| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | #include "jitpch.h" |
| 6 | #include "ssaconfig.h" |
| 7 | #include "ssarenamestate.h" |
| 8 | #include "ssabuilder.h" |
| 9 | |
| 10 | namespace |
| 11 | { |
| 12 | /** |
| 13 | * Method that finds a common IDom parent, much like least common ancestor. |
| 14 | * |
| 15 | * @param finger1 A basic block that might share IDom ancestor with finger2. |
| 16 | * @param finger2 A basic block that might share IDom ancestor with finger1. |
| 17 | * |
| 18 | * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy. |
| 19 | * |
| 20 | * @return A basic block whose IDom is the dominator for finger1 and finger2, |
| 21 | * or else NULL. This may be called while immediate dominators are being |
| 22 | * computed, and if the input values are members of the same loop (each reachable from the other), |
| 23 | * then one may not yet have its immediate dominator computed when we are attempting |
| 24 | * to find the immediate dominator of the other. So a NULL return value means that the |
| 25 | * the two inputs are in a cycle, not that they don't have a common dominator ancestor. |
| 26 | */ |
| 27 | static inline BasicBlock* IntersectDom(BasicBlock* finger1, BasicBlock* finger2) |
| 28 | { |
| 29 | while (finger1 != finger2) |
| 30 | { |
| 31 | if (finger1 == nullptr || finger2 == nullptr) |
| 32 | { |
| 33 | return nullptr; |
| 34 | } |
| 35 | while (finger1 != nullptr && finger1->bbPostOrderNum < finger2->bbPostOrderNum) |
| 36 | { |
| 37 | finger1 = finger1->bbIDom; |
| 38 | } |
| 39 | if (finger1 == nullptr) |
| 40 | { |
| 41 | return nullptr; |
| 42 | } |
| 43 | while (finger2 != nullptr && finger2->bbPostOrderNum < finger1->bbPostOrderNum) |
| 44 | { |
| 45 | finger2 = finger2->bbIDom; |
| 46 | } |
| 47 | } |
| 48 | return finger1; |
| 49 | } |
| 50 | |
| 51 | } // end of anonymous namespace. |
| 52 | |
| 53 | // ================================================================================= |
| 54 | // SSA |
| 55 | // ================================================================================= |
| 56 | |
| 57 | void Compiler::fgSsaBuild() |
| 58 | { |
| 59 | // If this is not the first invocation, reset data structures for SSA. |
| 60 | if (fgSsaPassesCompleted > 0) |
| 61 | { |
| 62 | fgResetForSsa(); |
| 63 | } |
| 64 | |
| 65 | SsaBuilder builder(this); |
| 66 | builder.Build(); |
| 67 | fgSsaPassesCompleted++; |
| 68 | #ifdef DEBUG |
| 69 | JitTestCheckSSA(); |
| 70 | #endif // DEBUG |
| 71 | |
| 72 | #ifdef DEBUG |
| 73 | if (verbose) |
| 74 | { |
| 75 | JITDUMP("\nAfter fgSsaBuild:\n" ); |
| 76 | fgDispBasicBlocks(/*dumpTrees*/ true); |
| 77 | } |
| 78 | #endif // DEBUG |
| 79 | } |
| 80 | |
| 81 | void Compiler::() |
| 82 | { |
| 83 | for (unsigned i = 0; i < lvaCount; ++i) |
| 84 | { |
| 85 | lvaTable[i].lvPerSsaData.Reset(); |
| 86 | } |
| 87 | lvMemoryPerSsaData.Reset(); |
| 88 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 89 | { |
| 90 | m_memorySsaMap[memoryKind] = nullptr; |
| 91 | } |
| 92 | |
| 93 | for (BasicBlock* blk = fgFirstBB; blk != nullptr; blk = blk->bbNext) |
| 94 | { |
| 95 | // Eliminate phis. |
| 96 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 97 | { |
| 98 | blk->bbMemorySsaPhiFunc[memoryKind] = nullptr; |
| 99 | } |
| 100 | if (blk->bbTreeList != nullptr) |
| 101 | { |
| 102 | GenTree* last = blk->bbTreeList->gtPrev; |
| 103 | blk->bbTreeList = blk->FirstNonPhiDef(); |
| 104 | if (blk->bbTreeList != nullptr) |
| 105 | { |
| 106 | blk->bbTreeList->gtPrev = last; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | // Clear post-order numbers and SSA numbers; SSA construction will overwrite these, |
| 111 | // but only for reachable code, so clear them to avoid analysis getting confused |
| 112 | // by stale annotations in unreachable code. |
| 113 | blk->bbPostOrderNum = 0; |
| 114 | for (GenTreeStmt* stmt = blk->firstStmt(); stmt != nullptr; stmt = stmt->getNextStmt()) |
| 115 | { |
| 116 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree != nullptr; tree = tree->gtNext) |
| 117 | { |
| 118 | if (tree->IsLocal()) |
| 119 | { |
| 120 | tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM); |
| 121 | continue; |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | /** |
| 129 | * Constructor for the SSA builder. |
| 130 | * |
| 131 | * @param pCompiler Current compiler instance. |
| 132 | * |
| 133 | * @remarks Initializes the class and member pointers/objects that use constructors. |
| 134 | */ |
| 135 | SsaBuilder::SsaBuilder(Compiler* pCompiler) |
| 136 | : m_pCompiler(pCompiler) |
| 137 | , m_allocator(pCompiler->getAllocator(CMK_SSA)) |
| 138 | , m_visitedTraits(0, pCompiler) // at this point we do not know the size, SetupBBRoot can add a block |
| 139 | #ifdef SSA_FEATURE_DOMARR |
| 140 | , m_pDomPreOrder(nullptr) |
| 141 | , m_pDomPostOrder(nullptr) |
| 142 | #endif |
| 143 | { |
| 144 | } |
| 145 | |
| 146 | //------------------------------------------------------------------------ |
| 147 | // TopologicalSort: Topologically sort the graph and return the number of nodes visited. |
| 148 | // |
| 149 | // Arguments: |
| 150 | // postOrder - The array in which the arranged basic blocks have to be returned. |
| 151 | // count - The size of the postOrder array. |
| 152 | // |
| 153 | // Return Value: |
| 154 | // The number of nodes visited while performing DFS on the graph. |
| 155 | |
| 156 | int SsaBuilder::TopologicalSort(BasicBlock** postOrder, int count) |
| 157 | { |
| 158 | Compiler* comp = m_pCompiler; |
| 159 | |
| 160 | // TopologicalSort is called first so m_visited should already be empty |
| 161 | assert(BitVecOps::IsEmpty(&m_visitedTraits, m_visited)); |
| 162 | |
| 163 | // Display basic blocks. |
| 164 | DBEXEC(VERBOSE, comp->fgDispBasicBlocks()); |
| 165 | DBEXEC(VERBOSE, comp->fgDispHandlerTab()); |
| 166 | |
| 167 | auto DumpBlockAndSuccessors = [](Compiler* comp, BasicBlock* block) { |
| 168 | #ifdef DEBUG |
| 169 | if (comp->verboseSsa) |
| 170 | { |
| 171 | printf("[SsaBuilder::TopologicalSort] Pushing " FMT_BB ": [" , block->bbNum); |
| 172 | AllSuccessorEnumerator successors(comp, block); |
| 173 | unsigned index = 0; |
| 174 | while (true) |
| 175 | { |
| 176 | bool isEHsucc = successors.IsNextEHSuccessor(); |
| 177 | BasicBlock* succ = successors.NextSuccessor(comp); |
| 178 | |
| 179 | if (succ == nullptr) |
| 180 | { |
| 181 | break; |
| 182 | } |
| 183 | |
| 184 | printf("%s%s" FMT_BB, (index++ ? ", " : "" ), (isEHsucc ? "[EH]" : "" ), succ->bbNum); |
| 185 | } |
| 186 | printf("]\n" ); |
| 187 | } |
| 188 | #endif |
| 189 | }; |
| 190 | |
| 191 | // Compute order. |
| 192 | int postIndex = 0; |
| 193 | BasicBlock* block = comp->fgFirstBB; |
| 194 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, block->bbNum); |
| 195 | |
| 196 | ArrayStack<AllSuccessorEnumerator> blocks(m_allocator); |
| 197 | blocks.Emplace(comp, block); |
| 198 | DumpBlockAndSuccessors(comp, block); |
| 199 | |
| 200 | while (!blocks.Empty()) |
| 201 | { |
| 202 | BasicBlock* block = blocks.TopRef().Block(); |
| 203 | BasicBlock* succ = blocks.TopRef().NextSuccessor(comp); |
| 204 | |
| 205 | if (succ != nullptr) |
| 206 | { |
| 207 | // if the block on TOS still has unreached successors, visit them |
| 208 | if (BitVecOps::TryAddElemD(&m_visitedTraits, m_visited, succ->bbNum)) |
| 209 | { |
| 210 | blocks.Emplace(comp, succ); |
| 211 | DumpBlockAndSuccessors(comp, succ); |
| 212 | } |
| 213 | } |
| 214 | else |
| 215 | { |
| 216 | // all successors have been visited |
| 217 | blocks.Pop(); |
| 218 | |
| 219 | DBG_SSA_JITDUMP("[SsaBuilder::TopologicalSort] postOrder[%d] = " FMT_BB "\n" , postIndex, block->bbNum); |
| 220 | postOrder[postIndex] = block; |
| 221 | block->bbPostOrderNum = postIndex; |
| 222 | postIndex += 1; |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | // In the absence of EH (because catch/finally have no preds), this should be valid. |
| 227 | // assert(postIndex == (count - 1)); |
| 228 | |
| 229 | return postIndex; |
| 230 | } |
| 231 | |
| 232 | /** |
| 233 | * Computes the immediate dominator IDom for each block iteratively. |
| 234 | * |
| 235 | * @param postOrder The array of basic blocks arranged in postOrder. |
| 236 | * @param count The size of valid elements in the postOrder array. |
| 237 | * |
| 238 | * @see "A simple, fast dominance algorithm." paper. |
| 239 | */ |
| 240 | void SsaBuilder::ComputeImmediateDom(BasicBlock** postOrder, int count) |
| 241 | { |
| 242 | JITDUMP("[SsaBuilder::ComputeImmediateDom]\n" ); |
| 243 | |
| 244 | // TODO-Cleanup: We currently have two dominance computations happening. We should unify them; for |
| 245 | // now, at least forget the results of the first. |
| 246 | for (BasicBlock* blk = m_pCompiler->fgFirstBB; blk != nullptr; blk = blk->bbNext) |
| 247 | { |
| 248 | blk->bbIDom = nullptr; |
| 249 | } |
| 250 | |
| 251 | // Add entry point to visited as its IDom is NULL. |
| 252 | BitVecOps::ClearD(&m_visitedTraits, m_visited); |
| 253 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, m_pCompiler->fgFirstBB->bbNum); |
| 254 | |
| 255 | assert(postOrder[count - 1] == m_pCompiler->fgFirstBB); |
| 256 | |
| 257 | bool changed = true; |
| 258 | while (changed) |
| 259 | { |
| 260 | changed = false; |
| 261 | |
| 262 | // In reverse post order, except for the entry block (count - 1 is entry BB). |
| 263 | for (int i = count - 2; i >= 0; --i) |
| 264 | { |
| 265 | BasicBlock* block = postOrder[i]; |
| 266 | |
| 267 | DBG_SSA_JITDUMP("Visiting in reverse post order: " FMT_BB ".\n" , block->bbNum); |
| 268 | |
| 269 | // Find the first processed predecessor block. |
| 270 | BasicBlock* predBlock = nullptr; |
| 271 | for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext) |
| 272 | { |
| 273 | if (BitVecOps::IsMember(&m_visitedTraits, m_visited, pred->flBlock->bbNum)) |
| 274 | { |
| 275 | predBlock = pred->flBlock; |
| 276 | break; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | // There could just be a single basic block, so just check if there were any preds. |
| 281 | if (predBlock != nullptr) |
| 282 | { |
| 283 | DBG_SSA_JITDUMP("Pred block is " FMT_BB ".\n" , predBlock->bbNum); |
