| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] |
| 56 | */ |
| 57 | /* ==================================================================== |
| 58 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| 59 | * |
| 60 | * Redistribution and use in source and binary forms, with or without |
| 61 | * modification, are permitted provided that the following conditions |
| 62 | * are met: |
| 63 | * |
| 64 | * 1. Redistributions of source code must retain the above copyright |
| 65 | * notice, this list of conditions and the following disclaimer. |
| 66 | * |
| 67 | * 2. Redistributions in binary form must reproduce the above copyright |
| 68 | * notice, this list of conditions and the following disclaimer in |
| 69 | * the documentation and/or other materials provided with the |
| 70 | * distribution. |
| 71 | * |
| 72 | * 3. All advertising materials mentioning features or use of this |
| 73 | * software must display the following acknowledgment: |
| 74 | * "This product includes software developed by the OpenSSL Project |
| 75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 76 | * |
| 77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 78 | * endorse or promote products derived from this software without |
| 79 | * prior written permission. For written permission, please contact |
| 80 | * openssl-core@openssl.org. |
| 81 | * |
| 82 | * 5. Products derived from this software may not be called "OpenSSL" |
| 83 | * nor may "OpenSSL" appear in their names without prior written |
| 84 | * permission of the OpenSSL Project. |
| 85 | * |
| 86 | * 6. Redistributions of any form whatsoever must retain the following |
| 87 | * acknowledgment: |
| 88 | * "This product includes software developed by the OpenSSL Project |
| 89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 90 | * |
| 91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 103 | * ==================================================================== |
| 104 | * |
| 105 | * This product includes cryptographic software written by Eric Young |
| 106 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 107 | * Hudson (tjh@cryptsoft.com). |
| 108 | * |
| 109 | */ |
| 110 | /* ==================================================================== |
| 111 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 112 | * |
| 113 | * Portions of the attached software ("Contribution") are developed by |
| 114 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| 115 | * |
| 116 | * The Contribution is licensed pursuant to the OpenSSL open source |
| 117 | * license provided above. |
| 118 | * |
| 119 | * ECC cipher suite support in OpenSSL originally written by |
| 120 | * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. |
| 121 | * |
| 122 | */ |
| 123 | /* ==================================================================== |
| 124 | * Copyright 2005 Nokia. All rights reserved. |
| 125 | * |
| 126 | * The portions of the attached software ("Contribution") is developed by |
| 127 | * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| 128 | * license. |
| 129 | * |
| 130 | * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| 131 | * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| 132 | * support (see RFC 4279) to OpenSSL. |
| 133 | * |
| 134 | * No patent licenses or other rights except those expressly stated in |
| 135 | * the OpenSSL open source license shall be deemed granted or received |
| 136 | * expressly, by implication, estoppel, or otherwise. |
| 137 | * |
| 138 | * No assurances are provided by Nokia that the Contribution does not |
| 139 | * infringe the patent or other intellectual property rights of any third |
| 140 | * party or that the license provides you with all the necessary rights |
| 141 | * to make use of the Contribution. |
| 142 | * |
| 143 | * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| 144 | * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| 145 | * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| 146 | * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| 147 | * OTHERWISE. |
| 148 | */ |
| 149 | |
| 150 | #include <openssl/ssl.h> |
| 151 | |
| 152 | #include <assert.h> |
| 153 | #include <limits.h> |
| 154 | #include <string.h> |
| 155 | |
| 156 | #include <utility> |
| 157 | |
| 158 | #include <openssl/aead.h> |
| 159 | #include <openssl/bn.h> |
| 160 | #include <openssl/buf.h> |
| 161 | #include <openssl/bytestring.h> |
| 162 | #include <openssl/ec_key.h> |
| 163 | #include <openssl/ecdsa.h> |
| 164 | #include <openssl/err.h> |
| 165 | #include <openssl/evp.h> |
| 166 | #include <openssl/md5.h> |
| 167 | #include <openssl/mem.h> |
| 168 | #include <openssl/rand.h> |
| 169 | #include <openssl/sha.h> |
| 170 | |
| 171 | #include "../crypto/internal.h" |
| 172 | #include "internal.h" |
| 173 | |
| 174 | |
| 175 | BSSL_NAMESPACE_BEGIN |
| 176 | |
| 177 | enum ssl_client_hs_state_t { |
| 178 | state_start_connect = 0, |
| 179 | state_enter_early_data, |
| 180 | state_early_reverify_server_certificate, |
| 181 | state_read_hello_verify_request, |
| 182 | state_read_server_hello, |
| 183 | state_tls13, |
| 184 | state_read_server_certificate, |
| 185 | state_read_certificate_status, |
| 186 | state_verify_server_certificate, |
| 187 | state_reverify_server_certificate, |
| 188 | state_read_server_key_exchange, |
| 189 | state_read_certificate_request, |
| 190 | state_read_server_hello_done, |
| 191 | state_send_client_certificate, |
| 192 | state_send_client_key_exchange, |
| 193 | state_send_client_certificate_verify, |
| 194 | state_send_client_finished, |
| 195 | state_finish_flight, |
| 196 | state_read_session_ticket, |
| 197 | state_process_change_cipher_spec, |
| 198 | state_read_server_finished, |
| 199 | state_finish_client_handshake, |
| 200 | state_done, |
| 201 | }; |
| 202 | |
| 203 | // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of |
| 204 | // disabled algorithms. |
| 205 | static void ssl_get_client_disabled(SSL_HANDSHAKE *hs, uint32_t *out_mask_a, |
| 206 | uint32_t *out_mask_k) { |
| 207 | *out_mask_a = 0; |
| 208 | *out_mask_k = 0; |
| 209 | |
| 210 | // PSK requires a client callback. |
| 211 | if (hs->config->psk_client_callback == NULL) { |
| 212 | *out_mask_a |= SSL_aPSK; |
| 213 | *out_mask_k |= SSL_kPSK; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | static bool ssl_write_client_cipher_list(SSL_HANDSHAKE *hs, CBB *out) { |
| 218 | SSL *const ssl = hs->ssl; |
| 219 | uint32_t mask_a, mask_k; |
| 220 | ssl_get_client_disabled(hs, &mask_a, &mask_k); |
| 221 | |
| 222 | CBB child; |
| 223 | if (!CBB_add_u16_length_prefixed(out, &child)) { |
| 224 | return false; |
| 225 | } |
| 226 | |
| 227 | // Add a fake cipher suite. See draft-davidben-tls-grease-01. |
| 228 | if (ssl->ctx->grease_enabled && |
| 229 | !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) { |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on |
| 234 | // hardware support. |
| 235 | if (hs->max_version >= TLS1_3_VERSION) { |
| 236 | if (!EVP_has_aes_hardware() && |
| 237 | !CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { |
| 238 | return false; |
| 239 | } |
| 240 | if (!CBB_add_u16(&child, TLS1_CK_AES_128_GCM_SHA256 & 0xffff) || |
| 241 | !CBB_add_u16(&child, TLS1_CK_AES_256_GCM_SHA384 & 0xffff)) { |
| 242 | return false; |
| 243 | } |
| 244 | if (EVP_has_aes_hardware() && |
| 245 | !CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { |
| 246 | return false; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | if (hs->min_version < TLS1_3_VERSION) { |
| 251 | bool any_enabled = false; |
| 252 | for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) { |
| 253 | // Skip disabled ciphers |
| 254 | if ((cipher->algorithm_mkey & mask_k) || |
| 255 | (cipher->algorithm_auth & mask_a)) { |
| 256 | continue; |
| 257 | } |
| 258 | if (SSL_CIPHER_get_min_version(cipher) > hs->max_version || |
| 259 | SSL_CIPHER_get_max_version(cipher) < hs->min_version) { |
| 260 | continue; |
| 261 | } |
| 262 | any_enabled = true; |
| 263 | if (!CBB_add_u16(&child, ssl_cipher_get_value(cipher))) { |
| 264 | return false; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | // If all ciphers were disabled, return the error to the caller. |
| 269 | if (!any_enabled && hs->max_version < TLS1_3_VERSION) { |
| 270 | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE); |
| 271 | return false; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) { |
| 276 | if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) { |
| 277 | return false; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | return CBB_flush(out); |
| 282 | } |
| 283 | |
| 284 | bool ssl_write_client_hello(SSL_HANDSHAKE *hs) { |
| 285 | SSL *const ssl = hs->ssl; |
| 286 | ScopedCBB cbb; |
| 287 | CBB body; |
| 288 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO)) { |
| 289 | return false; |
| 290 | } |
