JITDUMP("Pred block is " FMT_BB ".\n" , predBlock->bbNum); |
284 | } |
285 | |
286 | // Intersect DOM, if computed, for all predecessors. |
287 | BasicBlock* bbIDom = predBlock; |
288 | for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext) |
289 | { |
290 | if (predBlock != pred->flBlock) |
291 | { |
292 | BasicBlock* domAncestor = IntersectDom(pred->flBlock, bbIDom); |
293 | // The result may be NULL if "block" and "pred->flBlock" are part of a |
294 | // cycle -- neither is guaranteed ordered wrt the other in reverse postorder, |
295 | // so we may be computing the IDom of "block" before the IDom of "pred->flBlock" has |
296 | // been computed. But that's OK -- if they're in a cycle, they share the same immediate |
297 | // dominator, so the contribution of "pred->flBlock" is not necessary to compute |
298 | // the result. |
299 | if (domAncestor != nullptr) |
300 | { |
301 | bbIDom = domAncestor; |
302 | } |
303 | } |
304 | } |
305 | |
306 | // Did we change the bbIDom value? If so, we go around the outer loop again. |
307 | if (block->bbIDom != bbIDom) |
308 | { |
309 | changed = true; |
310 | |
311 | // IDom has changed, update it. |
312 | DBG_SSA_JITDUMP("bbIDom of " FMT_BB " becomes " FMT_BB ".\n" , block->bbNum, bbIDom ? bbIDom->bbNum : 0); |
313 | block->bbIDom = bbIDom; |
314 | } |
315 | |
316 | // Mark the current block as visited. |
317 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, block->bbNum); |
318 | |
319 | DBG_SSA_JITDUMP("Marking block " FMT_BB " as processed.\n" , block->bbNum); |
320 | } |
321 | } |
322 | } |
323 | |
324 | #ifdef SSA_FEATURE_DOMARR |
325 | /** |
326 | * Walk the DOM tree and compute pre and post-order arrangement of the tree. |
327 | * |
328 | * @param curBlock The current block being operated on at some recursive level. |
329 | * @param domTree The DOM tree as a map (block -> set of child blocks.) |
330 | * @param preIndex The initial index given to the first block visited in pre order. |
331 | * @param postIndex The initial index given to the first block visited in post order. |
332 | * |
333 | * @remarks This would help us answer queries such as "a dom b?" in constant time. |
334 | * For example, if a dominated b, then Pre[a] < Pre[b] but Post[a] > Post[b] |
335 | */ |
336 | void SsaBuilder::DomTreeWalk(BasicBlock* curBlock, BlkToBlkVectorMap* domTree, int* preIndex, int* postIndex) |
337 | { |
338 | JITDUMP("[SsaBuilder::DomTreeWalk] block %s:\n" , curBlock->dspToString()); |
339 | |
340 | // Store the order number at the block number in the pre order list. |
341 | m_pDomPreOrder[curBlock->bbNum] = *preIndex; |
342 | ++(*preIndex); |
343 | |
344 | BlkVector* domChildren = domTree->LookupPointer(curBlock); |
345 | if (domChildren != nullptr) |
346 | { |
347 | for (BasicBlock* child : *domChildren) |
348 | { |
349 | if (curBlock != child) |
350 | { |
351 | DomTreeWalk(child, domTree, preIndex, postIndex); |
352 | } |
353 | } |
354 | } |
355 | |
356 | // Store the order number at the block number in the post order list. |
357 | m_pDomPostOrder[curBlock->bbNum] = *postIndex; |
358 | ++(*postIndex); |
359 | } |
360 | #endif |
361 | |
362 | /** |
363 | * Using IDom of each basic block, add a mapping from block->IDom -> block. |
364 | * @param pCompiler Compiler instance |
365 | * @param block The basic block that will become the child node of it's iDom. |
366 | * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block" |
367 | * |
368 | */ |
369 | /* static */ |
370 | void SsaBuilder::ConstructDomTreeForBlock(Compiler* pCompiler, BasicBlock* block, BlkToBlkVectorMap* domTree) |
371 | { |
372 | BasicBlock* bbIDom = block->bbIDom; |
373 | |
374 | // bbIDom for (only) fgFirstBB will be NULL. |
375 | if (bbIDom == nullptr) |
376 | { |
377 | return; |
378 | } |
379 | |
380 | // If the bbIDom map key doesn't exist, create one. |
381 | BlkVector* domChildren = domTree->Emplace(bbIDom, domTree->GetAllocator()); |
382 | |
383 | DBG_SSA_JITDUMP("Inserting " FMT_BB " as dom child of " FMT_BB ".\n" , block->bbNum, bbIDom->bbNum); |
384 | // Insert the block into the block's set. |
385 | domChildren->push_back(block); |
386 | } |
387 | |
388 | /** |
389 | * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i", |
390 | * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... }, in |
391 | * other words, "domTree" is a tree represented by nodes mapped to their children. |
392 | * |
393 | * @param pCompiler Compiler instance |
394 | * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block" |
395 | * |
396 | */ |
397 | /* static */ |
398 | void SsaBuilder::ComputeDominators(Compiler* pCompiler, BlkToBlkVectorMap* domTree) |
399 | { |
400 | JITDUMP("*************** In SsaBuilder::ComputeDominators(Compiler*, ...)\n" ); |
401 | |
402 | // Construct the DOM tree from bbIDom |
403 | for (BasicBlock* block = pCompiler->fgFirstBB; block != nullptr; block = block->bbNext) |
404 | { |
405 | ConstructDomTreeForBlock(pCompiler, block, domTree); |
406 | } |
407 | |
408 | DBEXEC(pCompiler->verboseSsa, DisplayDominators(domTree)); |
409 | } |
410 | |
411 | /** |
412 | * Compute the DOM tree into a map(block -> set of blocks) adjacency representation. |
413 | * |
414 | * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i", |
415 | * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... } |
416 | * |
417 | * @param postOrder The array of basic blocks arranged in postOrder. |
418 | * @param count The size of valid elements in the postOrder array. |
419 | * @param domTree A map of (block -> set of blocks) tree representation that is empty. |
420 | * |
421 | */ |
422 | void SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, BlkToBlkVectorMap* domTree) |
423 | { |
424 | JITDUMP("*************** In SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, ...)\n" ); |
425 | |
426 | // Construct the DOM tree from bbIDom |
427 | for (int i = 0; i < count; ++i) |
428 | { |
429 | ConstructDomTreeForBlock(m_pCompiler, postOrder[i], domTree); |
430 | } |
431 | |
432 | DBEXEC(m_pCompiler->verboseSsa, DisplayDominators(domTree)); |
433 | |
434 | #ifdef SSA_FEATURE_DOMARR |
435 | // Allocate space for constant time computation of (a DOM b?) query. |
436 | unsigned bbArrSize = m_pCompiler->fgBBNumMax + 1; // We will use 1-based bbNums as indices into these arrays, so |
437 | // add 1. |
438 | m_pDomPreOrder = new (&m_allocator) int[bbArrSize]; |
439 | m_pDomPostOrder = new (&m_allocator) int[bbArrSize]; |
440 | |
441 | // Initial counters. |
442 | int preIndex = 0; |
443 | int postIndex = 0; |
444 | |
445 | // Populate the pre and post order of the tree. |
446 | DomTreeWalk(m_pCompiler->fgFirstBB, domTree, &preIndex, &postIndex); |
447 | #endif |
448 | } |
449 | |
450 | #ifdef DEBUG |
451 | |
452 | /** |
453 | * Display the DOM tree. |
454 | * |
455 | * @param domTree A map of (block -> set of blocks) tree representation. |
456 | */ |
457 | /* static */ |
458 | void SsaBuilder::DisplayDominators(BlkToBlkVectorMap* domTree) |
459 | { |
460 | printf("After computing dominator tree: \n" ); |
461 | for (BlkToBlkVectorMap::KeyIterator nodes = domTree->Begin(); !nodes.Equal(domTree->End()); ++nodes) |
462 | { |
463 | printf(FMT_BB " := {" , nodes.Get()->bbNum); |
464 | int index = 0; |
465 | for (BasicBlock* child : nodes.GetValue()) |
466 | { |
467 | printf("%s" FMT_BB, (index++ == 0) ? "" : "," , child->bbNum); |
468 | } |
469 | printf("}\n" ); |
470 | } |
471 | } |
472 | |
473 | #endif // DEBUG |
474 | |
475 | //------------------------------------------------------------------------ |
476 | // ComputeDominanceFrontiers: Compute flow graph dominance frontiers |
477 | // |
478 | // Arguments: |
479 | // postOrder - an array containing all flow graph blocks |
480 | // count - the number of blocks in the postOrder array |
481 | // mapDF - a caller provided hashtable that will be populated |
482 | // with blocks and their dominance frontiers (only those |
483 | // blocks that have non-empty frontiers will be included) |
484 | // |
485 | // Notes: |
486 | // Recall that the dominance frontier of a block B is the set of blocks |
487 | // B3 such that there exists some B2 s.t. B3 is a successor of B2, and |
488 | // B dominates B2. Note that this dominance need not be strict -- B2 |
489 | // and B may be the same node. |
490 | // See "A simple, fast dominance algorithm", by Cooper, Harvey, and Kennedy. |
491 | // |
492 | void SsaBuilder::ComputeDominanceFrontiers(BasicBlock** postOrder, int count, BlkToBlkVectorMap* mapDF) |
