1 | /* |
2 | * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. |
3 | * Copyright (c) 2014, Intel Corporation. All Rights Reserved. |
4 | * |
5 | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | * this file except in compliance with the License. You can obtain a copy |
7 | * in the file LICENSE in the source distribution or at |
8 | * https://www.openssl.org/source/license.html |
9 | * |
10 | * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) |
11 | * (1) Intel Corporation, Israel Development Center, Haifa, Israel |
12 | * (2) University of Haifa, Israel |
13 | * |
14 | * Reference: |
15 | * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with |
16 | * 256 Bit Primes" |
17 | */ |
18 | |
19 | #include <openssl/ec.h> |
20 | |
21 | #include <assert.h> |
22 | #include <stdint.h> |
23 | #include <string.h> |
24 | |
25 | #include <openssl/bn.h> |
26 | #include <openssl/cpu.h> |
27 | #include <openssl/crypto.h> |
28 | #include <openssl/err.h> |
29 | |
30 | #include "../bn/internal.h" |
31 | #include "../delocate.h" |
32 | #include "../../internal.h" |
33 | #include "internal.h" |
34 | #include "p256-x86_64.h" |
35 | |
36 | |
37 | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
38 | !defined(OPENSSL_SMALL) |
39 | |
40 | typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; |
41 | |
42 | // One converted into the Montgomery domain |
43 | static const BN_ULONG ONE[P256_LIMBS] = { |
44 | TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), |
45 | TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), |
46 | }; |
47 | |
48 | // Precomputed tables for the default generator |
49 | #include "p256-x86_64-table.h" |
50 | |
51 | // Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in |
52 | // util.c for details |
53 | static unsigned booth_recode_w5(unsigned in) { |
54 | unsigned s, d; |
55 | |
56 | s = ~((in >> 5) - 1); |
57 | d = (1 << 6) - in - 1; |
58 | d = (d & s) | (in & ~s); |
59 | d = (d >> 1) + (d & 1); |
60 | |
61 | return (d << 1) + (s & 1); |
62 | } |
63 | |
64 | static unsigned booth_recode_w7(unsigned in) { |
65 | unsigned s, d; |
66 | |
67 | s = ~((in >> 7) - 1); |
68 | d = (1 << 8) - in - 1; |
69 | d = (d & s) | (in & ~s); |
70 | d = (d >> 1) + (d & 1); |
71 | |
72 | return (d << 1) + (s & 1); |
73 | } |
74 | |
75 | // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is |
76 | // if |move| is zero. |
77 | // |
78 | // WARNING: this breaks the usual convention of constant-time functions |
79 | // returning masks. |
80 | static void copy_conditional(BN_ULONG dst[P256_LIMBS], |
81 | const BN_ULONG src[P256_LIMBS], BN_ULONG move) { |
82 | BN_ULONG mask1 = ((BN_ULONG)0) - move; |
83 | BN_ULONG mask2 = ~mask1; |
84 | |
85 | dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); |
86 | dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); |
87 | dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); |
88 | dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); |
89 | if (P256_LIMBS == 8) { |
90 | dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); |
91 | dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); |
92 | dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); |
93 | dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); |
94 | } |
95 | } |
96 | |
97 | // is_not_zero returns one iff in != 0 and zero otherwise. |
98 | // |
99 | // WARNING: this breaks the usual convention of constant-time functions |
100 | // returning masks. |
101 | // |
102 | // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64) |
103 | // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f) |
104 | // ) |
105 | // |
106 | // (declare-fun x () (_ BitVec 64)) |
107 | // |
108 | // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001))) |
109 | // (check-sat) |
110 | // |
111 | // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000))) |
112 | // (check-sat) |
113 | // |
114 | static BN_ULONG is_not_zero(BN_ULONG in) { |
115 | in |= (0 - in); |
116 | in >>= BN_BITS2 - 1; |
117 | return in; |
118 | } |
119 | |
120 | // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p. |
121 | // That is, |r| is the modular inverse of |in| for input and output in the |
122 | // Montgomery domain. |
123 | static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS], |
124 | const BN_ULONG in[P256_LIMBS]) { |
125 | /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff |
126 | ffffffff |
127 | We use FLT and used poly-2 as exponent */ |
128 | BN_ULONG p2[P256_LIMBS]; |
129 | BN_ULONG p4[P256_LIMBS]; |
130 | BN_ULONG p8[P256_LIMBS]; |
131 | BN_ULONG p16[P256_LIMBS]; |
132 | BN_ULONG p32[P256_LIMBS]; |
133 | BN_ULONG res[P256_LIMBS]; |
134 | int i; |
135 | |
136 | ecp_nistz256_sqr_mont(res, in); |
137 | ecp_nistz256_mul_mont(p2, res, in); // 3*p |
138 | |
139 | ecp_nistz256_sqr_mont(res, p2); |
140 | ecp_nistz256_sqr_mont(res, res); |
141 | ecp_nistz256_mul_mont(p4, res, p2); // f*p |