| 291 | |
| 292 | CBB child; |
| 293 | if (!CBB_add_u16(&body, hs->client_version) || |
| 294 | !CBB_add_bytes(&body, ssl->s3->client_random, SSL3_RANDOM_SIZE) || |
| 295 | !CBB_add_u8_length_prefixed(&body, &child)) { |
| 296 | return false; |
| 297 | } |
| 298 | |
| 299 | // Do not send a session ID on renegotiation. |
| 300 | if (!ssl->s3->initial_handshake_complete && |
| 301 | !CBB_add_bytes(&child, hs->session_id, hs->session_id_len)) { |
| 302 | return false; |
| 303 | } |
| 304 | |
| 305 | if (SSL_is_dtls(ssl)) { |
| 306 | if (!CBB_add_u8_length_prefixed(&body, &child) || |
| 307 | !CBB_add_bytes(&child, ssl->d1->cookie, ssl->d1->cookie_len)) { |
| 308 | return false; |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | size_t = |
| 313 | SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; |
| 314 | if (!ssl_write_client_cipher_list(hs, &body) || |
| 315 | !CBB_add_u8(&body, 1 /* one compression method */) || |
| 316 | !CBB_add_u8(&body, 0 /* null compression */) || |
| 317 | !ssl_add_clienthello_tlsext(hs, &body, header_len + CBB_len(&body))) { |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | Array<uint8_t> msg; |
| 322 | if (!ssl->method->finish_message(ssl, cbb.get(), &msg)) { |
| 323 | return false; |
| 324 | } |
| 325 | |
| 326 | // Now that the length prefixes have been computed, fill in the placeholder |
| 327 | // PSK binder. |
| 328 | if (hs->needs_psk_binder && |
| 329 | !tls13_write_psk_binder(hs, msg.data(), msg.size())) { |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | return ssl->method->add_message(ssl, std::move(msg)); |
| 334 | } |
| 335 | |
| 336 | static bool parse_supported_versions(SSL_HANDSHAKE *hs, uint16_t *version, |
| 337 | const CBS *in) { |
| 338 | // If the outer version is not TLS 1.2, or there is no extensions block, use |
| 339 | // the outer version. |
| 340 | if (*version != TLS1_2_VERSION || CBS_len(in) == 0) { |
| 341 | return true; |
| 342 | } |
| 343 | |
| 344 | SSL *const ssl = hs->ssl; |
| 345 | CBS copy = *in, extensions; |
| 346 | if (!CBS_get_u16_length_prefixed(©, &extensions) || |
| 347 | CBS_len(©) != 0) { |
| 348 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 349 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 350 | return false; |
| 351 | } |
| 352 | |
| 353 | bool have_supported_versions; |
| 354 | CBS supported_versions; |
| 355 | const SSL_EXTENSION_TYPE ext_types[] = { |
| 356 | {TLSEXT_TYPE_supported_versions, &have_supported_versions, |
| 357 | &supported_versions}, |
| 358 | }; |
| 359 | |
| 360 | uint8_t alert = SSL_AD_DECODE_ERROR; |
| 361 | if (!ssl_parse_extensions(&extensions, &alert, ext_types, |
| 362 | OPENSSL_ARRAY_SIZE(ext_types), |
| 363 | 1 /* ignore unknown */)) { |
| 364 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| 365 | return false; |
| 366 | } |
| 367 | |
| 368 | // Override the outer version with the extension, if present. |
| 369 | if (have_supported_versions && |
| 370 | (!CBS_get_u16(&supported_versions, version) || |
| 371 | CBS_len(&supported_versions) != 0)) { |
| 372 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 373 | return false; |
| 374 | } |
| 375 | |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) { |
| 380 | SSL *const ssl = hs->ssl; |
| 381 | |
| 382 | ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1); |
| 383 | // |session_reused| must be reset in case this is a renegotiation. |
| 384 | ssl->s3->session_reused = false; |
| 385 | |
| 386 | // Freeze the version range. |
| 387 | if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) { |
| 388 | return ssl_hs_error; |
| 389 | } |
| 390 | |
| 391 | // Always advertise the ClientHello version from the original maximum version, |
| 392 | // even on renegotiation. The static RSA key exchange uses this field, and |
| 393 | // some servers fail when it changes across handshakes. |
| 394 | if (SSL_is_dtls(hs->ssl)) { |
| 395 | hs->client_version = |
| 396 | hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION; |
| 397 | } else { |
| 398 | hs->client_version = |
| 399 | hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version; |
| 400 | } |
| 401 | |
| 402 | // If the configured session has expired or was created at a disabled |
| 403 | // version, drop it. |
| 404 | if (ssl->session != NULL) { |
| 405 | if (ssl->session->is_server || |
| 406 | !ssl_supports_version(hs, ssl->session->ssl_version) || |
| 407 | (ssl->session->session_id_length == 0 && |
| 408 | ssl->session->ticket.empty()) || |
| 409 | ssl->session->not_resumable || |
| 410 | !ssl_session_is_time_valid(ssl, ssl->session.get())) { |
| 411 | ssl_set_session(ssl, NULL); |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) { |
| 416 | return ssl_hs_error; |
| 417 | } |
| 418 | |
| 419 | if (ssl->session != nullptr && |
| 420 | !ssl->s3->initial_handshake_complete && |
| 421 | ssl->session->session_id_length > 0) { |
| 422 | hs->session_id_len = ssl->session->session_id_length; |
| 423 | OPENSSL_memcpy(hs->session_id, ssl->session->session_id, |
| 424 | hs->session_id_len); |
| 425 | } else if (hs->max_version >= TLS1_3_VERSION) { |
| 426 | // Initialize a random session ID. |
| 427 | hs->session_id_len = sizeof(hs->session_id); |
| 428 | if (!RAND_bytes(hs->session_id, hs->session_id_len)) { |
| 429 | return ssl_hs_error; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | if (!ssl_write_client_hello(hs)) { |
| 434 | return ssl_hs_error; |
| 435 | } |
| 436 | |
| 437 | hs->state = state_enter_early_data; |
| 438 | return ssl_hs_flush; |
| 439 | } |
| 440 | |
| 441 | static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) { |
| 442 | SSL *const ssl = hs->ssl; |
| 443 | |
| 444 | if (SSL_is_dtls(ssl)) { |
| 445 | hs->state = state_read_hello_verify_request; |
| 446 | return ssl_hs_ok; |
| 447 | } |
| 448 | |
| 449 | if (!hs->early_data_offered) { |
| 450 | hs->state = state_read_server_hello; |
| 451 | return ssl_hs_ok; |
| 452 | } |
| 453 | |
| 454 | ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->session->ssl_version); |
| 455 | if (!ssl->method->add_change_cipher_spec(ssl)) { |
| 456 | return ssl_hs_error; |
| 457 | } |
| 458 | |
| 459 | if (!tls13_init_early_key_schedule(hs, ssl->session->master_key, |
| 460 | ssl->session->master_key_length) || |
| 461 | !tls13_derive_early_secrets(hs) || |
| 462 | !tls13_set_traffic_key(ssl, ssl_encryption_early_data, evp_aead_seal, |
| 463 | hs->early_traffic_secret, hs->hash_len)) { |
| 464 | return ssl_hs_error; |
| 465 | } |
| 466 | |
| 467 | // Stash the early data session, so connection properties may be queried out |
| 468 | // of it. |
| 469 | hs->early_session = UpRef(ssl->session); |
| 470 | hs->state = state_early_reverify_server_certificate; |
| 471 | return ssl_hs_ok; |
| 472 | } |
| 473 | |
| 474 | static enum ssl_hs_wait_t do_early_reverify_server_certificate(SSL_HANDSHAKE *hs) { |
| 475 | if (hs->ssl->ctx->reverify_on_resume) { |
| 476 | switch (ssl_reverify_peer_cert(hs)) { |
| 477 | case ssl_verify_ok: |
| 478 | break; |
| 479 | case ssl_verify_invalid: |
| 480 | return ssl_hs_error; |
| 481 | case ssl_verify_retry: |
| 482 | hs->state = state_early_reverify_server_certificate; |
| 483 | return ssl_hs_certificate_verify; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | hs->in_early_data = true; |
| 488 | hs->can_early_write = true; |
| 489 | hs->state = state_read_server_hello; |
| 490 | return ssl_hs_early_return; |
| 491 | } |
| 492 | |
| 493 | static enum ssl_hs_wait_t do_read_hello_verify_request(SSL_HANDSHAKE *hs) { |
| 494 | SSL *const ssl = hs->ssl; |
| 495 | |
| 496 | assert(SSL_is_dtls(ssl)); |
| 497 | |
| 498 | SSLMessage msg; |
| 499 | if (!ssl->method->get_message(ssl, &msg)) { |
| 500 | return ssl_hs_read_message; |
| 501 | } |
| 502 | |
| 503 | if (msg.type != DTLS1_MT_HELLO_VERIFY_REQUEST) { |
| 504 | hs->state = state_read_server_hello; |
| 505 | return ssl_hs_ok; |
| 506 | } |
| 507 | |
| 508 | CBS hello_verify_request = msg.body, cookie; |
| 509 | uint16_t server_version; |
| 510 | if (!CBS_get_u16(&hello_verify_request, &server_version) || |
| 511 | !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) || |
| 512 | CBS_len(&cookie) > sizeof(ssl->d1->cookie) || |
| 513 | CBS_len(&hello_verify_request) != 0) { |
| 514 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 515 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 516 | return ssl_hs_error; |
| 517 | } |
| 518 | |
| 519 | OPENSSL_memcpy(ssl->d1->cookie, CBS_data(&cookie), CBS_len(&cookie)); |
| 520 | ssl->d1->cookie_len = CBS_len(&cookie); |
| 521 | |
| 522 | ssl->method->next_message(ssl); |
| 523 | |
| 524 | // DTLS resets the handshake buffer after HelloVerifyRequest. |
| 525 | if (!hs->transcript.Init()) { |
| 526 | return ssl_hs_error; |
| 527 | } |
| 528 | |
| 529 | if (!ssl_write_client_hello(hs)) { |
| 530 | return ssl_hs_error; |
| 531 | } |
| 532 | |
