1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110/* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123/* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE. */
148
149#include <openssl/ssl.h>
150
151#include <assert.h>
152#include <string.h>
153
154#include <openssl/bn.h>
155#include <openssl/buf.h>
156#include <openssl/bytestring.h>
157#include <openssl/cipher.h>
158#include <openssl/ec.h>
159#include <openssl/ecdsa.h>
160#include <openssl/err.h>
161#include <openssl/evp.h>
162#include <openssl/hmac.h>
163#include <openssl/md5.h>
164#include <openssl/mem.h>
165#include <openssl/nid.h>
166#include <openssl/rand.h>
167#include <openssl/x509.h>
168
169#include "internal.h"
170#include "../crypto/internal.h"
171
172
173BSSL_NAMESPACE_BEGIN
174
175bool ssl_client_cipher_list_contains_cipher(
176 const SSL_CLIENT_HELLO *client_hello, uint16_t id) {
177 CBS cipher_suites;
178 CBS_init(&cipher_suites, client_hello->cipher_suites,
179 client_hello->cipher_suites_len);
180
181 while (CBS_len(&cipher_suites) > 0) {
182 uint16_t got_id;
183 if (!CBS_get_u16(&cipher_suites, &got_id)) {
184 return false;
185 }
186
187 if (got_id == id) {
188 return true;
189 }
190 }
191
192 return false;
193}
194
195static bool negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
196 const SSL_CLIENT_HELLO *client_hello) {
197 SSL *const ssl = hs->ssl;
198 assert(!ssl->s3->have_version);
199 CBS supported_versions, versions;
200 if (ssl_client_hello_get_extension(client_hello, &supported_versions,
201 TLSEXT_TYPE_supported_versions)) {
202 if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) ||
203 CBS_len(&supported_versions) != 0 ||
204 CBS_len(&versions) == 0) {
205 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
206 *out_alert = SSL_AD_DECODE_ERROR;
207 return false;
208 }
209 } else {
210 // Convert the ClientHello version to an equivalent supported_versions
211 // extension.
212 static const uint8_t kTLSVersions[] = {
213 0x03, 0x03, // TLS 1.2
214 0x03, 0x02, // TLS 1.1
215 0x03, 0x01, // TLS 1
216 };
217
218 static const uint8_t kDTLSVersions[] = {
219 0xfe, 0xfd, // DTLS 1.2
220 0xfe, 0xff, // DTLS 1.0
221 };
222
223 size_t versions_len = 0;
224 if (SSL_is_dtls(ssl)) {
225 if (client_hello->version <= DTLS1_2_VERSION) {
226 versions_len = 4;
227 } else if (client_hello->version <= DTLS1_VERSION) {
228 versions_len = 2;
229 }
230 CBS_init(&versions, kDTLSVersions + sizeof(kDTLSVersions) - versions_len,
231 versions_len);
232 } else {
233 if (client_hello->version >= TLS1_2_VERSION) {
234 versions_len = 6;
235 } else if (client_hello->version >= TLS1_1_VERSION) {
236 versions_len = 4;
237 } else if (client_hello->version >= TLS1_VERSION) {
238 versions_len = 2;
239 }
240 CBS_init(&versions, kTLSVersions + sizeof(kTLSVersions) - versions_len,
241 versions_len);
242 }
243 }
244
245 if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) {
246 return false;
247 }
248
249 // At this point, the connection's version is known and |ssl->version| is
250 // fixed. Begin enforcing the record-layer version.
251 ssl->s3->have_version = true;
252 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
253
254 // Handle FALLBACK_SCSV.
255 if (ssl_client_cipher_list_contains_cipher(client_hello,
256 SSL3_CK_FALLBACK_SCSV & 0xffff) &&
257 ssl_protocol_version(ssl) < hs->max_version) {
258 OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK);
259 *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK;
260 return false;
261 }
262
263 return true;
264}
265
266static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list(
267 const SSL_CLIENT_HELLO *client_hello) {
268 CBS cipher_suites;
269 CBS_init(&cipher_suites, client_hello->cipher_suites,
270 client_hello->cipher_suites_len);
271
272 UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null());
273 if (!sk) {
274 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
275 return nullptr;
276 }
277
278 while (CBS_len(&cipher_suites) > 0) {
279 uint16_t cipher_suite;
280
281 if (!CBS_get_u16(&cipher_suites, &cipher_suite)) {
282 OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
283 return nullptr;
284 }
285
286 const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite);
287 if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) {
288 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
289 return nullptr;
290 }
291 }
292
293 return sk;
294}
295
296// ssl_get_compatible_server_ciphers determines the key exchange and
297// authentication cipher suite masks compatible with the server configuration
298// and current ClientHello parameters of |hs|. It sets |*out_mask_k| to the key
299// exchange mask and |*out_mask_a| to the authentication mask.
300static void ssl_get_compatible_server_ciphers(SSL_HANDSHAKE *hs,
301 uint32_t *out_mask_k,
302 uint32_t *out_mask_a) {
303 uint32_t mask_k = 0;
304 uint32_t mask_a = 0;
305
306 if (ssl_has_certificate(hs)) {
307 mask_a |= ssl_cipher_auth_mask_for_key(hs->local_pubkey.get());
308 if (EVP_PKEY_id(hs->local_pubkey.get()) == EVP_PKEY_RSA) {
309 mask_k |= SSL_kRSA;
310 }
311 }
312
313 // Check for a shared group to consider ECDHE ciphers.
314 uint16_t unused;
315 if (tls1_get_shared_group(hs, &unused)) {
316 mask_k |= SSL_kECDHE;
317 }
318
319 // PSK requires a server callback.
320 if (hs->config->psk_server_callback != NULL) {
321 mask_k |= SSL_kPSK;
322 mask_a |= SSL_aPSK;
323 }
324
325 *out_mask_k = mask_k;
326 *out_mask_a = mask_a;
327}
328
329static const SSL_CIPHER *ssl3_choose_cipher(
330 SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello,
331 const SSLCipherPreferenceList *server_pref) {
332 SSL *const ssl = hs->ssl;
333 const STACK_OF(SSL_CIPHER) *prio, *allow;
334 // in_group_flags will either be NULL, or will point to an array of bytes
335 // which indicate equal-preference groups in the |prio| stack. See the
336 // comment about |in_group_flags| in the |SSLCipherPreferenceList|
337 // struct.
338 const bool *in_group_flags;
339 // group_min contains the minimal index so far found in a group, or -1 if no
340 // such value exists yet.