142 | |
143 | ecp_nistz256_sqr_mont(res, p4); |
144 | ecp_nistz256_sqr_mont(res, res); |
145 | ecp_nistz256_sqr_mont(res, res); |
146 | ecp_nistz256_sqr_mont(res, res); |
147 | ecp_nistz256_mul_mont(p8, res, p4); // ff*p |
148 | |
149 | ecp_nistz256_sqr_mont(res, p8); |
150 | for (i = 0; i < 7; i++) { |
151 | ecp_nistz256_sqr_mont(res, res); |
152 | } |
153 | ecp_nistz256_mul_mont(p16, res, p8); // ffff*p |
154 | |
155 | ecp_nistz256_sqr_mont(res, p16); |
156 | for (i = 0; i < 15; i++) { |
157 | ecp_nistz256_sqr_mont(res, res); |
158 | } |
159 | ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p |
160 | |
161 | ecp_nistz256_sqr_mont(res, p32); |
162 | for (i = 0; i < 31; i++) { |
163 | ecp_nistz256_sqr_mont(res, res); |
164 | } |
165 | ecp_nistz256_mul_mont(res, res, in); |
166 | |
167 | for (i = 0; i < 32 * 4; i++) { |
168 | ecp_nistz256_sqr_mont(res, res); |
169 | } |
170 | ecp_nistz256_mul_mont(res, res, p32); |
171 | |
172 | for (i = 0; i < 32; i++) { |
173 | ecp_nistz256_sqr_mont(res, res); |
174 | } |
175 | ecp_nistz256_mul_mont(res, res, p32); |
176 | |
177 | for (i = 0; i < 16; i++) { |
178 | ecp_nistz256_sqr_mont(res, res); |
179 | } |
180 | ecp_nistz256_mul_mont(res, res, p16); |
181 | |
182 | for (i = 0; i < 8; i++) { |
183 | ecp_nistz256_sqr_mont(res, res); |
184 | } |
185 | ecp_nistz256_mul_mont(res, res, p8); |
186 | |
187 | ecp_nistz256_sqr_mont(res, res); |
188 | ecp_nistz256_sqr_mont(res, res); |
189 | ecp_nistz256_sqr_mont(res, res); |
190 | ecp_nistz256_sqr_mont(res, res); |
191 | ecp_nistz256_mul_mont(res, res, p4); |
192 | |
193 | ecp_nistz256_sqr_mont(res, res); |
194 | ecp_nistz256_sqr_mont(res, res); |
195 | ecp_nistz256_mul_mont(res, res, p2); |
196 | |
197 | ecp_nistz256_sqr_mont(res, res); |
198 | ecp_nistz256_sqr_mont(res, res); |
199 | ecp_nistz256_mul_mont(r, res, in); |
200 | } |
201 | |
202 | // r = p * p_scalar |
203 | static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, |
204 | const EC_RAW_POINT *p, |
205 | const EC_SCALAR *p_scalar) { |
206 | assert(p != NULL); |
207 | assert(p_scalar != NULL); |
208 | assert(group->field.width == P256_LIMBS); |
209 | |
210 | static const unsigned kWindowSize = 5; |
211 | static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; |
212 | |
213 | // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should |
214 | // add no more than 63 bytes of overhead. Thus, |table| should require |
215 | // ~1599 ((96 * 16) + 63) bytes of stack space. |
216 | alignas(64) P256_POINT table[16]; |
217 | uint8_t p_str[33]; |
218 | OPENSSL_memcpy(p_str, p_scalar->bytes, 32); |
219 | p_str[32] = 0; |
220 | |
221 | // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is |
222 | // not stored. All other values are actually stored with an offset of -1 in |
223 | // table. |
224 | P256_POINT *row = table; |
225 | assert(group->field.width == P256_LIMBS); |
226 | OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
227 | OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
228 | OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
229 | |
230 | ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); |
231 | ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); |
232 | ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); |
233 | ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); |
234 | ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); |
235 | ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); |
236 | ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); |
237 | ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); |
238 | ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); |
239 | ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); |
240 | ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); |
241 | ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); |
242 | ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); |
243 | ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); |
244 | ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); |
245 | |
246 | BN_ULONG tmp[P256_LIMBS]; |
247 | alignas(32) P256_POINT h; |
248 | unsigned index = 255; |
249 | unsigned wvalue = p_str[(index - 1) / 8]; |
250 | wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
251 | |
252 | ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1); |
253 | |
254 | while (index >= 5) { |
255 | if (index != 255) { |
256 | unsigned off = (index - 1) / 8; |
257 | |
258 | wvalue = p_str[off] | p_str[off + 1] << 8; |
259 | wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
260 | |
261 | wvalue = booth_recode_w5(wvalue); |
262 | |
263 | ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
264 | |
265 | ecp_nistz256_neg(tmp, h.Y); |
266 | copy_conditional(h.Y, tmp, (wvalue & 1)); |
267 | |
268 | ecp_nistz256_point_add(r, r, &h); |
269 | } |
270 | |
271 | index -= kWindowSize; |
272 | |