| 533 | hs->state = state_read_server_hello; |
| 534 | return ssl_hs_flush; |
| 535 | } |
| 536 | |
| 537 | static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) { |
| 538 | SSL *const ssl = hs->ssl; |
| 539 | SSLMessage msg; |
| 540 | if (!ssl->method->get_message(ssl, &msg)) { |
| 541 | return ssl_hs_read_server_hello; |
| 542 | } |
| 543 | |
| 544 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO)) { |
| 545 | return ssl_hs_error; |
| 546 | } |
| 547 | |
| 548 | CBS server_hello = msg.body, server_random, session_id; |
| 549 | uint16_t server_version, cipher_suite; |
| 550 | uint8_t compression_method; |
| 551 | if (!CBS_get_u16(&server_hello, &server_version) || |
| 552 | !CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) || |
| 553 | !CBS_get_u8_length_prefixed(&server_hello, &session_id) || |
| 554 | CBS_len(&session_id) > SSL3_SESSION_ID_SIZE || |
| 555 | !CBS_get_u16(&server_hello, &cipher_suite) || |
| 556 | !CBS_get_u8(&server_hello, &compression_method)) { |
| 557 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 558 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 559 | return ssl_hs_error; |
| 560 | } |
| 561 | |
| 562 | // Use the supported_versions extension if applicable. |
| 563 | if (!parse_supported_versions(hs, &server_version, &server_hello)) { |
| 564 | return ssl_hs_error; |
| 565 | } |
| 566 | |
| 567 | if (!ssl_supports_version(hs, server_version)) { |
| 568 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); |
| 569 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
| 570 | return ssl_hs_error; |
| 571 | } |
| 572 | |
| 573 | assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete); |
| 574 | if (!ssl->s3->have_version) { |
| 575 | ssl->version = server_version; |
| 576 | // At this point, the connection's version is known and ssl->version is |
| 577 | // fixed. Begin enforcing the record-layer version. |
| 578 | ssl->s3->have_version = true; |
| 579 | ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version); |
| 580 | } else if (server_version != ssl->version) { |
| 581 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); |
| 582 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
| 583 | return ssl_hs_error; |
| 584 | } |
| 585 | |
| 586 | if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| 587 | hs->state = state_tls13; |
| 588 | return ssl_hs_ok; |
| 589 | } |
| 590 | |
| 591 | // Clear some TLS 1.3 state that no longer needs to be retained. |
| 592 | hs->key_shares[0].reset(); |
| 593 | hs->key_shares[1].reset(); |
| 594 | hs->key_share_bytes.Reset(); |
| 595 | |
| 596 | // A TLS 1.2 server would not know to skip the early data we offered. Report |
| 597 | // an error code sooner. The caller may use this error code to implement the |
| 598 | // fallback described in RFC 8446 appendix D.3. |
| 599 | if (hs->early_data_offered) { |
| 600 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA); |
| 601 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
| 602 | return ssl_hs_error; |
| 603 | } |
| 604 | |
| 605 | // Copy over the server random. |
| 606 | OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_random), |
| 607 | SSL3_RANDOM_SIZE); |
| 608 | |
| 609 | // Enforce the TLS 1.3 anti-downgrade feature. |
| 610 | if (!ssl->s3->initial_handshake_complete && |
| 611 | ssl_supports_version(hs, TLS1_3_VERSION)) { |
| 612 | static_assert( |
| 613 | sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom), |
| 614 | "downgrade signals have different size" ); |
| 615 | static_assert( |
| 616 | sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom), |
| 617 | "downgrade signals have different size" ); |
| 618 | auto suffix = |
| 619 | MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random)) |
| 620 | .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom)); |
| 621 | if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom || |
| 622 | suffix == kJDK11DowngradeRandom) { |
| 623 | ssl->s3->tls13_downgrade = true; |
| 624 | if (!hs->config->ignore_tls13_downgrade) { |
| 625 | OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE); |
| 626 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 627 | return ssl_hs_error; |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | if (!ssl->s3->initial_handshake_complete && ssl->session != nullptr && |
| 633 | ssl->session->session_id_length != 0 && |
| 634 | CBS_mem_equal(&session_id, ssl->session->session_id, |
| 635 | ssl->session->session_id_length)) { |
| 636 | ssl->s3->session_reused = true; |
| 637 | } else { |
| 638 | // The server may also have echoed back the TLS 1.3 compatibility mode |
| 639 | // session ID. As we know this is not a session the server knows about, any |
| 640 | // server resuming it is in error. Reject the first connection |
| 641 | // deterministicly, rather than installing an invalid session into the |
| 642 | // session cache. https://crbug.com/796910 |
| 643 | if (hs->session_id_len != 0 && |
| 644 | CBS_mem_equal(&session_id, hs->session_id, hs->session_id_len)) { |
| 645 | OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID); |
| 646 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 647 | return ssl_hs_error; |
| 648 | } |
| 649 | |
| 650 | // The session wasn't resumed. Create a fresh SSL_SESSION to |
| 651 | // fill out. |
| 652 | ssl_set_session(ssl, NULL); |
| 653 | if (!ssl_get_new_session(hs, 0 /* client */)) { |
| 654 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 655 | return ssl_hs_error; |
| 656 | } |
| 657 | // Note: session_id could be empty. |
| 658 | hs->new_session->session_id_length = CBS_len(&session_id); |
| 659 | OPENSSL_memcpy(hs->new_session->session_id, CBS_data(&session_id), |
| 660 | CBS_len(&session_id)); |
| 661 | } |
| 662 | |
| 663 | const SSL_CIPHER *cipher = SSL_get_cipher_by_value(cipher_suite); |
| 664 | if (cipher == NULL) { |
| 665 | // unknown cipher |
| 666 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED); |
| 667 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 668 | return ssl_hs_error; |
| 669 | } |
| 670 | |
| 671 | // The cipher must be allowed in the selected version and enabled. |
| 672 | uint32_t mask_a, mask_k; |
| 673 | ssl_get_client_disabled(hs, &mask_a, &mask_k); |
| 674 | if ((cipher->algorithm_mkey & mask_k) || (cipher->algorithm_auth & mask_a) || |
| 675 | SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) || |
| 676 | SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) || |
| 677 | !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), NULL, cipher)) { |
| 678 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); |
| 679 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 680 | return ssl_hs_error; |
| 681 | } |
| 682 | |
| 683 | if (ssl->session != NULL) { |
| 684 | if (ssl->session->ssl_version != ssl->version) { |
| 685 | OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED); |
| 686 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 687 | return ssl_hs_error; |
| 688 | } |
| 689 | if (ssl->session->cipher != cipher) { |
| 690 | OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED); |
| 691 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 692 | return ssl_hs_error; |
| 693 | } |
| 694 | if (!ssl_session_is_context_valid(hs, ssl->session.get())) { |
| 695 | // This is actually a client application bug. |
| 696 | OPENSSL_PUT_ERROR(SSL, |
| 697 | SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT); |
| 698 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 699 | return ssl_hs_error; |
| 700 | } |
| 701 | } else { |
| 702 | hs->new_session->cipher = cipher; |
| 703 | } |
| 704 | hs->new_cipher = cipher; |
| 705 | |
| 706 | // Now that the cipher is known, initialize the handshake hash and hash the |
| 707 | // ServerHello. |
| 708 | if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) || |
| 709 | !ssl_hash_message(hs, msg)) { |
| 710 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 711 | return ssl_hs_error; |
| 712 | } |
| 713 | |
| 714 | // If doing a full handshake, the server may request a client certificate |
| 715 | // which requires hashing the handshake transcript. Otherwise, the handshake |
| 716 | // buffer may be released. |
| 717 | if (ssl->session != NULL || |
| 718 | !ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 719 | hs->transcript.FreeBuffer(); |
| 720 | } |
| 721 | |
| 722 | // Only the NULL compression algorithm is supported. |
| 723 | if (compression_method != 0) { |
| 724 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM); |
| 725 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 726 | return ssl_hs_error; |
| 727 | } |
| 728 | |
| 729 | // TLS extensions |
| 730 | if (!ssl_parse_serverhello_tlsext(hs, &server_hello)) { |
| 731 | OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
| 732 | return ssl_hs_error; |
| 733 | } |
| 734 | |
