| 1 | /* |
| 2 | * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2014, Intel Corporation. All Rights Reserved. |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | * |
| 10 | * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) |
| 11 | * (1) Intel Corporation, Israel Development Center, Haifa, Israel |
| 12 | * (2) University of Haifa, Israel |
| 13 | * |
| 14 | * Reference: |
| 15 | * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with |
| 16 | * 256 Bit Primes" |
| 17 | */ |
| 18 | |
| 19 | #include <openssl/ec.h> |
| 20 | |
| 21 | #include <assert.h> |
| 22 | #include <stdint.h> |
| 23 | #include <string.h> |
| 24 | |
| 25 | #include <openssl/bn.h> |
| 26 | #include <openssl/cpu.h> |
| 27 | #include <openssl/crypto.h> |
| 28 | #include <openssl/err.h> |
| 29 | |
| 30 | #include "../bn/internal.h" |
| 31 | #include "../delocate.h" |
| 32 | #include "../../internal.h" |
| 33 | #include "internal.h" |
| 34 | #include "p256-x86_64.h" |
| 35 | |
| 36 | |
| 37 | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
| 38 | !defined(OPENSSL_SMALL) |
| 39 | |
| 40 | typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; |
| 41 | |
| 42 | // One converted into the Montgomery domain |
| 43 | static const BN_ULONG ONE[P256_LIMBS] = { |
| 44 | TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), |
| 45 | TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), |
| 46 | }; |
| 47 | |
| 48 | // Precomputed tables for the default generator |
| 49 | #include "p256-x86_64-table.h" |
| 50 | |
| 51 | // Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in |
| 52 | // util.c for details |
| 53 | static unsigned booth_recode_w5(unsigned in) { |
| 54 | unsigned s, d; |
| 55 | |
| 56 | s = ~((in >> 5) - 1); |
| 57 | d = (1 << 6) - in - 1; |
| 58 | d = (d & s) | (in & ~s); |
| 59 | d = (d >> 1) + (d & 1); |
| 60 | |
| 61 | return (d << 1) + (s & 1); |
| 62 | } |
| 63 | |
| 64 | static unsigned booth_recode_w7(unsigned in) { |
| 65 | unsigned s, d; |
| 66 | |
| 67 | s = ~((in >> 7) - 1); |
| 68 | d = (1 << 8) - in - 1; |
| 69 | d = (d & s) | (in & ~s); |
| 70 | d = (d >> 1) + (d & 1); |
| 71 | |
| 72 | return (d << 1) + (s & 1); |
| 73 | } |
| 74 | |
| 75 | // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is |
| 76 | // if |move| is zero. |
| 77 | // |
| 78 | // WARNING: this breaks the usual convention of constant-time functions |
| 79 | // returning masks. |
| 80 | static void copy_conditional(BN_ULONG dst[P256_LIMBS], |
| 81 | const BN_ULONG src[P256_LIMBS], BN_ULONG move) { |
| 82 | BN_ULONG mask1 = ((BN_ULONG)0) - move; |
| 83 | BN_ULONG mask2 = ~mask1; |
| 84 | |
| 85 | dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); |
| 86 | dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); |
| 87 | dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); |
| 88 | dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); |
| 89 | if (P256_LIMBS == 8) { |
| 90 | dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); |
| 91 | dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); |
| 92 | dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); |
| 93 | dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | // is_not_zero returns one iff in != 0 and zero otherwise. |
| 98 | // |
| 99 | // WARNING: this breaks the usual convention of constant-time functions |
| 100 | // returning masks. |
| 101 | // |
| 102 | // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64) |
| 103 | // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f) |
| 104 | // ) |
| 105 | // |
| 106 | // (declare-fun x () (_ BitVec 64)) |
| 107 | // |
| 108 | // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001))) |
| 109 | // (check-sat) |
| 110 | // |
| 111 | // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000))) |
| 112 | // (check-sat) |
| 113 | // |
| 114 | static BN_ULONG is_not_zero(BN_ULONG in) { |
| 115 | in |= (0 - in); |
| 116 | in >>= BN_BITS2 - 1; |
| 117 | return in; |
| 118 | } |
| 119 | |
| 120 | // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p. |
| 121 | // That is, |r| is the modular inverse of |in| for input and output in the |
| 122 | // Montgomery domain. |
| 123 | static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS], |