493 | { |
494 | DBG_SSA_JITDUMP("Computing DF:\n" ); |
495 | |
496 | for (int i = 0; i < count; ++i) |
497 | { |
498 | BasicBlock* block = postOrder[i]; |
499 | |
500 | DBG_SSA_JITDUMP("Considering block " FMT_BB ".\n" , block->bbNum); |
501 | |
502 | // Recall that B3 is in the dom frontier of B1 if there exists a B2 |
503 | // such that B1 dom B2, !(B1 dom B3), and B3 is an immediate successor |
504 | // of B2. (Note that B1 might be the same block as B2.) |
505 | // In that definition, we're considering "block" to be B3, and trying |
506 | // to find B1's. To do so, first we consider the predecessors of "block", |
507 | // searching for candidate B2's -- "block" is obviously an immediate successor |
508 | // of its immediate predecessors. If there are zero or one preds, then there |
509 | // is no pred, or else the single pred dominates "block", so no B2 exists. |
510 | |
511 | flowList* blockPreds = m_pCompiler->BlockPredsWithEH(block); |
512 | |
513 | // If block has 0/1 predecessor, skip. |
514 | if ((blockPreds == nullptr) || (blockPreds->flNext == nullptr)) |
515 | { |
516 | DBG_SSA_JITDUMP(" Has %d preds; skipping.\n" , blockPreds == nullptr ? 0 : 1); |
517 | continue; |
518 | } |
519 | |
520 | // Otherwise, there are > 1 preds. Each is a candidate B2 in the definition -- |
521 | // *unless* it dominates "block"/B3. |
522 | |
523 | for (flowList* pred = blockPreds; pred != nullptr; pred = pred->flNext) |
524 | { |
525 | DBG_SSA_JITDUMP(" Considering predecessor " FMT_BB ".\n" , pred->flBlock->bbNum); |
526 | |
527 | // If we've found a B2, then consider the possible B1's. We start with |
528 | // B2, since a block dominates itself, then traverse upwards in the dominator |
529 | // tree, stopping when we reach the root, or the immediate dominator of "block"/B3. |
530 | // (Note that we are guaranteed to encounter this immediate dominator of "block"/B3: |
531 | // a predecessor must be dominated by B3's immediate dominator.) |
532 | // Along this way, make "block"/B3 part of the dom frontier of the B1. |
533 | // When we reach this immediate dominator, the definition no longer applies, since this |
534 | // potential B1 *does* dominate "block"/B3, so we stop. |
535 | for (BasicBlock* b1 = pred->flBlock; (b1 != nullptr) && (b1 != block->bbIDom); // !root && !loop |
536 | b1 = b1->bbIDom) |
537 | { |
538 | DBG_SSA_JITDUMP(" Adding " FMT_BB " to dom frontier of pred dom " FMT_BB ".\n" , block->bbNum, |
539 | b1->bbNum); |
540 | |
541 | BlkVector& b1DF = *mapDF->Emplace(b1, m_allocator); |
542 | // It's possible to encounter the same DF multiple times, ensure that we don't add duplicates. |
543 | if (b1DF.empty() || (b1DF.back() != block)) |
544 | { |
545 | b1DF.push_back(block); |
546 | } |
547 | } |
548 | } |
549 | } |
550 | |
551 | #ifdef DEBUG |
552 | if (m_pCompiler->verboseSsa) |
553 | { |
554 | printf("\nComputed DF:\n" ); |
555 | for (int i = 0; i < count; ++i) |
556 | { |
557 | BasicBlock* b = postOrder[i]; |
558 | printf("Block " FMT_BB " := {" , b->bbNum); |
559 | |
560 | BlkVector* bDF = mapDF->LookupPointer(b); |
561 | if (bDF != nullptr) |
562 | { |
563 | int index = 0; |
564 | for (BasicBlock* f : *bDF) |
565 | { |
566 | printf("%s" FMT_BB, (index++ == 0) ? "" : "," , f->bbNum); |
567 | } |
568 | } |
569 | printf("}\n" ); |
570 | } |
571 | } |
572 | #endif |
573 | } |
574 | |
575 | //------------------------------------------------------------------------ |
576 | // ComputeIteratedDominanceFrontier: Compute the iterated dominance frontier |
577 | // for the specified block. |
578 | // |
579 | // Arguments: |
580 | // b - the block to computed the frontier for |
581 | // mapDF - a map containing the dominance frontiers of all blocks |
582 | // bIDF - a caller provided vector where the IDF is to be stored |
583 | // |
584 | // Notes: |
585 | // The iterated dominance frontier is formed by a closure operation: |
586 | // the IDF of B is the smallest set that includes B's dominance frontier, |
587 | // and also includes the dominance frontier of all elements of the set. |
588 | // |
589 | void SsaBuilder::ComputeIteratedDominanceFrontier(BasicBlock* b, const BlkToBlkVectorMap* mapDF, BlkVector* bIDF) |
590 | { |
591 | assert(bIDF->empty()); |
592 | |
593 | BlkVector* bDF = mapDF->LookupPointer(b); |
594 | |
595 | if (bDF != nullptr) |
596 | { |
597 | // Compute IDF(b) - start by adding DF(b) to IDF(b). |
598 | bIDF->reserve(bDF->size()); |
599 | BitVecOps::ClearD(&m_visitedTraits, m_visited); |
600 | |
601 | for (BasicBlock* f : *bDF) |
602 | { |
603 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, f->bbNum); |
604 | bIDF->push_back(f); |
605 | } |
606 | |
607 | // Now for each block f from IDF(b) add DF(f) to IDF(b). This may result in new |
608 | // blocks being added to IDF(b) and the process repeats until no more new blocks |
609 | // are added. Note that since we keep adding to bIDF we can't use iterators as |
610 | // they may get invalidated. This happens to be a convenient way to avoid having |
611 | // to track newly added blocks in a separate set. |
612 | for (size_t newIndex = 0; newIndex < bIDF->size(); newIndex++) |
613 | { |
614 | BasicBlock* f = (*bIDF)[newIndex]; |
615 | BlkVector* fDF = mapDF->LookupPointer(f); |
616 | |
617 | if (fDF != nullptr) |
618 | { |
619 | for (BasicBlock* ff : *fDF) |
620 | { |
621 | if (BitVecOps::TryAddElemD(&m_visitedTraits, m_visited, ff->bbNum)) |
622 | { |
623 | bIDF->push_back(ff); |
624 | } |
625 | } |
626 | } |
627 | } |
628 | } |
629 | |
630 | #ifdef DEBUG |
631 | if (m_pCompiler->verboseSsa) |
632 | { |
633 | printf("IDF(" FMT_BB ") := {" , b->bbNum); |
634 | int index = 0; |
635 | for (BasicBlock* f : *bIDF) |
636 | { |
637 | printf("%s" FMT_BB, (index++ == 0) ? "" : "," , f->bbNum); |
638 | } |
639 | printf("}\n" ); |
640 | } |
641 | #endif |
642 | } |
643 | |
644 | /** |
645 | * Returns the phi GT_PHI node if the variable already has a phi node. |
646 | * |
647 | * @param block The block for which the existence of a phi node needs to be checked. |
648 | * @param lclNum The lclNum for which the occurrence of a phi node needs to be checked. |
649 | * |
650 | * @return If there is a phi node for the lclNum, returns the GT_PHI tree, else NULL. |
651 | */ |
652 | static GenTree* GetPhiNode(BasicBlock* block, unsigned lclNum) |
653 | { |
654 | // Walk the statements for phi nodes. |
655 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
656 | { |
657 | // A prefix of the statements of the block are phi definition nodes. If we complete processing |
658 | // that prefix, exit. |
659 | if (!stmt->IsPhiDefnStmt()) |
660 | { |
661 | break; |
662 | } |
663 | |
664 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
665 | |
666 | GenTree* phiLhs = tree->gtOp.gtOp1; |
667 | assert(phiLhs->OperGet() == GT_LCL_VAR); |
668 | if (phiLhs->gtLclVarCommon.gtLclNum == lclNum) |
669 | { |
670 | return tree->gtOp.gtOp2; |
671 | } |
672 | } |
673 | return nullptr; |
674 | } |
675 | |
676 | /** |
677 | * Inserts phi functions at DF(b) for variables v that are live after the phi |
678 | * insertion point i.e., v in live-in(b). |
679 | * |
680 | * To do so, the function computes liveness, dominance frontier and inserts a phi node, |
681 | * if we have var v in def(b) and live-in(l) and l is in DF(b). |
682 | * |
683 | * @param postOrder The array of basic blocks arranged in postOrder. |
684 | * @param count The size of valid elements in the postOrder array. |
685 | */ |
686 | void SsaBuilder::InsertPhiFunctions(BasicBlock** postOrder, int count) |
687 | { |
688 | JITDUMP("*************** In SsaBuilder::InsertPhiFunctions()\n" ); |
689 | |
690 | // Compute dominance frontier. |
691 | BlkToBlkVectorMap mapDF(m_allocator); |
692 | ComputeDominanceFrontiers(postOrder, count, &mapDF); |
693 | EndPhase(PHASE_BUILD_SSA_DF); |
694 | |
695 | // Use the same IDF vector for all blocks to avoid unnecessary memory allocations |
696 | BlkVector blockIDF(m_allocator); |
697 | |
698 | JITDUMP("Inserting phi functions:\n" ); |
699 | |
700 | for (int i = 0; i < count; ++i) |
701 | { |
702 | BasicBlock* block = postOrder[i]; |
703 | DBG_SSA_JITDUMP("Considering dominance frontier of block " FMT_BB ":\n" , block->bbNum); |
704 | |
705 | blockIDF.clear(); |
706 | ComputeIteratedDominanceFrontier(block, &mapDF, &blockIDF); |
707 | |
708 | if (blockIDF.empty()) |
709 | { |
710 | continue; |
711 | } |
712 | |
713 | // For each local var number "lclNum" that "block" assigns to... |