| 735 | // There should be nothing left over in the record. |
| 736 | if (CBS_len(&server_hello) != 0) { |
| 737 | // wrong packet length |
| 738 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 739 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 740 | return ssl_hs_error; |
| 741 | } |
| 742 | |
| 743 | if (ssl->session != NULL && |
| 744 | hs->extended_master_secret != ssl->session->extended_master_secret) { |
| 745 | if (ssl->session->extended_master_secret) { |
| 746 | OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); |
| 747 | } else { |
| 748 | OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION); |
| 749 | } |
| 750 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| 751 | return ssl_hs_error; |
| 752 | } |
| 753 | |
| 754 | if (ssl->s3->token_binding_negotiated && |
| 755 | (!hs->extended_master_secret || !ssl->s3->send_connection_binding)) { |
| 756 | OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_TB_WITHOUT_EMS_OR_RI); |
| 757 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_EXTENSION); |
| 758 | return ssl_hs_error; |
| 759 | } |
| 760 | |
| 761 | ssl->method->next_message(ssl); |
| 762 | |
| 763 | if (ssl->session != NULL) { |
| 764 | if (ssl->ctx->reverify_on_resume && |
| 765 | ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 766 | hs->state = state_reverify_server_certificate; |
| 767 | } else { |
| 768 | hs->state = state_read_session_ticket; |
| 769 | } |
| 770 | return ssl_hs_ok; |
| 771 | } |
| 772 | |
| 773 | hs->state = state_read_server_certificate; |
| 774 | return ssl_hs_ok; |
| 775 | } |
| 776 | |
| 777 | static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { |
| 778 | enum ssl_hs_wait_t wait = tls13_client_handshake(hs); |
| 779 | if (wait == ssl_hs_ok) { |
| 780 | hs->state = state_finish_client_handshake; |
| 781 | return ssl_hs_ok; |
| 782 | } |
| 783 | |
| 784 | return wait; |
| 785 | } |
| 786 | |
| 787 | static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) { |
| 788 | SSL *const ssl = hs->ssl; |
| 789 | |
| 790 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 791 | hs->state = state_read_certificate_status; |
| 792 | return ssl_hs_ok; |
| 793 | } |
| 794 | |
| 795 | SSLMessage msg; |
| 796 | if (!ssl->method->get_message(ssl, &msg)) { |
| 797 | return ssl_hs_read_message; |
| 798 | } |
| 799 | |
| 800 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) || |
| 801 | !ssl_hash_message(hs, msg)) { |
| 802 | return ssl_hs_error; |
| 803 | } |
| 804 | |
| 805 | CBS body = msg.body; |
| 806 | uint8_t alert = SSL_AD_DECODE_ERROR; |
| 807 | if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey, |
| 808 | NULL, &body, ssl->ctx->pool)) { |
| 809 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| 810 | return ssl_hs_error; |
| 811 | } |
| 812 | |
| 813 | if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 || |
| 814 | CBS_len(&body) != 0 || |
| 815 | !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { |
| 816 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 817 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 818 | return ssl_hs_error; |
| 819 | } |
| 820 | |
| 821 | if (!ssl_check_leaf_certificate( |
| 822 | hs, hs->peer_pubkey.get(), |
| 823 | sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) { |
| 824 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 825 | return ssl_hs_error; |
| 826 | } |
| 827 | |
| 828 | ssl->method->next_message(ssl); |
| 829 | |
| 830 | hs->state = state_read_certificate_status; |
| 831 | return ssl_hs_ok; |
| 832 | } |
| 833 | |
| 834 | static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) { |
| 835 | SSL *const ssl = hs->ssl; |
| 836 | |
| 837 | if (!hs->certificate_status_expected) { |
| 838 | hs->state = state_verify_server_certificate; |
| 839 | return ssl_hs_ok; |
| 840 | } |
| 841 | |
| 842 | SSLMessage msg; |
| 843 | if (!ssl->method->get_message(ssl, &msg)) { |
| 844 | return ssl_hs_read_message; |
| 845 | } |
| 846 | |
| 847 | if (msg.type != SSL3_MT_CERTIFICATE_STATUS) { |
| 848 | // A server may send status_request in ServerHello and then change its mind |
| 849 | // about sending CertificateStatus. |
| 850 | hs->state = state_verify_server_certificate; |
| 851 | return ssl_hs_ok; |
| 852 | } |
| 853 | |
| 854 | if (!ssl_hash_message(hs, msg)) { |
| 855 | return ssl_hs_error; |
| 856 | } |
| 857 | |
| 858 | CBS certificate_status = msg.body, ocsp_response; |
| 859 | uint8_t status_type; |
| 860 | if (!CBS_get_u8(&certificate_status, &status_type) || |
| 861 | status_type != TLSEXT_STATUSTYPE_ocsp || |
| 862 | !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || |
| 863 | CBS_len(&ocsp_response) == 0 || |
| 864 | CBS_len(&certificate_status) != 0) { |
| 865 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 866 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 867 | return ssl_hs_error; |
| 868 | } |
| 869 | |
| 870 | hs->new_session->ocsp_response.reset( |
| 871 | CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool)); |
| 872 | if (hs->new_session->ocsp_response == nullptr) { |
| 873 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 874 | return ssl_hs_error; |
| 875 | } |
| 876 | |
| 877 | ssl->method->next_message(ssl); |
| 878 | |
| 879 | hs->state = state_verify_server_certificate; |
| 880 | return ssl_hs_ok; |
| 881 | } |
| 882 | |
| 883 | static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) { |
| 884 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 885 | hs->state = state_read_server_key_exchange; |
| 886 | return ssl_hs_ok; |
| 887 | } |
| 888 | |
| 889 | switch (ssl_verify_peer_cert(hs)) { |
| 890 | case ssl_verify_ok: |
| 891 | break; |
| 892 | case ssl_verify_invalid: |
| 893 | return ssl_hs_error; |
| 894 | case ssl_verify_retry: |
| 895 | hs->state = state_verify_server_certificate; |
| 896 | return ssl_hs_certificate_verify; |
| 897 | } |
| 898 | |
| 899 | hs->state = state_read_server_key_exchange; |
| 900 | return ssl_hs_ok; |
| 901 | } |
| 902 | |
| 903 | static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) { |
| 904 | assert(hs->ssl->ctx->reverify_on_resume); |
| 905 | |
| 906 | switch (ssl_reverify_peer_cert(hs)) { |
| 907 | case ssl_verify_ok: |
| 908 | break; |
| 909 | case ssl_verify_invalid: |
| 910 | return ssl_hs_error; |
| 911 | case ssl_verify_retry: |
| 912 | hs->state = state_reverify_server_certificate; |
| 913 | return ssl_hs_certificate_verify; |
| 914 | } |
| 915 | |
| 916 | hs->state = state_read_session_ticket; |
| 917 | return ssl_hs_ok; |
| 918 | } |
| 919 | |
| 920 | static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) { |
| 921 | SSL *const ssl = hs->ssl; |
| 922 | SSLMessage msg; |
| 923 | if (!ssl->method->get_message(ssl, &msg)) { |
| 924 | return ssl_hs_read_message; |
| 925 | } |
| 926 | |
| 927 | if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) { |
| 928 | // Some ciphers (pure PSK) have an optional ServerKeyExchange message. |
| 929 | if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) { |
| 930 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
| 931 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| 932 | return ssl_hs_error; |
| 933 | } |
| 934 | |
| 935 | hs->state = state_read_certificate_request; |
| 936 | return ssl_hs_ok; |
| 937 | } |
| 938 | |
| 939 | if (!ssl_hash_message(hs, msg)) { |
| 940 | return ssl_hs_error; |
| 941 | } |
| 942 | |
| 943 | uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| 944 | uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| 945 | CBS server_key_exchange = msg.body; |
| 946 | if (alg_a & SSL_aPSK) { |
| 947 | CBS psk_identity_hint; |
| 948 | |
| 949 | // Each of the PSK key exchanges begins with a psk_identity_hint. |
| 950 | if (!CBS_get_u16_length_prefixed(&server_key_exchange, |
| 951 | &psk_identity_hint)) { |
| 952 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 953 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 954 | return ssl_hs_error; |
| 955 | } |
| 956 | |
| 957 | // Store the PSK identity hint for the ClientKeyExchange. Assume that the |
| 958 | // maximum length of a PSK identity hint can be as long as the maximum |
| 959 | // length of a PSK identity. Also do not allow NULL characters; identities |
| 960 | // are saved as C strings. |
| 961 | // |
| 962 | // TODO(davidben): Should invalid hints be ignored? It's a hint rather than |
| 963 | // a specific identity. |
| 964 | if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN || |
| 965 | CBS_contains_zero_byte(&psk_identity_hint)) { |
| 966 | OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| 967 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| 968 | return ssl_hs_error; |
| 969 | } |
| 970 | |
| 971 | // Save non-empty identity hints as a C string. Empty identity hints we |
| 972 | // treat as missing. Plain PSK makes it possible to send either no hint |
| 973 | // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell |
| 974 | // empty hint. Having different capabilities is odd, so we interpret empty |
| 975 | // and missing as identical. |
| 976 | char *raw = nullptr; |
| 977 | if (CBS_len(&psk_identity_hint) != 0 && |
| 978 | !CBS_strdup(&psk_identity_hint, &raw)) { |
| 979 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 980 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 981 | return ssl_hs_error; |
| 982 | } |
| 983 | hs->peer_psk_identity_hint.reset(raw); |
| 984 | } |
| 985 | |
| 986 | if (alg_k & SSL_kECDHE) { |
| 987 | // Parse the server parameters. |
| 988 | uint8_t group_type; |
| 989 | uint16_t group_id; |
| 990 | CBS point; |
| 991 | if (!CBS_get_u8(&server_key_exchange, &group_type) || |
| 992 | group_type != NAMED_CURVE_TYPE || |
| 993 | !CBS_get_u16(&server_key_exchange, &group_id) || |
| 994 | !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) { |
| 995 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 996 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 997 | return ssl_hs_error; |
| 998 | } |
| 999 | hs->new_session->group_id = group_id; |
| 1000 | |
| 1001 | // Ensure the group is consistent with preferences. |
| 1002 | if (!tls1_check_group_id(hs, group_id)) { |
| 1003 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); |
| 1004 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| 1005 | return ssl_hs_error; |
| 1006 | } |
| 1007 | |
| 1008 | // Initialize ECDH and save the peer public key for later. |
| 1009 | hs->key_shares[0] = SSLKeyShare::Create(group_id); |
| 1010 | if (!hs->key_shares[0] || |
| 1011 | !hs->peer_key.CopyFrom(point)) { |
| 1012 | return ssl_hs_error; |
| 1013 | } |
| 1014 | } else if (!(alg_k & SSL_kPSK)) { |
| 1015 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
| 1016 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| 1017 | return ssl_hs_error; |
| 1018 | } |
| 1019 | |
| 1020 | // At this point, |server_key_exchange| contains the signature, if any, while |
| 1021 | // |msg.body| contains the entire message. From that, derive a CBS containing |
| 1022 | // just the parameter. |
| 1023 | CBS parameter; |
| 1024 | CBS_init(¶meter, CBS_data(&msg.body), |
| 1025 | CBS_len(&msg.body) - CBS_len(&server_key_exchange)); |
| 1026 | |
| 1027 | // ServerKeyExchange should be signed by the server's public key. |
| 1028 | if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 1029 | uint16_t signature_algorithm = 0; |
| 1030 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
| 1031 | if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) { |
| 1032 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1033 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1034 | return ssl_hs_error; |
| 1035 | } |
| 1036 | uint8_t alert = SSL_AD_DECODE_ERROR; |
| 1037 | if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) { |
| 1038 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| 1039 | return ssl_hs_error; |
| 1040 | } |
| 1041 | hs->new_session->peer_signature_algorithm = signature_algorithm; |
| 1042 | } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, |
| 1043 | hs->peer_pubkey.get())) { |
| 1044 | OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); |
| 1045 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); |
| 1046 | return ssl_hs_error; |
| 1047 | } |
| 1048 | |
| 1049 | // The last field in |server_key_exchange| is the signature. |
| 1050 | CBS signature; |
| 1051 | if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) || |
| 1052 | CBS_len(&server_key_exchange) != 0) { |
| 1053 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1054 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1055 | return ssl_hs_error; |
| 1056 | } |
| 1057 | |
| 1058 | ScopedCBB transcript; |
| 1059 | Array<uint8_t> transcript_data; |
| 1060 | if (!CBB_init(transcript.get(), |
| 1061 | 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) || |
| 1062 | !CBB_add_bytes(transcript.get(), ssl->s3->client_random, |
| 1063 | SSL3_RANDOM_SIZE) || |
| 1064 | !CBB_add_bytes(transcript.get(), ssl->s3->server_random, |
| 1065 | SSL3_RANDOM_SIZE) || |
| 1066 | !CBB_add_bytes(transcript.get(), CBS_data(¶meter), |
| 1067 | CBS_len(¶meter)) || |
| 1068 | !CBBFinishArray(transcript.get(), &transcript_data)) { |
| 1069 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1070 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 1071 | return ssl_hs_error; |
| 1072 | } |
| 1073 | |
| 1074 | if (!ssl_public_key_verify(ssl, signature, signature_algorithm, |
| 1075 | hs->peer_pubkey.get(), transcript_data)) { |
| 1076 | // bad signature |
| 1077 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); |
| 1078 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| 1079 | return ssl_hs_error; |
| 1080 | } |
| 1081 | } else { |
| 1082 | // PSK ciphers are the only supported certificate-less ciphers. |
| 1083 | assert(alg_a == SSL_aPSK); |
| 1084 | |
| 1085 | if (CBS_len(&server_key_exchange) > 0) { |
| 1086 | OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE); |
| 1087 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1088 | return ssl_hs_error; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | ssl->method->next_message(ssl); |
| 1093 | hs->state = state_read_certificate_request; |
| 1094 | return ssl_hs_ok; |
| 1095 | } |
| 1096 | |
| 1097 | static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) { |
| 1098 | SSL *const ssl = hs->ssl; |
| 1099 | |
| 1100 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 1101 | hs->state = state_read_server_hello_done; |
| 1102 | return ssl_hs_ok; |
| 1103 | } |
| 1104 | |
| 1105 | SSLMessage msg; |
| 1106 | if (!ssl->method->get_message(ssl, &msg)) { |
| 1107 | return ssl_hs_read_message; |
| 1108 | } |
| 1109 | |
| 1110 | if (msg.type == SSL3_MT_SERVER_HELLO_DONE) { |
| 1111 | // If we get here we don't need the handshake buffer as we won't be doing |
| 1112 | // client auth. |
| 1113 | hs->transcript.FreeBuffer(); |
| 1114 | hs->state = state_read_server_hello_done; |
| 1115 | return ssl_hs_ok; |
| 1116 | } |
| 1117 | |
| 1118 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) || |
| 1119 | !ssl_hash_message(hs, msg)) { |
| 1120 | return ssl_hs_error; |
| 1121 | } |
| 1122 | |
| 1123 | // Get the certificate types. |
| 1124 | CBS body = msg.body, certificate_types; |
| 1125 | if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) { |
| 1126 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1127 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1128 | return ssl_hs_error; |
| 1129 | } |
| 1130 | |
| 1131 | if (!hs->certificate_types.CopyFrom(certificate_types)) { |
| 1132 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 1133 | return ssl_hs_error; |
| 1134 | } |
| 1135 | |
| 1136 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
| 1137 | CBS supported_signature_algorithms; |
| 1138 | if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) || |
| 1139 | !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) { |
| 1140 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1141 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1142 | return ssl_hs_error; |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | uint8_t alert = SSL_AD_DECODE_ERROR; |
| 1147 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names = |
| 1148 | ssl_parse_client_CA_list(ssl, &alert, &body); |
| 1149 | if (!ca_names) { |
| 1150 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| 1151 | return ssl_hs_error; |
| 1152 | } |
| 1153 | |
| 1154 | if (CBS_len(&body) != 0) { |
| 1155 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1156 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1157 | return ssl_hs_error; |
| 1158 | } |
| 1159 | |
| 1160 | hs->cert_request = true; |
| 1161 | hs->ca_names = std::move(ca_names); |
| 1162 | ssl->ctx->x509_method->hs_flush_cached_ca_names(hs); |
| 1163 | |
| 1164 | ssl->method->next_message(ssl); |
| 1165 | hs->state = state_read_server_hello_done; |
| 1166 | return ssl_hs_ok; |
| 1167 | } |
| 1168 | |
| 1169 | static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) { |
| 1170 | SSL *const ssl = hs->ssl; |
| 1171 | SSLMessage msg; |
| 1172 | if (!ssl->method->get_message(ssl, &msg)) { |
| 1173 | return ssl_hs_read_message; |
| 1174 | } |
| 1175 | |
| 1176 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) || |
| 1177 | !ssl_hash_message(hs, msg)) { |
| 1178 | return ssl_hs_error; |
| 1179 | } |
| 1180 | |
| 1181 | // ServerHelloDone is empty. |
| 1182 | if (CBS_len(&msg.body) != 0) { |
| 1183 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1184 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1185 | return ssl_hs_error; |
| 1186 | } |
| 1187 | |
| 1188 | ssl->method->next_message(ssl); |
| 1189 | hs->state = state_send_client_certificate; |
| 1190 | return ssl_hs_ok; |
| 1191 | } |
| 1192 | |