| 124 | const BN_ULONG in[P256_LIMBS]) { |
| 125 | /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff |
| 126 | ffffffff |
| 127 | We use FLT and used poly-2 as exponent */ |
| 128 | BN_ULONG p2[P256_LIMBS]; |
| 129 | BN_ULONG p4[P256_LIMBS]; |
| 130 | BN_ULONG p8[P256_LIMBS]; |
| 131 | BN_ULONG p16[P256_LIMBS]; |
| 132 | BN_ULONG p32[P256_LIMBS]; |
| 133 | BN_ULONG res[P256_LIMBS]; |
| 134 | int i; |
| 135 | |
| 136 | ecp_nistz256_sqr_mont(res, in); |
| 137 | ecp_nistz256_mul_mont(p2, res, in); // 3*p |
| 138 | |
| 139 | ecp_nistz256_sqr_mont(res, p2); |
| 140 | ecp_nistz256_sqr_mont(res, res); |
| 141 | ecp_nistz256_mul_mont(p4, res, p2); // f*p |
| 142 | |
| 143 | ecp_nistz256_sqr_mont(res, p4); |
| 144 | ecp_nistz256_sqr_mont(res, res); |
| 145 | ecp_nistz256_sqr_mont(res, res); |
| 146 | ecp_nistz256_sqr_mont(res, res); |
| 147 | ecp_nistz256_mul_mont(p8, res, p4); // ff*p |
| 148 | |
| 149 | ecp_nistz256_sqr_mont(res, p8); |
| 150 | for (i = 0; i < 7; i++) { |
| 151 | ecp_nistz256_sqr_mont(res, res); |
| 152 | } |
| 153 | ecp_nistz256_mul_mont(p16, res, p8); // ffff*p |
| 154 | |
| 155 | ecp_nistz256_sqr_mont(res, p16); |
| 156 | for (i = 0; i < 15; i++) { |
| 157 | ecp_nistz256_sqr_mont(res, res); |
| 158 | } |
| 159 | ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p |
| 160 | |
| 161 | ecp_nistz256_sqr_mont(res, p32); |
| 162 | for (i = 0; i < 31; i++) { |
| 163 | ecp_nistz256_sqr_mont(res, res); |
| 164 | } |
| 165 | ecp_nistz256_mul_mont(res, res, in); |
| 166 | |
| 167 | for (i = 0; i < 32 * 4; i++) { |
| 168 | ecp_nistz256_sqr_mont(res, res); |
| 169 | } |
| 170 | ecp_nistz256_mul_mont(res, res, p32); |
| 171 | |
| 172 | for (i = 0; i < 32; i++) { |
| 173 | ecp_nistz256_sqr_mont(res, res); |
| 174 | } |
| 175 | ecp_nistz256_mul_mont(res, res, p32); |
| 176 | |
| 177 | for (i = 0; i < 16; i++) { |
| 178 | ecp_nistz256_sqr_mont(res, res); |
| 179 | } |
| 180 | ecp_nistz256_mul_mont(res, res, p16); |
| 181 | |
| 182 | for (i = 0; i < 8; i++) { |
| 183 | ecp_nistz256_sqr_mont(res, res); |
| 184 | } |
| 185 | ecp_nistz256_mul_mont(res, res, p8); |
| 186 | |
| 187 | ecp_nistz256_sqr_mont(res, res); |
| 188 | ecp_nistz256_sqr_mont(res, res); |
| 189 | ecp_nistz256_sqr_mont(res, res); |
| 190 | ecp_nistz256_sqr_mont(res, res); |
| 191 | ecp_nistz256_mul_mont(res, res, p4); |
| 192 | |
| 193 | ecp_nistz256_sqr_mont(res, res); |
| 194 | ecp_nistz256_sqr_mont(res, res); |
| 195 | ecp_nistz256_mul_mont(res, res, p2); |
| 196 | |
| 197 | ecp_nistz256_sqr_mont(res, res); |
| 198 | ecp_nistz256_sqr_mont(res, res); |
| 199 | ecp_nistz256_mul_mont(r, res, in); |
| 200 | } |
| 201 | |
| 202 | // r = p * p_scalar |
| 203 | static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, |
| 204 | const EC_RAW_POINT *p, |
| 205 | const EC_SCALAR *p_scalar) { |
| 206 | assert(p != NULL); |
| 207 | assert(p_scalar != NULL); |
| 208 | assert(group->field.width == P256_LIMBS); |
| 209 | |
| 210 | static const unsigned kWindowSize = 5; |
| 211 | static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; |
| 212 | |
| 213 | // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should |
| 214 | // add no more than 63 bytes of overhead. Thus, |table| should require |
| 215 | // ~1599 ((96 * 16) + 63) bytes of stack space. |
| 216 | alignas(64) P256_POINT table[16]; |
| 217 | uint8_t p_str[33]; |
| 218 | OPENSSL_memcpy(p_str, p_scalar->bytes, 32); |
| 219 | p_str[32] = 0; |
| 220 | |
| 221 | // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is |
| 222 | // not stored. All other values are actually stored with an offset of -1 in |
| 223 | // table. |
| 224 | P256_POINT *row = table; |
| 225 | assert(group->field.width == P256_LIMBS); |
| 226 | OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 227 | OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 228 | OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 229 | |
| 230 | ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); |
| 231 | ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); |
| 232 | ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); |
| 233 | ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); |
| 234 | ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); |
