1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] |
56 | */ |
57 | /* ==================================================================== |
58 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
59 | * |
60 | * Redistribution and use in source and binary forms, with or without |
61 | * modification, are permitted provided that the following conditions |
62 | * are met: |
63 | * |
64 | * 1. Redistributions of source code must retain the above copyright |
65 | * notice, this list of conditions and the following disclaimer. |
66 | * |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in |
69 | * the documentation and/or other materials provided with the |
70 | * distribution. |
71 | * |
72 | * 3. All advertising materials mentioning features or use of this |
73 | * software must display the following acknowledgment: |
74 | * "This product includes software developed by the OpenSSL Project |
75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
76 | * |
77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
78 | * endorse or promote products derived from this software without |
79 | * prior written permission. For written permission, please contact |
80 | * openssl-core@openssl.org. |
81 | * |
82 | * 5. Products derived from this software may not be called "OpenSSL" |
83 | * nor may "OpenSSL" appear in their names without prior written |
84 | * permission of the OpenSSL Project. |
85 | * |
86 | * 6. Redistributions of any form whatsoever must retain the following |
87 | * acknowledgment: |
88 | * "This product includes software developed by the OpenSSL Project |
89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
90 | * |
91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
103 | * ==================================================================== |
104 | * |
105 | * This product includes cryptographic software written by Eric Young |
106 | * (eay@cryptsoft.com). This product includes software written by Tim |
107 | * Hudson (tjh@cryptsoft.com). |
108 | * |
109 | */ |
110 | /* ==================================================================== |
111 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
112 | * |
113 | * Portions of the attached software ("Contribution") are developed by |
114 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
115 | * |
116 | * The Contribution is licensed pursuant to the OpenSSL open source |
117 | * license provided above. |
118 | * |
119 | * ECC cipher suite support in OpenSSL originally written by |
120 | * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. |
121 | * |
122 | */ |
123 | /* ==================================================================== |
124 | * Copyright 2005 Nokia. All rights reserved. |
125 | * |
126 | * The portions of the attached software ("Contribution") is developed by |
127 | * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
128 | * license. |
129 | * |
130 | * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
131 | * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
132 | * support (see RFC 4279) to OpenSSL. |
133 | * |
134 | * No patent licenses or other rights except those expressly stated in |
135 | * the OpenSSL open source license shall be deemed granted or received |
136 | * expressly, by implication, estoppel, or otherwise. |
137 | * |
138 | * No assurances are provided by Nokia that the Contribution does not |
139 | * infringe the patent or other intellectual property rights of any third |
140 | * party or that the license provides you with all the necessary rights |
141 | * to make use of the Contribution. |
142 | * |
143 | * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
144 | * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
145 | * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
146 | * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
147 | * OTHERWISE. */ |
148 | |
149 | #include <openssl/ssl.h> |
150 | |
151 | #include <assert.h> |
152 | #include <string.h> |
153 | |
154 | #include <openssl/bn.h> |
155 | #include <openssl/buf.h> |
156 | #include <openssl/bytestring.h> |
157 | #include <openssl/cipher.h> |
158 | #include <openssl/ec.h> |
159 | #include <openssl/ecdsa.h> |
160 | #include <openssl/err.h> |
161 | #include <openssl/evp.h> |
162 | #include <openssl/hmac.h> |
163 | #include <openssl/md5.h> |
164 | #include <openssl/mem.h> |
165 | #include <openssl/nid.h> |
166 | #include <openssl/rand.h> |
167 | #include <openssl/x509.h> |
168 | |
169 | #include "internal.h" |
170 | #include "../crypto/internal.h" |
171 | |
172 | |
173 | BSSL_NAMESPACE_BEGIN |
174 | |
175 | bool ssl_client_cipher_list_contains_cipher( |
176 | const SSL_CLIENT_HELLO *client_hello, uint16_t id) { |
177 | CBS cipher_suites; |
178 | CBS_init(&cipher_suites, client_hello->cipher_suites, |
179 | client_hello->cipher_suites_len); |