273 | ecp_nistz256_point_double(r, r); |
274 | ecp_nistz256_point_double(r, r); |
275 | ecp_nistz256_point_double(r, r); |
276 | ecp_nistz256_point_double(r, r); |
277 | ecp_nistz256_point_double(r, r); |
278 | } |
279 | |
280 | // Final window |
281 | wvalue = p_str[0]; |
282 | wvalue = (wvalue << 1) & kMask; |
283 | |
284 | wvalue = booth_recode_w5(wvalue); |
285 | |
286 | ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
287 | |
288 | ecp_nistz256_neg(tmp, h.Y); |
289 | copy_conditional(h.Y, tmp, wvalue & 1); |
290 | |
291 | ecp_nistz256_point_add(r, r, &h); |
292 | } |
293 | |
294 | typedef union { |
295 | P256_POINT p; |
296 | P256_POINT_AFFINE a; |
297 | } p256_point_union_t; |
298 | |
299 | static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) { |
300 | static const unsigned kWindowSize = 7; |
301 | static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
302 | *index = kWindowSize; |
303 | |
304 | unsigned wvalue = (p_str[0] << 1) & kMask; |
305 | return booth_recode_w7(wvalue); |
306 | } |
307 | |
308 | static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) { |
309 | static const unsigned kWindowSize = 7; |
310 | static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
311 | |
312 | const unsigned off = (*index - 1) / 8; |
313 | unsigned wvalue = p_str[off] | p_str[off + 1] << 8; |
314 | wvalue = (wvalue >> ((*index - 1) % 8)) & kMask; |
315 | *index += kWindowSize; |
316 | |
317 | return booth_recode_w7(wvalue); |
318 | } |
319 | |
320 | static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
321 | const EC_RAW_POINT *p, |
322 | const EC_SCALAR *scalar) { |
323 | alignas(32) P256_POINT out; |
324 | ecp_nistz256_windowed_mul(group, &out, p, scalar); |
325 | |
326 | assert(group->field.width == P256_LIMBS); |
327 | OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG)); |
328 | OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG)); |
329 | OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG)); |
330 | } |
331 | |
332 | static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r, |
333 | const EC_SCALAR *scalar) { |
334 | alignas(32) p256_point_union_t t, p; |
335 | |
336 | uint8_t p_str[33]; |
337 | OPENSSL_memcpy(p_str, scalar->bytes, 32); |
338 | p_str[32] = 0; |
339 | |
340 | // First window |
341 | unsigned index = 0; |
342 | unsigned wvalue = calc_first_wvalue(&index, p_str); |
343 | |
344 | ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1); |
345 | ecp_nistz256_neg(p.p.Z, p.p.Y); |
346 | copy_conditional(p.p.Y, p.p.Z, wvalue & 1); |
347 | |
348 | // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
349 | // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
350 | // is infinity iff |wvalue >> 1| is zero. |
351 | OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); |
352 | copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1)); |
353 | |
354 | for (int i = 1; i < 37; i++) { |
355 | wvalue = calc_wvalue(&index, p_str); |
356 | |
357 | ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1); |
358 | |
359 | ecp_nistz256_neg(t.p.Z, t.a.Y); |
360 | copy_conditional(t.a.Y, t.p.Z, wvalue & 1); |
361 | |
362 | // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a| |
363 | // are the same non-infinity point. |
364 | ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
365 | } |
366 | |
367 | assert(group->field.width == P256_LIMBS); |
368 | OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG)); |
369 | OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
370 | OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
371 | } |
372 | |
373 | static void ecp_nistz256_points_mul_public(const EC_GROUP *group, |
374 | EC_RAW_POINT *r, |
375 | const EC_SCALAR *g_scalar, |
376 | const EC_RAW_POINT *p_, |
377 | const EC_SCALAR *p_scalar) { |
378 | assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL); |
379 | |
380 | alignas(32) p256_point_union_t t, p; |
381 | uint8_t p_str[33]; |
382 | OPENSSL_memcpy(p_str, g_scalar->bytes, 32); |
383 | p_str[32] = 0; |
384 | |
385 | // First window |
386 | unsigned index = 0; |
387 | unsigned wvalue = calc_first_wvalue(&index, p_str); |
388 | |
389 | // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
390 | // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
391 | // is infinity iff |wvalue >> 1| is zero. |
392 | if ((wvalue >> 1) != 0) { |
393 | OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1], |
394 | sizeof(p.a)); |
395 | OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z)); |
396 | } else { |
397 | OPENSSL_memset(&p.a, 0, sizeof(p.a)); |
398 | OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); |
399 | } |
400 | |
401 | if ((wvalue & 1) == 1) { |
402 | ecp_nistz256_neg(p.p.Y, p.p.Y); |
403 | } |
404 | |
405 | for (int i = 1; i < 37; i++) { |
406 | wvalue = calc_wvalue(&index, p_str); |
407 | |
408 | if ((wvalue >> 1) == 0) { |
409 | continue; |
410 | } |
411 | |