341 int group_min = -1;
342
343 UniquePtr<STACK_OF(SSL_CIPHER)> client_pref =
344 ssl_parse_client_cipher_list(client_hello);
345 if (!client_pref) {
346 return nullptr;
347 }
348
349 if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
350 prio = server_pref->ciphers.get();
351 in_group_flags = server_pref->in_group_flags;
352 allow = client_pref.get();
353 } else {
354 prio = client_pref.get();
355 in_group_flags = NULL;
356 allow = server_pref->ciphers.get();
357 }
358
359 uint32_t mask_k, mask_a;
360 ssl_get_compatible_server_ciphers(hs, &mask_k, &mask_a);
361
362 for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) {
363 const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i);
364
365 size_t cipher_index;
366 if (// Check if the cipher is supported for the current version.
367 SSL_CIPHER_get_min_version(c) <= ssl_protocol_version(ssl) &&
368 ssl_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) &&
369 // Check the cipher is supported for the server configuration.
370 (c->algorithm_mkey & mask_k) &&
371 (c->algorithm_auth & mask_a) &&
372 // Check the cipher is in the |allow| list.
373 sk_SSL_CIPHER_find(allow, &cipher_index, c)) {
374 if (in_group_flags != NULL && in_group_flags[i]) {
375 // This element of |prio| is in a group. Update the minimum index found
376 // so far and continue looking.
377 if (group_min == -1 || (size_t)group_min > cipher_index) {
378 group_min = cipher_index;
379 }
380 } else {
381 if (group_min != -1 && (size_t)group_min < cipher_index) {
382 cipher_index = group_min;
383 }
384 return sk_SSL_CIPHER_value(allow, cipher_index);
385 }
386 }
387
388 if (in_group_flags != NULL && !in_group_flags[i] && group_min != -1) {
389 // We are about to leave a group, but we found a match in it, so that's
390 // our answer.
391 return sk_SSL_CIPHER_value(allow, group_min);
392 }
393 }
394
395 return nullptr;
396}
397
398static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) {
399 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1);
400 hs->state = state12_read_client_hello;
401 return ssl_hs_ok;
402}
403
404// is_probably_jdk11_with_tls13 returns whether |client_hello| was probably sent
405// from a JDK 11 client with both TLS 1.3 and a prior version enabled.
406static bool is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO *client_hello) {
407 // JDK 11 ClientHellos contain a number of unusual properties which should
408 // limit false positives.
409
410 // JDK 11 does not support ChaCha20-Poly1305. This is unusual: many modern
411 // clients implement ChaCha20-Poly1305.
412 if (ssl_client_cipher_list_contains_cipher(
413 client_hello, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
414 return false;
415 }
416
417 // JDK 11 always sends extensions in a particular order.
418 constexpr uint16_t kMaxFragmentLength = 0x0001;
419 constexpr uint16_t kStatusRequestV2 = 0x0011;
420 static CONSTEXPR_ARRAY struct {
421 uint16_t id;
422 bool required;
423 } kJavaExtensions[] = {
424 {TLSEXT_TYPE_server_name, false},
425 {kMaxFragmentLength, false},
426 {TLSEXT_TYPE_status_request, false},
427 {TLSEXT_TYPE_supported_groups, true},
428 {TLSEXT_TYPE_ec_point_formats, false},
429 {TLSEXT_TYPE_signature_algorithms, true},
430 // Java always sends signature_algorithms_cert.
431 {TLSEXT_TYPE_signature_algorithms_cert, true},
432 {TLSEXT_TYPE_application_layer_protocol_negotiation, false},
433 {kStatusRequestV2, false},
434 {TLSEXT_TYPE_extended_master_secret, false},
435 {TLSEXT_TYPE_supported_versions, true},
436 {TLSEXT_TYPE_cookie, false},
437 {TLSEXT_TYPE_psk_key_exchange_modes, true},
438 {TLSEXT_TYPE_key_share, true},
439 {TLSEXT_TYPE_renegotiate, false},
440 {TLSEXT_TYPE_pre_shared_key, false},
441 };
442 Span<const uint8_t> sigalgs, sigalgs_cert;
443 bool has_status_request = false, has_status_request_v2 = false;
444 CBS extensions, supported_groups;
445 CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len);
446 for (const auto &java_extension : kJavaExtensions) {
447 CBS copy = extensions;
448 uint16_t id;
449 if (CBS_get_u16(&copy, &id) && id == java_extension.id) {
450 // The next extension is the one we expected.
451 extensions = copy;
452 CBS body;
453 if (!CBS_get_u16_length_prefixed(&extensions, &body)) {
454 return false;
455 }
456 switch (id) {
457 case TLSEXT_TYPE_status_request:
458 has_status_request = true;
459 break;
460 case kStatusRequestV2:
461 has_status_request_v2 = true;
462 break;
463 case TLSEXT_TYPE_signature_algorithms:
464 sigalgs = body;
465 break;
466 case TLSEXT_TYPE_signature_algorithms_cert:
467 sigalgs_cert = body;
468 break;
469 case TLSEXT_TYPE_supported_groups:
470 supported_groups = body;
471 break;
472 }
473 } else if (java_extension.required) {
474 return false;
475 }
476 }
477 if (CBS_len(&extensions) != 0) {
478 return false;
479 }
480
481 // JDK 11 never advertises X25519. It is not offered by default, and
482 // -Djdk.tls.namedGroups=x25519 does not work. This is unusual: many modern
483 // clients implement X25519.
484 while (CBS_len(&supported_groups) > 0) {
485 uint16_t group;
486 if (!CBS_get_u16(&supported_groups, &group) ||
487 group == SSL_CURVE_X25519) {
488 return false;
489 }
490 }
491
492 if (// JDK 11 always sends the same contents in signature_algorithms and
493 // signature_algorithms_cert. This is unusual: signature_algorithms_cert,
494 // if omitted, is treated as if it were signature_algorithms.
495 sigalgs != sigalgs_cert ||
496 // When TLS 1.2 or below is enabled, JDK 11 sends status_request_v2 iff it
497 // sends status_request. This is unusual: status_request_v2 is not widely
498 // implemented.
499 has_status_request != has_status_request_v2) {
500 return false;
501 }
502
503 return true;
504}
505
506static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) {
507 SSL *const ssl = hs->ssl;
508
509 SSLMessage msg;
510 if (!ssl->method->get_message(ssl, &msg)) {
511 return ssl_hs_read_message;
512 }
513
514 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) {
515 return ssl_hs_error;
516 }
517
518 SSL_CLIENT_HELLO client_hello;
519 if (!ssl_client_hello_init(ssl, &client_hello, msg)) {
520 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
521 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
522 return ssl_hs_error;
523 }
524
525 if (hs->config->handoff) {
526 return ssl_hs_handoff;
527 }
528
529 // Run the early callback.
530 if (ssl->ctx->select_certificate_cb != NULL) {
531 switch (ssl->ctx->select_certificate_cb(&client_hello)) {
532 case ssl_select_cert_retry:
533 return ssl_hs_certificate_selection_pending;
534
535 case ssl_select_cert_error:
536 // Connection rejected.