714 | VarSetOps::Iter defVars(m_pCompiler, block->bbVarDef); |
715 | unsigned varIndex = 0; |
716 | while (defVars.NextElem(&varIndex)) |
717 | { |
718 | unsigned lclNum = m_pCompiler->lvaTrackedToVarNum[varIndex]; |
719 | DBG_SSA_JITDUMP(" Considering local var V%02u:\n" , lclNum); |
720 | |
721 | if (!m_pCompiler->lvaInSsa(lclNum)) |
722 | { |
723 | DBG_SSA_JITDUMP(" Skipping because it is excluded.\n" ); |
724 | continue; |
725 | } |
726 | |
727 | // For each block "bbInDomFront" that is in the dominance frontier of "block"... |
728 | for (BasicBlock* bbInDomFront : blockIDF) |
729 | { |
730 | DBG_SSA_JITDUMP(" Considering " FMT_BB " in dom frontier of " FMT_BB ":\n" , bbInDomFront->bbNum, |
731 | block->bbNum); |
732 | |
733 | // Check if variable "lclNum" is live in block "*iterBlk". |
734 | if (!VarSetOps::IsMember(m_pCompiler, bbInDomFront->bbLiveIn, varIndex)) |
735 | { |
736 | continue; |
737 | } |
738 | |
739 | // Check if we've already inserted a phi node. |
740 | if (GetPhiNode(bbInDomFront, lclNum) == nullptr) |
741 | { |
742 | // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier of |
743 | // j. So insert a phi node at l. |
744 | JITDUMP("Inserting phi definition for V%02u at start of " FMT_BB ".\n" , lclNum, |
745 | bbInDomFront->bbNum); |
746 | |
747 | GenTree* phiLhs = m_pCompiler->gtNewLclvNode(lclNum, m_pCompiler->lvaTable[lclNum].TypeGet()); |
748 | |
749 | // Create 'phiRhs' as a GT_PHI node for 'lclNum', it will eventually hold a GT_LIST of GT_PHI_ARG |
750 | // nodes. However we have to construct this list so for now the gtOp1 of 'phiRhs' is a nullptr. |
751 | // It will get replaced with a GT_LIST of GT_PHI_ARG nodes in |
752 | // SsaBuilder::AssignPhiNodeRhsVariables() and in SsaBuilder::AddDefToHandlerPhis() |
753 | |
754 | GenTree* phiRhs = |
755 | m_pCompiler->gtNewOperNode(GT_PHI, m_pCompiler->lvaTable[lclNum].TypeGet(), nullptr); |
756 | |
757 | GenTree* phiAsg = m_pCompiler->gtNewAssignNode(phiLhs, phiRhs); |
758 | |
759 | GenTree* stmt = m_pCompiler->fgInsertStmtAtBeg(bbInDomFront, phiAsg); |
760 | m_pCompiler->gtSetStmtInfo(stmt); |
761 | m_pCompiler->fgSetStmtSeq(stmt); |
762 | } |
763 | } |
764 | } |
765 | |
766 | // Now make a similar phi definition if the block defines memory. |
767 | if (block->bbMemoryDef != 0) |
768 | { |
769 | // For each block "bbInDomFront" that is in the dominance frontier of "block". |
770 | for (BasicBlock* bbInDomFront : blockIDF) |
771 | { |
772 | DBG_SSA_JITDUMP(" Considering " FMT_BB " in dom frontier of " FMT_BB " for Memory phis:\n" , |
773 | bbInDomFront->bbNum, block->bbNum); |
774 | |
775 | for (MemoryKind memoryKind : allMemoryKinds()) |
776 | { |
777 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
778 | { |
779 | // Share the PhiFunc with ByrefExposed. |
780 | assert(memoryKind > ByrefExposed); |
781 | bbInDomFront->bbMemorySsaPhiFunc[memoryKind] = bbInDomFront->bbMemorySsaPhiFunc[ByrefExposed]; |
782 | continue; |
783 | } |
784 | |
785 | // Check if this memoryKind is defined in this block. |
786 | if ((block->bbMemoryDef & memoryKindSet(memoryKind)) == 0) |
787 | { |
788 | continue; |
789 | } |
790 | |
791 | // Check if memoryKind is live into block "*iterBlk". |
792 | if ((bbInDomFront->bbMemoryLiveIn & memoryKindSet(memoryKind)) == 0) |
793 | { |
794 | continue; |
795 | } |
796 | |
797 | // Check if we've already inserted a phi node. |
798 | if (bbInDomFront->bbMemorySsaPhiFunc[memoryKind] == nullptr) |
799 | { |
800 | // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier |
801 | // of |
802 | // j. So insert a phi node at l. |
803 | JITDUMP("Inserting phi definition for %s at start of " FMT_BB ".\n" , |
804 | memoryKindNames[memoryKind], bbInDomFront->bbNum); |
805 | bbInDomFront->bbMemorySsaPhiFunc[memoryKind] = BasicBlock::EmptyMemoryPhiDef; |
806 | } |
807 | } |
808 | } |
809 | } |
810 | } |
811 | EndPhase(PHASE_BUILD_SSA_INSERT_PHIS); |
812 | } |
813 | |
814 | /** |
815 | * Rename the local variable tree node. |
816 | * |
817 | * If the given tree node is a local variable, then for a def give a new count, if use, |
818 | * then give the count in the top of stack, i.e., current count (used for last def.) |
819 | * |
820 | * @param tree Tree node where an SSA variable is used or def'ed. |
821 | * @param pRenameState The incremental rename information stored during renaming process. |
822 | * |
823 | * @remarks This method has to maintain parity with TreePopStacks corresponding to pushes |
824 | * it makes for defs. |
825 | */ |
826 | void SsaBuilder::TreeRenameVariables(GenTree* tree, BasicBlock* block, SsaRenameState* pRenameState, bool isPhiDefn) |
827 | { |
828 | // This is perhaps temporary -- maybe should be done elsewhere. Label GT_INDs on LHS of assignments, so we |
829 | // can skip these during (at least) value numbering. |
830 | if (tree->OperIs(GT_ASG)) |
831 | { |
832 | GenTree* lhs = tree->gtOp.gtOp1->gtEffectiveVal(/*commaOnly*/ true); |
833 | GenTree* trueLhs = lhs->gtEffectiveVal(/*commaOnly*/ true); |
834 | if (trueLhs->OperIsIndir()) |
835 | { |
836 | trueLhs->gtFlags |= GTF_IND_ASG_LHS; |
837 | } |
838 | else if (trueLhs->OperGet() == GT_CLS_VAR) |
839 | { |
840 | trueLhs->gtFlags |= GTF_CLS_VAR_ASG_LHS; |
841 | } |
842 | } |
843 | |
844 | // Figure out if "tree" may make a new GC heap state (if we care for this block). |
845 | if ((block->bbMemoryHavoc & memoryKindSet(GcHeap)) == 0) |
846 | { |
847 | if (tree->OperIs(GT_ASG) || tree->OperIsBlkOp()) |
848 | { |
849 | if (m_pCompiler->ehBlockHasExnFlowDsc(block)) |
850 | { |
851 | GenTreeLclVarCommon* lclVarNode; |
852 | |
853 | bool isLocal = tree->DefinesLocal(m_pCompiler, &lclVarNode); |
854 | bool isAddrExposedLocal = isLocal && m_pCompiler->lvaVarAddrExposed(lclVarNode->gtLclNum); |
855 | bool hasByrefHavoc = ((block->bbMemoryHavoc & memoryKindSet(ByrefExposed)) != 0); |
856 | if (!isLocal || (isAddrExposedLocal && !hasByrefHavoc)) |
857 | { |
858 | // It *may* define byref memory in a non-havoc way. Make a new SSA # -- associate with this node. |
859 | unsigned ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
860 | if (!hasByrefHavoc) |
861 | { |
862 | pRenameState->PushMemory(ByrefExposed, block, ssaNum); |
863 | m_pCompiler->GetMemorySsaMap(ByrefExposed)->Set(tree, ssaNum); |
864 | #ifdef DEBUG |
865 | if (JitTls::GetCompiler()->verboseSsa) |
866 | { |
867 | printf("Node " ); |
868 | Compiler::printTreeID(tree); |
869 | printf(" (in try block) may define memory; ssa # = %d.\n" , ssaNum); |
870 | } |
871 | #endif // DEBUG |
872 | |
873 | // Now add this SSA # to all phis of the reachable catch blocks. |
874 | AddMemoryDefToHandlerPhis(ByrefExposed, block, ssaNum); |
875 | } |
876 | |
877 | if (!isLocal) |
878 | { |
879 | // Add a new def for GcHeap as well |
880 | if (m_pCompiler->byrefStatesMatchGcHeapStates) |
881 | { |
882 | // GcHeap and ByrefExposed share the same stacks, SsaMap, and phis |
883 | assert(!hasByrefHavoc); |
884 | assert(pRenameState->CountForMemoryUse(GcHeap) == ssaNum); |
885 | assert(*m_pCompiler->GetMemorySsaMap(GcHeap)->LookupPointer(tree) == ssaNum); |
886 | assert(block->bbMemorySsaPhiFunc[GcHeap] == block->bbMemorySsaPhiFunc[ByrefExposed]); |
887 | } |
888 | else |
889 | { |
890 | if (!hasByrefHavoc) |
891 | { |
892 | // Allocate a distinct defnum for the GC Heap |
893 | ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
894 | } |
895 | |
896 | pRenameState->PushMemory(GcHeap, block, ssaNum); |
897 | m_pCompiler->GetMemorySsaMap(GcHeap)->Set(tree, ssaNum); |
898 | AddMemoryDefToHandlerPhis(GcHeap, block, ssaNum); |
899 | } |
900 | } |
901 | } |
902 | } |
903 | } |
904 | } |
905 | |
906 | if (!tree->IsLocal()) |
907 | { |
908 | return; |
909 | } |
910 | |
911 | unsigned lclNum = tree->gtLclVarCommon.gtLclNum; |
912 | // Is this a variable we exclude from SSA? |
913 | if (!m_pCompiler->lvaInSsa(lclNum)) |
914 | { |
915 | tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM); |
916 | return; |
917 | } |
918 | |
919 | if ((tree->gtFlags & GTF_VAR_DEF) != 0) |
920 | { |
921 | // Allocate a new SSA number for this definition tree. |
922 | unsigned ssaNum = m_pCompiler->lvaTable[lclNum].lvPerSsaData.AllocSsaNum(m_allocator, block, tree); |
923 | |
924 | if ((tree->gtFlags & GTF_VAR_USEASG) != 0) |
925 | { |
926 | // This is a partial definition of a variable. The node records only the SSA number |
927 | // of the use that is implied by this partial definition. The SSA number of the new |