| 284 | } |
| 285 | |
| 286 | // Intersect DOM, if computed, for all predecessors. |
| 287 | BasicBlock* bbIDom = predBlock; |
| 288 | for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext) |
| 289 | { |
| 290 | if (predBlock != pred->flBlock) |
| 291 | { |
| 292 | BasicBlock* domAncestor = IntersectDom(pred->flBlock, bbIDom); |
| 293 | // The result may be NULL if "block" and "pred->flBlock" are part of a |
| 294 | // cycle -- neither is guaranteed ordered wrt the other in reverse postorder, |
| 295 | // so we may be computing the IDom of "block" before the IDom of "pred->flBlock" has |
| 296 | // been computed. But that's OK -- if they're in a cycle, they share the same immediate |
| 297 | // dominator, so the contribution of "pred->flBlock" is not necessary to compute |
| 298 | // the result. |
| 299 | if (domAncestor != nullptr) |
| 300 | { |
| 301 | bbIDom = domAncestor; |
| 302 | } |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | // Did we change the bbIDom value? If so, we go around the outer loop again. |
| 307 | if (block->bbIDom != bbIDom) |
| 308 | { |
| 309 | changed = true; |
| 310 | |
| 311 | // IDom has changed, update it. |
| 312 | DBG_SSA_JITDUMP("bbIDom of " FMT_BB " becomes " FMT_BB ".\n" , block->bbNum, bbIDom ? bbIDom->bbNum : 0); |
| 313 | block->bbIDom = bbIDom; |
| 314 | } |
| 315 | |
| 316 | // Mark the current block as visited. |
| 317 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, block->bbNum); |
| 318 | |
| 319 | DBG_SSA_JITDUMP("Marking block " FMT_BB " as processed.\n" , block->bbNum); |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | #ifdef SSA_FEATURE_DOMARR |
| 325 | /** |
| 326 | * Walk the DOM tree and compute pre and post-order arrangement of the tree. |
| 327 | * |
| 328 | * @param curBlock The current block being operated on at some recursive level. |
| 329 | * @param domTree The DOM tree as a map (block -> set of child blocks.) |
| 330 | * @param preIndex The initial index given to the first block visited in pre order. |
| 331 | * @param postIndex The initial index given to the first block visited in post order. |
| 332 | * |
| 333 | * @remarks This would help us answer queries such as "a dom b?" in constant time. |
| 334 | * For example, if a dominated b, then Pre[a] < Pre[b] but Post[a] > Post[b] |
| 335 | */ |
| 336 | void SsaBuilder::DomTreeWalk(BasicBlock* curBlock, BlkToBlkVectorMap* domTree, int* preIndex, int* postIndex) |
| 337 | { |
| 338 | JITDUMP("[SsaBuilder::DomTreeWalk] block %s:\n" , curBlock->dspToString()); |
| 339 | |
| 340 | // Store the order number at the block number in the pre order list. |
| 341 | m_pDomPreOrder[curBlock->bbNum] = *preIndex; |
| 342 | ++(*preIndex); |
| 343 | |
| 344 | BlkVector* domChildren = domTree->LookupPointer(curBlock); |
| 345 | if (domChildren != nullptr) |
| 346 | { |
| 347 | for (BasicBlock* child : *domChildren) |
| 348 | { |
| 349 | if (curBlock != child) |
| 350 | { |
| 351 | DomTreeWalk(child, domTree, preIndex, postIndex); |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | // Store the order number at the block number in the post order list. |
| 357 | m_pDomPostOrder[curBlock->bbNum] = *postIndex; |
| 358 | ++(*postIndex); |
| 359 | } |
| 360 | #endif |
| 361 | |
| 362 | /** |
| 363 | * Using IDom of each basic block, add a mapping from block->IDom -> block. |
| 364 | * @param pCompiler Compiler instance |
| 365 | * @param block The basic block that will become the child node of it's iDom. |
| 366 | * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block" |
| 367 | * |
| 368 | */ |
| 369 | /* static */ |
| 370 | void SsaBuilder::ConstructDomTreeForBlock(Compiler* pCompiler, BasicBlock* block, BlkToBlkVectorMap* domTree) |
| 371 | { |
| 372 | BasicBlock* bbIDom = block->bbIDom; |
| 373 | |
| 374 | // bbIDom for (only) fgFirstBB will be NULL. |
| 375 | if (bbIDom == nullptr) |
| 376 | { |
| 377 | return; |
| 378 | } |
| 379 | |
| 380 | // If the bbIDom map key doesn't exist, create one. |
| 381 | BlkVector* domChildren = domTree->Emplace(bbIDom, domTree->GetAllocator()); |
| 382 | |
| 383 | DBG_SSA_JITDUMP("Inserting " FMT_BB " as dom child of " FMT_BB ".\n" , block->bbNum, bbIDom->bbNum); |
| 384 | // Insert the block into the block's set. |
| 385 | domChildren->push_back(block); |
| 386 | } |
| 387 | |
| 388 | /** |
| 389 | * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i", |
| 390 | * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... }, in |
| 391 | * other words, "domTree" is a tree represented by nodes mapped to their children. |
| 392 | * |
| 393 | * @param pCompiler Compiler instance |
| 394 | * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block" |
| 395 | * |
| 396 | */ |
| 397 | /* static */ |
| 398 | void SsaBuilder::ComputeDominators(Compiler* pCompiler, BlkToBlkVectorMap* domTree) |
| 399 | { |
| 400 | JITDUMP("*************** In SsaBuilder::ComputeDominators(Compiler*, ...)\n" ); |
| 401 | |
| 402 | // Construct the DOM tree from bbIDom |
| 403 | for (BasicBlock* block = pCompiler->fgFirstBB; block != nullptr; block = block->bbNext) |
| 404 | { |
| 405 | ConstructDomTreeForBlock(pCompiler, block, domTree); |
| 406 | } |
| 407 | |
| 408 | DBEXEC(pCompiler->verboseSsa, DisplayDominators(domTree)); |
| 409 | } |
| 410 | |
| 411 | /** |
| 412 | * Compute the DOM tree into a map(block -> set of blocks) adjacency representation. |
| 413 | * |
| 414 | * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i", |
| 415 | * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... } |
| 416 | * |
| 417 | * @param postOrder The array of basic blocks arranged in postOrder. |
| 418 | * @param count The size of valid elements in the postOrder array. |
| 419 | * @param domTree A map of (block -> set of blocks) tree representation that is empty. |
| 420 | * |
| 421 | */ |
| 422 | void SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, BlkToBlkVectorMap* domTree) |
| 423 | { |
| 424 | JITDUMP("*************** In SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, ...)\n" ); |
| 425 | |
| 426 | // Construct the DOM tree from bbIDom |
| 427 | for (int i = 0; i < count; ++i) |
| 428 | { |
| 429 | ConstructDomTreeForBlock(m_pCompiler, postOrder[i], domTree); |
| 430 | } |
| 431 | |
| 432 | DBEXEC(m_pCompiler->verboseSsa, DisplayDominators(domTree)); |
| 433 | |
| 434 | #ifdef SSA_FEATURE_DOMARR |
| 435 | // Allocate space for constant time computation of (a DOM b?) query. |
| 436 | unsigned bbArrSize = m_pCompiler->fgBBNumMax + 1; // We will use 1-based bbNums as indices into these arrays, so |
| 437 | // add 1. |
| 438 | m_pDomPreOrder = new (&m_allocator) int[bbArrSize]; |
| 439 | m_pDomPostOrder = new (&m_allocator) int[bbArrSize]; |
| 440 | |
| 441 | // Initial counters. |
| 442 | int preIndex = 0; |
| 443 | int postIndex = 0; |
| 444 | |
| 445 | // Populate the pre and post order of the tree. |
| 446 | DomTreeWalk(m_pCompiler->fgFirstBB, domTree, &preIndex, &postIndex); |
| 447 | #endif |
| 448 | } |
| 449 | |
| 450 | #ifdef DEBUG |
| 451 | |
| 452 | /** |
| 453 | * Display the DOM tree. |
| 454 | * |
| 455 | * @param domTree A map of (block -> set of blocks) tree representation. |
| 456 | */ |
| 457 | /* static */ |
| 458 | void SsaBuilder::DisplayDominators(BlkToBlkVectorMap* domTree) |
| 459 | { |
| 460 | printf("After computing dominator tree: \n" ); |
| 461 | for (BlkToBlkVectorMap::KeyIterator nodes = domTree->Begin(); !nodes.Equal(domTree->End()); ++nodes) |
| 462 | { |
| 463 | printf(FMT_BB " := {" , nodes.Get()->bbNum); |
| 464 | int index = 0; |
| 465 | for (BasicBlock* child : nodes.GetValue()) |
| 466 | { |
| 467 | printf("%s" FMT_BB, (index++ == 0) ? "" : "," , child->bbNum); |
| 468 | } |
| 469 | printf("}\n" ); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | #endif // DEBUG |
| 474 | |
| 475 | //------------------------------------------------------------------------ |
| 476 | // ComputeDominanceFrontiers: Compute flow graph dominance frontiers |
| 477 | // |
| 478 | // Arguments: |
| 479 | // postOrder - an array containing all flow graph blocks |
| 480 | // count - the number of blocks in the postOrder array |
| 481 | // mapDF - a caller provided hashtable that will be populated |
| 482 | // with blocks and their dominance frontiers (only those |
| 483 | // blocks that have non-empty frontiers will be included) |
| 484 | // |
| 485 | // Notes: |
| 486 | // Recall that the dominance frontier of a block B is the set of blocks |
| 487 | // B3 such that there exists some B2 s.t. B3 is a successor of B2, and |
| 488 | // B dominates B2. Note that this dominance need not be strict -- B2 |
| 489 | // and B may be the same node. |
| 490 | // See "A simple, fast dominance algorithm", by Cooper, Harvey, and Kennedy. |
| 491 | // |
| 492 | void SsaBuilder::ComputeDominanceFrontiers(BasicBlock** postOrder, int count, BlkToBlkVectorMap* mapDF) |
| 493 | { |
| 494 | DBG_SSA_JITDUMP("Computing DF:\n" ); |
| 495 | |
| 496 | for (int i = 0; i < count; ++i) |
| 497 | { |
| 498 | BasicBlock* block = postOrder[i]; |
| 499 | |
| 500 | DBG_SSA_JITDUMP("Considering block " FMT_BB ".\n" , block->bbNum); |
| 501 | |
| 502 | // Recall that B3 is in the dom frontier of B1 if there exists a B2 |
| 503 | // such that B1 dom B2, !(B1 dom B3), and B3 is an immediate successor |
| 504 | // of B2. (Note that B1 might be the same block as B2.) |
| 505 | // In that definition, we're considering "block" to be B3, and trying |
| 506 | // to find B1's. To do so, first we consider the predecessors of "block", |
| 507 | // searching for candidate B2's -- "block" is obviously an immediate successor |
| 508 | // of its immediate predecessors. If there are zero or one preds, then there |
| 509 | // is no pred, or else the single pred dominates "block", so no B2 exists. |
| 510 | |
| 511 | flowList* blockPreds = m_pCompiler->BlockPredsWithEH(block); |
| 512 | |
| 513 | // If block has 0/1 predecessor, skip. |
| 514 | if ((blockPreds == nullptr) || (blockPreds->flNext == nullptr)) |
| 515 | { |
| 516 | DBG_SSA_JITDUMP(" Has %d preds; skipping.\n" , blockPreds == nullptr ? 0 : 1); |
| 517 | continue; |
| 518 | } |
| 519 | |