537 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
538 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
539 return ssl_hs_error;
540
541 default:
542 /* fallthrough */;
543 }
544 }
545
546 // Freeze the version range after the early callback.
547 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
548 return ssl_hs_error;
549 }
550
551 if (hs->config->jdk11_workaround &&
552 is_probably_jdk11_with_tls13(&client_hello)) {
553 hs->apply_jdk11_workaround = true;
554 }
555
556 uint8_t alert = SSL_AD_DECODE_ERROR;
557 if (!negotiate_version(hs, &alert, &client_hello)) {
558 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
559 return ssl_hs_error;
560 }
561
562 hs->client_version = client_hello.version;
563 if (client_hello.random_len != SSL3_RANDOM_SIZE) {
564 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
565 return ssl_hs_error;
566 }
567 OPENSSL_memcpy(ssl->s3->client_random, client_hello.random,
568 client_hello.random_len);
569
570 // Only null compression is supported. TLS 1.3 further requires the peer
571 // advertise no other compression.
572 if (OPENSSL_memchr(client_hello.compression_methods, 0,
573 client_hello.compression_methods_len) == NULL ||
574 (ssl_protocol_version(ssl) >= TLS1_3_VERSION &&
575 client_hello.compression_methods_len != 1)) {
576 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST);
577 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
578 return ssl_hs_error;
579 }
580
581 // TLS extensions.
582 if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) {
583 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
584 return ssl_hs_error;
585 }
586
587 hs->state = state12_select_certificate;
588 return ssl_hs_ok;
589}
590
591static enum ssl_hs_wait_t do_select_certificate(SSL_HANDSHAKE *hs) {
592 SSL *const ssl = hs->ssl;
593
594 SSLMessage msg;
595 if (!ssl->method->get_message(ssl, &msg)) {
596 return ssl_hs_read_message;
597 }
598
599 // Call |cert_cb| to update server certificates if required.
600 if (hs->config->cert->cert_cb != NULL) {
601 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
602 if (rv == 0) {
603 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
604 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
605 return ssl_hs_error;
606 }
607 if (rv < 0) {
608 return ssl_hs_x509_lookup;
609 }
610 }
611
612 if (!ssl_on_certificate_selected(hs)) {
613 return ssl_hs_error;
614 }
615
616 if (hs->ocsp_stapling_requested &&
617 ssl->ctx->legacy_ocsp_callback != nullptr) {
618 switch (ssl->ctx->legacy_ocsp_callback(
619 ssl, ssl->ctx->legacy_ocsp_callback_arg)) {
620 case SSL_TLSEXT_ERR_OK:
621 break;
622 case SSL_TLSEXT_ERR_NOACK:
623 hs->ocsp_stapling_requested = false;
624 break;
625 default:
626 OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR);
627 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
628 return ssl_hs_error;
629 }
630 }
631
632 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
633 // Jump to the TLS 1.3 state machine.
634 hs->state = state12_tls13;
635 return ssl_hs_ok;
636 }
637
638 ssl->s3->early_data_reason = ssl_early_data_protocol_version;
639
640 SSL_CLIENT_HELLO client_hello;
641 if (!ssl_client_hello_init(ssl, &client_hello, msg)) {
642 return ssl_hs_error;
643 }
644
645 // Negotiate the cipher suite. This must be done after |cert_cb| so the
646 // certificate is finalized.
647 SSLCipherPreferenceList *prefs = hs->config->cipher_list
648 ? hs->config->cipher_list.get()
649 : ssl->ctx->cipher_list.get();
650 hs->new_cipher = ssl3_choose_cipher(hs, &client_hello, prefs);
651 if (hs->new_cipher == NULL) {
652 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER);
653 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
654 return ssl_hs_error;
655 }
656
657 hs->state = state12_select_parameters;
658 return ssl_hs_ok;
659}
660
661static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
662 enum ssl_hs_wait_t wait = tls13_server_handshake(hs);
663 if (wait == ssl_hs_ok) {
664 hs->state = state12_finish_server_handshake;
665 return ssl_hs_ok;
666 }
667
668 return wait;
669}
670
671static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) {
672 SSL *const ssl = hs->ssl;
673
674 SSLMessage msg;
675 if (!ssl->method->get_message(ssl, &msg)) {
676 return ssl_hs_read_message;
677 }
678
679 SSL_CLIENT_HELLO client_hello;
680 if (!ssl_client_hello_init(ssl, &client_hello, msg)) {
681 return ssl_hs_error;
682 }
683
684 // Determine whether we are doing session resumption.
685 UniquePtr<SSL_SESSION> session;
686 bool tickets_supported = false, renew_ticket = false;
687 enum ssl_hs_wait_t wait = ssl_get_prev_session(
688 hs, &session, &tickets_supported, &renew_ticket, &client_hello);
689 if (wait != ssl_hs_ok) {
690 return wait;
691 }
692
693 if (session) {
694 if (session->extended_master_secret && !hs->extended_master_secret) {
695 // A ClientHello without EMS that attempts to resume a session with EMS
696 // is fatal to the connection.
697 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
698 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
699 return ssl_hs_error;
700 }
701
702 if (!ssl_session_is_resumable(hs, session.get()) ||
703 // If the client offers the EMS extension, but the previous session
704 // didn't use it, then negotiate a new session.
705 hs->extended_master_secret != session->extended_master_secret) {
706 session.reset();
707 }
708 }
709
710 if (session) {
711 // Use the old session.
712 hs->ticket_expected = renew_ticket;
713 ssl->session = std::move(session);
714 ssl->s3->session_reused = true;
715 } else {
716 hs->ticket_expected = tickets_supported;
717 ssl_set_session(ssl, NULL);
718 if (!ssl_get_new_session(hs, 1 /* server */)) {
719 return ssl_hs_error;
720 }
721
722 // Clear the session ID if we want the session to be single-use.
723 if (!(ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) {
724 hs->new_session->session_id_length = 0;
725 }
726 }
727
728 if (ssl->ctx->dos_protection_cb != NULL &&
729 ssl->ctx->dos_protection_cb(&client_hello) == 0) {
730 // Connection rejected for DOS reasons.
731 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
732 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
733 return ssl_hs_error;
734 }
735
736 if (ssl->session == NULL) {
737 hs->new_session->cipher = hs->new_cipher;
738
739 // Determine whether to request a client certificate.
740 hs->cert_request = !!(hs->config->verify_mode & SSL_VERIFY_PEER);
741 // Only request a certificate if Channel ID isn't negotiated.
742 if ((hs->config->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) &&
743 ssl->s3->channel_id_valid) {
744 hs->cert_request = false;
745 }
746 // CertificateRequest may only be sent in certificate-based ciphers.