928 | // definition will be recorded in the m_opAsgnVarDefSsaNums map. |
929 | tree->AsLclVarCommon()->SetSsaNum(pRenameState->CountForUse(lclNum)); |
930 | |
931 | m_pCompiler->GetOpAsgnVarDefSsaNums()->Set(tree, ssaNum); |
932 | } |
933 | else |
934 | { |
935 | tree->AsLclVarCommon()->SetSsaNum(ssaNum); |
936 | } |
937 | |
938 | pRenameState->Push(block, lclNum, ssaNum); |
939 | |
940 | // If necessary, add "lclNum/count" to the arg list of a phi def in any |
941 | // handlers for try blocks that "block" is within. (But only do this for "real" definitions, |
942 | // not phi definitions.) |
943 | if (!isPhiDefn) |
944 | { |
945 | AddDefToHandlerPhis(block, lclNum, ssaNum); |
946 | } |
947 | } |
948 | else if (!isPhiDefn) // Phi args already have ssa numbers. |
949 | { |
950 | // This case is obviated by the short-term "early-out" above...but it's in the right direction. |
951 | // Is it a promoted struct local? |
952 | if (m_pCompiler->lvaTable[lclNum].lvPromoted) |
953 | { |
954 | assert(tree->TypeGet() == TYP_STRUCT); |
955 | LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum]; |
956 | // If has only a single field var, treat this as a use of that field var. |
957 | // Otherwise, we don't give SSA names to uses of promoted struct vars. |
958 | if (varDsc->lvFieldCnt == 1) |
959 | { |
960 | lclNum = varDsc->lvFieldLclStart; |
961 | } |
962 | else |
963 | { |
964 | tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM); |
965 | return; |
966 | } |
967 | } |
968 | // Give the count as top of stack. |
969 | unsigned count = pRenameState->CountForUse(lclNum); |
970 | tree->gtLclVarCommon.SetSsaNum(count); |
971 | } |
972 | } |
973 | |
974 | void SsaBuilder::AddDefToHandlerPhis(BasicBlock* block, unsigned lclNum, unsigned count) |
975 | { |
976 | assert(m_pCompiler->lvaTable[lclNum].lvTracked); // Precondition. |
977 | unsigned lclIndex = m_pCompiler->lvaTable[lclNum].lvVarIndex; |
978 | |
979 | EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block); |
980 | if (tryBlk != nullptr) |
981 | { |
982 | DBG_SSA_JITDUMP("Definition of local V%02u/d:%d in block " FMT_BB |
983 | " has exn handler; adding as phi arg to handlers.\n" , |
984 | lclNum, count, block->bbNum); |
985 | while (true) |
986 | { |
987 | BasicBlock* handler = tryBlk->ExFlowBlock(); |
988 | |
989 | // Is "lclNum" live on entry to the handler? |
990 | if (VarSetOps::IsMember(m_pCompiler, handler->bbLiveIn, lclIndex)) |
991 | { |
992 | #ifdef DEBUG |
993 | bool phiFound = false; |
994 | #endif |
995 | // A prefix of blocks statements will be SSA definitions. Search those for "lclNum". |
996 | for (GenTree* stmt = handler->bbTreeList; stmt; stmt = stmt->gtNext) |
997 | { |
998 | // If the tree is not an SSA def, break out of the loop: we're done. |
999 | if (!stmt->IsPhiDefnStmt()) |
1000 | { |
1001 | break; |
1002 | } |
1003 | |
1004 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
1005 | |
1006 | assert(tree->IsPhiDefn()); |
1007 | |
1008 | if (tree->gtOp.gtOp1->gtLclVar.gtLclNum == lclNum) |
1009 | { |
1010 | // It's the definition for the right local. Add "count" to the RHS. |
1011 | GenTree* phi = tree->gtOp.gtOp2; |
1012 | GenTreeArgList* args = nullptr; |
1013 | if (phi->gtOp.gtOp1 != nullptr) |
1014 | { |
1015 | args = phi->gtOp.gtOp1->AsArgList(); |
1016 | } |
1017 | #ifdef DEBUG |
1018 | // Make sure it isn't already present: we should only add each definition once. |
1019 | for (GenTreeArgList* curArgs = args; curArgs != nullptr; curArgs = curArgs->Rest()) |
1020 | { |
1021 | GenTreePhiArg* phiArg = curArgs->Current()->AsPhiArg(); |
1022 | assert(phiArg->gtSsaNum != count); |
1023 | } |
1024 | #endif |
1025 | var_types typ = m_pCompiler->lvaTable[lclNum].TypeGet(); |
1026 | GenTreePhiArg* newPhiArg = |
1027 | new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(typ, lclNum, count, block); |
1028 | |
1029 | phi->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, args); |
1030 | m_pCompiler->gtSetStmtInfo(stmt); |
1031 | m_pCompiler->fgSetStmtSeq(stmt); |
1032 | #ifdef DEBUG |
1033 | phiFound = true; |
1034 | #endif |
1035 | DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u to phi defn in handler block " FMT_BB ".\n" , |
1036 | count, lclNum, handler->bbNum); |
1037 | break; |
1038 | } |
1039 | } |
1040 | assert(phiFound); |
1041 | } |
1042 | |
1043 | unsigned nextTryIndex = tryBlk->ebdEnclosingTryIndex; |
1044 | if (nextTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
1045 | { |
1046 | break; |
1047 | } |
1048 | |
1049 | tryBlk = m_pCompiler->ehGetDsc(nextTryIndex); |
1050 | } |
1051 | } |
1052 | } |
1053 | |
1054 | void SsaBuilder::AddMemoryDefToHandlerPhis(MemoryKind memoryKind, BasicBlock* block, unsigned count) |
1055 | { |
1056 | if (m_pCompiler->ehBlockHasExnFlowDsc(block)) |
1057 | { |
1058 | // Don't do anything for a compiler-inserted BBJ_ALWAYS that is a "leave helper". |
1059 | if (block->bbJumpKind == BBJ_ALWAYS && (block->bbFlags & BBF_INTERNAL) && (block->bbPrev->isBBCallAlwaysPair())) |
1060 | { |
1061 | return; |
1062 | } |
1063 | |
1064 | // Otherwise... |
1065 | DBG_SSA_JITDUMP("Definition of %s/d:%d in block " FMT_BB " has exn handler; adding as phi arg to handlers.\n" , |
1066 | memoryKindNames[memoryKind], count, block->bbNum); |
1067 | EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block); |
1068 | while (true) |
1069 | { |
1070 | BasicBlock* handler = tryBlk->ExFlowBlock(); |
1071 | |
1072 | // Is memoryKind live on entry to the handler? |
1073 | if ((handler->bbMemoryLiveIn & memoryKindSet(memoryKind)) != 0) |
1074 | { |
1075 | assert(handler->bbMemorySsaPhiFunc != nullptr); |
1076 | |
1077 | // Add "count" to the phi args of memoryKind. |
1078 | BasicBlock::MemoryPhiArg*& handlerMemoryPhi = handler->bbMemorySsaPhiFunc[memoryKind]; |
1079 | |
1080 | #if DEBUG |
1081 | if (m_pCompiler->byrefStatesMatchGcHeapStates) |
1082 | { |
1083 | // When sharing phis for GcHeap and ByrefExposed, callers should ask to add phis |
1084 | // for ByrefExposed only. |
1085 | assert(memoryKind != GcHeap); |
1086 | if (memoryKind == ByrefExposed) |
1087 | { |
1088 | // The GcHeap and ByrefExposed phi funcs should always be in sync. |
1089 | assert(handlerMemoryPhi == handler->bbMemorySsaPhiFunc[GcHeap]); |
1090 | } |
1091 | } |
1092 | #endif |
1093 | |
1094 | if (handlerMemoryPhi == BasicBlock::EmptyMemoryPhiDef) |
1095 | { |
1096 | handlerMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(count); |
1097 | } |
1098 | else |
1099 | { |
1100 | #ifdef DEBUG |
1101 | BasicBlock::MemoryPhiArg* curArg = handler->bbMemorySsaPhiFunc[memoryKind]; |
1102 | while (curArg != nullptr) |
1103 | { |
1104 | assert(curArg->GetSsaNum() != count); |
1105 | curArg = curArg->m_nextArg; |
1106 | } |
1107 | #endif // DEBUG |
1108 | handlerMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(count, handlerMemoryPhi); |
1109 | } |
1110 | |
1111 | DBG_SSA_JITDUMP(" Added phi arg u:%d for %s to phi defn in handler block " FMT_BB ".\n" , count, |
1112 | memoryKindNames[memoryKind], memoryKind, handler->bbNum); |
1113 | |
1114 | if ((memoryKind == ByrefExposed) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1115 | { |
1116 | // Share the phi between GcHeap and ByrefExposed. |
1117 | handler->bbMemorySsaPhiFunc[GcHeap] = handlerMemoryPhi; |
1118 | } |
1119 | } |
1120 | unsigned tryInd = tryBlk->ebdEnclosingTryIndex; |
1121 | if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX) |
1122 | { |
1123 | break; |
1124 | } |
1125 | tryBlk = m_pCompiler->ehGetDsc(tryInd); |
1126 | } |
1127 | } |
1128 | } |
1129 | |
1130 | /** |
1131 | * Walk the block's tree in the evaluation order and give var definitions and uses their |
1132 | * SSA names. |
1133 | * |
1134 | * @param block Block for which SSA variables have to be renamed. |
1135 | * @param pRenameState The incremental rename information stored during renaming process. |
1136 | * |
1137 | */ |
1138 | void SsaBuilder::BlockRenameVariables(BasicBlock* block, SsaRenameState* pRenameState) |
1139 | { |
1140 | // Walk the statements of the block and rename the tree variables. |
1141 | |
1142 | // First handle the incoming memory states. |
1143 | for (MemoryKind memoryKind : allMemoryKinds()) |
1144 | { |
1145 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1146 | { |
1147 | // ByrefExposed and GcHeap share any phi this block may have, |
1148 | assert(block->bbMemorySsaPhiFunc[memoryKind] == block->bbMemorySsaPhiFunc[ByrefExposed]); |
1149 | // so we will have already allocated a defnum for it if needed. |