| 520 | // Otherwise, there are > 1 preds. Each is a candidate B2 in the definition -- |
| 521 | // *unless* it dominates "block"/B3. |
| 522 | |
| 523 | for (flowList* pred = blockPreds; pred != nullptr; pred = pred->flNext) |
| 524 | { |
| 525 | DBG_SSA_JITDUMP(" Considering predecessor " FMT_BB ".\n" , pred->flBlock->bbNum); |
| 526 | |
| 527 | // If we've found a B2, then consider the possible B1's. We start with |
| 528 | // B2, since a block dominates itself, then traverse upwards in the dominator |
| 529 | // tree, stopping when we reach the root, or the immediate dominator of "block"/B3. |
| 530 | // (Note that we are guaranteed to encounter this immediate dominator of "block"/B3: |
| 531 | // a predecessor must be dominated by B3's immediate dominator.) |
| 532 | // Along this way, make "block"/B3 part of the dom frontier of the B1. |
| 533 | // When we reach this immediate dominator, the definition no longer applies, since this |
| 534 | // potential B1 *does* dominate "block"/B3, so we stop. |
| 535 | for (BasicBlock* b1 = pred->flBlock; (b1 != nullptr) && (b1 != block->bbIDom); // !root && !loop |
| 536 | b1 = b1->bbIDom) |
| 537 | { |
| 538 | DBG_SSA_JITDUMP(" Adding " FMT_BB " to dom frontier of pred dom " FMT_BB ".\n" , block->bbNum, |
| 539 | b1->bbNum); |
| 540 | |
| 541 | BlkVector& b1DF = *mapDF->Emplace(b1, m_allocator); |
| 542 | // It's possible to encounter the same DF multiple times, ensure that we don't add duplicates. |
| 543 | if (b1DF.empty() || (b1DF.back() != block)) |
| 544 | { |
| 545 | b1DF.push_back(block); |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | #ifdef DEBUG |
| 552 | if (m_pCompiler->verboseSsa) |
| 553 | { |
| 554 | printf("\nComputed DF:\n" ); |
| 555 | for (int i = 0; i < count; ++i) |
| 556 | { |
| 557 | BasicBlock* b = postOrder[i]; |
| 558 | printf("Block " FMT_BB " := {" , b->bbNum); |
| 559 | |
| 560 | BlkVector* bDF = mapDF->LookupPointer(b); |
| 561 | if (bDF != nullptr) |
| 562 | { |
| 563 | int index = 0; |
| 564 | for (BasicBlock* f : *bDF) |
| 565 | { |
| 566 | printf("%s" FMT_BB, (index++ == 0) ? "" : "," , f->bbNum); |
| 567 | } |
| 568 | } |
| 569 | printf("}\n" ); |
| 570 | } |
| 571 | } |
| 572 | #endif |
| 573 | } |
| 574 | |
| 575 | //------------------------------------------------------------------------ |
| 576 | // ComputeIteratedDominanceFrontier: Compute the iterated dominance frontier |
| 577 | // for the specified block. |
| 578 | // |
| 579 | // Arguments: |
| 580 | // b - the block to computed the frontier for |
| 581 | // mapDF - a map containing the dominance frontiers of all blocks |
| 582 | // bIDF - a caller provided vector where the IDF is to be stored |
| 583 | // |
| 584 | // Notes: |
| 585 | // The iterated dominance frontier is formed by a closure operation: |
| 586 | // the IDF of B is the smallest set that includes B's dominance frontier, |
| 587 | // and also includes the dominance frontier of all elements of the set. |
| 588 | // |
| 589 | void SsaBuilder::ComputeIteratedDominanceFrontier(BasicBlock* b, const BlkToBlkVectorMap* mapDF, BlkVector* bIDF) |
| 590 | { |
| 591 | assert(bIDF->empty()); |
| 592 | |
| 593 | BlkVector* bDF = mapDF->LookupPointer(b); |
| 594 | |
| 595 | if (bDF != nullptr) |
| 596 | { |
| 597 | // Compute IDF(b) - start by adding DF(b) to IDF(b). |
| 598 | bIDF->reserve(bDF->size()); |
| 599 | BitVecOps::ClearD(&m_visitedTraits, m_visited); |
| 600 | |
| 601 | for (BasicBlock* f : *bDF) |
| 602 | { |
| 603 | BitVecOps::AddElemD(&m_visitedTraits, m_visited, f->bbNum); |
| 604 | bIDF->push_back(f); |
| 605 | } |
| 606 | |
| 607 | // Now for each block f from IDF(b) add DF(f) to IDF(b). This may result in new |
| 608 | // blocks being added to IDF(b) and the process repeats until no more new blocks |
| 609 | // are added. Note that since we keep adding to bIDF we can't use iterators as |
| 610 | // they may get invalidated. This happens to be a convenient way to avoid having |
| 611 | // to track newly added blocks in a separate set. |
| 612 | for (size_t newIndex = 0; newIndex < bIDF->size(); newIndex++) |
| 613 | { |
| 614 | BasicBlock* f = (*bIDF)[newIndex]; |
| 615 | BlkVector* fDF = mapDF->LookupPointer(f); |
| 616 | |
| 617 | if (fDF != nullptr) |
| 618 | { |
| 619 | for (BasicBlock* ff : *fDF) |
| 620 | { |
| 621 | if (BitVecOps::TryAddElemD(&m_visitedTraits, m_visited, ff->bbNum)) |
| 622 | { |
| 623 | bIDF->push_back(ff); |
| 624 | } |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | #ifdef DEBUG |
| 631 | if (m_pCompiler->verboseSsa) |
| 632 | { |
| 633 | printf("IDF(" FMT_BB ") := {" , b->bbNum); |
| 634 | int index = 0; |
| 635 | for (BasicBlock* f : *bIDF) |
| 636 | { |
| 637 | printf("%s" FMT_BB, (index++ == 0) ? "" : "," , f->bbNum); |
| 638 | } |
| 639 | printf("}\n" ); |
| 640 | } |
| 641 | #endif |
| 642 | } |
| 643 | |
| 644 | /** |
| 645 | * Returns the phi GT_PHI node if the variable already has a phi node. |
| 646 | * |
| 647 | * @param block The block for which the existence of a phi node needs to be checked. |
| 648 | * @param lclNum The lclNum for which the occurrence of a phi node needs to be checked. |
| 649 | * |
| 650 | * @return If there is a phi node for the lclNum, returns the GT_PHI tree, else NULL. |
| 651 | */ |
| 652 | static GenTree* GetPhiNode(BasicBlock* block, unsigned lclNum) |
| 653 | { |
| 654 | // Walk the statements for phi nodes. |
| 655 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
| 656 | { |
| 657 | // A prefix of the statements of the block are phi definition nodes. If we complete processing |
| 658 | // that prefix, exit. |
| 659 | if (!stmt->IsPhiDefnStmt()) |
| 660 | { |
| 661 | break; |
| 662 | } |
| 663 | |
| 664 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
| 665 | |
| 666 | GenTree* phiLhs = tree->gtOp.gtOp1; |
| 667 | assert(phiLhs->OperGet() == GT_LCL_VAR); |
| 668 | if (phiLhs->gtLclVarCommon.gtLclNum == lclNum) |
| 669 | { |
| 670 | return tree->gtOp.gtOp2; |
| 671 | } |
| 672 | } |
| 673 | return nullptr; |
| 674 | } |
| 675 | |
| 676 | /** |
| 677 | * Inserts phi functions at DF(b) for variables v that are live after the phi |
| 678 | * insertion point i.e., v in live-in(b). |
| 679 | * |
| 680 | * To do so, the function computes liveness, dominance frontier and inserts a phi node, |
| 681 | * if we have var v in def(b) and live-in(l) and l is in DF(b). |
| 682 | * |
| 683 | * @param postOrder The array of basic blocks arranged in postOrder. |
| 684 | * @param count The size of valid elements in the postOrder array. |
| 685 | */ |
| 686 | void SsaBuilder::InsertPhiFunctions(BasicBlock** postOrder, int count) |
| 687 | { |
| 688 | JITDUMP("*************** In SsaBuilder::InsertPhiFunctions()\n" ); |
| 689 | |
| 690 | // Compute dominance frontier. |
| 691 | BlkToBlkVectorMap mapDF(m_allocator); |
| 692 | ComputeDominanceFrontiers(postOrder, count, &mapDF); |
| 693 | EndPhase(PHASE_BUILD_SSA_DF); |
| 694 | |
| 695 | // Use the same IDF vector for all blocks to avoid unnecessary memory allocations |
| 696 | BlkVector blockIDF(m_allocator); |
| 697 | |
| 698 | JITDUMP("Inserting phi functions:\n" ); |
| 699 | |
| 700 | for (int i = 0; i < count; ++i) |
| 701 | { |
| 702 | BasicBlock* block = postOrder[i]; |
| 703 | DBG_SSA_JITDUMP("Considering dominance frontier of block " FMT_BB ":\n" , block->bbNum); |
| 704 | |
| 705 | blockIDF.clear(); |
| 706 | ComputeIteratedDominanceFrontier(block, &mapDF, &blockIDF); |
| 707 | |
| 708 | if (blockIDF.empty()) |
| 709 | { |
| 710 | continue; |
| 711 | } |
| 712 | |
| 713 | // For each local var number "lclNum" that "block" assigns to... |
| 714 | VarSetOps::Iter defVars(m_pCompiler, block->bbVarDef); |
| 715 | unsigned varIndex = 0; |
| 716 | while (defVars.NextElem(&varIndex)) |
| 717 | { |
| 718 | unsigned lclNum = m_pCompiler->lvaTrackedToVarNum[varIndex]; |
| 719 | DBG_SSA_JITDUMP(" Considering local var V%02u:\n" , lclNum); |
| 720 | |
| 721 | if (!m_pCompiler->lvaInSsa(lclNum)) |
| 722 | { |
| 723 | DBG_SSA_JITDUMP(" Skipping because it is excluded.\n" ); |
| 724 | continue; |
| 725 | } |
| 726 | |
| 727 | // For each block "bbInDomFront" that is in the dominance frontier of "block"... |
| 728 | for (BasicBlock* bbInDomFront : blockIDF) |
| 729 | { |
| 730 | DBG_SSA_JITDUMP(" Considering " FMT_BB " in dom frontier of " FMT_BB ":\n" , bbInDomFront->bbNum, |
| 731 | block->bbNum); |
| 732 | |
| 733 | // Check if variable "lclNum" is live in block "*iterBlk". |
| 734 | if (!VarSetOps::IsMember(m_pCompiler, bbInDomFront->bbLiveIn, varIndex)) |
| 735 | { |
| 736 | continue; |
| 737 | } |
| 738 | |
| 739 | // Check if we've already inserted a phi node. |
| 740 | if (GetPhiNode(bbInDomFront, lclNum) == nullptr) |
| 741 | { |
| 742 | // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier of |
| 743 | // j. So insert a phi node at l. |
| 744 | JITDUMP("Inserting phi definition for V%02u at start of " FMT_BB ".\n" , lclNum, |
| 745 | bbInDomFront->bbNum); |
| 746 | |
| 747 | GenTree* phiLhs = m_pCompiler->gtNewLclvNode(lclNum, m_pCompiler->lvaTable[lclNum].TypeGet()); |
| 748 | |
| 749 | // Create 'phiRhs' as a GT_PHI node for 'lclNum', it will eventually hold a GT_LIST of GT_PHI_ARG |
| 750 | // nodes. However we have to construct this list so for now the gtOp1 of 'phiRhs' is a nullptr. |
| 751 | // It will get replaced with a GT_LIST of GT_PHI_ARG nodes in |
| 752 | // SsaBuilder::AssignPhiNodeRhsVariables() and in SsaBuilder::AddDefToHandlerPhis() |
| 753 | |
| 754 | GenTree* phiRhs = |
| 755 | m_pCompiler->gtNewOperNode(GT_PHI, m_pCompiler->lvaTable[lclNum].TypeGet(), nullptr); |
| 756 | |
| 757 | GenTree* phiAsg = m_pCompiler->gtNewAssignNode(phiLhs, phiRhs); |
| 758 | |
| 759 | GenTree* stmt = m_pCompiler->fgInsertStmtAtBeg(bbInDomFront, phiAsg); |
| 760 | m_pCompiler->gtSetStmtInfo(stmt); |
| 761 | m_pCompiler->fgSetStmtSeq(stmt); |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | // Now make a similar phi definition if the block defines memory. |
| 767 | if (block->bbMemoryDef != 0) |
| 768 | { |
| 769 | // For each block "bbInDomFront" that is in the dominance frontier of "block". |
| 770 | for (BasicBlock* bbInDomFront : blockIDF) |
| 771 | { |