747 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
748 hs->cert_request = false;
749 }
750
751 if (!hs->cert_request) {
752 // OpenSSL returns X509_V_OK when no certificates are requested. This is
753 // classed by them as a bug, but it's assumed by at least NGINX.
754 hs->new_session->verify_result = X509_V_OK;
755 }
756 }
757
758 // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was
759 // deferred. Complete it now.
760 uint8_t alert = SSL_AD_DECODE_ERROR;
761 if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) {
762 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
763 return ssl_hs_error;
764 }
765
766 // Now that all parameters are known, initialize the handshake hash and hash
767 // the ClientHello.
768 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
769 !ssl_hash_message(hs, msg)) {
770 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
771 return ssl_hs_error;
772 }
773
774 // Handback includes the whole handshake transcript, so we cannot free the
775 // transcript buffer in the handback case.
776 if (!hs->cert_request && !hs->handback) {
777 hs->transcript.FreeBuffer();
778 }
779
780 ssl->method->next_message(ssl);
781
782 hs->state = state12_send_server_hello;
783 return ssl_hs_ok;
784}
785
786static void copy_suffix(Span<uint8_t> out, Span<const uint8_t> in) {
787 out = out.subspan(out.size() - in.size());
788 assert(out.size() == in.size());
789 OPENSSL_memcpy(out.data(), in.data(), in.size());
790}
791
792static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) {
793 SSL *const ssl = hs->ssl;
794
795 // We only accept ChannelIDs on connections with ECDHE in order to avoid a
796 // known attack while we fix ChannelID itself.
797 if (ssl->s3->channel_id_valid &&
798 (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) {
799 ssl->s3->channel_id_valid = false;
800 }
801
802 // If this is a resumption and the original handshake didn't support
803 // ChannelID then we didn't record the original handshake hashes in the
804 // session and so cannot resume with ChannelIDs.
805 if (ssl->session != NULL &&
806 ssl->session->original_handshake_hash_len == 0) {
807 ssl->s3->channel_id_valid = false;
808 }
809
810 struct OPENSSL_timeval now;
811 ssl_get_current_time(ssl, &now);
812 ssl->s3->server_random[0] = now.tv_sec >> 24;
813 ssl->s3->server_random[1] = now.tv_sec >> 16;
814 ssl->s3->server_random[2] = now.tv_sec >> 8;
815 ssl->s3->server_random[3] = now.tv_sec;
816 if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) {
817 return ssl_hs_error;
818 }
819
820 // Implement the TLS 1.3 anti-downgrade feature.
821 if (ssl_supports_version(hs, TLS1_3_VERSION)) {
822 if (ssl_protocol_version(ssl) == TLS1_2_VERSION) {
823 if (hs->apply_jdk11_workaround) {
824 // JDK 11 implements the TLS 1.3 downgrade signal, so we cannot send it
825 // here. However, the signal is only effective if all TLS 1.2
826 // ServerHellos produced by the server are marked. Thus we send a
827 // different non-standard signal for the time being, until JDK 11.0.2 is
828 // released and clients have updated.
829 copy_suffix(ssl->s3->server_random, kJDK11DowngradeRandom);
830 } else {
831 copy_suffix(ssl->s3->server_random, kTLS13DowngradeRandom);
832 }
833 } else {
834 copy_suffix(ssl->s3->server_random, kTLS12DowngradeRandom);
835 }
836 }
837
838 const SSL_SESSION *session = hs->new_session.get();
839 if (ssl->session != nullptr) {
840 session = ssl->session.get();
841 }
842
843 ScopedCBB cbb;
844 CBB body, session_id;
845 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) ||
846 !CBB_add_u16(&body, ssl->version) ||
847 !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) ||
848 !CBB_add_u8_length_prefixed(&body, &session_id) ||
849 !CBB_add_bytes(&session_id, session->session_id,
850 session->session_id_length) ||
851 !CBB_add_u16(&body, ssl_cipher_get_value(hs->new_cipher)) ||
852 !CBB_add_u8(&body, 0 /* no compression */) ||
853 !ssl_add_serverhello_tlsext(hs, &body) ||
854 !ssl_add_message_cbb(ssl, cbb.get())) {
855 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
856 return ssl_hs_error;
857 }
858
859 if (ssl->session != NULL) {
860 hs->state = state12_send_server_finished;
861 } else {
862 hs->state = state12_send_server_certificate;
863 }
864 return ssl_hs_ok;
865}
866
867static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) {
868 SSL *const ssl = hs->ssl;
869 ScopedCBB cbb;
870
871 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
872 if (!ssl_has_certificate(hs)) {
873 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET);
874 return ssl_hs_error;
875 }
876
877 if (!ssl_output_cert_chain(hs)) {
878 return ssl_hs_error;
879 }
880
881 if (hs->certificate_status_expected) {
882 CBB body, ocsp_response;
883 if (!ssl->method->init_message(ssl, cbb.get(), &body,
884 SSL3_MT_CERTIFICATE_STATUS) ||
885 !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) ||
886 !CBB_add_u24_length_prefixed(&body, &ocsp_response) ||
887 !CBB_add_bytes(
888 &ocsp_response,
889 CRYPTO_BUFFER_data(hs->config->cert->ocsp_response.get()),
890 CRYPTO_BUFFER_len(hs->config->cert->ocsp_response.get())) ||
891 !ssl_add_message_cbb(ssl, cbb.get())) {
892 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
893 return ssl_hs_error;
894 }
895 }
896 }
897
898 // Assemble ServerKeyExchange parameters if needed.
899 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
900 uint32_t alg_a = hs->new_cipher->algorithm_auth;
901 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) ||
902 ((alg_a & SSL_aPSK) && hs->config->psk_identity_hint)) {
903 // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend
904 // the client and server randoms for the signing transcript.
905 CBB child;
906 if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) ||
907 !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
908 !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) {
909 return ssl_hs_error;
910 }
911
912 // PSK ciphers begin with an identity hint.
913 if (alg_a & SSL_aPSK) {
914 size_t len = hs->config->psk_identity_hint == nullptr
915 ? 0
916 : strlen(hs->config->psk_identity_hint.get());
917 if (!CBB_add_u16_length_prefixed(cbb.get(), &child) ||
918 !CBB_add_bytes(&child,
919 (const uint8_t *)hs->config->psk_identity_hint.get(),
920 len)) {
921 return ssl_hs_error;
922 }
923 }
924
925 if (alg_k & SSL_kECDHE) {
926 // Determine the group to use.
927 uint16_t group_id;
928 if (!tls1_get_shared_group(hs, &group_id)) {
929 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
930 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
931 return ssl_hs_error;
932 }
933 hs->new_session->group_id = group_id;
934
935 // Set up ECDH, generate a key, and emit the public half.