| 235 | ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); |
| 236 | ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); |
| 237 | ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); |
| 238 | ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); |
| 239 | ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); |
| 240 | ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); |
| 241 | ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); |
| 242 | ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); |
| 243 | ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); |
| 244 | ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); |
| 245 | |
| 246 | BN_ULONG tmp[P256_LIMBS]; |
| 247 | alignas(32) P256_POINT h; |
| 248 | unsigned index = 255; |
| 249 | unsigned wvalue = p_str[(index - 1) / 8]; |
| 250 | wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
| 251 | |
| 252 | ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1); |
| 253 | |
| 254 | while (index >= 5) { |
| 255 | if (index != 255) { |
| 256 | unsigned off = (index - 1) / 8; |
| 257 | |
| 258 | wvalue = p_str[off] | p_str[off + 1] << 8; |
| 259 | wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
| 260 | |
| 261 | wvalue = booth_recode_w5(wvalue); |
| 262 | |
| 263 | ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
| 264 | |
| 265 | ecp_nistz256_neg(tmp, h.Y); |
| 266 | copy_conditional(h.Y, tmp, (wvalue & 1)); |
| 267 | |
| 268 | ecp_nistz256_point_add(r, r, &h); |
| 269 | } |
| 270 | |
| 271 | index -= kWindowSize; |
| 272 | |
| 273 | ecp_nistz256_point_double(r, r); |
| 274 | ecp_nistz256_point_double(r, r); |
| 275 | ecp_nistz256_point_double(r, r); |
| 276 | ecp_nistz256_point_double(r, r); |
| 277 | ecp_nistz256_point_double(r, r); |
| 278 | } |
| 279 | |
| 280 | // Final window |
| 281 | wvalue = p_str[0]; |
| 282 | wvalue = (wvalue << 1) & kMask; |
| 283 | |
| 284 | wvalue = booth_recode_w5(wvalue); |
| 285 | |
| 286 | ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
| 287 | |
| 288 | ecp_nistz256_neg(tmp, h.Y); |
| 289 | copy_conditional(h.Y, tmp, wvalue & 1); |
| 290 | |
| 291 | ecp_nistz256_point_add(r, r, &h); |
| 292 | } |
| 293 | |
| 294 | typedef union { |
| 295 | P256_POINT p; |
| 296 | P256_POINT_AFFINE a; |
| 297 | } p256_point_union_t; |
| 298 | |
| 299 | static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) { |
| 300 | static const unsigned kWindowSize = 7; |
| 301 | static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
| 302 | *index = kWindowSize; |
| 303 | |
| 304 | unsigned wvalue = (p_str[0] << 1) & kMask; |
| 305 | return booth_recode_w7(wvalue); |
| 306 | } |
| 307 | |
| 308 | static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) { |
| 309 | static const unsigned kWindowSize = 7; |
| 310 | static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
| 311 | |
| 312 | const unsigned off = (*index - 1) / 8; |
| 313 | unsigned wvalue = p_str[off] | p_str[off + 1] << 8; |
| 314 | wvalue = (wvalue >> ((*index - 1) % 8)) & kMask; |
| 315 | *index += kWindowSize; |
| 316 | |
| 317 | return booth_recode_w7(wvalue); |
| 318 | } |
| 319 | |
| 320 | static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
| 321 | const EC_RAW_POINT *p, |
| 322 | const EC_SCALAR *scalar) { |
| 323 | alignas(32) P256_POINT out; |
| 324 | ecp_nistz256_windowed_mul(group, &out, p, scalar); |
| 325 | |
| 326 | assert(group->field.width == P256_LIMBS); |
| 327 | OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG)); |
| 328 | OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| 329 | OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| 330 | } |
| 331 | |
| 332 | static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r, |
| 333 | const EC_SCALAR *scalar) { |
| 334 | alignas(32) p256_point_union_t t, p; |
| 335 | |
| 336 | uint8_t p_str[33]; |
| 337 | OPENSSL_memcpy(p_str, scalar->bytes, 32); |
| 338 | p_str[32] = 0; |
| 339 | |
| 340 | // First window |
| 341 | unsigned index = 0; |
| 342 | unsigned wvalue = calc_first_wvalue(&index, p_str); |
| 343 | |
| 344 | ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1); |
| 345 | ecp_nistz256_neg(p.p.Z, p.p.Y); |
| 346 | copy_conditional(p.p.Y, p.p.Z, wvalue & 1); |