412 | OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1], |
413 | sizeof(p.a)); |
414 | |
415 | if ((wvalue & 1) == 1) { |
416 | ecp_nistz256_neg(t.a.Y, t.a.Y); |
417 | } |
418 | |
419 | // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a| |
420 | // are the same non-infinity point, so it is important that we compute the |
421 | // |g_scalar| term before the |p_scalar| term. |
422 | ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
423 | } |
424 | |
425 | ecp_nistz256_windowed_mul(group, &t.p, p_, p_scalar); |
426 | ecp_nistz256_point_add(&p.p, &p.p, &t.p); |
427 | |
428 | assert(group->field.width == P256_LIMBS); |
429 | OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG)); |
430 | OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
431 | OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
432 | } |
433 | |
434 | static int ecp_nistz256_get_affine(const EC_GROUP *group, |
435 | const EC_RAW_POINT *point, EC_FELEM *x, |
436 | EC_FELEM *y) { |
437 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
438 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
439 | return 0; |
440 | } |
441 | |
442 | BN_ULONG z_inv2[P256_LIMBS]; |
443 | BN_ULONG z_inv3[P256_LIMBS]; |
444 | assert(group->field.width == P256_LIMBS); |
445 | ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words); |
446 | ecp_nistz256_sqr_mont(z_inv2, z_inv3); |
447 | |
448 | // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate |
449 | // and then calling |ecp_nistz256_from_mont| again to convert the |y| |
450 | // coordinate below, convert the common factor |z_inv2| once now, saving one |
451 | // reduction. |
452 | ecp_nistz256_from_mont(z_inv2, z_inv2); |
453 | |
454 | if (x != NULL) { |
455 | ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words); |
456 | } |
457 | |
458 | if (y != NULL) { |
459 | ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); |
460 | ecp_nistz256_mul_mont(y->words, z_inv3, point->Y.words); |
461 | } |
462 | |
463 | return 1; |
464 | } |
465 | |
466 | static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r, |
467 | const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) { |
468 | P256_POINT a, b; |
469 | OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
470 | OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
471 | OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
472 | OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
473 | OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
474 | OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
475 | ecp_nistz256_point_add(&a, &a, &b); |
476 | OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
477 | OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
478 | OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
479 | } |
480 | |
481 | static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
482 | const EC_RAW_POINT *a_) { |
483 | P256_POINT a; |
484 | OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
485 | OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
486 | OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
487 | ecp_nistz256_point_double(&a, &a); |
488 | OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
489 | OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
490 | OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
491 | } |
492 | |
493 | static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out, |
494 | const EC_SCALAR *in) { |
495 | // table[i] stores a power of |in| corresponding to the matching enum value. |
496 | enum { |
497 | // The following indices specify the power in binary. |
498 | i_1 = 0, |
499 | i_10, |
500 | i_11, |
501 | i_101, |
502 | i_111, |
503 | i_1010, |
504 | i_1111, |
505 | i_10101, |
506 | i_101010, |
507 | i_101111, |
508 | // The following indices specify 2^N-1, or N ones in a row. |
509 | i_x6, |
510 | i_x8, |
511 | i_x16, |
512 | i_x32 |
513 | }; |
514 | BN_ULONG table[15][P256_LIMBS]; |
515 | |
516 | // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion |
517 | // |
518 | // Even though this code path spares 12 squarings, 4.5%, and 13 |
519 | // multiplications, 25%, the overall sign operation is not that much faster, |
520 | // not more that 2%. Most of the performance of this function comes from the |
521 | // scalar operations. |
522 | |
523 | // Pre-calculate powers. |
524 | OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG)); |
525 | |
526 | ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); |
527 | |
528 | ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); |
529 | |
530 | ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); |
531 | |
532 | ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); |
533 | |
534 | ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); |
535 | |
536 | ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); |
537 | |
538 | ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); |