936 hs->key_shares[0] = SSLKeyShare::Create(group_id);
937 if (!hs->key_shares[0] ||
938 !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) ||
939 !CBB_add_u16(cbb.get(), group_id) ||
940 !CBB_add_u8_length_prefixed(cbb.get(), &child) ||
941 !hs->key_shares[0]->Offer(&child)) {
942 return ssl_hs_error;
943 }
944 } else {
945 assert(alg_k & SSL_kPSK);
946 }
947
948 if (!CBBFinishArray(cbb.get(), &hs->server_params)) {
949 return ssl_hs_error;
950 }
951 }
952
953 hs->state = state12_send_server_key_exchange;
954 return ssl_hs_ok;
955}
956
957static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) {
958 SSL *const ssl = hs->ssl;
959
960 if (hs->server_params.size() == 0) {
961 hs->state = state12_send_server_hello_done;
962 return ssl_hs_ok;
963 }
964
965 ScopedCBB cbb;
966 CBB body, child;
967 if (!ssl->method->init_message(ssl, cbb.get(), &body,
968 SSL3_MT_SERVER_KEY_EXCHANGE) ||
969 // |hs->server_params| contains a prefix for signing.
970 hs->server_params.size() < 2 * SSL3_RANDOM_SIZE ||
971 !CBB_add_bytes(&body, hs->server_params.data() + 2 * SSL3_RANDOM_SIZE,
972 hs->server_params.size() - 2 * SSL3_RANDOM_SIZE)) {
973 return ssl_hs_error;
974 }
975
976 // Add a signature.
977 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
978 if (!ssl_has_private_key(hs)) {
979 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
980 return ssl_hs_error;
981 }
982
983 // Determine the signature algorithm.
984 uint16_t signature_algorithm;
985 if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) {
986 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
987 return ssl_hs_error;
988 }
989 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
990 if (!CBB_add_u16(&body, signature_algorithm)) {
991 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
992 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
993 return ssl_hs_error;
994 }
995 }
996
997 // Add space for the signature.
998 const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get());
999 uint8_t *ptr;
1000 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1001 !CBB_reserve(&child, &ptr, max_sig_len)) {
1002 return ssl_hs_error;
1003 }
1004
1005 size_t sig_len;
1006 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1007 signature_algorithm, hs->server_params)) {
1008 case ssl_private_key_success:
1009 if (!CBB_did_write(&child, sig_len)) {
1010 return ssl_hs_error;
1011 }
1012 break;
1013 case ssl_private_key_failure:
1014 return ssl_hs_error;
1015 case ssl_private_key_retry:
1016 return ssl_hs_private_key_operation;
1017 }
1018 }
1019
1020 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1021 return ssl_hs_error;
1022 }
1023
1024 hs->server_params.Reset();
1025
1026 hs->state = state12_send_server_hello_done;
1027 return ssl_hs_ok;
1028}
1029
1030static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) {
1031 SSL *const ssl = hs->ssl;
1032
1033 ScopedCBB cbb;
1034 CBB body;
1035
1036 if (hs->cert_request) {
1037 CBB cert_types, sigalgs_cbb;
1038 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1039 SSL3_MT_CERTIFICATE_REQUEST) ||
1040 !CBB_add_u8_length_prefixed(&body, &cert_types) ||
1041 !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) ||
1042 !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN) ||
1043 // TLS 1.2 has no way to specify different signature algorithms for
1044 // certificates and the online signature, so emit the more restrictive
1045 // certificate list.
1046 (ssl_protocol_version(ssl) >= TLS1_2_VERSION &&
1047 (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) ||
1048 !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb, true /* certs */))) ||
1049 !ssl_add_client_CA_list(hs, &body) ||
1050 !ssl_add_message_cbb(ssl, cbb.get())) {
1051 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1052 return ssl_hs_error;
1053 }
1054 }
1055
1056 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1057 SSL3_MT_SERVER_HELLO_DONE) ||
1058 !ssl_add_message_cbb(ssl, cbb.get())) {
1059 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1060 return ssl_hs_error;
1061 }
1062
1063 hs->state = state12_read_client_certificate;
1064 return ssl_hs_flush;
1065}
1066
1067static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) {
1068 SSL *const ssl = hs->ssl;
1069
1070 if (hs->handback && hs->new_cipher->algorithm_mkey == SSL_kECDHE) {
1071 return ssl_hs_handback;
1072 }
1073 if (!hs->cert_request) {
1074 hs->state = state12_verify_client_certificate;
1075 return ssl_hs_ok;
1076 }
1077
1078 SSLMessage msg;
1079 if (!ssl->method->get_message(ssl, &msg)) {
1080 return ssl_hs_read_message;
1081 }
1082
1083 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) {
1084 return ssl_hs_error;
1085 }
1086
1087 if (!ssl_hash_message(hs, msg)) {
1088 return ssl_hs_error;
1089 }
1090
1091 CBS certificate_msg = msg.body;
1092 uint8_t alert = SSL_AD_DECODE_ERROR;
1093 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
1094 hs->config->retain_only_sha256_of_client_certs
1095 ? hs->new_session->peer_sha256
1096 : nullptr,
1097 &certificate_msg, ssl->ctx->pool)) {
1098 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1099 return ssl_hs_error;
1100 }
1101
1102 if (CBS_len(&certificate_msg) != 0 ||
1103 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
1104 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1105 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1106 return ssl_hs_error;
1107 }
1108
1109 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0) {
1110 // No client certificate so the handshake buffer may be discarded.
1111 hs->transcript.FreeBuffer();
1112
1113 if (hs->config->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) {
1114 // Fail for TLS only if we required a certificate
1115 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
1116 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1117 return ssl_hs_error;
1118 }
1119
1120 // OpenSSL returns X509_V_OK when no certificates are received. This is
1121 // classed by them as a bug, but it's assumed by at least NGINX.
1122 hs->new_session->verify_result = X509_V_OK;
1123 } else if (hs->config->retain_only_sha256_of_client_certs) {
1124 // The hash will have been filled in.
1125 hs->new_session->peer_sha256_valid = 1;
1126 }
1127
1128 ssl->method->next_message(ssl);
1129 hs->state = state12_verify_client_certificate;
1130 return ssl_hs_ok;
1131}
1132
1133static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) {
1134 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) > 0) {
1135 switch (ssl_verify_peer_cert(hs)) {
1136 case ssl_verify_ok:
1137 break;
1138 case ssl_verify_invalid:
1139 return ssl_hs_error;
1140 case ssl_verify_retry:
1141 return ssl_hs_certificate_verify;
1142 }
1143 }
1144
1145 hs->state = state12_read_client_key_exchange;
1146 return ssl_hs_ok;
1147}
1148
1149static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) {
1150 SSL *const ssl = hs->ssl;
1151 SSLMessage msg;
1152 if (!ssl->method->get_message(ssl, &msg)) {
1153 return ssl_hs_read_message;
1154 }
1155
1156 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1157 return ssl_hs_error;
1158 }
1159
1160 CBS client_key_exchange = msg.body;
1161 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1162 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1163
1164 // If using a PSK key exchange, parse the PSK identity.