| 772 | DBG_SSA_JITDUMP(" Considering " FMT_BB " in dom frontier of " FMT_BB " for Memory phis:\n" , |
| 773 | bbInDomFront->bbNum, block->bbNum); |
| 774 | |
| 775 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 776 | { |
| 777 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 778 | { |
| 779 | // Share the PhiFunc with ByrefExposed. |
| 780 | assert(memoryKind > ByrefExposed); |
| 781 | bbInDomFront->bbMemorySsaPhiFunc[memoryKind] = bbInDomFront->bbMemorySsaPhiFunc[ByrefExposed]; |
| 782 | continue; |
| 783 | } |
| 784 | |
| 785 | // Check if this memoryKind is defined in this block. |
| 786 | if ((block->bbMemoryDef & memoryKindSet(memoryKind)) == 0) |
| 787 | { |
| 788 | continue; |
| 789 | } |
| 790 | |
| 791 | // Check if memoryKind is live into block "*iterBlk". |
| 792 | if ((bbInDomFront->bbMemoryLiveIn & memoryKindSet(memoryKind)) == 0) |
| 793 | { |
| 794 | continue; |
| 795 | } |
| 796 | |
| 797 | // Check if we've already inserted a phi node. |
| 798 | if (bbInDomFront->bbMemorySsaPhiFunc[memoryKind] == nullptr) |
| 799 | { |
| 800 | // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier |
| 801 | // of |
| 802 | // j. So insert a phi node at l. |
| 803 | JITDUMP("Inserting phi definition for %s at start of " FMT_BB ".\n" , |
| 804 | memoryKindNames[memoryKind], bbInDomFront->bbNum); |
| 805 | bbInDomFront->bbMemorySsaPhiFunc[memoryKind] = BasicBlock::EmptyMemoryPhiDef; |
| 806 | } |
| 807 | } |
| 808 | } |
| 809 | } |
| 810 | } |
| 811 | EndPhase(PHASE_BUILD_SSA_INSERT_PHIS); |
| 812 | } |
| 813 | |
| 814 | /** |
| 815 | * Rename the local variable tree node. |
| 816 | * |
| 817 | * If the given tree node is a local variable, then for a def give a new count, if use, |
| 818 | * then give the count in the top of stack, i.e., current count (used for last def.) |
| 819 | * |
| 820 | * @param tree Tree node where an SSA variable is used or def'ed. |
| 821 | * @param pRenameState The incremental rename information stored during renaming process. |
| 822 | * |
| 823 | * @remarks This method has to maintain parity with TreePopStacks corresponding to pushes |
| 824 | * it makes for defs. |
| 825 | */ |
| 826 | void SsaBuilder::TreeRenameVariables(GenTree* tree, BasicBlock* block, SsaRenameState* pRenameState, bool isPhiDefn) |
| 827 | { |
| 828 | // This is perhaps temporary -- maybe should be done elsewhere. Label GT_INDs on LHS of assignments, so we |
| 829 | // can skip these during (at least) value numbering. |
| 830 | if (tree->OperIs(GT_ASG)) |
| 831 | { |
| 832 | GenTree* lhs = tree->gtOp.gtOp1->gtEffectiveVal(/*commaOnly*/ true); |
| 833 | GenTree* trueLhs = lhs->gtEffectiveVal(/*commaOnly*/ true); |
| 834 | if (trueLhs->OperIsIndir()) |
| 835 | { |
| 836 | trueLhs->gtFlags |= GTF_IND_ASG_LHS; |
| 837 | } |
| 838 | else if (trueLhs->OperGet() == GT_CLS_VAR) |
| 839 | { |
| 840 | trueLhs->gtFlags |= GTF_CLS_VAR_ASG_LHS; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | // Figure out if "tree" may make a new GC heap state (if we care for this block). |
| 845 | if ((block->bbMemoryHavoc & memoryKindSet(GcHeap)) == 0) |
| 846 | { |
| 847 | if (tree->OperIs(GT_ASG) || tree->OperIsBlkOp()) |
| 848 | { |
| 849 | if (m_pCompiler->ehBlockHasExnFlowDsc(block)) |
| 850 | { |
| 851 | GenTreeLclVarCommon* lclVarNode; |
| 852 | |
| 853 | bool isLocal = tree->DefinesLocal(m_pCompiler, &lclVarNode); |
| 854 | bool isAddrExposedLocal = isLocal && m_pCompiler->lvaVarAddrExposed(lclVarNode->gtLclNum); |
| 855 | bool hasByrefHavoc = ((block->bbMemoryHavoc & memoryKindSet(ByrefExposed)) != 0); |
| 856 | if (!isLocal || (isAddrExposedLocal && !hasByrefHavoc)) |
| 857 | { |
| 858 | // It *may* define byref memory in a non-havoc way. Make a new SSA # -- associate with this node. |
| 859 | unsigned ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
| 860 | if (!hasByrefHavoc) |
| 861 | { |
| 862 | pRenameState->PushMemory(ByrefExposed, block, ssaNum); |
| 863 | m_pCompiler->GetMemorySsaMap(ByrefExposed)->Set(tree, ssaNum); |
| 864 | #ifdef DEBUG |
| 865 | if (JitTls::GetCompiler()->verboseSsa) |
| 866 | { |
| 867 | printf("Node " ); |
| 868 | Compiler::printTreeID(tree); |
| 869 | printf(" (in try block) may define memory; ssa # = %d.\n" , ssaNum); |
| 870 | } |
| 871 | #endif // DEBUG |
| 872 | |
| 873 | // Now add this SSA # to all phis of the reachable catch blocks. |
| 874 | AddMemoryDefToHandlerPhis(ByrefExposed, block, ssaNum); |
| 875 | } |
| 876 | |
| 877 | if (!isLocal) |
| 878 | { |
| 879 | // Add a new def for GcHeap as well |
| 880 | if (m_pCompiler->byrefStatesMatchGcHeapStates) |
| 881 | { |
| 882 | // GcHeap and ByrefExposed share the same stacks, SsaMap, and phis |
| 883 | assert(!hasByrefHavoc); |
| 884 | assert(pRenameState->CountForMemoryUse(GcHeap) == ssaNum); |
| 885 | assert(*m_pCompiler->GetMemorySsaMap(GcHeap)->LookupPointer(tree) == ssaNum); |
| 886 | assert(block->bbMemorySsaPhiFunc[GcHeap] == block->bbMemorySsaPhiFunc[ByrefExposed]); |
| 887 | } |
| 888 | else |
| 889 | { |
| 890 | if (!hasByrefHavoc) |
| 891 | { |
| 892 | // Allocate a distinct defnum for the GC Heap |
| 893 | ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
| 894 | } |
| 895 | |
| 896 | pRenameState->PushMemory(GcHeap, block, ssaNum); |
| 897 | m_pCompiler->GetMemorySsaMap(GcHeap)->Set(tree, ssaNum); |
| 898 | AddMemoryDefToHandlerPhis(GcHeap, block, ssaNum); |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | if (!tree->IsLocal()) |
| 907 | { |
| 908 | return; |
| 909 | } |
| 910 | |
| 911 | unsigned lclNum = tree->gtLclVarCommon.gtLclNum; |
| 912 | // Is this a variable we exclude from SSA? |
| 913 | if (!m_pCompiler->lvaInSsa(lclNum)) |
| 914 | { |
| 915 | tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM); |
| 916 | return; |
| 917 | } |
| 918 | |
| 919 | if ((tree->gtFlags & GTF_VAR_DEF) != 0) |
| 920 | { |
| 921 | // Allocate a new SSA number for this definition tree. |
| 922 | unsigned ssaNum = m_pCompiler->lvaTable[lclNum].lvPerSsaData.AllocSsaNum(m_allocator, block, tree); |
| 923 | |
| 924 | if ((tree->gtFlags & GTF_VAR_USEASG) != 0) |
| 925 | { |
| 926 | // This is a partial definition of a variable. The node records only the SSA number |
| 927 | // of the use that is implied by this partial definition. The SSA number of the new |
| 928 | // definition will be recorded in the m_opAsgnVarDefSsaNums map. |
| 929 | tree->AsLclVarCommon()->SetSsaNum(pRenameState->CountForUse(lclNum)); |
| 930 | |
| 931 | m_pCompiler->GetOpAsgnVarDefSsaNums()->Set(tree, ssaNum); |
| 932 | } |
| 933 | else |
| 934 | { |
| 935 | tree->AsLclVarCommon()->SetSsaNum(ssaNum); |
| 936 | } |
| 937 | |
| 938 | pRenameState->Push(block, lclNum, ssaNum); |
| 939 | |
| 940 | // If necessary, add "lclNum/count" to the arg list of a phi def in any |
| 941 | // handlers for try blocks that "block" is within. (But only do this for "real" definitions, |
| 942 | // not phi definitions.) |
| 943 | if (!isPhiDefn) |
| 944 | { |
| 945 | AddDefToHandlerPhis(block, lclNum, ssaNum); |
| 946 | } |
| 947 | } |
| 948 | else if (!isPhiDefn) // Phi args already have ssa numbers. |
| 949 | { |
| 950 | // This case is obviated by the short-term "early-out" above...but it's in the right direction. |
| 951 | // Is it a promoted struct local? |
| 952 | if (m_pCompiler->lvaTable[lclNum].lvPromoted) |
| 953 | { |
| 954 | assert(tree->TypeGet() == TYP_STRUCT); |
| 955 | LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum]; |
| 956 | // If has only a single field var, treat this as a use of that field var. |
| 957 | // Otherwise, we don't give SSA names to uses of promoted struct vars. |
| 958 | if (varDsc->lvFieldCnt == 1) |
| 959 | { |
| 960 | lclNum = varDsc->lvFieldLclStart; |
| 961 | } |
| 962 | else |
| 963 | { |
| 964 | tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM); |
| 965 | return; |
| 966 | } |
| 967 | } |
| 968 | // Give the count as top of stack. |
| 969 | unsigned count = pRenameState->CountForUse(lclNum); |
| 970 | tree->gtLclVarCommon.SetSsaNum(count); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | void SsaBuilder::AddDefToHandlerPhis(BasicBlock* block, unsigned lclNum, unsigned count) |
| 975 | { |
| 976 | assert(m_pCompiler->lvaTable[lclNum].lvTracked); // Precondition. |
| 977 | unsigned lclIndex = m_pCompiler->lvaTable[lclNum].lvVarIndex; |
| 978 | |
| 979 | EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block); |
| 980 | if (tryBlk != nullptr) |
| 981 | { |
| 982 | DBG_SSA_JITDUMP("Definition of local V%02u/d:%d in block " FMT_BB |
| 983 | " has exn handler; adding as phi arg to handlers.\n" , |
| 984 | lclNum, count, block->bbNum); |
| 985 | while (true) |
| 986 | { |
| 987 | BasicBlock* handler = tryBlk->ExFlowBlock(); |
| 988 | |
| 989 | // Is "lclNum" live on entry to the handler? |
| 990 | if (VarSetOps::IsMember(m_pCompiler, handler->bbLiveIn, lclIndex)) |
| 991 | { |
| 992 | #ifdef DEBUG |
| 993 | bool phiFound = false; |
| 994 | #endif |
| 995 | // A prefix of blocks statements will be SSA definitions. Search those for "lclNum". |
| 996 | for (GenTree* stmt = handler->bbTreeList; stmt; stmt = stmt->gtNext) |
| 997 | { |
| 998 | // If the tree is not an SSA def, break out of the loop: we're done. |
| 999 | if (!stmt->IsPhiDefnStmt()) |
| 1000 | { |
| 1001 | break; |
| 1002 | } |
| 1003 | |
| 1004 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
| 1005 | |
| 1006 | assert(tree->IsPhiDefn()); |
| 1007 | |
| 1008 | if (tree->gtOp.gtOp1->gtLclVar.gtLclNum == lclNum) |
| 1009 | { |
| 1010 | // It's the definition for the right local. Add "count" to the RHS. |
| 1011 | GenTree* phi = tree->gtOp.gtOp2; |
| 1012 | GenTreeArgList* args = nullptr; |
| 1013 | if (phi->gtOp.gtOp1 != nullptr) |
| 1014 | { |
| 1015 | args = phi->gtOp.gtOp1->AsArgList(); |
| 1016 | } |
| 1017 | #ifdef DEBUG |
| 1018 | // Make sure it isn't already present: we should only add each definition once. |
| 1019 | for (GenTreeArgList* curArgs = args; curArgs != nullptr; curArgs = curArgs->Rest()) |
| 1020 | { |
| 1021 | GenTreePhiArg* phiArg = curArgs->Current()->AsPhiArg(); |
| 1022 | assert(phiArg->gtSsaNum != count); |
| 1023 | } |
| 1024 | #endif |
| 1025 | var_types typ = m_pCompiler->lvaTable[lclNum].TypeGet(); |