| 1193 | static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) { |
| 1194 | SSL *const ssl = hs->ssl; |
| 1195 | |
| 1196 | // The peer didn't request a certificate. |
| 1197 | if (!hs->cert_request) { |
| 1198 | hs->state = state_send_client_key_exchange; |
| 1199 | return ssl_hs_ok; |
| 1200 | } |
| 1201 | |
| 1202 | // Call cert_cb to update the certificate. |
| 1203 | if (hs->config->cert->cert_cb != NULL) { |
| 1204 | int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg); |
| 1205 | if (rv == 0) { |
| 1206 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| 1207 | OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); |
| 1208 | return ssl_hs_error; |
| 1209 | } |
| 1210 | if (rv < 0) { |
| 1211 | hs->state = state_send_client_certificate; |
| 1212 | return ssl_hs_x509_lookup; |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | if (!ssl_has_certificate(hs)) { |
| 1217 | // Without a client certificate, the handshake buffer may be released. |
| 1218 | hs->transcript.FreeBuffer(); |
| 1219 | } |
| 1220 | |
| 1221 | if (!ssl_on_certificate_selected(hs) || |
| 1222 | !ssl_output_cert_chain(hs)) { |
| 1223 | return ssl_hs_error; |
| 1224 | } |
| 1225 | |
| 1226 | |
| 1227 | hs->state = state_send_client_key_exchange; |
| 1228 | return ssl_hs_ok; |
| 1229 | } |
| 1230 | |
| 1231 | static_assert(sizeof(size_t) >= sizeof(unsigned), |
| 1232 | "size_t is smaller than unsigned" ); |
| 1233 | |
| 1234 | static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) { |
| 1235 | SSL *const ssl = hs->ssl; |
| 1236 | ScopedCBB cbb; |
| 1237 | CBB body; |
| 1238 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| 1239 | SSL3_MT_CLIENT_KEY_EXCHANGE)) { |
| 1240 | return ssl_hs_error; |
| 1241 | } |
| 1242 | |
| 1243 | Array<uint8_t> pms; |
| 1244 | uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| 1245 | uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| 1246 | if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| 1247 | CRYPTO_BUFFER *leaf = |
| 1248 | sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0); |
| 1249 | CBS leaf_cbs; |
| 1250 | CBS_init(&leaf_cbs, CRYPTO_BUFFER_data(leaf), CRYPTO_BUFFER_len(leaf)); |
| 1251 | |
| 1252 | // Check the key usage matches the cipher suite. We do this unconditionally |
| 1253 | // for non-RSA certificates. In particular, it's needed to distinguish ECDH |
| 1254 | // certificates, which we do not support, from ECDSA certificates. |
| 1255 | // Historically, we have not checked RSA key usages, so it is controlled by |
| 1256 | // a flag for now. See https://crbug.com/795089. |
| 1257 | ssl_key_usage_t intended_use = (alg_k & SSL_kRSA) |
| 1258 | ? key_usage_encipherment |
| 1259 | : key_usage_digital_signature; |
| 1260 | if (ssl->config->enforce_rsa_key_usage || |
| 1261 | EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) { |
| 1262 | if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) { |
| 1263 | return ssl_hs_error; |
| 1264 | } |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | // If using a PSK key exchange, prepare the pre-shared key. |
| 1269 | unsigned psk_len = 0; |
| 1270 | uint8_t psk[PSK_MAX_PSK_LEN]; |
| 1271 | if (alg_a & SSL_aPSK) { |
| 1272 | if (hs->config->psk_client_callback == NULL) { |
| 1273 | OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB); |
| 1274 | return ssl_hs_error; |
| 1275 | } |
| 1276 | |
| 1277 | char identity[PSK_MAX_IDENTITY_LEN + 1]; |
| 1278 | OPENSSL_memset(identity, 0, sizeof(identity)); |
| 1279 | psk_len = hs->config->psk_client_callback( |
| 1280 | ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk, |
| 1281 | sizeof(psk)); |
| 1282 | if (psk_len == 0) { |
| 1283 | OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
| 1284 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| 1285 | return ssl_hs_error; |
| 1286 | } |
| 1287 | assert(psk_len <= PSK_MAX_PSK_LEN); |
| 1288 | |
| 1289 | hs->new_session->psk_identity.reset(BUF_strdup(identity)); |
| 1290 | if (hs->new_session->psk_identity == nullptr) { |
| 1291 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 1292 | return ssl_hs_error; |
| 1293 | } |
| 1294 | |
| 1295 | // Write out psk_identity. |
| 1296 | CBB child; |
| 1297 | if (!CBB_add_u16_length_prefixed(&body, &child) || |
| 1298 | !CBB_add_bytes(&child, (const uint8_t *)identity, |
| 1299 | OPENSSL_strnlen(identity, sizeof(identity))) || |
| 1300 | !CBB_flush(&body)) { |
| 1301 | return ssl_hs_error; |
| 1302 | } |
| 1303 | } |
| 1304 | |
| 1305 | // Depending on the key exchange method, compute |pms|. |
| 1306 | if (alg_k & SSL_kRSA) { |
| 1307 | if (!pms.Init(SSL_MAX_MASTER_KEY_LENGTH)) { |
| 1308 | return ssl_hs_error; |
| 1309 | } |
| 1310 | |
| 1311 | RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get()); |
| 1312 | if (rsa == NULL) { |
| 1313 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1314 | return ssl_hs_error; |
| 1315 | } |
| 1316 | |
| 1317 | pms[0] = hs->client_version >> 8; |
| 1318 | pms[1] = hs->client_version & 0xff; |
| 1319 | if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) { |
| 1320 | return ssl_hs_error; |
| 1321 | } |
| 1322 | |
| 1323 | CBB enc_pms; |
| 1324 | uint8_t *ptr; |
| 1325 | size_t enc_pms_len; |
| 1326 | if (!CBB_add_u16_length_prefixed(&body, &enc_pms) || |
| 1327 | !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) || |
| 1328 | !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(), |
| 1329 | pms.size(), RSA_PKCS1_PADDING) || |
| 1330 | !CBB_did_write(&enc_pms, enc_pms_len) || |
| 1331 | !CBB_flush(&body)) { |
| 1332 | return ssl_hs_error; |
| 1333 | } |
| 1334 | } else if (alg_k & SSL_kECDHE) { |
| 1335 | // Generate a keypair and serialize the public half. |
| 1336 | CBB child; |
| 1337 | if (!CBB_add_u8_length_prefixed(&body, &child)) { |
| 1338 | return ssl_hs_error; |
| 1339 | } |
| 1340 | |
| 1341 | // Compute the premaster. |
| 1342 | uint8_t alert = SSL_AD_DECODE_ERROR; |
| 1343 | if (!hs->key_shares[0]->Accept(&child, &pms, &alert, hs->peer_key)) { |
| 1344 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| 1345 | return ssl_hs_error; |
| 1346 | } |
| 1347 | if (!CBB_flush(&body)) { |
| 1348 | return ssl_hs_error; |
| 1349 | } |
| 1350 | |
| 1351 | // The key exchange state may now be discarded. |
| 1352 | hs->key_shares[0].reset(); |
| 1353 | hs->key_shares[1].reset(); |
| 1354 | hs->peer_key.Reset(); |
| 1355 | } else if (alg_k & SSL_kPSK) { |
| 1356 | // For plain PSK, other_secret is a block of 0s with the same length as |
| 1357 | // the pre-shared key. |
| 1358 | if (!pms.Init(psk_len)) { |
| 1359 | return ssl_hs_error; |
| 1360 | } |
| 1361 | OPENSSL_memset(pms.data(), 0, pms.size()); |
| 1362 | } else { |
| 1363 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| 1364 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1365 | return ssl_hs_error; |
| 1366 | } |
| 1367 | |
| 1368 | // For a PSK cipher suite, other_secret is combined with the pre-shared |
| 1369 | // key. |
| 1370 | if (alg_a & SSL_aPSK) { |
| 1371 | ScopedCBB pms_cbb; |
| 1372 | CBB child; |
| 1373 | if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) || |
| 1374 | !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) || |
| 1375 | !CBB_add_bytes(&child, pms.data(), pms.size()) || |
| 1376 | !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) || |
| 1377 | !CBB_add_bytes(&child, psk, psk_len) || |
| 1378 | !CBBFinishArray(pms_cbb.get(), &pms)) { |
| 1379 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 1380 | return ssl_hs_error; |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | // The message must be added to the finished hash before calculating the |
| 1385 | // master secret. |
| 1386 | if (!ssl_add_message_cbb(ssl, cbb.get())) { |
| 1387 | return ssl_hs_error; |
| 1388 | } |
| 1389 | |
| 1390 | hs->new_session->master_key_length = |
| 1391 | tls1_generate_master_secret(hs, hs->new_session->master_key, pms); |
| 1392 | if (hs->new_session->master_key_length == 0) { |
| 1393 | return ssl_hs_error; |
| 1394 | } |
| 1395 | hs->new_session->extended_master_secret = hs->extended_master_secret; |
| 1396 | |
| 1397 | hs->state = state_send_client_certificate_verify; |
| 1398 | return ssl_hs_ok; |
| 1399 | } |
| 1400 | |
| 1401 | static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) { |
| 1402 | SSL *const ssl = hs->ssl; |
| 1403 | |
| 1404 | if (!hs->cert_request || !ssl_has_certificate(hs)) { |
| 1405 | hs->state = state_send_client_finished; |
| 1406 | return ssl_hs_ok; |
| 1407 | } |
| 1408 | |
| 1409 | assert(ssl_has_private_key(hs)); |
| 1410 | ScopedCBB cbb; |
| 1411 | CBB body, child; |
| 1412 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| 1413 | SSL3_MT_CERTIFICATE_VERIFY)) { |
| 1414 | return ssl_hs_error; |
| 1415 | } |
| 1416 | |
| 1417 | uint16_t signature_algorithm; |
| 1418 | if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) { |