1165 if (alg_a & SSL_aPSK) {
1166 CBS psk_identity;
1167
1168 // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK,
1169 // then this is the only field in the message.
1170 if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) ||
1171 ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) {
1172 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1173 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1174 return ssl_hs_error;
1175 }
1176
1177 if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN ||
1178 CBS_contains_zero_byte(&psk_identity)) {
1179 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1180 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1181 return ssl_hs_error;
1182 }
1183 char *raw = nullptr;
1184 if (!CBS_strdup(&psk_identity, &raw)) {
1185 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1186 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1187 return ssl_hs_error;
1188 }
1189 hs->new_session->psk_identity.reset(raw);
1190 }
1191
1192 // Depending on the key exchange method, compute |premaster_secret|.
1193 Array<uint8_t> premaster_secret;
1194 if (alg_k & SSL_kRSA) {
1195 CBS encrypted_premaster_secret;
1196 if (!CBS_get_u16_length_prefixed(&client_key_exchange,
1197 &encrypted_premaster_secret) ||
1198 CBS_len(&client_key_exchange) != 0) {
1199 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1200 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1201 return ssl_hs_error;
1202 }
1203
1204 // Allocate a buffer large enough for an RSA decryption.
1205 Array<uint8_t> decrypt_buf;
1206 if (!decrypt_buf.Init(EVP_PKEY_size(hs->local_pubkey.get()))) {
1207 return ssl_hs_error;
1208 }
1209
1210 // Decrypt with no padding. PKCS#1 padding will be removed as part of the
1211 // timing-sensitive code below.
1212 size_t decrypt_len;
1213 switch (ssl_private_key_decrypt(hs, decrypt_buf.data(), &decrypt_len,
1214 decrypt_buf.size(),
1215 encrypted_premaster_secret)) {
1216 case ssl_private_key_success:
1217 break;
1218 case ssl_private_key_failure:
1219 return ssl_hs_error;
1220 case ssl_private_key_retry:
1221 return ssl_hs_private_key_operation;
1222 }
1223
1224 if (decrypt_len != decrypt_buf.size()) {
1225 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
1226 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1227 return ssl_hs_error;
1228 }
1229
1230 CONSTTIME_SECRET(decrypt_buf.data(), decrypt_len);
1231
1232 // Prepare a random premaster, to be used on invalid padding. See RFC 5246,
1233 // section 7.4.7.1.
1234 if (!premaster_secret.Init(SSL_MAX_MASTER_KEY_LENGTH) ||
1235 !RAND_bytes(premaster_secret.data(), premaster_secret.size())) {
1236 return ssl_hs_error;
1237 }
1238
1239 // The smallest padded premaster is 11 bytes of overhead. Small keys are
1240 // publicly invalid.
1241 if (decrypt_len < 11 + premaster_secret.size()) {
1242 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
1243 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1244 return ssl_hs_error;
1245 }
1246
1247 // Check the padding. See RFC 3447, section 7.2.2.
1248 size_t padding_len = decrypt_len - premaster_secret.size();
1249 uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) &
1250 constant_time_eq_int_8(decrypt_buf[1], 2);
1251 for (size_t i = 2; i < padding_len - 1; i++) {
1252 good &= ~constant_time_is_zero_8(decrypt_buf[i]);
1253 }
1254 good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]);
1255
1256 // The premaster secret must begin with |client_version|. This too must be
1257 // checked in constant time (http://eprint.iacr.org/2003/052/).
1258 good &= constant_time_eq_8(decrypt_buf[padding_len],
1259 (unsigned)(hs->client_version >> 8));
1260 good &= constant_time_eq_8(decrypt_buf[padding_len + 1],
1261 (unsigned)(hs->client_version & 0xff));
1262
1263 // Select, in constant time, either the decrypted premaster or the random
1264 // premaster based on |good|.
1265 for (size_t i = 0; i < premaster_secret.size(); i++) {
1266 premaster_secret[i] = constant_time_select_8(
1267 good, decrypt_buf[padding_len + i], premaster_secret[i]);
1268 }
1269 } else if (alg_k & SSL_kECDHE) {
1270 // Parse the ClientKeyExchange.
1271 CBS peer_key;
1272 if (!CBS_get_u8_length_prefixed(&client_key_exchange, &peer_key) ||
1273 CBS_len(&client_key_exchange) != 0) {
1274 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1275 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1276 return ssl_hs_error;
1277 }
1278
1279 // Compute the premaster.
1280 uint8_t alert = SSL_AD_DECODE_ERROR;
1281 if (!hs->key_shares[0]->Finish(&premaster_secret, &alert, peer_key)) {
1282 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1283 return ssl_hs_error;
1284 }
1285
1286 // The key exchange state may now be discarded.
1287 hs->key_shares[0].reset();
1288 hs->key_shares[1].reset();
1289 } else if (!(alg_k & SSL_kPSK)) {
1290 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1291 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1292 return ssl_hs_error;
1293 }
1294
1295 // For a PSK cipher suite, the actual pre-master secret is combined with the
1296 // pre-shared key.
1297 if (alg_a & SSL_aPSK) {
1298 if (hs->config->psk_server_callback == NULL) {
1299 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1300 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1301 return ssl_hs_error;
1302 }
1303
1304 // Look up the key for the identity.
1305 uint8_t psk[PSK_MAX_PSK_LEN];
1306 unsigned psk_len = hs->config->psk_server_callback(
1307 ssl, hs->new_session->psk_identity.get(), psk, sizeof(psk));
1308 if (psk_len > PSK_MAX_PSK_LEN) {
1309 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1310 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1311 return ssl_hs_error;
1312 } else if (psk_len == 0) {
1313 // PSK related to the given identity not found.
1314 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1315 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY);
1316 return ssl_hs_error;
1317 }
1318
1319 if (alg_k & SSL_kPSK) {
1320 // In plain PSK, other_secret is a block of 0s with the same length as the
1321 // pre-shared key.
1322 if (!premaster_secret.Init(psk_len)) {
1323 return ssl_hs_error;
1324 }
1325 OPENSSL_memset(premaster_secret.data(), 0, premaster_secret.size());
1326 }
1327
1328 ScopedCBB new_premaster;
1329 CBB child;
1330 if (!CBB_init(new_premaster.get(),
1331 2 + psk_len + 2 + premaster_secret.size()) ||
1332 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) ||
1333 !CBB_add_bytes(&child, premaster_secret.data(),
1334 premaster_secret.size()) ||
1335 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) ||
1336 !CBB_add_bytes(&child, psk, psk_len) ||
1337 !CBBFinishArray(new_premaster.get(), &premaster_secret)) {
1338 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1339 return ssl_hs_error;
1340 }
1341 }
1342
1343 if (!ssl_hash_message(hs, msg)) {
1344 return ssl_hs_error;
1345 }
1346
1347 // Compute the master secret.