| 1026 | GenTreePhiArg* newPhiArg = |
| 1027 | new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(typ, lclNum, count, block); |
| 1028 | |
| 1029 | phi->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, args); |
| 1030 | m_pCompiler->gtSetStmtInfo(stmt); |
| 1031 | m_pCompiler->fgSetStmtSeq(stmt); |
| 1032 | #ifdef DEBUG |
| 1033 | phiFound = true; |
| 1034 | #endif |
| 1035 | DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u to phi defn in handler block " FMT_BB ".\n" , |
| 1036 | count, lclNum, handler->bbNum); |
| 1037 | break; |
| 1038 | } |
| 1039 | } |
| 1040 | assert(phiFound); |
| 1041 | } |
| 1042 | |
| 1043 | unsigned nextTryIndex = tryBlk->ebdEnclosingTryIndex; |
| 1044 | if (nextTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
| 1045 | { |
| 1046 | break; |
| 1047 | } |
| 1048 | |
| 1049 | tryBlk = m_pCompiler->ehGetDsc(nextTryIndex); |
| 1050 | } |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | void SsaBuilder::AddMemoryDefToHandlerPhis(MemoryKind memoryKind, BasicBlock* block, unsigned count) |
| 1055 | { |
| 1056 | if (m_pCompiler->ehBlockHasExnFlowDsc(block)) |
| 1057 | { |
| 1058 | // Don't do anything for a compiler-inserted BBJ_ALWAYS that is a "leave helper". |
| 1059 | if (block->bbJumpKind == BBJ_ALWAYS && (block->bbFlags & BBF_INTERNAL) && (block->bbPrev->isBBCallAlwaysPair())) |
| 1060 | { |
| 1061 | return; |
| 1062 | } |
| 1063 | |
| 1064 | // Otherwise... |
| 1065 | DBG_SSA_JITDUMP("Definition of %s/d:%d in block " FMT_BB " has exn handler; adding as phi arg to handlers.\n" , |
| 1066 | memoryKindNames[memoryKind], count, block->bbNum); |
| 1067 | EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block); |
| 1068 | while (true) |
| 1069 | { |
| 1070 | BasicBlock* handler = tryBlk->ExFlowBlock(); |
| 1071 | |
| 1072 | // Is memoryKind live on entry to the handler? |
| 1073 | if ((handler->bbMemoryLiveIn & memoryKindSet(memoryKind)) != 0) |
| 1074 | { |
| 1075 | assert(handler->bbMemorySsaPhiFunc != nullptr); |
| 1076 | |
| 1077 | // Add "count" to the phi args of memoryKind. |
| 1078 | BasicBlock::MemoryPhiArg*& handlerMemoryPhi = handler->bbMemorySsaPhiFunc[memoryKind]; |
| 1079 | |
| 1080 | #if DEBUG |
| 1081 | if (m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1082 | { |
| 1083 | // When sharing phis for GcHeap and ByrefExposed, callers should ask to add phis |
| 1084 | // for ByrefExposed only. |
| 1085 | assert(memoryKind != GcHeap); |
| 1086 | if (memoryKind == ByrefExposed) |
| 1087 | { |
| 1088 | // The GcHeap and ByrefExposed phi funcs should always be in sync. |
| 1089 | assert(handlerMemoryPhi == handler->bbMemorySsaPhiFunc[GcHeap]); |
| 1090 | } |
| 1091 | } |
| 1092 | #endif |
| 1093 | |
| 1094 | if (handlerMemoryPhi == BasicBlock::EmptyMemoryPhiDef) |
| 1095 | { |
| 1096 | handlerMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(count); |
| 1097 | } |
| 1098 | else |
| 1099 | { |
| 1100 | #ifdef DEBUG |
| 1101 | BasicBlock::MemoryPhiArg* curArg = handler->bbMemorySsaPhiFunc[memoryKind]; |
| 1102 | while (curArg != nullptr) |
| 1103 | { |
| 1104 | assert(curArg->GetSsaNum() != count); |
| 1105 | curArg = curArg->m_nextArg; |
| 1106 | } |
| 1107 | #endif // DEBUG |
| 1108 | handlerMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(count, handlerMemoryPhi); |
| 1109 | } |
| 1110 | |
| 1111 | DBG_SSA_JITDUMP(" Added phi arg u:%d for %s to phi defn in handler block " FMT_BB ".\n" , count, |
| 1112 | memoryKindNames[memoryKind], memoryKind, handler->bbNum); |
| 1113 | |
| 1114 | if ((memoryKind == ByrefExposed) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1115 | { |
| 1116 | // Share the phi between GcHeap and ByrefExposed. |
| 1117 | handler->bbMemorySsaPhiFunc[GcHeap] = handlerMemoryPhi; |
| 1118 | } |
| 1119 | } |
| 1120 | unsigned tryInd = tryBlk->ebdEnclosingTryIndex; |
| 1121 | if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX) |
| 1122 | { |
| 1123 | break; |
| 1124 | } |
| 1125 | tryBlk = m_pCompiler->ehGetDsc(tryInd); |
| 1126 | } |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | /** |
| 1131 | * Walk the block's tree in the evaluation order and give var definitions and uses their |
| 1132 | * SSA names. |
| 1133 | * |
| 1134 | * @param block Block for which SSA variables have to be renamed. |
| 1135 | * @param pRenameState The incremental rename information stored during renaming process. |
| 1136 | * |
| 1137 | */ |
| 1138 | void SsaBuilder::BlockRenameVariables(BasicBlock* block, SsaRenameState* pRenameState) |
| 1139 | { |
| 1140 | // Walk the statements of the block and rename the tree variables. |
| 1141 | |
| 1142 | // First handle the incoming memory states. |
| 1143 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1144 | { |
| 1145 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1146 | { |
| 1147 | // ByrefExposed and GcHeap share any phi this block may have, |
| 1148 | assert(block->bbMemorySsaPhiFunc[memoryKind] == block->bbMemorySsaPhiFunc[ByrefExposed]); |
| 1149 | // so we will have already allocated a defnum for it if needed. |
| 1150 | assert(memoryKind > ByrefExposed); |
| 1151 | assert(pRenameState->CountForMemoryUse(memoryKind) == pRenameState->CountForMemoryUse(ByrefExposed)); |
| 1152 | } |
| 1153 | else |
| 1154 | { |
| 1155 | // Is there an Phi definition for memoryKind at the start of this block? |
| 1156 | if (block->bbMemorySsaPhiFunc[memoryKind] != nullptr) |
| 1157 | { |
| 1158 | unsigned ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
| 1159 | pRenameState->PushMemory(memoryKind, block, ssaNum); |
| 1160 | |
| 1161 | DBG_SSA_JITDUMP("Ssa # for %s phi on entry to " FMT_BB " is %d.\n" , memoryKindNames[memoryKind], |
| 1162 | block->bbNum, ssaNum); |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | // Record the "in" Ssa # for memoryKind. |
| 1167 | block->bbMemorySsaNumIn[memoryKind] = pRenameState->CountForMemoryUse(memoryKind); |
| 1168 | } |
| 1169 | |
| 1170 | // We need to iterate over phi definitions, to give them SSA names, but we need |
| 1171 | // to know which are which, so we don't add phi definitions to handler phi arg lists. |
| 1172 | // Statements are phi defns until they aren't. |
| 1173 | bool isPhiDefn = true; |
| 1174 | GenTree* firstNonPhi = block->FirstNonPhiDef(); |
| 1175 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
| 1176 | { |
| 1177 | if (stmt == firstNonPhi) |
| 1178 | { |
| 1179 | isPhiDefn = false; |
| 1180 | } |
| 1181 | |
| 1182 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
| 1183 | { |
| 1184 | TreeRenameVariables(tree, block, pRenameState, isPhiDefn); |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | // Now handle the final memory states. |
| 1189 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1190 | { |
| 1191 | MemoryKindSet memorySet = memoryKindSet(memoryKind); |
| 1192 | |
| 1193 | // If the block defines memory, allocate an SSA variable for the final memory state in the block. |
| 1194 | // (This may be redundant with the last SSA var explicitly created, but there's no harm in that.) |
| 1195 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1196 | { |
| 1197 | // We've already allocated the SSA num and propagated it to shared phis, if needed, |
| 1198 | // when processing ByrefExposed. |
| 1199 | assert(memoryKind > ByrefExposed); |
| 1200 | assert(((block->bbMemoryDef & memorySet) != 0) == |
| 1201 | ((block->bbMemoryDef & memoryKindSet(ByrefExposed)) != 0)); |
| 1202 | assert(pRenameState->CountForMemoryUse(memoryKind) == pRenameState->CountForMemoryUse(ByrefExposed)); |
| 1203 | } |
| 1204 | else |
| 1205 | { |
| 1206 | if ((block->bbMemoryDef & memorySet) != 0) |
| 1207 | { |
| 1208 | unsigned ssaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
| 1209 | pRenameState->PushMemory(memoryKind, block, ssaNum); |
| 1210 | AddMemoryDefToHandlerPhis(memoryKind, block, ssaNum); |
| 1211 | } |
| 1212 | } |
| 1213 | |
| 1214 | // Record the "out" Ssa" # for memoryKind. |
| 1215 | block->bbMemorySsaNumOut[memoryKind] = pRenameState->CountForMemoryUse(memoryKind); |
| 1216 | |
| 1217 | DBG_SSA_JITDUMP("Ssa # for %s on entry to " FMT_BB " is %d; on exit is %d.\n" , memoryKindNames[memoryKind], |
| 1218 | block->bbNum, block->bbMemorySsaNumIn[memoryKind], block->bbMemorySsaNumOut[memoryKind]); |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | /** |
| 1223 | * Walk through the phi nodes of a given block and assign rhs variables to them. |
| 1224 | * |
| 1225 | * Also renumber the rhs variables from top of the stack. |
| 1226 | * |
| 1227 | * @param block Block for which phi nodes have to be assigned their rhs arguments. |
| 1228 | * @param pRenameState The incremental rename information stored during renaming process. |
| 1229 | * |
| 1230 | */ |
| 1231 | void SsaBuilder::AssignPhiNodeRhsVariables(BasicBlock* block, SsaRenameState* pRenameState) |
| 1232 | { |
| 1233 | for (BasicBlock* succ : block->GetAllSuccs(m_pCompiler)) |
| 1234 | { |
| 1235 | // Walk the statements for phi nodes. |
| 1236 | for (GenTree* stmt = succ->bbTreeList; stmt != nullptr && stmt->IsPhiDefnStmt(); stmt = stmt->gtNext) |
| 1237 | { |
| 1238 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
| 1239 | assert(tree->IsPhiDefn()); |
| 1240 | |
| 1241 | // Get the phi node from GT_ASG. |
| 1242 | GenTree* phiNode = tree->gtOp.gtOp2; |
| 1243 | assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST); |
| 1244 | |
| 1245 | unsigned lclNum = tree->gtOp.gtOp1->gtLclVar.gtLclNum; |
| 1246 | unsigned ssaNum = pRenameState->CountForUse(lclNum); |
| 1247 | // Search the arglist for an existing definition for ssaNum. |
| 1248 | // (Can we assert that its the head of the list? This should only happen when we add |
| 1249 | // during renaming for a definition that occurs within a try, and then that's the last |
| 1250 | // value of the var within that basic block.) |
| 1251 | GenTreeArgList* argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList()); |
| 1252 | bool found = false; |
| 1253 | while (argList != nullptr) |
| 1254 | { |
| 1255 | if (argList->Current()->AsLclVarCommon()->GetSsaNum() == ssaNum) |
| 1256 | { |
| 1257 | found = true; |
| 1258 | break; |
| 1259 | } |
| 1260 | argList = argList->Rest(); |