| 1419 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| 1420 | return ssl_hs_error; |
| 1421 | } |
| 1422 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
| 1423 | // Write out the digest type in TLS 1.2. |
| 1424 | if (!CBB_add_u16(&body, signature_algorithm)) { |
| 1425 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1426 | return ssl_hs_error; |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | // Set aside space for the signature. |
| 1431 | const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get()); |
| 1432 | uint8_t *ptr; |
| 1433 | if (!CBB_add_u16_length_prefixed(&body, &child) || |
| 1434 | !CBB_reserve(&child, &ptr, max_sig_len)) { |
| 1435 | return ssl_hs_error; |
| 1436 | } |
| 1437 | |
| 1438 | size_t sig_len = max_sig_len; |
| 1439 | switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, |
| 1440 | signature_algorithm, |
| 1441 | hs->transcript.buffer())) { |
| 1442 | case ssl_private_key_success: |
| 1443 | break; |
| 1444 | case ssl_private_key_failure: |
| 1445 | return ssl_hs_error; |
| 1446 | case ssl_private_key_retry: |
| 1447 | hs->state = state_send_client_certificate_verify; |
| 1448 | return ssl_hs_private_key_operation; |
| 1449 | } |
| 1450 | |
| 1451 | if (!CBB_did_write(&child, sig_len) || |
| 1452 | !ssl_add_message_cbb(ssl, cbb.get())) { |
| 1453 | return ssl_hs_error; |
| 1454 | } |
| 1455 | |
| 1456 | // The handshake buffer is no longer necessary. |
| 1457 | hs->transcript.FreeBuffer(); |
| 1458 | |
| 1459 | hs->state = state_send_client_finished; |
| 1460 | return ssl_hs_ok; |
| 1461 | } |
| 1462 | |
| 1463 | static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) { |
| 1464 | SSL *const ssl = hs->ssl; |
| 1465 | // Resolve Channel ID first, before any non-idempotent operations. |
| 1466 | if (ssl->s3->channel_id_valid) { |
| 1467 | if (!ssl_do_channel_id_callback(hs)) { |
| 1468 | return ssl_hs_error; |
| 1469 | } |
| 1470 | |
| 1471 | if (hs->config->channel_id_private == NULL) { |
| 1472 | hs->state = state_send_client_finished; |
| 1473 | return ssl_hs_channel_id_lookup; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | if (!ssl->method->add_change_cipher_spec(ssl) || |
| 1478 | !tls1_change_cipher_state(hs, evp_aead_seal)) { |
| 1479 | return ssl_hs_error; |
| 1480 | } |
| 1481 | |
| 1482 | if (hs->next_proto_neg_seen) { |
| 1483 | static const uint8_t kZero[32] = {0}; |
| 1484 | size_t padding_len = |
| 1485 | 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32); |
| 1486 | |
| 1487 | ScopedCBB cbb; |
| 1488 | CBB body, child; |
| 1489 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) || |
| 1490 | !CBB_add_u8_length_prefixed(&body, &child) || |
| 1491 | !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(), |
| 1492 | ssl->s3->next_proto_negotiated.size()) || |
| 1493 | !CBB_add_u8_length_prefixed(&body, &child) || |
| 1494 | !CBB_add_bytes(&child, kZero, padding_len) || |
| 1495 | !ssl_add_message_cbb(ssl, cbb.get())) { |
| 1496 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1497 | return ssl_hs_error; |
| 1498 | } |
| 1499 | } |
| 1500 | |
| 1501 | if (ssl->s3->channel_id_valid) { |
| 1502 | ScopedCBB cbb; |
| 1503 | CBB body; |
| 1504 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) || |
| 1505 | !tls1_write_channel_id(hs, &body) || |
| 1506 | !ssl_add_message_cbb(ssl, cbb.get())) { |
| 1507 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1508 | return ssl_hs_error; |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | if (!ssl_send_finished(hs)) { |
| 1513 | return ssl_hs_error; |
| 1514 | } |
| 1515 | |
| 1516 | hs->state = state_finish_flight; |
| 1517 | return ssl_hs_flush; |
| 1518 | } |
| 1519 | |
| 1520 | static bool can_false_start(const SSL_HANDSHAKE *hs) { |
| 1521 | SSL *const ssl = hs->ssl; |
| 1522 | |
| 1523 | // False Start bypasses the Finished check's downgrade protection. This can |
| 1524 | // enable attacks where we send data under weaker settings than supported |
| 1525 | // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD |
| 1526 | // cipher, our strongest settings before TLS 1.3. |
| 1527 | // |
| 1528 | // Now that TLS 1.3 exists, we would like to avoid similar attacks between |
| 1529 | // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to |
| 1530 | // sacrifice False Start on them. TLS 1.3's downgrade signal fixes this, but |
| 1531 | // |SSL_CTX_set_ignore_tls13_downgrade| can disable it due to compatibility |
| 1532 | // issues. |
| 1533 | // |
| 1534 | // |SSL_CTX_set_ignore_tls13_downgrade| normally still retains Finished-based |
| 1535 | // downgrade protection, but False Start bypasses that. Thus, we disable False |
| 1536 | // Start based on the TLS 1.3 downgrade signal, even if otherwise unenforced. |
| 1537 | if (SSL_is_dtls(ssl) || |
| 1538 | SSL_version(ssl) != TLS1_2_VERSION || |
| 1539 | hs->new_cipher->algorithm_mkey != SSL_kECDHE || |
| 1540 | hs->new_cipher->algorithm_mac != SSL_AEAD || |
| 1541 | ssl->s3->tls13_downgrade) { |
| 1542 | return false; |
| 1543 | } |
| 1544 | |
| 1545 | // Additionally require ALPN or NPN by default. |
| 1546 | // |
| 1547 | // TODO(davidben): Can this constraint be relaxed globally now that cipher |
| 1548 | // suite requirements have been tightened? |
| 1549 | if (!ssl->ctx->false_start_allowed_without_alpn && |
| 1550 | ssl->s3->alpn_selected.empty() && |
| 1551 | ssl->s3->next_proto_negotiated.empty()) { |
| 1552 | return false; |
| 1553 | } |
| 1554 | |
| 1555 | return true; |
| 1556 | } |
| 1557 | |
| 1558 | static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) { |
| 1559 | SSL *const ssl = hs->ssl; |
| 1560 | if (ssl->session != NULL) { |
| 1561 | hs->state = state_finish_client_handshake; |
| 1562 | return ssl_hs_ok; |
| 1563 | } |
| 1564 | |
| 1565 | // This is a full handshake. If it involves ChannelID, then record the |
| 1566 | // handshake hashes at this point in the session so that any resumption of |
| 1567 | // this session with ChannelID can sign those hashes. |
| 1568 | if (!tls1_record_handshake_hashes_for_channel_id(hs)) { |
| 1569 | return ssl_hs_error; |
| 1570 | } |
| 1571 | |
| 1572 | hs->state = state_read_session_ticket; |
| 1573 | |
| 1574 | if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) && |
| 1575 | can_false_start(hs) && |
| 1576 | // No False Start on renegotiation (would complicate the state machine). |
| 1577 | !ssl->s3->initial_handshake_complete) { |
| 1578 | hs->in_false_start = true; |
| 1579 | hs->can_early_write = true; |
| 1580 | return ssl_hs_early_return; |
| 1581 | } |
| 1582 | |
| 1583 | return ssl_hs_ok; |
| 1584 | } |
| 1585 | |
| 1586 | static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) { |
| 1587 | SSL *const ssl = hs->ssl; |
| 1588 | |
| 1589 | if (!hs->ticket_expected) { |
| 1590 | hs->state = state_process_change_cipher_spec; |
| 1591 | return ssl_hs_read_change_cipher_spec; |
| 1592 | } |
| 1593 | |
| 1594 | SSLMessage msg; |
| 1595 | if (!ssl->method->get_message(ssl, &msg)) { |
| 1596 | return ssl_hs_read_message; |
| 1597 | } |
| 1598 | |
| 1599 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) || |
| 1600 | !ssl_hash_message(hs, msg)) { |
| 1601 | return ssl_hs_error; |
| 1602 | } |
| 1603 | |
| 1604 | CBS new_session_ticket = msg.body, ticket; |
| 1605 | uint32_t ticket_lifetime_hint; |
| 1606 | if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) || |
| 1607 | !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) || |
| 1608 | CBS_len(&new_session_ticket) != 0) { |
| 1609 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| 1610 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 1611 | return ssl_hs_error; |
| 1612 | } |
| 1613 | |
| 1614 | if (CBS_len(&ticket) == 0) { |
| 1615 | // RFC 5077 allows a server to change its mind and send no ticket after |
| 1616 | // negotiating the extension. The value of |ticket_expected| is checked in |
| 1617 | // |ssl_update_cache| so is cleared here to avoid an unnecessary update. |
| 1618 | hs->ticket_expected = false; |
| 1619 | ssl->method->next_message(ssl); |
| 1620 | hs->state = state_process_change_cipher_spec; |
| 1621 | return ssl_hs_read_change_cipher_spec; |
| 1622 | } |
| 1623 | |
| 1624 | SSL_SESSION *session = hs->new_session.get(); |
| 1625 | UniquePtr<SSL_SESSION> renewed_session; |
| 1626 | if (ssl->session != NULL) { |
| 1627 | // The server is sending a new ticket for an existing session. Sessions are |
| 1628 | // immutable once established, so duplicate all but the ticket of the |
| 1629 | // existing session. |
| 1630 | renewed_session = |
| 1631 | SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH); |
| 1632 | if (!renewed_session) { |
| 1633 | // This should never happen. |
| 1634 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 1635 | return ssl_hs_error; |
| 1636 | } |
| 1637 | session = renewed_session.get(); |
| 1638 | } |
| 1639 | |