1150 | assert(memoryKind > ByrefExposed); |
1151 | assert(pRenameState->CountForMemoryUse(memoryKind) == pRenameState->CountForMemoryUse(ByrefExposed)); |
1152 | } |
1153 | else |
1154 | { |
1155 | // Is there an Phi definition for memoryKind at the start of this block? |
1156 | if (block->bbMemorySsaPhiFunc[memoryKind] != nullptr) |
1157 | { |
1158 | unsigned ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
1159 | pRenameState->PushMemory(memoryKind, block, ssaNum); |
1160 | |
1161 | DBG_SSA_JITDUMP("Ssa # for %s phi on entry to " FMT_BB " is %d.\n" , memoryKindNames[memoryKind], |
1162 | block->bbNum, ssaNum); |
1163 | } |
1164 | } |
1165 | |
1166 | // Record the "in" Ssa # for memoryKind. |
1167 | block->bbMemorySsaNumIn[memoryKind] = pRenameState->CountForMemoryUse(memoryKind); |
1168 | } |
1169 | |
1170 | // We need to iterate over phi definitions, to give them SSA names, but we need |
1171 | // to know which are which, so we don't add phi definitions to handler phi arg lists. |
1172 | // Statements are phi defns until they aren't. |
1173 | bool isPhiDefn = true; |
1174 | GenTree* firstNonPhi = block->FirstNonPhiDef(); |
1175 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
1176 | { |
1177 | if (stmt == firstNonPhi) |
1178 | { |
1179 | isPhiDefn = false; |
1180 | } |
1181 | |
1182 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
1183 | { |
1184 | TreeRenameVariables(tree, block, pRenameState, isPhiDefn); |
1185 | } |
1186 | } |
1187 | |
1188 | // Now handle the final memory states. |
1189 | for (MemoryKind memoryKind : allMemoryKinds()) |
1190 | { |
1191 | MemoryKindSet memorySet = memoryKindSet(memoryKind); |
1192 | |
1193 | // If the block defines memory, allocate an SSA variable for the final memory state in the block. |
1194 | // (This may be redundant with the last SSA var explicitly created, but there's no harm in that.) |
1195 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1196 | { |
1197 | // We've already allocated the SSA num and propagated it to shared phis, if needed, |
1198 | // when processing ByrefExposed. |
1199 | assert(memoryKind > ByrefExposed); |
1200 | assert(((block->bbMemoryDef & memorySet) != 0) == |
1201 | ((block->bbMemoryDef & memoryKindSet(ByrefExposed)) != 0)); |
1202 | assert(pRenameState->CountForMemoryUse(memoryKind) == pRenameState->CountForMemoryUse(ByrefExposed)); |
1203 | } |
1204 | else |
1205 | { |
1206 | if ((block->bbMemoryDef & memorySet) != 0) |
1207 | { |
1208 | unsigned ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
1209 | pRenameState->PushMemory(memoryKind, block, ssaNum); |
1210 | AddMemoryDefToHandlerPhis(memoryKind, block, ssaNum); |
1211 | } |
1212 | } |
1213 | |
1214 | // Record the "out" Ssa" # for memoryKind. |
1215 | block->bbMemorySsaNumOut[memoryKind] = pRenameState->CountForMemoryUse(memoryKind); |
1216 | |
1217 | DBG_SSA_JITDUMP("Ssa # for %s on entry to " FMT_BB " is %d; on exit is %d.\n" , memoryKindNames[memoryKind], |
1218 | block->bbNum, block->bbMemorySsaNumIn[memoryKind], block->bbMemorySsaNumOut[memoryKind]); |
1219 | } |
1220 | } |
1221 | |
1222 | /** |
1223 | * Walk through the phi nodes of a given block and assign rhs variables to them. |
1224 | * |
1225 | * Also renumber the rhs variables from top of the stack. |
1226 | * |
1227 | * @param block Block for which phi nodes have to be assigned their rhs arguments. |
1228 | * @param pRenameState The incremental rename information stored during renaming process. |
1229 | * |
1230 | */ |
1231 | void SsaBuilder::AssignPhiNodeRhsVariables(BasicBlock* block, SsaRenameState* pRenameState) |
1232 | { |
1233 | for (BasicBlock* succ : block->GetAllSuccs(m_pCompiler)) |
1234 | { |
1235 | // Walk the statements for phi nodes. |
1236 | for (GenTree* stmt = succ->bbTreeList; stmt != nullptr && stmt->IsPhiDefnStmt(); stmt = stmt->gtNext) |
1237 | { |
1238 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
1239 | assert(tree->IsPhiDefn()); |
1240 | |
1241 | // Get the phi node from GT_ASG. |
1242 | GenTree* phiNode = tree->gtOp.gtOp2; |
1243 | assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST); |
1244 | |
1245 | unsigned lclNum = tree->gtOp.gtOp1->gtLclVar.gtLclNum; |
1246 | unsigned ssaNum = pRenameState->CountForUse(lclNum); |
1247 | // Search the arglist for an existing definition for ssaNum. |
1248 | // (Can we assert that its the head of the list? This should only happen when we add |
1249 | // during renaming for a definition that occurs within a try, and then that's the last |
1250 | // value of the var within that basic block.) |
1251 | GenTreeArgList* argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList()); |
1252 | bool found = false; |
1253 | while (argList != nullptr) |
1254 | { |
1255 | if (argList->Current()->AsLclVarCommon()->GetSsaNum() == ssaNum) |
1256 | { |
1257 | found = true; |
1258 | break; |
1259 | } |
1260 | argList = argList->Rest(); |
1261 | } |
1262 | if (!found) |
1263 | { |
1264 | GenTree* newPhiArg = |
1265 | new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(tree->gtOp.gtOp1->TypeGet(), lclNum, ssaNum, block); |
1266 | argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList()); |
1267 | phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList); |
1268 | DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from " FMT_BB " in " FMT_BB ".\n" , ssaNum, lclNum, |
1269 | block->bbNum, succ->bbNum); |
1270 | } |
1271 | |
1272 | m_pCompiler->gtSetStmtInfo(stmt); |
1273 | m_pCompiler->fgSetStmtSeq(stmt); |
1274 | } |
1275 | |
1276 | // Now handle memory. |
1277 | for (MemoryKind memoryKind : allMemoryKinds()) |
1278 | { |
1279 | BasicBlock::MemoryPhiArg*& succMemoryPhi = succ->bbMemorySsaPhiFunc[memoryKind]; |
1280 | if (succMemoryPhi != nullptr) |
1281 | { |
1282 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1283 | { |
1284 | // We've already propagated the "out" number to the phi shared with ByrefExposed, |
1285 | // but still need to update bbMemorySsaPhiFunc to be in sync between GcHeap and ByrefExposed. |
1286 | assert(memoryKind > ByrefExposed); |
1287 | assert(block->bbMemorySsaNumOut[memoryKind] == block->bbMemorySsaNumOut[ByrefExposed]); |
1288 | assert((succ->bbMemorySsaPhiFunc[ByrefExposed] == succMemoryPhi) || |
1289 | (succ->bbMemorySsaPhiFunc[ByrefExposed]->m_nextArg == |
1290 | (succMemoryPhi == BasicBlock::EmptyMemoryPhiDef ? nullptr : succMemoryPhi))); |
1291 | succMemoryPhi = succ->bbMemorySsaPhiFunc[ByrefExposed]; |
1292 | |
1293 | continue; |
1294 | } |
1295 | |
1296 | if (succMemoryPhi == BasicBlock::EmptyMemoryPhiDef) |
1297 | { |
1298 | succMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(block->bbMemorySsaNumOut[memoryKind]); |
1299 | } |
1300 | else |
1301 | { |
1302 | BasicBlock::MemoryPhiArg* curArg = succMemoryPhi; |
1303 | unsigned ssaNum = block->bbMemorySsaNumOut[memoryKind]; |
1304 | bool found = false; |
1305 | // This is a quadratic algorithm. We might need to consider some switch over to a hash table |
1306 | // representation for the arguments of a phi node, to make this linear. |
1307 | while (curArg != nullptr) |
1308 | { |
1309 | if (curArg->m_ssaNum == ssaNum) |
1310 | { |
1311 | found = true; |
1312 | break; |
1313 | } |
1314 | curArg = curArg->m_nextArg; |
1315 | } |
1316 | if (!found) |
1317 | { |
1318 | succMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(ssaNum, succMemoryPhi); |
1319 | } |
1320 | } |
1321 | DBG_SSA_JITDUMP(" Added phi arg for %s u:%d from " FMT_BB " in " FMT_BB ".\n" , |
1322 | memoryKindNames[memoryKind], block->bbMemorySsaNumOut[memoryKind], block->bbNum, |
1323 | succ->bbNum); |
1324 | } |
1325 | } |
1326 | |
1327 | // If "succ" is the first block of a try block (and "block" is not also in that try block) |
1328 | // then we must look at the vars that have phi defs in the corresponding handler; |
1329 | // the current SSA name for such vars must be included as an argument to that phi. |
1330 | if (m_pCompiler->bbIsTryBeg(succ)) |
1331 | { |
1332 | assert(succ->hasTryIndex()); |
1333 | unsigned tryInd = succ->getTryIndex(); |
1334 | |
1335 | while (tryInd != EHblkDsc::NO_ENCLOSING_INDEX) |
1336 | { |
1337 | // Check if the predecessor "block" is within the same try block. |
1338 | if (block->hasTryIndex()) |
1339 | { |
1340 | for (unsigned blockTryInd = block->getTryIndex(); blockTryInd != EHblkDsc::NO_ENCLOSING_INDEX; |
1341 | blockTryInd = m_pCompiler->ehGetEnclosingTryIndex(blockTryInd)) |
1342 | { |
1343 | if (blockTryInd == tryInd) |
1344 | { |