| 1261 | } |
| 1262 | if (!found) |
| 1263 | { |
| 1264 | GenTree* newPhiArg = |
| 1265 | new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(tree->gtOp.gtOp1->TypeGet(), lclNum, ssaNum, block); |
| 1266 | argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList()); |
| 1267 | phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList); |
| 1268 | DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from " FMT_BB " in " FMT_BB ".\n" , ssaNum, lclNum, |
| 1269 | block->bbNum, succ->bbNum); |
| 1270 | } |
| 1271 | |
| 1272 | m_pCompiler->gtSetStmtInfo(stmt); |
| 1273 | m_pCompiler->fgSetStmtSeq(stmt); |
| 1274 | } |
| 1275 | |
| 1276 | // Now handle memory. |
| 1277 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1278 | { |
| 1279 | BasicBlock::MemoryPhiArg*& succMemoryPhi = succ->bbMemorySsaPhiFunc[memoryKind]; |
| 1280 | if (succMemoryPhi != nullptr) |
| 1281 | { |
| 1282 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1283 | { |
| 1284 | // We've already propagated the "out" number to the phi shared with ByrefExposed, |
| 1285 | // but still need to update bbMemorySsaPhiFunc to be in sync between GcHeap and ByrefExposed. |
| 1286 | assert(memoryKind > ByrefExposed); |
| 1287 | assert(block->bbMemorySsaNumOut[memoryKind] == block->bbMemorySsaNumOut[ByrefExposed]); |
| 1288 | assert((succ->bbMemorySsaPhiFunc[ByrefExposed] == succMemoryPhi) || |
| 1289 | (succ->bbMemorySsaPhiFunc[ByrefExposed]->m_nextArg == |
| 1290 | (succMemoryPhi == BasicBlock::EmptyMemoryPhiDef ? nullptr : succMemoryPhi))); |
| 1291 | succMemoryPhi = succ->bbMemorySsaPhiFunc[ByrefExposed]; |
| 1292 | |
| 1293 | continue; |
| 1294 | } |
| 1295 | |
| 1296 | if (succMemoryPhi == BasicBlock::EmptyMemoryPhiDef) |
| 1297 | { |
| 1298 | succMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(block->bbMemorySsaNumOut[memoryKind]); |
| 1299 | } |
| 1300 | else |
| 1301 | { |
| 1302 | BasicBlock::MemoryPhiArg* curArg = succMemoryPhi; |
| 1303 | unsigned ssaNum = block->bbMemorySsaNumOut[memoryKind]; |
| 1304 | bool found = false; |
| 1305 | // This is a quadratic algorithm. We might need to consider some switch over to a hash table |
| 1306 | // representation for the arguments of a phi node, to make this linear. |
| 1307 | while (curArg != nullptr) |
| 1308 | { |
| 1309 | if (curArg->m_ssaNum == ssaNum) |
| 1310 | { |
| 1311 | found = true; |
| 1312 | break; |
| 1313 | } |
| 1314 | curArg = curArg->m_nextArg; |
| 1315 | } |
| 1316 | if (!found) |
| 1317 | { |
| 1318 | succMemoryPhi = new (m_pCompiler) BasicBlock::MemoryPhiArg(ssaNum, succMemoryPhi); |
| 1319 | } |
| 1320 | } |
| 1321 | DBG_SSA_JITDUMP(" Added phi arg for %s u:%d from " FMT_BB " in " FMT_BB ".\n" , |
| 1322 | memoryKindNames[memoryKind], block->bbMemorySsaNumOut[memoryKind], block->bbNum, |
| 1323 | succ->bbNum); |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | // If "succ" is the first block of a try block (and "block" is not also in that try block) |
| 1328 | // then we must look at the vars that have phi defs in the corresponding handler; |
| 1329 | // the current SSA name for such vars must be included as an argument to that phi. |
| 1330 | if (m_pCompiler->bbIsTryBeg(succ)) |
| 1331 | { |
| 1332 | assert(succ->hasTryIndex()); |
| 1333 | unsigned tryInd = succ->getTryIndex(); |
| 1334 | |
| 1335 | while (tryInd != EHblkDsc::NO_ENCLOSING_INDEX) |
| 1336 | { |
| 1337 | // Check if the predecessor "block" is within the same try block. |
| 1338 | if (block->hasTryIndex()) |
| 1339 | { |
| 1340 | for (unsigned blockTryInd = block->getTryIndex(); blockTryInd != EHblkDsc::NO_ENCLOSING_INDEX; |
| 1341 | blockTryInd = m_pCompiler->ehGetEnclosingTryIndex(blockTryInd)) |
| 1342 | { |
| 1343 | if (blockTryInd == tryInd) |
| 1344 | { |
| 1345 | // It is; don't execute the loop below. |
| 1346 | tryInd = EHblkDsc::NO_ENCLOSING_INDEX; |
| 1347 | break; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | // The loop just above found that the predecessor "block" is within the same |
| 1352 | // try block as "succ." So we don't need to process this try, or any |
| 1353 | // further outer try blocks here, since they would also contain both "succ" |
| 1354 | // and "block". |
| 1355 | if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX) |
| 1356 | { |
| 1357 | break; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | EHblkDsc* succTry = m_pCompiler->ehGetDsc(tryInd); |
| 1362 | // This is necessarily true on the first iteration, but not |
| 1363 | // necessarily on the second and subsequent. |
| 1364 | if (succTry->ebdTryBeg != succ) |
| 1365 | { |
| 1366 | break; |
| 1367 | } |
| 1368 | |
| 1369 | // succ is the first block of this try. Look at phi defs in the handler. |
| 1370 | // For a filter, we consider the filter to be the "real" handler. |
| 1371 | BasicBlock* handlerStart = succTry->ExFlowBlock(); |
| 1372 | |
| 1373 | for (GenTree* stmt = handlerStart->bbTreeList; stmt; stmt = stmt->gtNext) |
| 1374 | { |
| 1375 | GenTree* tree = stmt->gtStmt.gtStmtExpr; |
| 1376 | |
| 1377 | // Check if the first n of the statements are phi nodes. If not, exit. |
| 1378 | if (tree->OperGet() != GT_ASG || tree->gtOp.gtOp2 == nullptr || |
| 1379 | tree->gtOp.gtOp2->OperGet() != GT_PHI) |
| 1380 | { |
| 1381 | break; |
| 1382 | } |
| 1383 | |
| 1384 | // Get the phi node from GT_ASG. |
| 1385 | GenTree* lclVar = tree->gtOp.gtOp1; |
| 1386 | unsigned lclNum = lclVar->gtLclVar.gtLclNum; |
| 1387 | |
| 1388 | // If the variable is live-out of "blk", and is therefore live on entry to the try-block-start |
| 1389 | // "succ", then we make sure the current SSA name for the |
| 1390 | // var is one of the args of the phi node. If not, go on. |
| 1391 | LclVarDsc* lclVarDsc = &m_pCompiler->lvaTable[lclNum]; |
| 1392 | if (!lclVarDsc->lvTracked || |
| 1393 | !VarSetOps::IsMember(m_pCompiler, block->bbLiveOut, lclVarDsc->lvVarIndex)) |
| 1394 | { |
| 1395 | continue; |
| 1396 | } |
| 1397 | |
| 1398 | GenTree* phiNode = tree->gtOp.gtOp2; |
| 1399 | assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST); |
| 1400 | GenTreeArgList* argList = reinterpret_cast<GenTreeArgList*>(phiNode->gtOp.gtOp1); |
| 1401 | |
| 1402 | // What is the current SSAName from the predecessor for this local? |
| 1403 | unsigned ssaNum = pRenameState->CountForUse(lclNum); |
| 1404 | |
| 1405 | // See if this ssaNum is already an arg to the phi. |
| 1406 | bool alreadyArg = false; |
| 1407 | for (GenTreeArgList* curArgs = argList; curArgs != nullptr; curArgs = curArgs->Rest()) |
| 1408 | { |
| 1409 | if (curArgs->Current()->gtPhiArg.gtSsaNum == ssaNum) |
| 1410 | { |
| 1411 | alreadyArg = true; |
| 1412 | break; |
| 1413 | } |
| 1414 | } |
| 1415 | if (!alreadyArg) |
| 1416 | { |
| 1417 | // Add the new argument. |
| 1418 | GenTree* newPhiArg = |
| 1419 | new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(lclVar->TypeGet(), lclNum, ssaNum, block); |
| 1420 | phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList); |
| 1421 | |
| 1422 | DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from " FMT_BB " in " FMT_BB ".\n" , ssaNum, |
| 1423 | lclNum, block->bbNum, handlerStart->bbNum); |
| 1424 | |
| 1425 | m_pCompiler->gtSetStmtInfo(stmt); |
| 1426 | m_pCompiler->fgSetStmtSeq(stmt); |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | // Now handle memory. |
| 1431 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1432 | { |
| 1433 | BasicBlock::MemoryPhiArg*& handlerMemoryPhi = handlerStart->bbMemorySsaPhiFunc[memoryKind]; |
| 1434 | if (handlerMemoryPhi != nullptr) |
| 1435 | { |
| 1436 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1437 | { |
| 1438 | // We've already added the arg to the phi shared with ByrefExposed if needed, |
| 1439 | // but still need to update bbMemorySsaPhiFunc to stay in sync. |
| 1440 | assert(memoryKind > ByrefExposed); |
| 1441 | assert(block->bbMemorySsaNumOut[memoryKind] == block->bbMemorySsaNumOut[ByrefExposed]); |
| 1442 | assert(handlerStart->bbMemorySsaPhiFunc[ByrefExposed]->m_ssaNum == |
| 1443 | block->bbMemorySsaNumOut[memoryKind]); |
| 1444 | handlerMemoryPhi = handlerStart->bbMemorySsaPhiFunc[ByrefExposed]; |
| 1445 | |
| 1446 | continue; |
| 1447 | } |
| 1448 | |
| 1449 | if (handlerMemoryPhi == BasicBlock::EmptyMemoryPhiDef) |
| 1450 | { |
| 1451 | handlerMemoryPhi = |
| 1452 | new (m_pCompiler) BasicBlock::MemoryPhiArg(block->bbMemorySsaNumOut[memoryKind]); |
| 1453 | } |
| 1454 | else |
| 1455 | { |
| 1456 | // This path has a potential to introduce redundant phi args, due to multiple |
| 1457 | // preds of the same try-begin block having the same live-out memory def, and/or |
| 1458 | // due to nested try-begins each having preds with the same live-out memory def. |
| 1459 | // Avoid doing quadratic processing on handler phis, and instead live with the |
| 1460 | // occasional redundancy. |
| 1461 | handlerMemoryPhi = new (m_pCompiler) |
| 1462 | BasicBlock::MemoryPhiArg(block->bbMemorySsaNumOut[memoryKind], handlerMemoryPhi); |
| 1463 | } |
| 1464 | DBG_SSA_JITDUMP(" Added phi arg for %s u:%d from " FMT_BB " in " FMT_BB ".\n" , |
| 1465 | memoryKindNames[memoryKind], block->bbMemorySsaNumOut[memoryKind], block->bbNum, |
| 1466 | handlerStart->bbNum); |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | tryInd = succTry->ebdEnclosingTryIndex; |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | /** |
| 1477 | * Walk the block's tree in the evaluation order and reclaim rename stack for var definitions. |
| 1478 | * |
| 1479 | * @param block Block for which SSA variables have to be renamed. |
| 1480 | * @param pRenameState The incremental rename information stored during renaming process. |
| 1481 | * |
| 1482 | */ |
| 1483 | void SsaBuilder::BlockPopStacks(BasicBlock* block, SsaRenameState* pRenameState) |
| 1484 | { |
| 1485 | // Pop the names given to the non-phi nodes. |
| 1486 | pRenameState->PopBlockStacks(block); |
| 1487 | |
| 1488 | // And for memory. |
| 1489 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1490 | { |
| 1491 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1492 | { |
| 1493 | // GcHeap and ByrefExposed share a rename stack, so don't try |
| 1494 | // to pop it a second time. |