| 347 | |
| 348 | // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
| 349 | // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
| 350 | // is infinity iff |wvalue >> 1| is zero. |
| 351 | OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); |
| 352 | copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1)); |
| 353 | |
| 354 | for (int i = 1; i < 37; i++) { |
| 355 | wvalue = calc_wvalue(&index, p_str); |
| 356 | |
| 357 | ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1); |
| 358 | |
| 359 | ecp_nistz256_neg(t.p.Z, t.a.Y); |
| 360 | copy_conditional(t.a.Y, t.p.Z, wvalue & 1); |
| 361 | |
| 362 | // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a| |
| 363 | // are the same non-infinity point. |
| 364 | ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
| 365 | } |
| 366 | |
| 367 | assert(group->field.width == P256_LIMBS); |
| 368 | OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG)); |
| 369 | OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| 370 | OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| 371 | } |
| 372 | |
| 373 | static void ecp_nistz256_points_mul_public(const EC_GROUP *group, |
| 374 | EC_RAW_POINT *r, |
| 375 | const EC_SCALAR *g_scalar, |
| 376 | const EC_RAW_POINT *p_, |
| 377 | const EC_SCALAR *p_scalar) { |
| 378 | assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL); |
| 379 | |
| 380 | alignas(32) p256_point_union_t t, p; |
| 381 | uint8_t p_str[33]; |
| 382 | OPENSSL_memcpy(p_str, g_scalar->bytes, 32); |
| 383 | p_str[32] = 0; |
| 384 | |
| 385 | // First window |
| 386 | unsigned index = 0; |
| 387 | unsigned wvalue = calc_first_wvalue(&index, p_str); |
| 388 | |
| 389 | // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
| 390 | // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
| 391 | // is infinity iff |wvalue >> 1| is zero. |
| 392 | if ((wvalue >> 1) != 0) { |
| 393 | OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1], |
| 394 | sizeof(p.a)); |
| 395 | OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z)); |
| 396 | } else { |
| 397 | OPENSSL_memset(&p.a, 0, sizeof(p.a)); |
| 398 | OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); |
| 399 | } |
| 400 | |
| 401 | if ((wvalue & 1) == 1) { |
| 402 | ecp_nistz256_neg(p.p.Y, p.p.Y); |
| 403 | } |
| 404 | |
| 405 | for (int i = 1; i < 37; i++) { |
| 406 | wvalue = calc_wvalue(&index, p_str); |
| 407 | |
| 408 | if ((wvalue >> 1) == 0) { |
| 409 | continue; |
| 410 | } |
| 411 | |
| 412 | OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1], |
| 413 | sizeof(p.a)); |
| 414 | |
| 415 | if ((wvalue & 1) == 1) { |
| 416 | ecp_nistz256_neg(t.a.Y, t.a.Y); |
| 417 | } |
| 418 | |
| 419 | // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a| |
| 420 | // are the same non-infinity point, so it is important that we compute the |
| 421 | // |g_scalar| term before the |p_scalar| term. |
| 422 | ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
| 423 | } |
| 424 | |
| 425 | ecp_nistz256_windowed_mul(group, &t.p, p_, p_scalar); |
| 426 | ecp_nistz256_point_add(&p.p, &p.p, &t.p); |
| 427 | |
| 428 | assert(group->field.width == P256_LIMBS); |
| 429 | OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG)); |
| 430 | OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| 431 | OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| 432 | } |
| 433 | |
| 434 | static int ecp_nistz256_get_affine(const EC_GROUP *group, |
| 435 | const EC_RAW_POINT *point, EC_FELEM *x, |
| 436 | EC_FELEM *y) { |
| 437 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
| 438 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| 439 | return 0; |
| 440 | } |
| 441 | |
| 442 | BN_ULONG z_inv2[P256_LIMBS]; |
| 443 | BN_ULONG z_inv3[P256_LIMBS]; |
| 444 | assert(group->field.width == P256_LIMBS); |
| 445 | ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words); |
| 446 | ecp_nistz256_sqr_mont(z_inv2, z_inv3); |
| 447 | |
| 448 | // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate |
| 449 | // and then calling |ecp_nistz256_from_mont| again to convert the |y| |
| 450 | // coordinate below, convert the common factor |z_inv2| once now, saving one |
| 451 | // reduction. |