1348 hs->new_session->master_key_length = tls1_generate_master_secret(
1349 hs, hs->new_session->master_key, premaster_secret);
1350 if (hs->new_session->master_key_length == 0) {
1351 return ssl_hs_error;
1352 }
1353 hs->new_session->extended_master_secret = hs->extended_master_secret;
1354 CONSTTIME_DECLASSIFY(hs->new_session->master_key,
1355 hs->new_session->master_key_length);
1356
1357 ssl->method->next_message(ssl);
1358 hs->state = state12_read_client_certificate_verify;
1359 return ssl_hs_ok;
1360}
1361
1362static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) {
1363 SSL *const ssl = hs->ssl;
1364
1365 // Only RSA and ECDSA client certificates are supported, so a
1366 // CertificateVerify is required if and only if there's a client certificate.
1367 if (!hs->peer_pubkey) {
1368 hs->transcript.FreeBuffer();
1369 hs->state = state12_read_change_cipher_spec;
1370 return ssl_hs_ok;
1371 }
1372
1373 SSLMessage msg;
1374 if (!ssl->method->get_message(ssl, &msg)) {
1375 return ssl_hs_read_message;
1376 }
1377
1378 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) {
1379 return ssl_hs_error;
1380 }
1381
1382 CBS certificate_verify = msg.body, signature;
1383
1384 // Determine the signature algorithm.
1385 uint16_t signature_algorithm = 0;
1386 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1387 if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) {
1388 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1389 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1390 return ssl_hs_error;
1391 }
1392 uint8_t alert = SSL_AD_DECODE_ERROR;
1393 if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) {
1394 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1395 return ssl_hs_error;
1396 }
1397 hs->new_session->peer_signature_algorithm = signature_algorithm;
1398 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1399 hs->peer_pubkey.get())) {
1400 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1401 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1402 return ssl_hs_error;
1403 }
1404
1405 // Parse and verify the signature.
1406 if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) ||
1407 CBS_len(&certificate_verify) != 0) {
1408 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1409 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1410 return ssl_hs_error;
1411 }
1412
1413 if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1414 hs->peer_pubkey.get(), hs->transcript.buffer())) {
1415 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1416 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1417 return ssl_hs_error;
1418 }
1419
1420 // The handshake buffer is no longer necessary, and we may hash the current
1421 // message.
1422 hs->transcript.FreeBuffer();
1423 if (!ssl_hash_message(hs, msg)) {
1424 return ssl_hs_error;
1425 }
1426
1427 ssl->method->next_message(ssl);
1428 hs->state = state12_read_change_cipher_spec;
1429 return ssl_hs_ok;
1430}
1431
1432static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) {
1433 if (hs->handback && hs->ssl->session != NULL) {
1434 return ssl_hs_handback;
1435 }
1436 hs->state = state12_process_change_cipher_spec;
1437 return ssl_hs_read_change_cipher_spec;
1438}
1439
1440static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1441 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1442 return ssl_hs_error;
1443 }
1444
1445 hs->state = state12_read_next_proto;
1446 return ssl_hs_ok;
1447}
1448
1449static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) {
1450 SSL *const ssl = hs->ssl;
1451
1452 if (!hs->next_proto_neg_seen) {
1453 hs->state = state12_read_channel_id;
1454 return ssl_hs_ok;
1455 }
1456
1457 SSLMessage msg;
1458 if (!ssl->method->get_message(ssl, &msg)) {
1459 return ssl_hs_read_message;
1460 }
1461
1462 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) ||
1463 !ssl_hash_message(hs, msg)) {
1464 return ssl_hs_error;
1465 }
1466
1467 CBS next_protocol = msg.body, selected_protocol, padding;
1468 if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) ||
1469 !CBS_get_u8_length_prefixed(&next_protocol, &padding) ||
1470 CBS_len(&next_protocol) != 0) {
1471 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1472 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1473 return ssl_hs_error;
1474 }
1475
1476 if (!ssl->s3->next_proto_negotiated.CopyFrom(selected_protocol)) {
1477 return ssl_hs_error;
1478 }
1479
1480 ssl->method->next_message(ssl);
1481 hs->state = state12_read_channel_id;
1482 return ssl_hs_ok;
1483}
1484
1485static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) {
1486 SSL *const ssl = hs->ssl;
1487
1488 if (!ssl->s3->channel_id_valid) {
1489 hs->state = state12_read_client_finished;
1490 return ssl_hs_ok;
1491 }
1492
1493 SSLMessage msg;
1494 if (!ssl->method->get_message(ssl, &msg)) {
1495 return ssl_hs_read_message;
1496 }
1497
1498 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) ||
1499 !tls1_verify_channel_id(hs, msg) ||
1500 !ssl_hash_message(hs, msg)) {
1501 return ssl_hs_error;
1502 }
1503
1504 ssl->method->next_message(ssl);
1505 hs->state = state12_read_client_finished;
1506 return ssl_hs_ok;
1507}
1508
1509static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) {
1510 SSL *const ssl = hs->ssl;
1511 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1512 if (wait != ssl_hs_ok) {
1513 return wait;
1514 }
1515
1516 if (ssl->session != NULL) {
1517 hs->state = state12_finish_server_handshake;
1518 } else {
1519 hs->state = state12_send_server_finished;
1520 }
1521
1522 // If this is a full handshake with ChannelID then record the handshake
1523 // hashes in |hs->new_session| in case we need them to verify a
1524 // ChannelID signature on a resumption of this session in the future.
1525 if (ssl->session == NULL && ssl->s3->channel_id_valid &&
1526 !tls1_record_handshake_hashes_for_channel_id(hs)) {
1527 return ssl_hs_error;
1528 }
1529
1530 return ssl_hs_ok;
1531}
1532
1533static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) {
1534 SSL *const ssl = hs->ssl;
1535
1536 if (hs->ticket_expected) {
1537 const SSL_SESSION *session;
1538 UniquePtr<SSL_SESSION> session_copy;
1539 if (ssl->session == NULL) {
1540 // Fix the timeout to measure from the ticket issuance time.
1541 ssl_session_rebase_time(ssl, hs->new_session.get());
1542 session = hs->new_session.get();
1543 } else {
1544 // We are renewing an existing session. Duplicate the session to adjust
1545 // the timeout.