| 1495 | continue; |
| 1496 | } |
| 1497 | pRenameState->PopBlockMemoryStack(memoryKind, block); |
| 1498 | } |
| 1499 | } |
| 1500 | |
| 1501 | /** |
| 1502 | * Perform variable renaming. |
| 1503 | * |
| 1504 | * Walks the blocks and renames all var defs with ssa numbers and all uses with the |
| 1505 | * current count that is in the top of the stack. Assigns phi node rhs variables |
| 1506 | * (i.e., the arguments to the phi.) Then, calls the function recursively on child |
| 1507 | * nodes in the DOM tree to continue the renaming process. |
| 1508 | * |
| 1509 | * @param block Block for which SSA variables have to be renamed. |
| 1510 | * @param pRenameState The incremental rename information stored during renaming process. |
| 1511 | * |
| 1512 | * @remarks At the end of the method, m_uses and m_defs should be populated linking the |
| 1513 | * uses and defs. |
| 1514 | * |
| 1515 | * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction |
| 1516 | * and Destruction of Static Single Assignment Form." |
| 1517 | */ |
| 1518 | |
| 1519 | void SsaBuilder::RenameVariables(BlkToBlkVectorMap* domTree, SsaRenameState* pRenameState) |
| 1520 | { |
| 1521 | JITDUMP("*************** In SsaBuilder::RenameVariables()\n" ); |
| 1522 | |
| 1523 | // The first thing we do is treat parameters and must-init variables as if they have a |
| 1524 | // virtual definition before entry -- they start out at SSA name 1. |
| 1525 | for (unsigned lclNum = 0; lclNum < m_pCompiler->lvaCount; lclNum++) |
| 1526 | { |
| 1527 | if (!m_pCompiler->lvaInSsa(lclNum)) |
| 1528 | { |
| 1529 | continue; |
| 1530 | } |
| 1531 | |
| 1532 | LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum]; |
| 1533 | assert(varDsc->lvTracked); |
| 1534 | |
| 1535 | if (varDsc->lvIsParam || m_pCompiler->info.compInitMem || varDsc->lvMustInit || |
| 1536 | VarSetOps::IsMember(m_pCompiler, m_pCompiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)) |
| 1537 | { |
| 1538 | unsigned ssaNum = varDsc->lvPerSsaData.AllocSsaNum(m_allocator); |
| 1539 | |
| 1540 | // In ValueNum we'd assume un-inited variables get FIRST_SSA_NUM. |
| 1541 | assert(ssaNum == SsaConfig::FIRST_SSA_NUM); |
| 1542 | |
| 1543 | pRenameState->Push(nullptr, lclNum, ssaNum); |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | // In ValueNum we'd assume un-inited memory gets FIRST_SSA_NUM. |
| 1548 | // The memory is a parameter. Use FIRST_SSA_NUM as first SSA name. |
| 1549 | unsigned initMemorySsaNum = m_pCompiler->lvMemoryPerSsaData.AllocSsaNum(m_allocator); |
| 1550 | assert(initMemorySsaNum == SsaConfig::FIRST_SSA_NUM); |
| 1551 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1552 | { |
| 1553 | if ((memoryKind == GcHeap) && m_pCompiler->byrefStatesMatchGcHeapStates) |
| 1554 | { |
| 1555 | // GcHeap shares its stack with ByrefExposed; don't re-push. |
| 1556 | continue; |
| 1557 | } |
| 1558 | pRenameState->PushMemory(memoryKind, m_pCompiler->fgFirstBB, initMemorySsaNum); |
| 1559 | } |
| 1560 | |
| 1561 | // Initialize the memory ssa numbers for unreachable blocks. ValueNum expects |
| 1562 | // memory ssa numbers to have some intitial value. |
| 1563 | for (BasicBlock* block = m_pCompiler->fgFirstBB; block; block = block->bbNext) |
| 1564 | { |
| 1565 | if (block->bbIDom == nullptr) |
| 1566 | { |
| 1567 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 1568 | { |
| 1569 | block->bbMemorySsaNumIn[memoryKind] = initMemorySsaNum; |
| 1570 | block->bbMemorySsaNumOut[memoryKind] = initMemorySsaNum; |
| 1571 | } |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | struct BlockWork |
| 1576 | { |
| 1577 | BasicBlock* m_blk; |
| 1578 | bool m_processed; // Whether the this block have already been processed: its var renamed, and children |
| 1579 | // processed. |
| 1580 | // If so, awaiting only BlockPopStacks. |
| 1581 | BlockWork(BasicBlock* blk, bool processed = false) : m_blk(blk), m_processed(processed) |
| 1582 | { |
| 1583 | } |
| 1584 | }; |
| 1585 | typedef jitstd::vector<BlockWork> BlockWorkStack; |
| 1586 | |
| 1587 | BlockWorkStack* blocksToDo = new (m_allocator) BlockWorkStack(m_allocator); |
| 1588 | blocksToDo->push_back(BlockWork(m_pCompiler->fgFirstBB)); // Probably have to include other roots of dom tree. |
| 1589 | |
| 1590 | while (blocksToDo->size() != 0) |
| 1591 | { |
| 1592 | BlockWork blockWrk = blocksToDo->back(); |
| 1593 | blocksToDo->pop_back(); |
| 1594 | BasicBlock* block = blockWrk.m_blk; |
| 1595 | |
| 1596 | DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](" FMT_BB ", processed = %d)\n" , block->bbNum, |
| 1597 | blockWrk.m_processed); |
| 1598 | |
| 1599 | if (!blockWrk.m_processed) |
| 1600 | { |
| 1601 | // Push the block back on the stack with "m_processed" true, to record the fact that when its children have |
| 1602 | // been (recursively) processed, we still need to call BlockPopStacks on it. |
| 1603 | blocksToDo->push_back(BlockWork(block, true)); |
| 1604 | |
| 1605 | // Walk the block give counts to DEFs and give top of stack count for USEs. |
| 1606 | BlockRenameVariables(block, pRenameState); |
| 1607 | |
| 1608 | // Assign arguments to the phi node of successors, corresponding to the block's index. |
| 1609 | AssignPhiNodeRhsVariables(block, pRenameState); |
| 1610 | |
| 1611 | // Recurse with the block's DOM children. |
| 1612 | BlkVector* domChildren = domTree->LookupPointer(block); |
| 1613 | if (domChildren != nullptr) |
| 1614 | { |
| 1615 | for (BasicBlock* child : *domChildren) |
| 1616 | { |
| 1617 | DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](pushing dom child " FMT_BB ")\n" , child->bbNum); |
| 1618 | blocksToDo->push_back(BlockWork(child)); |
| 1619 | } |
| 1620 | } |
| 1621 | } |
| 1622 | else |
| 1623 | { |
| 1624 | // Done, pop all the stack count, if there is one for this block. |
| 1625 | BlockPopStacks(block, pRenameState); |
| 1626 | DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables] done with " FMT_BB "\n" , block->bbNum); |
| 1627 | } |
| 1628 | } |
| 1629 | } |
| 1630 | |
| 1631 | #ifdef DEBUG |
| 1632 | /** |
| 1633 | * Print the blocks, the phi nodes get printed as well. |
| 1634 | * @example: |
| 1635 | * After SSA BB02: |
| 1636 | * [0027CC0C] ----------- stmtExpr void (IL 0x019...0x01B) |
| 1637 | * N001 ( 1, 1) [0027CB70] ----------- const int 23 |
| 1638 | * N003 ( 3, 3) [0027CBD8] -A------R-- = int |
| 1639 | * N002 ( 1, 1) [0027CBA4] D------N--- lclVar int V01 arg1 d:5 |
| 1640 | * |
| 1641 | * After SSA BB04: |
| 1642 | * [0027D530] ----------- stmtExpr void (IL ???... ???) |
| 1643 | * N002 ( 0, 0) [0027D4C8] ----------- phi int |
| 1644 | * [0027D8CC] ----------- lclVar int V01 arg1 u:5 |
| 1645 | * [0027D844] ----------- lclVar int V01 arg1 u:4 |
| 1646 | * N004 ( 2, 2) [0027D4FC] -A------R-- = int |
| 1647 | * N003 ( 1, 1) [0027D460] D------N--- lclVar int V01 arg1 d:3 |
| 1648 | */ |
| 1649 | void SsaBuilder::Print(BasicBlock** postOrder, int count) |
| 1650 | { |
| 1651 | for (int i = count - 1; i >= 0; --i) |
| 1652 | { |
| 1653 | printf("After SSA " FMT_BB ":\n" , postOrder[i]->bbNum); |
| 1654 | m_pCompiler->gtDispTreeList(postOrder[i]->bbTreeList); |
| 1655 | } |
| 1656 | } |
| 1657 | #endif // DEBUG |
| 1658 | |
| 1659 | /** |
| 1660 | * Build SSA form. |
| 1661 | * |
| 1662 | * Sorts the graph topologically. |
| 1663 | * - Collects them in postOrder array. |
| 1664 | * |
| 1665 | * Identifies each block's immediate dominator. |
| 1666 | * - Computes this in bbIDom of each BasicBlock. |
| 1667 | * |
| 1668 | * Computes DOM tree relation. |
| 1669 | * - Computes domTree as block -> set of blocks. |
| 1670 | * - Computes pre/post order traversal of the DOM tree. |
| 1671 | * |
| 1672 | * Inserts phi nodes. |
| 1673 | * - Computes dominance frontier as block -> set of blocks. |
| 1674 | * - Allocates block use/def/livein/liveout and computes it. |
| 1675 | * - Inserts phi nodes with only rhs at the beginning of the blocks. |
| 1676 | * |
| 1677 | * Renames variables. |
| 1678 | * - Walks blocks in evaluation order and gives uses and defs names. |
| 1679 | * - Gives empty phi nodes their rhs arguments as they become known while renaming. |
| 1680 | * |
| 1681 | * @return true if successful, for now, this must always be true. |
| 1682 | * |
| 1683 | * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy. |
| 1684 | * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction |
| 1685 | * and Destruction of Static Single Assignment Form." |
| 1686 | */ |
| 1687 | void SsaBuilder::Build() |
| 1688 | { |
| 1689 | #ifdef DEBUG |
| 1690 | if (m_pCompiler->verbose) |
| 1691 | { |
| 1692 | printf("*************** In SsaBuilder::Build()\n" ); |
| 1693 | } |
| 1694 | #endif |
| 1695 | |
| 1696 | // Ensure that there's a first block outside a try, so that the dominator tree has a unique root. |
| 1697 | SetupBBRoot(); |
| 1698 | |
| 1699 | // Just to keep block no. & index same add 1. |
| 1700 | int blockCount = m_pCompiler->fgBBNumMax + 1; |
| 1701 | |
| 1702 | JITDUMP("[SsaBuilder] Max block count is %d.\n" , blockCount); |
| 1703 | |
| 1704 | // Allocate the postOrder array for the graph. |
| 1705 | |
| 1706 | BasicBlock** postOrder; |
| 1707 | |
| 1708 | if (blockCount > DEFAULT_MIN_OPTS_BB_COUNT) |
| 1709 | { |
| 1710 | postOrder = new (m_allocator) BasicBlock*[blockCount]; |
| 1711 | } |
| 1712 | else |
| 1713 | { |
| 1714 | postOrder = (BasicBlock**)alloca(blockCount * sizeof(BasicBlock*)); |
| 1715 | } |
| 1716 | |
| 1717 | m_visitedTraits = BitVecTraits(blockCount, m_pCompiler); |
| 1718 | m_visited = BitVecOps::MakeEmpty(&m_visitedTraits); |
| 1719 | |
| 1720 | // Topologically sort the graph. |
| 1721 | int count = TopologicalSort(postOrder, blockCount); |
| 1722 | JITDUMP("[SsaBuilder] Topologically sorted the graph.\n" ); |
| 1723 | EndPhase(PHASE_BUILD_SSA_TOPOSORT); |
| 1724 | |
| 1725 | // Compute IDom(b). |
| 1726 | ComputeImmediateDom(postOrder, count); |
| 1727 | |
| 1728 | // Compute the dominator tree. |
| 1729 | BlkToBlkVectorMap* domTree = new (m_allocator) BlkToBlkVectorMap(m_allocator); |
| 1730 | ComputeDominators(postOrder, count, domTree); |
| 1731 | EndPhase(PHASE_BUILD_SSA_DOMS); |
| 1732 | |