| 452 | ecp_nistz256_from_mont(z_inv2, z_inv2); |
| 453 | |
| 454 | if (x != NULL) { |
| 455 | ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words); |
| 456 | } |
| 457 | |
| 458 | if (y != NULL) { |
| 459 | ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); |
| 460 | ecp_nistz256_mul_mont(y->words, z_inv3, point->Y.words); |
| 461 | } |
| 462 | |
| 463 | return 1; |
| 464 | } |
| 465 | |
| 466 | static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r, |
| 467 | const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) { |
| 468 | P256_POINT a, b; |
| 469 | OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 470 | OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 471 | OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 472 | OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 473 | OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 474 | OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 475 | ecp_nistz256_point_add(&a, &a, &b); |
| 476 | OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
| 477 | OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| 478 | OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| 479 | } |
| 480 | |
| 481 | static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
| 482 | const EC_RAW_POINT *a_) { |
| 483 | P256_POINT a; |
| 484 | OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 485 | OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 486 | OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| 487 | ecp_nistz256_point_double(&a, &a); |
| 488 | OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
| 489 | OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| 490 | OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| 491 | } |
| 492 | |
| 493 | static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out, |
| 494 | const EC_SCALAR *in) { |
| 495 | // table[i] stores a power of |in| corresponding to the matching enum value. |
| 496 | enum { |
| 497 | // The following indices specify the power in binary. |
| 498 | i_1 = 0, |
| 499 | i_10, |
| 500 | i_11, |
| 501 | i_101, |
| 502 | i_111, |
| 503 | i_1010, |
| 504 | i_1111, |
| 505 | i_10101, |
| 506 | i_101010, |
| 507 | i_101111, |
| 508 | // The following indices specify 2^N-1, or N ones in a row. |
| 509 | i_x6, |
| 510 | i_x8, |
| 511 | i_x16, |
| 512 | i_x32 |
| 513 | }; |
| 514 | BN_ULONG table[15][P256_LIMBS]; |
| 515 | |
| 516 | // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion |
| 517 | // |
| 518 | // Even though this code path spares 12 squarings, 4.5%, and 13 |
| 519 | // multiplications, 25%, the overall sign operation is not that much faster, |
| 520 | // not more that 2%. Most of the performance of this function comes from the |
| 521 | // scalar operations. |
| 522 | |
| 523 | // Pre-calculate powers. |
| 524 | OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG)); |
| 525 | |
| 526 | ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); |
| 527 | |
| 528 | ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); |
| 529 | |
| 530 | ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); |
| 531 | |
| 532 | ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); |
| 533 | |
| 534 | ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); |
| 535 | |
| 536 | ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); |
| 537 | |
| 538 | ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); |
| 539 | ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); |
| 540 | |
| 541 | ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); |
| 542 | |
| 543 | ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); |
| 544 | |
| 545 | ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); |
| 546 | |
| 547 | ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); |
| 548 | ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); |
| 549 | |
| 550 | ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); |
| 551 | ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); |
| 552 | |
| 553 | ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); |
| 554 | ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); |
| 555 | |
| 556 | // Compute |in| raised to the order-2. |