1345 | // It is; don't execute the loop below. |
1346 | tryInd = EHblkDsc::NO_ENCLOSING_INDEX; |
1347 | break; |
1348 | } |
1349 | } |
1350 | |
1351 | // The loop just above found that the predecessor "block" is within the same |
1352 | // try block as "succ." So we don't need to process this try, or any |
1353 | // further outer try blocks here, since they would also contain both "succ" |
1354 | // and "block". |
1355 | if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX) |
1356 | { |
1357 | break; |
1358 | } |
1359 | } |
1360 | |
1361 | EHblkDsc* succTry = m_pCompiler->ehGetDsc(tryInd); |
1362 | // This is necessarily true on the first iteration, but not |
1363 | // necessarily on the second and subsequent. |
1364 | if (succTry->ebdTryBeg != succ) |
1365 | { |
1366 | break; |
1367 | } |
1368 | |
1369 | // succ is the first block of this try. Look at phi defs in the handler. |
1370 | // For a filter, we consider the filter to be the "real" handler. |
1371 | BasicBlock* handlerStart = succTry->ExFlowBlock(); |
1372 | |
1373 | for (GenTree* stmt = handlerStart->bbTreeList; stmt; stmt = stmt->gtNext) |
1374 | { |
1375 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
1376 | |
1377 | // Check if the first n of the statements are phi nodes. If not, exit. |
1378 | if (tree->OperGet() != GT_ASG || tree->gtOp.gtOp2 == nullptr || |
1379 | tree->gtOp.gtOp2->OperGet() != GT_PHI) |
1380 | { |
1381 | break; |
1382 | } |
1383 | |
1384 | // Get the phi node from GT_ASG. |
1385 | GenTree* lclVar = tree->gtOp.gtOp1; |
1386 | unsigned lclNum = lclVar->gtLclVar.gtLclNum; |
1387 | |
1388 | // If the variable is live-out of "blk", and is therefore live on entry to the try-block-start |
1389 | // "succ", then we make sure the current SSA name for the |
1390 | // var is one of the args of the phi node. If not, go on. |
1391 | LclVarDsc* lclVarDsc = &m_pCompiler->lvaTable[lclNum]; |
1392 | if (!lclVarDsc->lvTracked || |
1393 | !VarSetOps::IsMember(m_pCompiler, block->bbLiveOut, lclVarDsc->lvVarIndex)) |
1394 | { |
1395 | continue; |
1396 | } |
1397 | |
1398 | GenTree* phiNode = tree->gtOp.gtOp2; |
1399 | assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST); |
1400 | GenTreeArgList* argList = reinterpret_cast<GenTreeArgList*>(phiNode->gtOp.gtOp1); |
1401 | |
1402 | // What is the current SSAName from the predecessor for this local? |
1403 | unsigned ssaNum = pRenameState->CountForUse(lclNum); |
1404 | |
1405 | // See if this ssaNum is already an arg to the phi. |
1406 | bool alreadyArg = false; |
1407 | for (GenTreeArgList* curArgs = argList; curArgs != nullptr; curArgs = curArgs->Rest()) |
1408 | { |
1409 | if (curArgs->Current()->gtPhiArg.gtSsaNum == ssaNum) |
1410 | { |
1411 | alreadyArg = true; |
1412 | break; |
1413 | } |
1414 | } |
1415 | if (!alreadyArg) |
1416 | { |
1417 | // Add the new argument. |
1418 | GenTree* newPhiArg = |
1419 | new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(lclVar->TypeGet(), lclNum, ssaNum, block); |
1420 | phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList); |
1421 | |
1422 | DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from " FMT_BB " in " FMT_BB ".\n" , ssaNum, |
1423 | lclNum, block->bbNum, handlerStart->bbNum); |
1424 | |
1425 | m_pCompiler->gtSetStmtInfo(stmt); |
1426 | m_pCompiler->fgSetStmtSeq(stmt); |
1427 | } |
1428 | } |
1429 | |
1430 | // Now handle memory. |
1431 | for (MemoryKind memoryKind : allMemoryKinds()) |
1432 | { |
1433 | BasicBlock::MemoryPhiArg*& handlerMemoryPhi = handlerStart->bbMemorySsaPhiFunc[memoryKind]; |
1434 | if (handlerMemoryPhi != nullptr) |
1435 | { |
1436 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1437 | { |
1438 | // We've already added the arg to the phi shared with ByrefExposed if needed, |
1439 | // but still need to update bbMemorySsaPhiFunc to stay in sync. |
1440 | assert(memoryKind > ByrefExposed); |
1441 | assert(block->bbMemorySsaNumOut[memoryKind] == block->bbMemorySsaNumOut[ByrefExposed]); |
1442 | assert(handlerStart->bbMemorySsaPhiFunc[ByrefExposed]->m_ssaNum == |
1443 | block->bbMemorySsaNumOut[memoryKind]); |
1444 | handlerMemoryPhi = handlerStart->bbMemorySsaPhiFunc[ByrefExposed]; |
1445 | |
1446 | continue; |
1447 | } |
1448 | |
1449 | if (handlerMemoryPhi == BasicBlock::EmptyMemoryPhiDef) |
1450 | { |
1451 | handlerMemoryPhi = |
1452 | new (m_pCompiler) BasicBlock::MemoryPhiArg(block->bbMemorySsaNumOut[memoryKind]); |
1453 | } |
1454 | else |
1455 | { |
1456 | // This path has a potential to introduce redundant phi args, due to multiple |
1457 | // preds of the same try-begin block having the same live-out memory def, and/or |
1458 | // due to nested try-begins each having preds with the same live-out memory def. |
1459 | // Avoid doing quadratic processing on handler phis, and instead live with the |
1460 | // occasional redundancy. |
1461 | handlerMemoryPhi = new (m_pCompiler) |
1462 | BasicBlock::MemoryPhiArg(block->bbMemorySsaNumOut[memoryKind], handlerMemoryPhi); |
1463 | } |
1464 | DBG_SSA_JITDUMP(" Added phi arg for %s u:%d from " FMT_BB " in " FMT_BB ".\n" , |
1465 | memoryKindNames[memoryKind], block->bbMemorySsaNumOut[memoryKind], block->bbNum, |
1466 | handlerStart->bbNum); |
1467 | } |
1468 | } |
1469 | |
1470 | tryInd = succTry->ebdEnclosingTryIndex; |
1471 | } |
1472 | } |
1473 | } |
1474 | } |
1475 | |
1476 | /** |
1477 | * Walk the block's tree in the evaluation order and reclaim rename stack for var definitions. |
1478 | * |
1479 | * @param block Block for which SSA variables have to be renamed. |
1480 | * @param pRenameState The incremental rename information stored during renaming process. |
1481 | * |
1482 | */ |
1483 | void SsaBuilder::BlockPopStacks(BasicBlock* block, SsaRenameState* pRenameState) |
1484 | { |
1485 | // Pop the names given to the non-phi nodes. |
1486 | pRenameState->PopBlockStacks(block); |
1487 | |
1488 | // And for memory. |
1489 | for (MemoryKind memoryKind : allMemoryKinds()) |
1490 | { |
1491 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1492 | { |
1493 | // GcHeap and ByrefExposed share a rename stack, so don't try |
1494 | // to pop it a second time. |
1495 | continue; |
1496 | } |
1497 | pRenameState->PopBlockMemoryStack(memoryKind, block); |
1498 | } |
1499 | } |
1500 | |
1501 | /** |
1502 | * Perform variable renaming. |
1503 | * |
1504 | * Walks the blocks and renames all var defs with ssa numbers and all uses with the |
1505 | * current count that is in the top of the stack. Assigns phi node rhs variables |
1506 | * (i.e., the arguments to the phi.) Then, calls the function recursively on child |
1507 | * nodes in the DOM tree to continue the renaming process. |
1508 | * |
1509 | * @param block Block for which SSA variables have to be renamed. |
1510 | * @param pRenameState The incremental rename information stored during renaming process. |
1511 | * |
1512 | * @remarks At the end of the method, m_uses and m_defs should be populated linking the |
1513 | * uses and defs. |
1514 | * |
1515 | * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction |
1516 | * and Destruction of Static Single Assignment Form." |
1517 | */ |
1518 | |
1519 | void SsaBuilder::RenameVariables(BlkToBlkVectorMap* domTree, SsaRenameState* pRenameState) |
1520 | { |
1521 | JITDUMP("*************** In SsaBuilder::RenameVariables()\n" ); |
1522 | |
1523 | // The first thing we do is treat parameters and must-init variables as if they have a |
1524 | // virtual definition before entry -- they start out at SSA name 1. |
1525 | for (unsigned lclNum = 0; lclNum < m_pCompiler->lvaCount; lclNum++) |
1526 | { |
1527 | if (!m_pCompiler->lvaInSsa(lclNum)) |
1528 | { |
1529 | continue; |
1530 | } |
1531 | |
1532 | LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum]; |
1533 | assert(varDsc->lvTracked); |
1534 | |
1535 | if (varDsc->lvIsParam || m_pCompiler->info.compInitMem || varDsc->lvMustInit || |
1536 | VarSetOps::IsMember(m_pCompiler, m_pCompiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)) |
1537 | { |
1538 | unsigned ssaNum = varDsc->lvPerSsaData.AllocSsaNum(m_allocator); |
1539 | |
1540 | // In ValueNum we'd assume un-inited variables get FIRST_SSA_NUM. |
1541 | assert(ssaNum == SsaConfig::FIRST_SSA_NUM); |
1542 | |
1543 | pRenameState->Push(nullptr, lclNum, ssaNum); |
1544 | } |
1545 | } |
1546 | |
1547 | // In ValueNum we'd assume un-inited memory gets FIRST_SSA_NUM. |
1548 | // The memory is a parameter. Use FIRST_SSA_NUM as first SSA name. |