| 1640 | // |ticket_lifetime_hint| is measured from when the ticket was issued. |
| 1641 | ssl_session_rebase_time(ssl, session); |
| 1642 | |
| 1643 | if (!session->ticket.CopyFrom(ticket)) { |
| 1644 | return ssl_hs_error; |
| 1645 | } |
| 1646 | session->ticket_lifetime_hint = ticket_lifetime_hint; |
| 1647 | |
| 1648 | // Generate a session ID for this session. Some callers expect all sessions to |
| 1649 | // have a session ID. Additionally, it acts as the session ID to signal |
| 1650 | // resumption. |
| 1651 | SHA256(CBS_data(&ticket), CBS_len(&ticket), session->session_id); |
| 1652 | session->session_id_length = SHA256_DIGEST_LENGTH; |
| 1653 | |
| 1654 | if (renewed_session) { |
| 1655 | session->not_resumable = false; |
| 1656 | ssl->session = std::move(renewed_session); |
| 1657 | } |
| 1658 | |
| 1659 | ssl->method->next_message(ssl); |
| 1660 | hs->state = state_process_change_cipher_spec; |
| 1661 | return ssl_hs_read_change_cipher_spec; |
| 1662 | } |
| 1663 | |
| 1664 | static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { |
| 1665 | if (!tls1_change_cipher_state(hs, evp_aead_open)) { |
| 1666 | return ssl_hs_error; |
| 1667 | } |
| 1668 | |
| 1669 | hs->state = state_read_server_finished; |
| 1670 | return ssl_hs_ok; |
| 1671 | } |
| 1672 | |
| 1673 | static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) { |
| 1674 | SSL *const ssl = hs->ssl; |
| 1675 | enum ssl_hs_wait_t wait = ssl_get_finished(hs); |
| 1676 | if (wait != ssl_hs_ok) { |
| 1677 | return wait; |
| 1678 | } |
| 1679 | |
| 1680 | if (ssl->session != NULL) { |
| 1681 | hs->state = state_send_client_finished; |
| 1682 | return ssl_hs_ok; |
| 1683 | } |
| 1684 | |
| 1685 | hs->state = state_finish_client_handshake; |
| 1686 | return ssl_hs_ok; |
| 1687 | } |
| 1688 | |
| 1689 | static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) { |
| 1690 | SSL *const ssl = hs->ssl; |
| 1691 | |
| 1692 | ssl->method->on_handshake_complete(ssl); |
| 1693 | |
| 1694 | if (ssl->session != NULL) { |
| 1695 | ssl->s3->established_session = UpRef(ssl->session); |
| 1696 | } else { |
| 1697 | // We make a copy of the session in order to maintain the immutability |
| 1698 | // of the new established_session due to False Start. The caller may |
| 1699 | // have taken a reference to the temporary session. |
| 1700 | ssl->s3->established_session = |
| 1701 | SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL); |
| 1702 | if (!ssl->s3->established_session) { |
| 1703 | return ssl_hs_error; |
| 1704 | } |
| 1705 | // Renegotiations do not participate in session resumption. |
| 1706 | if (!ssl->s3->initial_handshake_complete) { |
| 1707 | ssl->s3->established_session->not_resumable = false; |
| 1708 | } |
| 1709 | |
| 1710 | hs->new_session.reset(); |
| 1711 | } |
| 1712 | |
| 1713 | hs->handshake_finalized = true; |
| 1714 | ssl->s3->initial_handshake_complete = true; |
| 1715 | ssl_update_cache(hs, SSL_SESS_CACHE_CLIENT); |
| 1716 | |
| 1717 | hs->state = state_done; |
| 1718 | return ssl_hs_ok; |
| 1719 | } |
| 1720 | |
| 1721 | enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) { |
| 1722 | while (hs->state != state_done) { |
| 1723 | enum ssl_hs_wait_t ret = ssl_hs_error; |
| 1724 | enum ssl_client_hs_state_t state = |
| 1725 | static_cast<enum ssl_client_hs_state_t>(hs->state); |
| 1726 | switch (state) { |
| 1727 | case state_start_connect: |
| 1728 | ret = do_start_connect(hs); |
| 1729 | break; |
| 1730 | case state_enter_early_data: |
| 1731 | ret = do_enter_early_data(hs); |
| 1732 | break; |
| 1733 | case state_early_reverify_server_certificate: |
| 1734 | ret = do_early_reverify_server_certificate(hs); |
| 1735 | break; |
| 1736 | case state_read_hello_verify_request: |
| 1737 | ret = do_read_hello_verify_request(hs); |
| 1738 | break; |
| 1739 | case state_read_server_hello: |
| 1740 | ret = do_read_server_hello(hs); |
| 1741 | break; |
| 1742 | case state_tls13: |
| 1743 | ret = do_tls13(hs); |
| 1744 | break; |
| 1745 | case state_read_server_certificate: |
| 1746 | ret = do_read_server_certificate(hs); |
| 1747 | break; |
| 1748 | case state_read_certificate_status: |
| 1749 | ret = do_read_certificate_status(hs); |
| 1750 | break; |
| 1751 | case state_verify_server_certificate: |
| 1752 | ret = do_verify_server_certificate(hs); |
| 1753 | break; |
| 1754 | case state_reverify_server_certificate: |
| 1755 | ret = do_reverify_server_certificate(hs); |
| 1756 | break; |
| 1757 | case state_read_server_key_exchange: |
| 1758 | ret = do_read_server_key_exchange(hs); |
| 1759 | break; |
| 1760 | case state_read_certificate_request: |
| 1761 | ret = do_read_certificate_request(hs); |
| 1762 | break; |
| 1763 | case state_read_server_hello_done: |
| 1764 | ret = do_read_server_hello_done(hs); |
| 1765 | break; |
| 1766 | case state_send_client_certificate: |
| 1767 | ret = do_send_client_certificate(hs); |
| 1768 | break; |
| 1769 | case state_send_client_key_exchange: |
| 1770 | ret = do_send_client_key_exchange(hs); |
| 1771 | break; |
| 1772 | case state_send_client_certificate_verify: |
| 1773 | ret = do_send_client_certificate_verify(hs); |
| 1774 | break; |
| 1775 | case state_send_client_finished: |
| 1776 | ret = do_send_client_finished(hs); |
| 1777 | break; |
| 1778 | case state_finish_flight: |
| 1779 | ret = do_finish_flight(hs); |
| 1780 | break; |
| 1781 | case state_read_session_ticket: |
| 1782 | ret = do_read_session_ticket(hs); |
| 1783 | break; |
| 1784 | case state_process_change_cipher_spec: |
| 1785 | ret = do_process_change_cipher_spec(hs); |
| 1786 | break; |
| 1787 | case state_read_server_finished: |
| 1788 | ret = do_read_server_finished(hs); |
| 1789 | break; |
| 1790 | case state_finish_client_handshake: |
| 1791 | ret = do_finish_client_handshake(hs); |
| 1792 | break; |
| 1793 | case state_done: |
| 1794 | ret = ssl_hs_ok; |
| 1795 | break; |
| 1796 | } |
| 1797 | |
| 1798 | if (hs->state != state) { |
| 1799 | ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1); |
| 1800 | } |
| 1801 | |
| 1802 | if (ret != ssl_hs_ok) { |
| 1803 | return ret; |
| 1804 | } |
| 1805 | } |
| 1806 | |
| 1807 | ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); |
| 1808 | return ssl_hs_ok; |
| 1809 | } |
| 1810 | |
| 1811 | const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) { |
| 1812 | enum ssl_client_hs_state_t state = |
| 1813 | static_cast<enum ssl_client_hs_state_t>(hs->state); |
| 1814 | switch (state) { |
| 1815 | case state_start_connect: |
| 1816 | return "TLS client start_connect" ; |
| 1817 | case state_enter_early_data: |
| 1818 | return "TLS client enter_early_data" ; |
| 1819 | case state_early_reverify_server_certificate: |
| 1820 | return "TLS client early_reverify_server_certificate" ; |
| 1821 | case state_read_hello_verify_request: |
| 1822 | return "TLS client read_hello_verify_request" ; |
| 1823 | case state_read_server_hello: |
| 1824 | return "TLS client read_server_hello" ; |
| 1825 | case state_tls13: |
| 1826 | return tls13_client_handshake_state(hs); |
| 1827 | case state_read_server_certificate: |
| 1828 | return "TLS client read_server_certificate" ; |
| 1829 | case state_read_certificate_status: |
| 1830 | return "TLS client read_certificate_status" ; |
| 1831 | case state_verify_server_certificate: |
| 1832 | return "TLS client verify_server_certificate" ; |
| 1833 | case state_reverify_server_certificate: |
| 1834 | return "TLS client reverify_server_certificate" ; |
| 1835 | case state_read_server_key_exchange: |
| 1836 | return "TLS client read_server_key_exchange" ; |
| 1837 | case state_read_certificate_request: |
| 1838 | return "TLS client read_certificate_request" ; |
| 1839 | case state_read_server_hello_done: |
| 1840 | return "TLS client read_server_hello_done" ; |
| 1841 | case state_send_client_certificate: |
| 1842 | return "TLS client send_client_certificate" ; |
| 1843 | case state_send_client_key_exchange: |
| 1844 | return "TLS client send_client_key_exchange" ; |
| 1845 | case state_send_client_certificate_verify: |
| 1846 | return "TLS client send_client_certificate_verify" ; |
| 1847 | case state_send_client_finished: |
| 1848 | return "TLS client send_client_finished" ; |
| 1849 | case state_finish_flight: |
| 1850 | return "TLS client finish_flight" ; |
| 1851 | case state_read_session_ticket: |
| 1852 | return "TLS client read_session_ticket" ; |
| 1853 | case state_process_change_cipher_spec: |
| 1854 | return "TLS client process_change_cipher_spec" ; |
| 1855 | case state_read_server_finished: |
| 1856 | return "TLS client read_server_finished" ; |
| 1857 | case state_finish_client_handshake: |
| 1858 | return "TLS client finish_client_handshake" ; |
| 1859 | case state_done: |
| 1860 | return "TLS client done" ; |
| 1861 | } |
| 1862 | |
| 1863 | return "TLS client unknown" ; |
| 1864 | } |
| 1865 | |
| 1866 | BSSL_NAMESPACE_END |
| 1867 | |