| 557 | ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64); |
| 558 | ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]); |
| 559 | static const struct { |
| 560 | uint8_t p, i; |
| 561 | } kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11}, |
| 562 | {5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101}, |
| 563 | {3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111}, |
| 564 | {2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111}, |
| 565 | {4, i_111}, {5, i_111}, {5, i_101}, {3, i_11}, |
| 566 | {10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11}, |
| 567 | {3, i_1}, {7, i_10101}, {6, i_1111}}; |
| 568 | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) { |
| 569 | ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p); |
| 570 | ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group, |
| 575 | EC_SCALAR *out, |
| 576 | const EC_SCALAR *in) { |
| 577 | if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) { |
| 578 | // No AVX support; fallback to generic code. |
| 579 | return ec_GFp_simple_mont_inv_mod_ord_vartime(group, out, in); |
| 580 | } |
| 581 | |
| 582 | assert(group->order.width == P256_LIMBS); |
| 583 | if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) { |
| 584 | return 0; |
| 585 | } |
| 586 | |
| 587 | // The result should be returned in the Montgomery domain. |
| 588 | ec_scalar_to_montgomery(group, out, out); |
| 589 | return 1; |
| 590 | } |
| 591 | |
| 592 | static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group, |
| 593 | const EC_RAW_POINT *p, |
| 594 | const EC_SCALAR *r) { |
| 595 | if (ec_GFp_simple_is_at_infinity(group, p)) { |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | assert(group->order.width == P256_LIMBS); |
| 600 | assert(group->field.width == P256_LIMBS); |
| 601 | |
| 602 | // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
| 603 | // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
| 604 | // not. |
| 605 | BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS]; |
| 606 | ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words); |
| 607 | ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont); |
| 608 | ecp_nistz256_from_mont(X, p->X.words); |
| 609 | |
| 610 | if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
| 611 | return 1; |
| 612 | } |
| 613 | |
| 614 | // During signing the x coefficient is reduced modulo the group order. |
| 615 | // Therefore there is a small possibility, less than 1/2^128, that group_order |
| 616 | // < p.x < P. in that case we need not only to compare against |r| but also to |
| 617 | // compare against r+group_order. |
| 618 | if (bn_less_than_words(r->words, group->field_minus_order.words, |
| 619 | P256_LIMBS)) { |
| 620 | // We can ignore the carry because: r + group_order < p < 2^256. |
| 621 | bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS); |
| 622 | ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont); |
| 623 | if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
| 624 | return 1; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | return 0; |
| 629 | } |
| 630 | |
| 631 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) { |
| 632 | out->group_init = ec_GFp_mont_group_init; |
| 633 | out->group_finish = ec_GFp_mont_group_finish; |
| 634 | out->group_set_curve = ec_GFp_mont_group_set_curve; |
| 635 | out->point_get_affine_coordinates = ecp_nistz256_get_affine; |
| 636 | out->add = ecp_nistz256_add; |
| 637 | out->dbl = ecp_nistz256_dbl; |
| 638 | out->mul = ecp_nistz256_point_mul; |
| 639 | out->mul_base = ecp_nistz256_point_mul_base; |
| 640 | out->mul_public = ecp_nistz256_points_mul_public; |
| 641 | out->felem_mul = ec_GFp_mont_felem_mul; |
| 642 | out->felem_sqr = ec_GFp_mont_felem_sqr; |
| 643 | out->bignum_to_felem = ec_GFp_mont_bignum_to_felem; |
| 644 | out->felem_to_bignum = ec_GFp_mont_felem_to_bignum; |
| 645 | out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord; |
| 646 | out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime; |
| 647 | out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate; |
| 648 | } |
| 649 | |
| 650 | #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
| 651 | !defined(OPENSSL_SMALL) */ |
| 652 | |