| 1733 | // Compute liveness on the graph. |
| 1734 | m_pCompiler->fgLocalVarLiveness(); |
| 1735 | EndPhase(PHASE_BUILD_SSA_LIVENESS); |
| 1736 | |
| 1737 | // Mark all variables that will be tracked by SSA |
| 1738 | for (unsigned lclNum = 0; lclNum < m_pCompiler->lvaCount; lclNum++) |
| 1739 | { |
| 1740 | m_pCompiler->lvaTable[lclNum].lvInSsa = IncludeInSsa(lclNum); |
| 1741 | } |
| 1742 | |
| 1743 | // Insert phi functions. |
| 1744 | InsertPhiFunctions(postOrder, count); |
| 1745 | |
| 1746 | // Rename local variables and collect UD information for each ssa var. |
| 1747 | SsaRenameState* pRenameState = |
| 1748 | new (m_allocator) SsaRenameState(m_allocator, m_pCompiler->lvaCount, m_pCompiler->byrefStatesMatchGcHeapStates); |
| 1749 | RenameVariables(domTree, pRenameState); |
| 1750 | EndPhase(PHASE_BUILD_SSA_RENAME); |
| 1751 | |
| 1752 | #ifdef DEBUG |
| 1753 | // At this point we are in SSA form. Print the SSA form. |
| 1754 | if (m_pCompiler->verboseSsa) |
| 1755 | { |
| 1756 | Print(postOrder, count); |
| 1757 | } |
| 1758 | #endif |
| 1759 | } |
| 1760 | |
| 1761 | void SsaBuilder::SetupBBRoot() |
| 1762 | { |
| 1763 | // Allocate a bbroot, if necessary. |
| 1764 | // We need a unique block to be the root of the dominator tree. |
| 1765 | // This can be violated if the first block is in a try, or if it is the first block of |
| 1766 | // a loop (which would necessarily be an infinite loop) -- i.e., it has a predecessor. |
| 1767 | |
| 1768 | // If neither condition holds, no reason to make a new block. |
| 1769 | if (!m_pCompiler->fgFirstBB->hasTryIndex() && m_pCompiler->fgFirstBB->bbPreds == nullptr) |
| 1770 | { |
| 1771 | return; |
| 1772 | } |
| 1773 | |
| 1774 | BasicBlock* bbRoot = m_pCompiler->bbNewBasicBlock(BBJ_NONE); |
| 1775 | bbRoot->bbFlags |= BBF_INTERNAL; |
| 1776 | |
| 1777 | // May need to fix up preds list, so remember the old first block. |
| 1778 | BasicBlock* oldFirst = m_pCompiler->fgFirstBB; |
| 1779 | |
| 1780 | // Copy the liveness information from the first basic block. |
| 1781 | if (m_pCompiler->fgLocalVarLivenessDone) |
| 1782 | { |
| 1783 | VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveIn, oldFirst->bbLiveIn); |
| 1784 | VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveOut, oldFirst->bbLiveIn); |
| 1785 | } |
| 1786 | |
| 1787 | // Copy the bbWeight. (This is technically wrong, if the first block is a loop head, but |
| 1788 | // it shouldn't matter...) |
| 1789 | bbRoot->inheritWeight(oldFirst); |
| 1790 | |
| 1791 | // There's an artifical incoming reference count for the first BB. We're about to make it no longer |
| 1792 | // the first BB, so decrement that. |
| 1793 | assert(oldFirst->bbRefs > 0); |
| 1794 | oldFirst->bbRefs--; |
| 1795 | |
| 1796 | m_pCompiler->fgInsertBBbefore(m_pCompiler->fgFirstBB, bbRoot); |
| 1797 | |
| 1798 | assert(m_pCompiler->fgFirstBB == bbRoot); |
| 1799 | if (m_pCompiler->fgComputePredsDone) |
| 1800 | { |
| 1801 | m_pCompiler->fgAddRefPred(oldFirst, bbRoot); |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | //------------------------------------------------------------------------ |
| 1806 | // IncludeInSsa: Check if the specified variable can be included in SSA. |
| 1807 | // |
| 1808 | // Arguments: |
| 1809 | // lclNum - the variable number |
| 1810 | // |
| 1811 | // Return Value: |
| 1812 | // true if the variable is included in SSA |
| 1813 | // |
| 1814 | bool SsaBuilder::IncludeInSsa(unsigned lclNum) |
| 1815 | { |
| 1816 | LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum]; |
| 1817 | |
| 1818 | if (varDsc->lvAddrExposed) |
| 1819 | { |
| 1820 | return false; // We exclude address-exposed variables. |
| 1821 | } |
| 1822 | if (!varDsc->lvTracked) |
| 1823 | { |
| 1824 | return false; // SSA is only done for tracked variables |
| 1825 | } |
| 1826 | // lvPromoted structs are never tracked... |
| 1827 | assert(!varDsc->lvPromoted); |
| 1828 | |
| 1829 | if (varDsc->lvOverlappingFields) |
| 1830 | { |
| 1831 | return false; // Don't use SSA on structs that have overlapping fields |
| 1832 | } |
| 1833 | |
| 1834 | if (varDsc->lvIsStructField && |
| 1835 | (m_pCompiler->lvaGetParentPromotionType(lclNum) != Compiler::PROMOTION_TYPE_INDEPENDENT)) |
| 1836 | { |
| 1837 | // SSA must exclude struct fields that are not independent |
| 1838 | // - because we don't model the struct assignment properly when multiple fields can be assigned by one struct |
| 1839 | // assignment. |
| 1840 | // - SSA doesn't allow a single node to contain multiple SSA definitions. |
| 1841 | // - and PROMOTION_TYPE_DEPENDEDNT fields are never candidates for a register. |
| 1842 | // |
| 1843 | // Example mscorlib method: CompatibilitySwitches:IsCompatibilitySwitchSet |
| 1844 | // |
| 1845 | return false; |
| 1846 | } |
| 1847 | // otherwise this variable is included in SSA |
| 1848 | return true; |
| 1849 | } |
| 1850 | |
| 1851 | #ifdef DEBUG |
| 1852 | // This method asserts that SSA name constraints specified are satisfied. |
| 1853 | void Compiler::JitTestCheckSSA() |
| 1854 | { |
| 1855 | struct SSAName |
| 1856 | { |
| 1857 | unsigned m_lvNum; |
| 1858 | unsigned m_ssaNum; |
| 1859 | |
| 1860 | static unsigned GetHashCode(SSAName ssaNm) |
| 1861 | { |
| 1862 | return ssaNm.m_lvNum << 16 | ssaNm.m_ssaNum; |
| 1863 | } |
| 1864 | |
| 1865 | static bool Equals(SSAName ssaNm1, SSAName ssaNm2) |
| 1866 | { |
| 1867 | return ssaNm1.m_lvNum == ssaNm2.m_lvNum && ssaNm1.m_ssaNum == ssaNm2.m_ssaNum; |
| 1868 | } |
| 1869 | }; |
| 1870 | |
| 1871 | typedef JitHashTable<ssize_t, JitSmallPrimitiveKeyFuncs<ssize_t>, SSAName> LabelToSSANameMap; |
| 1872 | typedef JitHashTable<SSAName, SSAName, ssize_t> SSANameToLabelMap; |
| 1873 | |
| 1874 | // If we have no test data, early out. |
| 1875 | if (m_nodeTestData == nullptr) |
| 1876 | { |
| 1877 | return; |
| 1878 | } |
| 1879 | |
| 1880 | NodeToTestDataMap* testData = GetNodeTestData(); |
| 1881 | |
| 1882 | // First we have to know which nodes in the tree are reachable. |
| 1883 | NodeToIntMap* reachable = FindReachableNodesInNodeTestData(); |
| 1884 | |
| 1885 | LabelToSSANameMap* labelToSSA = new (getAllocatorDebugOnly()) LabelToSSANameMap(getAllocatorDebugOnly()); |
| 1886 | SSANameToLabelMap* ssaToLabel = new (getAllocatorDebugOnly()) SSANameToLabelMap(getAllocatorDebugOnly()); |
| 1887 | |
| 1888 | if (verbose) |
| 1889 | { |
| 1890 | printf("\nJit Testing: SSA names.\n" ); |
| 1891 | } |
| 1892 | for (NodeToTestDataMap::KeyIterator ki = testData->Begin(); !ki.Equal(testData->End()); ++ki) |
| 1893 | { |
| 1894 | TestLabelAndNum tlAndN; |
| 1895 | GenTree* node = ki.Get(); |
| 1896 | bool b = testData->Lookup(node, &tlAndN); |
| 1897 | assert(b); |
| 1898 | if (tlAndN.m_tl == TL_SsaName) |
| 1899 | { |
| 1900 | if (node->OperGet() != GT_LCL_VAR) |
| 1901 | { |
| 1902 | printf("SSAName constraint put on non-lcl-var expression " ); |
| 1903 | printTreeID(node); |
| 1904 | printf(" (of type %s).\n" , varTypeName(node->TypeGet())); |
| 1905 | unreached(); |
| 1906 | } |
| 1907 | GenTreeLclVarCommon* lcl = node->AsLclVarCommon(); |
| 1908 | |
| 1909 | int dummy; |
| 1910 | if (!reachable->Lookup(lcl, &dummy)) |
| 1911 | { |
| 1912 | printf("Node " ); |
| 1913 | printTreeID(lcl); |
| 1914 | printf(" had a test constraint declared, but has become unreachable at the time the constraint is " |
| 1915 | "tested.\n" |
| 1916 | "(This is probably as a result of some optimization -- \n" |
| 1917 | "you may need to modify the test case to defeat this opt.)\n" ); |
| 1918 | unreached(); |
| 1919 | } |
| 1920 | |
| 1921 | if (verbose) |
| 1922 | { |
| 1923 | printf(" Node: " ); |
| 1924 | printTreeID(lcl); |
| 1925 | printf(", SSA name = <%d, %d> -- SSA name class %d.\n" , lcl->gtLclNum, lcl->gtSsaNum, tlAndN.m_num); |
| 1926 | } |
| 1927 | SSAName ssaNm; |
| 1928 | if (labelToSSA->Lookup(tlAndN.m_num, &ssaNm)) |
| 1929 | { |
| 1930 | if (verbose) |
| 1931 | { |
| 1932 | printf(" Already in hash tables.\n" ); |
| 1933 | } |
| 1934 | // The mapping(s) must be one-to-one: if the label has a mapping, then the ssaNm must, as well. |
| 1935 | ssize_t num2; |
| 1936 | bool b = ssaToLabel->Lookup(ssaNm, &num2); |
| 1937 | // And the mappings must be the same. |
| 1938 | if (tlAndN.m_num != num2) |
| 1939 | { |
| 1940 | printf("Node: " ); |
| 1941 | printTreeID(lcl); |
| 1942 | printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n" , lcl->gtLclNum, lcl->gtSsaNum, |
| 1943 | tlAndN.m_num); |
| 1944 | printf( |
| 1945 | "but this SSA name <%d,%d> has already been associated with a different SSA name class: %d.\n" , |
| 1946 | ssaNm.m_lvNum, ssaNm.m_ssaNum, num2); |
| 1947 | unreached(); |
| 1948 | } |
| 1949 | // And the current node must be of the specified SSA family. |
| 1950 | if (!(lcl->gtLclNum == ssaNm.m_lvNum && lcl->gtSsaNum == ssaNm.m_ssaNum)) |
| 1951 | { |
| 1952 | printf("Node: " ); |
| 1953 | printTreeID(lcl); |
| 1954 | printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n" , lcl->gtLclNum, lcl->gtSsaNum, |
| 1955 | tlAndN.m_num); |
| 1956 | printf("but that name class was previously bound to a different SSA name: <%d,%d>.\n" , |
| 1957 | ssaNm.m_lvNum, ssaNm.m_ssaNum); |
| 1958 | unreached(); |
| 1959 | } |
| 1960 | } |
| 1961 | else |
| 1962 | { |
| 1963 | ssaNm.m_lvNum = lcl->gtLclNum; |
| 1964 | ssaNm.m_ssaNum = lcl->gtSsaNum; |
| 1965 | ssize_t num; |
| 1966 | // The mapping(s) must be one-to-one: if the label has no mapping, then the ssaNm may not, either. |
| 1967 | if (ssaToLabel->Lookup(ssaNm, &num)) |
| 1968 | { |
| 1969 | printf("Node: " ); |
| 1970 | printTreeID(lcl); |
| 1971 | printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n" , lcl->gtLclNum, lcl->gtSsaNum, |
| 1972 | tlAndN.m_num); |
| 1973 | printf("but this SSA name has already been associated with a different name class: %d.\n" , num); |
| 1974 | unreached(); |
| 1975 | } |
| 1976 | // Add to both mappings. |
| 1977 | labelToSSA->Set(tlAndN.m_num, ssaNm); |
| 1978 | ssaToLabel->Set(ssaNm, tlAndN.m_num); |
| 1979 | if (verbose) |
| 1980 | { |
| 1981 | printf(" added to hash tables.\n" ); |
| 1982 | } |
| 1983 | } |
| 1984 | } |
| 1985 | } |
| 1986 | } |
| 1987 | #endif // DEBUG |
| 1988 | |