539 | ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); |
540 | |
541 | ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); |
542 | |
543 | ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); |
544 | |
545 | ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); |
546 | |
547 | ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); |
548 | ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); |
549 | |
550 | ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); |
551 | ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); |
552 | |
553 | ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); |
554 | ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); |
555 | |
556 | // Compute |in| raised to the order-2. |
557 | ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64); |
558 | ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]); |
559 | static const struct { |
560 | uint8_t p, i; |
561 | } kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11}, |
562 | {5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101}, |
563 | {3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111}, |
564 | {2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111}, |
565 | {4, i_111}, {5, i_111}, {5, i_101}, {3, i_11}, |
566 | {10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11}, |
567 | {3, i_1}, {7, i_10101}, {6, i_1111}}; |
568 | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) { |
569 | ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p); |
570 | ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]); |
571 | } |
572 | } |
573 | |
574 | static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group, |
575 | EC_SCALAR *out, |
576 | const EC_SCALAR *in) { |
577 | if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) { |
578 | // No AVX support; fallback to generic code. |
579 | return ec_GFp_simple_mont_inv_mod_ord_vartime(group, out, in); |
580 | } |
581 | |
582 | assert(group->order.width == P256_LIMBS); |
583 | if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) { |
584 | return 0; |
585 | } |
586 | |
587 | // The result should be returned in the Montgomery domain. |
588 | ec_scalar_to_montgomery(group, out, out); |
589 | return 1; |
590 | } |
591 | |
592 | static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group, |
593 | const EC_RAW_POINT *p, |
594 | const EC_SCALAR *r) { |
595 | if (ec_GFp_simple_is_at_infinity(group, p)) { |
596 | return 0; |
597 | } |
598 | |
599 | assert(group->order.width == P256_LIMBS); |
600 | assert(group->field.width == P256_LIMBS); |
601 | |
602 | // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
603 | // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
604 | // not. |
605 | BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS]; |
606 | ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words); |
607 | ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont); |
608 | ecp_nistz256_from_mont(X, p->X.words); |
609 | |
610 | if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
611 | return 1; |
612 | } |
613 | |
614 | // During signing the x coefficient is reduced modulo the group order. |
615 | // Therefore there is a small possibility, less than 1/2^128, that group_order |
616 | // < p.x < P. in that case we need not only to compare against |r| but also to |
617 | // compare against r+group_order. |
618 | if (bn_less_than_words(r->words, group->field_minus_order.words, |
619 | P256_LIMBS)) { |
620 | // We can ignore the carry because: r + group_order < p < 2^256. |
621 | bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS); |
622 | ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont); |
623 | if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
624 | return 1; |
625 | } |
626 | } |
627 | |
628 | return 0; |
629 | } |
630 | |
631 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) { |
632 | out->group_init = ec_GFp_mont_group_init; |
633 | out->group_finish = ec_GFp_mont_group_finish; |
634 | out->group_set_curve = ec_GFp_mont_group_set_curve; |
635 | out->point_get_affine_coordinates = ecp_nistz256_get_affine; |
636 | out->add = ecp_nistz256_add; |
637 | out->dbl = ecp_nistz256_dbl; |
638 | out->mul = ecp_nistz256_point_mul; |
639 | out->mul_base = ecp_nistz256_point_mul_base; |
640 | out->mul_public = ecp_nistz256_points_mul_public; |
641 | out->felem_mul = ec_GFp_mont_felem_mul; |
642 | out->felem_sqr = ec_GFp_mont_felem_sqr; |
643 | out->bignum_to_felem = ec_GFp_mont_bignum_to_felem; |
644 | out->felem_to_bignum = ec_GFp_mont_felem_to_bignum; |
645 | out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord; |
646 | out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime; |
647 | out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate; |
648 | } |
649 | |
650 | #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
651 | !defined(OPENSSL_SMALL) */ |
652 | |