1549 | unsigned initMemorySsaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
1550 | assert(initMemorySsaNum == SsaConfig::FIRST_SSA_NUM); |
1551 | for (MemoryKind memoryKind : allMemoryKinds()) |
1552 | { |
1553 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
1554 | { |
1555 | // GcHeap shares its stack with ByrefExposed; don't re-push. |
1556 | continue; |
1557 | } |
1558 | pRenameState->PushMemory(memoryKind, m_pCompiler->fgFirstBB, initMemorySsaNum); |
1559 | } |
1560 | |
1561 | // Initialize the memory ssa numbers for unreachable blocks. ValueNum expects |
1562 | // memory ssa numbers to have some intitial value. |
1563 | for (BasicBlock* block = m_pCompiler->fgFirstBB; block; block = block->bbNext) |
1564 | { |
1565 | if (block->bbIDom == nullptr) |
1566 | { |
1567 | for (MemoryKind memoryKind : allMemoryKinds()) |
1568 | { |
1569 | block->bbMemorySsaNumIn[memoryKind] = initMemorySsaNum; |
1570 | block->bbMemorySsaNumOut[memoryKind] = initMemorySsaNum; |
1571 | } |
1572 | } |
1573 | } |
1574 | |
1575 | struct BlockWork |
1576 | { |
1577 | BasicBlock* m_blk; |
1578 | bool m_processed; // Whether the this block have already been processed: its var renamed, and children |
1579 | // processed. |
1580 | // If so, awaiting only BlockPopStacks. |
1581 | BlockWork(BasicBlock* blk, bool processed = false) : m_blk(blk), m_processed(processed) |
1582 | { |
1583 | } |
1584 | }; |
1585 | typedef jitstd::vector<BlockWork> BlockWorkStack; |
1586 | |
1587 | BlockWorkStack* blocksToDo = new (m_allocator) BlockWorkStack(m_allocator); |
1588 | blocksToDo->push_back(BlockWork(m_pCompiler->fgFirstBB)); // Probably have to include other roots of dom tree. |
1589 | |
1590 | while (blocksToDo->size() != 0) |
1591 | { |
1592 | BlockWork blockWrk = blocksToDo->back(); |
1593 | blocksToDo->pop_back(); |
1594 | BasicBlock* block = blockWrk.m_blk; |
1595 | |
1596 | DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](" FMT_BB ", processed = %d)\n" , block->bbNum, |
1597 | blockWrk.m_processed); |
1598 | |
1599 | if (!blockWrk.m_processed) |
1600 | { |
1601 | // Push the block back on the stack with "m_processed" true, to record the fact that when its children have |
1602 | // been (recursively) processed, we still need to call BlockPopStacks on it. |
1603 | blocksToDo->push_back(BlockWork(block, true)); |
1604 | |
1605 | // Walk the block give counts to DEFs and give top of stack count for USEs. |
1606 | BlockRenameVariables(block, pRenameState); |
1607 | |
1608 | // Assign arguments to the phi node of successors, corresponding to the block's index. |
1609 | AssignPhiNodeRhsVariables(block, pRenameState); |
1610 | |
1611 | // Recurse with the block's DOM children. |
1612 | BlkVector* domChildren = domTree->LookupPointer(block); |
1613 | if (domChildren != nullptr) |
1614 | { |
1615 | for (BasicBlock* child : *domChildren) |
1616 | { |
1617 | DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](pushing dom child " FMT_BB ")\n" , child->bbNum); |
1618 | blocksToDo->push_back(BlockWork(child)); |
1619 | } |
1620 | } |
1621 | } |
1622 | else |
1623 | { |
1624 | // Done, pop all the stack count, if there is one for this block. |
1625 | BlockPopStacks(block, pRenameState); |
1626 | DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables] done with " FMT_BB "\n" , block->bbNum); |
1627 | } |
1628 | } |
1629 | } |
1630 | |
1631 | #ifdef DEBUG |
1632 | /** |
1633 | * Print the blocks, the phi nodes get printed as well. |
1634 | * @example: |
1635 | * After SSA BB02: |
1636 | * [0027CC0C] ----------- stmtExpr void (IL 0x019...0x01B) |
1637 | * N001 ( 1, 1) [0027CB70] ----------- const int 23 |
1638 | * N003 ( 3, 3) [0027CBD8] -A------R-- = int |
1639 | * N002 ( 1, 1) [0027CBA4] D------N--- lclVar int V01 arg1 d:5 |
1640 | * |
1641 | * After SSA BB04: |
1642 | * [0027D530] ----------- stmtExpr void (IL ???... ???) |
1643 | * N002 ( 0, 0) [0027D4C8] ----------- phi int |
1644 | * [0027D8CC] ----------- lclVar int V01 arg1 u:5 |
1645 | * [0027D844] ----------- lclVar int V01 arg1 u:4 |
1646 | * N004 ( 2, 2) [0027D4FC] -A------R-- = int |
1647 | * N003 ( 1, 1) [0027D460] D------N--- lclVar int V01 arg1 d:3 |
1648 | */ |
1649 | void SsaBuilder::Print(BasicBlock** postOrder, int count) |
1650 | { |
1651 | for (int i = count - 1; i >= 0; --i) |
1652 | { |
1653 | printf("After SSA " FMT_BB ":\n" , postOrder[i]->bbNum); |
1654 | m_pCompiler->gtDispTreeList(postOrder[i]->bbTreeList); |
1655 | } |
1656 | } |
1657 | #endif // DEBUG |
1658 | |
1659 | /** |
1660 | * Build SSA form. |
1661 | * |
1662 | * Sorts the graph topologically. |
1663 | * - Collects them in postOrder array. |
1664 | * |
1665 | * Identifies each block's immediate dominator. |
1666 | * - Computes this in bbIDom of each BasicBlock. |
1667 | * |
1668 | * Computes DOM tree relation. |
1669 | * - Computes domTree as block -> set of blocks. |
1670 | * - Computes pre/post order traversal of the DOM tree. |
1671 | * |
1672 | * Inserts phi nodes. |
1673 | * - Computes dominance frontier as block -> set of blocks. |
1674 | * - Allocates block use/def/livein/liveout and computes it. |
1675 | * - Inserts phi nodes with only rhs at the beginning of the blocks. |
1676 | * |
1677 | * Renames variables. |
1678 | * - Walks blocks in evaluation order and gives uses and defs names. |
1679 | * - Gives empty phi nodes their rhs arguments as they become known while renaming. |
1680 | * |
1681 | * @return true if successful, for now, this must always be true. |
1682 | * |
1683 | * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy. |
1684 | * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction |
1685 | * and Destruction of Static Single Assignment Form." |
1686 | */ |
1687 | void SsaBuilder::Build() |
1688 | { |
1689 | #ifdef DEBUG |
1690 | if (m_pCompiler->verbose) |
1691 | { |
1692 | printf("*************** In SsaBuilder::Build()\n" ); |
1693 | } |
1694 | #endif |
1695 | |
1696 | // Ensure that there's a first block outside a try, so that the dominator tree has a unique root. |
1697 | SetupBBRoot(); |
1698 | |
1699 | // Just to keep block no. & index same add 1. |
1700 | int blockCount = m_pCompiler->fgBBNumMax + 1; |
1701 | |
1702 | JITDUMP("[SsaBuilder] Max block count is %d.\n" , blockCount); |
1703 | |
1704 | // Allocate the postOrder array for the graph. |
1705 | |
1706 | BasicBlock** postOrder; |
1707 | |
1708 | if (blockCount > DEFAULT_MIN_OPTS_BB_COUNT) |
1709 | { |
1710 | postOrder = new (m_allocator) BasicBlock*[blockCount]; |
1711 | } |
1712 | else |
1713 | { |
1714 | postOrder = (BasicBlock**)alloca(blockCount * sizeof(BasicBlock*)); |
1715 | } |
1716 | |
1717 | m_visitedTraits = BitVecTraits(blockCount, m_pCompiler); |
1718 | m_visited = BitVecOps::MakeEmpty(&m_visitedTraits); |
1719 | |
1720 | // Topologically sort the graph. |
1721 | int count = TopologicalSort(postOrder, blockCount); |
1722 | JITDUMP("[SsaBuilder] Topologically sorted the graph.\n" ); |
1723 | EndPhase(PHASE_BUILD_SSA_TOPOSORT); |
1724 | |
1725 | // Compute IDom(b). |
1726 | ComputeImmediateDom(postOrder, count); |
1727 | |
1728 | // Compute the dominator tree. |
1729 | BlkToBlkVectorMap* domTree = new (m_allocator) BlkToBlkVectorMap(m_allocator); |
1730 | ComputeDominators(postOrder, count, domTree); |
1731 | EndPhase(PHASE_BUILD_SSA_DOMS); |
1732 | |
1733 | // Compute liveness on the graph. |
1734 | m_pCompiler->fgLocalVarLiveness(); |
1735 | EndPhase(PHASE_BUILD_SSA_LIVENESS); |
1736 | |
1737 | // Mark all variables that will be tracked by SSA |
1738 | for (unsigned lclNum = 0; lclNum < m_pCompiler->lvaCount; lclNum++) |
1739 | { |
1740 | m_pCompiler->lvaTable[lclNum].lvInSsa = IncludeInSsa(lclNum); |
1741 | } |
1742 | |
1743 | // Insert phi functions. |
1744 | InsertPhiFunctions(postOrder, count); |
1745 | |
1746 | // Rename local variables and collect UD information for each ssa var. |
1747 | SsaRenameState* pRenameState = |
1748 | new (m_allocator) SsaRenameState(m_allocator, m_pCompiler->lvaCount, m_pCompiler->byrefStatesMatchGcHeapStates); |
1749 | RenameVariables(domTree, pRenameState); |
1750 | EndPhase(PHASE_BUILD_SSA_RENAME); |
1751 | |
1752 | #ifdef DEBUG |
1753 | // At this point we are in SSA form. Print the SSA form. |
1754 | if (m_pCompiler->verboseSsa) |
1755 | { |
1756 | Print(postOrder, count); |
1757 | } |
1758 | #endif |
1759 | } |
1760 | |
1761 | void SsaBuilder::SetupBBRoot() |
1762 | { |
1763 | // Allocate a bbroot, if necessary. |
1764 | // We need a unique block to be the root of the dominator tree. |