1546 session_copy =
1547 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1548 if (!session_copy) {
1549 return ssl_hs_error;
1550 }
1551
1552 ssl_session_rebase_time(ssl, session_copy.get());
1553 session = session_copy.get();
1554 }
1555
1556 ScopedCBB cbb;
1557 CBB body, ticket;
1558 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1559 SSL3_MT_NEW_SESSION_TICKET) ||
1560 !CBB_add_u32(&body, session->timeout) ||
1561 !CBB_add_u16_length_prefixed(&body, &ticket) ||
1562 !ssl_encrypt_ticket(hs, &ticket, session) ||
1563 !ssl_add_message_cbb(ssl, cbb.get())) {
1564 return ssl_hs_error;
1565 }
1566 }
1567
1568 if (!ssl->method->add_change_cipher_spec(ssl) ||
1569 !tls1_change_cipher_state(hs, evp_aead_seal) ||
1570 !ssl_send_finished(hs)) {
1571 return ssl_hs_error;
1572 }
1573
1574 if (ssl->session != NULL) {
1575 hs->state = state12_read_change_cipher_spec;
1576 } else {
1577 hs->state = state12_finish_server_handshake;
1578 }
1579 return ssl_hs_flush;
1580}
1581
1582static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) {
1583 SSL *const ssl = hs->ssl;
1584
1585 if (hs->handback) {
1586 return ssl_hs_handback;
1587 }
1588
1589 ssl->method->on_handshake_complete(ssl);
1590
1591 // If we aren't retaining peer certificates then we can discard it now.
1592 if (hs->new_session != NULL &&
1593 hs->config->retain_only_sha256_of_client_certs) {
1594 hs->new_session->certs.reset();
1595 ssl->ctx->x509_method->session_clear(hs->new_session.get());
1596 }
1597
1598 if (ssl->session != NULL) {
1599 ssl->s3->established_session = UpRef(ssl->session);
1600 } else {
1601 ssl->s3->established_session = std::move(hs->new_session);
1602 ssl->s3->established_session->not_resumable = false;
1603 }
1604
1605 hs->handshake_finalized = true;
1606 ssl->s3->initial_handshake_complete = true;
1607 ssl_update_cache(hs, SSL_SESS_CACHE_SERVER);
1608
1609 hs->state = state12_done;
1610 return ssl_hs_ok;
1611}
1612
1613enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) {
1614 while (hs->state != state12_done) {
1615 enum ssl_hs_wait_t ret = ssl_hs_error;
1616 enum tls12_server_hs_state_t state =
1617 static_cast<enum tls12_server_hs_state_t>(hs->state);
1618 switch (state) {
1619 case state12_start_accept:
1620 ret = do_start_accept(hs);
1621 break;
1622 case state12_read_client_hello:
1623 ret = do_read_client_hello(hs);
1624 break;
1625 case state12_select_certificate:
1626 ret = do_select_certificate(hs);
1627 break;
1628 case state12_tls13:
1629 ret = do_tls13(hs);
1630 break;
1631 case state12_select_parameters:
1632 ret = do_select_parameters(hs);
1633 break;
1634 case state12_send_server_hello:
1635 ret = do_send_server_hello(hs);
1636 break;
1637 case state12_send_server_certificate:
1638 ret = do_send_server_certificate(hs);
1639 break;
1640 case state12_send_server_key_exchange:
1641 ret = do_send_server_key_exchange(hs);
1642 break;
1643 case state12_send_server_hello_done:
1644 ret = do_send_server_hello_done(hs);
1645 break;
1646 case state12_read_client_certificate:
1647 ret = do_read_client_certificate(hs);
1648 break;
1649 case state12_verify_client_certificate:
1650 ret = do_verify_client_certificate(hs);
1651 break;
1652 case state12_read_client_key_exchange:
1653 ret = do_read_client_key_exchange(hs);
1654 break;
1655 case state12_read_client_certificate_verify:
1656 ret = do_read_client_certificate_verify(hs);
1657 break;
1658 case state12_read_change_cipher_spec:
1659 ret = do_read_change_cipher_spec(hs);
1660 break;
1661 case state12_process_change_cipher_spec:
1662 ret = do_process_change_cipher_spec(hs);
1663 break;
1664 case state12_read_next_proto:
1665 ret = do_read_next_proto(hs);
1666 break;
1667 case state12_read_channel_id:
1668 ret = do_read_channel_id(hs);
1669 break;
1670 case state12_read_client_finished:
1671 ret = do_read_client_finished(hs);
1672 break;
1673 case state12_send_server_finished:
1674 ret = do_send_server_finished(hs);
1675 break;
1676 case state12_finish_server_handshake:
1677 ret = do_finish_server_handshake(hs);
1678 break;
1679 case state12_done:
1680 ret = ssl_hs_ok;
1681 break;
1682 }
1683
1684 if (hs->state != state) {
1685 ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1);
1686 }
1687
1688 if (ret != ssl_hs_ok) {
1689 return ret;
1690 }
1691 }
1692
1693 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
1694 return ssl_hs_ok;
1695}
1696
1697const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) {
1698 enum tls12_server_hs_state_t state =
1699 static_cast<enum tls12_server_hs_state_t>(hs->state);
1700 switch (state) {
1701 case state12_start_accept:
1702 return "TLS server start_accept";
1703 case state12_read_client_hello:
1704 return "TLS server read_client_hello";
1705 case state12_select_certificate:
1706 return "TLS server select_certificate";
1707 case state12_tls13:
1708 return tls13_server_handshake_state(hs);
1709 case state12_select_parameters:
1710 return "TLS server select_parameters";
1711 case state12_send_server_hello:
1712 return "TLS server send_server_hello";
1713 case state12_send_server_certificate:
1714 return "TLS server send_server_certificate";
1715 case state12_send_server_key_exchange:
1716 return "TLS server send_server_key_exchange";
1717 case state12_send_server_hello_done:
1718 return "TLS server send_server_hello_done";
1719 case state12_read_client_certificate:
1720 return "TLS server read_client_certificate";
1721 case state12_verify_client_certificate:
1722 return "TLS server verify_client_certificate";
1723 case state12_read_client_key_exchange:
1724 return "TLS server read_client_key_exchange";
1725 case state12_read_client_certificate_verify:
1726 return "TLS server read_client_certificate_verify";
1727 case state12_read_change_cipher_spec:
1728 return "TLS server read_change_cipher_spec";
1729 case state12_process_change_cipher_spec:
1730 return "TLS server process_change_cipher_spec";
1731 case state12_read_next_proto:
1732 return "TLS server read_next_proto";
1733 case state12_read_channel_id:
1734 return "TLS server read_channel_id";
1735 case state12_read_client_finished:
1736 return "TLS server read_client_finished";
1737 case state12_send_server_finished:
1738 return "TLS server send_server_finished";
1739 case state12_finish_server_handshake:
1740 return "TLS server finish_server_handshake";
1741 case state12_done:
1742 return "TLS server done";
1743 }
1744
1745 return "TLS server unknown";
1746}
1747
1748BSSL_NAMESPACE_END
1749