1765 | // This can be violated if the first block is in a try, or if it is the first block of |
1766 | // a loop (which would necessarily be an infinite loop) -- i.e., it has a predecessor. |
1767 | |
1768 | // If neither condition holds, no reason to make a new block. |
1769 | if (!m_pCompiler->fgFirstBB->hasTryIndex() && m_pCompiler->fgFirstBB->bbPreds == nullptr) |
1770 | { |
1771 | return; |
1772 | } |
1773 | |
1774 | BasicBlock* bbRoot = m_pCompiler->bbNewBasicBlock(BBJ_NONE); |
1775 | bbRoot->bbFlags |= BBF_INTERNAL; |
1776 | |
1777 | // May need to fix up preds list, so remember the old first block. |
1778 | BasicBlock* oldFirst = m_pCompiler->fgFirstBB; |
1779 | |
1780 | // Copy the liveness information from the first basic block. |
1781 | if (m_pCompiler->fgLocalVarLivenessDone) |
1782 | { |
1783 | VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveIn, oldFirst->bbLiveIn); |
1784 | VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveOut, oldFirst->bbLiveIn); |
1785 | } |
1786 | |
1787 | // Copy the bbWeight. (This is technically wrong, if the first block is a loop head, but |
1788 | // it shouldn't matter...) |
1789 | bbRoot->inheritWeight(oldFirst); |
1790 | |
1791 | // There's an artifical incoming reference count for the first BB. We're about to make it no longer |
1792 | // the first BB, so decrement that. |
1793 | assert(oldFirst->bbRefs > 0); |
1794 | oldFirst->bbRefs--; |
1795 | |
1796 | m_pCompiler->fgInsertBBbefore(m_pCompiler->fgFirstBB, bbRoot); |
1797 | |
1798 | assert(m_pCompiler->fgFirstBB == bbRoot); |
1799 | if (m_pCompiler->fgComputePredsDone) |
1800 | { |
1801 | m_pCompiler->fgAddRefPred(oldFirst, bbRoot); |
1802 | } |
1803 | } |
1804 | |
1805 | //------------------------------------------------------------------------ |
1806 | // IncludeInSsa: Check if the specified variable can be included in SSA. |
1807 | // |
1808 | // Arguments: |
1809 | // lclNum - the variable number |
1810 | // |
1811 | // Return Value: |
1812 | // true if the variable is included in SSA |
1813 | // |
1814 | bool SsaBuilder::IncludeInSsa(unsigned lclNum) |
1815 | { |
1816 | LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum]; |
1817 | |
1818 | if (varDsc->lvAddrExposed) |
1819 | { |
1820 | return false; // We exclude address-exposed variables. |
1821 | } |
1822 | if (!varDsc->lvTracked) |
1823 | { |
1824 | return false; // SSA is only done for tracked variables |
1825 | } |
1826 | // lvPromoted structs are never tracked... |
1827 | assert(!varDsc->lvPromoted); |
1828 | |
1829 | if (varDsc->lvOverlappingFields) |
1830 | { |
1831 | return false; // Don't use SSA on structs that have overlapping fields |
1832 | } |
1833 | |
1834 | if (varDsc->lvIsStructField && |
1835 | (m_pCompiler->lvaGetParentPromotionType(lclNum) != Compiler::PROMOTION_TYPE_INDEPENDENT)) |
1836 | { |
1837 | // SSA must exclude struct fields that are not independent |
1838 | // - because we don't model the struct assignment properly when multiple fields can be assigned by one struct |
1839 | // assignment. |
1840 | // - SSA doesn't allow a single node to contain multiple SSA definitions. |
1841 | // - and PROMOTION_TYPE_DEPENDEDNT fields are never candidates for a register. |
1842 | // |
1843 | // Example mscorlib method: CompatibilitySwitches:IsCompatibilitySwitchSet |
1844 | // |
1845 | return false; |
1846 | } |
1847 | // otherwise this variable is included in SSA |
1848 | return true; |
1849 | } |
1850 | |
1851 | #ifdef DEBUG |
1852 | // This method asserts that SSA name constraints specified are satisfied. |
1853 | void Compiler::JitTestCheckSSA() |
1854 | { |
1855 | struct SSAName |
1856 | { |
1857 | unsigned m_lvNum; |
1858 | unsigned m_ssaNum; |
1859 | |
1860 | static unsigned GetHashCode(SSAName ssaNm) |
1861 | { |
1862 | return ssaNm.m_lvNum << 16 | ssaNm.m_ssaNum; |
1863 | } |
1864 | |
1865 | static bool Equals(SSAName ssaNm1, SSAName ssaNm2) |
1866 | { |
1867 | return ssaNm1.m_lvNum == ssaNm2.m_lvNum && ssaNm1.m_ssaNum == ssaNm2.m_ssaNum; |
1868 | } |
1869 | }; |
1870 | |
1871 | typedef JitHashTable<ssize_t, JitSmallPrimitiveKeyFuncs<ssize_t>, SSAName> LabelToSSANameMap; |
1872 | typedef JitHashTable<SSAName, SSAName, ssize_t> SSANameToLabelMap; |
1873 | |
1874 | // If we have no test data, early out. |
1875 | if (m_nodeTestData == nullptr) |
1876 | { |
1877 | return; |
1878 | } |
1879 | |
1880 | NodeToTestDataMap* testData = GetNodeTestData(); |
1881 | |
1882 | // First we have to know which nodes in the tree are reachable. |
1883 | NodeToIntMap* reachable = FindReachableNodesInNodeTestData(); |
1884 | |
1885 | LabelToSSANameMap* labelToSSA = new (getAllocatorDebugOnly()) LabelToSSANameMap(getAllocatorDebugOnly()); |
1886 | SSANameToLabelMap* ssaToLabel = new (getAllocatorDebugOnly()) SSANameToLabelMap(getAllocatorDebugOnly()); |
1887 | |
1888 | if (verbose) |
1889 | { |
1890 | printf("\nJit Testing: SSA names.\n" ); |
1891 | } |
1892 | for (NodeToTestDataMap::KeyIterator ki = testData->Begin(); !ki.Equal(testData->End()); ++ki) |
1893 | { |
1894 | TestLabelAndNum tlAndN; |
1895 | GenTree* node = ki.Get(); |
1896 | bool b = testData->Lookup(node, &tlAndN); |
1897 | assert(b); |
1898 | if (tlAndN.m_tl == TL_SsaName) |
1899 | { |
1900 | if (node->OperGet() != GT_LCL_VAR) |
1901 | { |
1902 | printf("SSAName constraint put on non-lcl-var expression " ); |
1903 | printTreeID(node); |
1904 | printf(" (of type %s).\n" , varTypeName(node->TypeGet())); |
1905 | unreached(); |
1906 | } |
1907 | GenTreeLclVarCommon* lcl = node->AsLclVarCommon(); |
1908 | |
1909 | int dummy; |
1910 | if (!reachable->Lookup(lcl, &dummy)) |
1911 | { |
1912 | printf("Node " ); |
1913 | printTreeID(lcl); |
1914 | printf(" had a test constraint declared, but has become unreachable at the time the constraint is " |
1915 | "tested.\n" |
1916 | "(This is probably as a result of some optimization -- \n" |
1917 | "you may need to modify the test case to defeat this opt.)\n" ); |
1918 | unreached(); |
1919 | } |
1920 | |
1921 | if (verbose) |
1922 | { |
1923 | printf(" Node: " ); |
1924 | printTreeID(lcl); |
1925 | printf(", SSA name = <%d, %d> -- SSA name class %d.\n" , lcl->gtLclNum, lcl->gtSsaNum, tlAndN.m_num); |
1926 | } |
1927 | SSAName ssaNm; |
1928 | if (labelToSSA->Lookup(tlAndN.m_num, &ssaNm)) |
1929 | { |
1930 | if (verbose) |
1931 | { |
1932 | printf(" Already in hash tables.\n" ); |
1933 | } |
1934 | // The mapping(s) must be one-to-one: if the label has a mapping, then the ssaNm must, as well. |
1935 | ssize_t num2; |
1936 | bool b = ssaToLabel->Lookup(ssaNm, &num2); |
1937 | // And the mappings must be the same. |
1938 | if (tlAndN.m_num != num2) |
1939 | { |
1940 | printf("Node: " ); |
1941 | printTreeID(lcl); |
1942 | printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n" , lcl->gtLclNum, lcl->gtSsaNum, |
1943 | tlAndN.m_num); |
1944 | printf( |
1945 | "but this SSA name <%d,%d> has already been associated with a different SSA name class: %d.\n" , |
1946 | ssaNm.m_lvNum, ssaNm.m_ssaNum, num2); |
1947 | unreached(); |
1948 | } |
1949 | // And the current node must be of the specified SSA family. |
1950 | if (!(lcl->gtLclNum == ssaNm.m_lvNum && lcl->gtSsaNum == ssaNm.m_ssaNum)) |
1951 | { |
1952 | printf("Node: " ); |
1953 | printTreeID(lcl); |
1954 | printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n" , lcl->gtLclNum, lcl->gtSsaNum, |
1955 | tlAndN.m_num); |
1956 | printf("but that name class was previously bound to a different SSA name: <%d,%d>.\n" , |
1957 | ssaNm.m_lvNum, ssaNm.m_ssaNum); |
1958 | unreached(); |
1959 | } |
1960 | } |
1961 | else |
1962 | { |
1963 | ssaNm.m_lvNum = lcl->gtLclNum; |
1964 | ssaNm.m_ssaNum = lcl->gtSsaNum; |
1965 | ssize_t num; |
1966 | // The mapping(s) must be one-to-one: if the label has no mapping, then the ssaNm may not, either. |
1967 | if (ssaToLabel->Lookup(ssaNm, &num)) |
1968 | { |
1969 | printf("Node: " ); |
1970 | printTreeID(lcl); |
1971 | printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n" , lcl->gtLclNum, lcl->gtSsaNum, |
1972 | tlAndN.m_num); |
1973 | printf("but this SSA name has already been associated with a different name class: %d.\n" , num); |
1974 | unreached(); |
1975 | } |
1976 | // Add to both mappings. |
1977 | labelToSSA->Set(tlAndN.m_num, ssaNm); |
1978 | ssaToLabel->Set(ssaNm, tlAndN.m_num); |
1979 | if (verbose) |
1980 | { |
1981 | printf(" added to hash tables.\n" ); |
1982 | } |
1983 | } |
1984 | } |
1985 | } |
1986 | } |
1987 | #endif // DEBUG |
1988 | |