180 | |
181 | while (CBS_len(&cipher_suites) > 0) { |
182 | uint16_t got_id; |
183 | if (!CBS_get_u16(&cipher_suites, &got_id)) { |
184 | return false; |
185 | } |
186 | |
187 | if (got_id == id) { |
188 | return true; |
189 | } |
190 | } |
191 | |
192 | return false; |
193 | } |
194 | |
195 | static bool negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
196 | const SSL_CLIENT_HELLO *client_hello) { |
197 | SSL *const ssl = hs->ssl; |
198 | assert(!ssl->s3->have_version); |
199 | CBS supported_versions, versions; |
200 | if (ssl_client_hello_get_extension(client_hello, &supported_versions, |
201 | TLSEXT_TYPE_supported_versions)) { |
202 | if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) || |
203 | CBS_len(&supported_versions) != 0 || |
204 | CBS_len(&versions) == 0) { |
205 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
206 | *out_alert = SSL_AD_DECODE_ERROR; |
207 | return false; |
208 | } |
209 | } else { |
210 | // Convert the ClientHello version to an equivalent supported_versions |
211 | // extension. |
212 | static const uint8_t kTLSVersions[] = { |
213 | 0x03, 0x03, // TLS 1.2 |
214 | 0x03, 0x02, // TLS 1.1 |
215 | 0x03, 0x01, // TLS 1 |
216 | }; |
217 | |
218 | static const uint8_t kDTLSVersions[] = { |
219 | 0xfe, 0xfd, // DTLS 1.2 |
220 | 0xfe, 0xff, // DTLS 1.0 |
221 | }; |
222 | |
223 | size_t versions_len = 0; |
224 | if (SSL_is_dtls(ssl)) { |
225 | if (client_hello->version <= DTLS1_2_VERSION) { |
226 | versions_len = 4; |
227 | } else if (client_hello->version <= DTLS1_VERSION) { |
228 | versions_len = 2; |
229 | } |
230 | CBS_init(&versions, kDTLSVersions + sizeof(kDTLSVersions) - versions_len, |
231 | versions_len); |
232 | } else { |
233 | if (client_hello->version >= TLS1_2_VERSION) { |
234 | versions_len = 6; |
235 | } else if (client_hello->version >= TLS1_1_VERSION) { |
236 | versions_len = 4; |
237 | } else if (client_hello->version >= TLS1_VERSION) { |
238 | versions_len = 2; |
239 | } |
240 | CBS_init(&versions, kTLSVersions + sizeof(kTLSVersions) - versions_len, |
241 | versions_len); |
242 | } |
243 | } |
244 | |
245 | if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) { |
246 | return false; |
247 | } |
248 | |
249 | // At this point, the connection's version is known and |ssl->version| is |
250 | // fixed. Begin enforcing the record-layer version. |
251 | ssl->s3->have_version = true; |
252 | ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version); |
253 | |
254 | // Handle FALLBACK_SCSV. |
255 | if (ssl_client_cipher_list_contains_cipher(client_hello, |
256 | SSL3_CK_FALLBACK_SCSV & 0xffff) && |
257 | ssl_protocol_version(ssl) < hs->max_version) { |
258 | OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK); |
259 | *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK; |
260 | return false; |
261 | } |
262 | |
263 | return true; |
264 | } |
265 | |
266 | static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list( |
267 | const SSL_CLIENT_HELLO *client_hello) { |
268 | CBS cipher_suites; |
269 | CBS_init(&cipher_suites, client_hello->cipher_suites, |
270 | client_hello->cipher_suites_len); |
271 | |
272 | UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null()); |
273 | if (!sk) { |
274 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
275 | return nullptr; |
276 | } |
277 | |
278 | while (CBS_len(&cipher_suites) > 0) { |
279 | uint16_t cipher_suite; |
280 | |
281 | if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { |
282 | OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); |
283 | return nullptr; |
284 | } |
285 | |
286 | const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite); |
287 | if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) { |
288 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
289 | return nullptr; |
290 | } |
291 | } |
292 | |
293 | return sk; |
294 | } |
295 | |
296 | // ssl_get_compatible_server_ciphers determines the key exchange and |
297 | // authentication cipher suite masks compatible with the server configuration |
298 | // and current ClientHello parameters of |hs|. It sets |*out_mask_k| to the key |
299 | // exchange mask and |*out_mask_a| to the authentication mask. |
300 | static void ssl_get_compatible_server_ciphers(SSL_HANDSHAKE *hs, |
301 | uint32_t *out_mask_k, |
302 | uint32_t *out_mask_a) { |
303 | uint32_t mask_k = 0; |
304 | uint32_t mask_a = 0; |
305 | |
306 | if (ssl_has_certificate(hs)) { |
307 | mask_a |= ssl_cipher_auth_mask_for_key(hs->local_pubkey.get()); |
308 | if (EVP_PKEY_id(hs->local_pubkey.get()) == EVP_PKEY_RSA) { |
309 | mask_k |= SSL_kRSA; |
310 | } |
311 | } |
312 | |
313 | // Check for a shared group to consider ECDHE ciphers. |
314 | uint16_t unused; |
315 | if (tls1_get_shared_group(hs, &unused)) { |
316 | mask_k |= SSL_kECDHE; |
317 | } |
318 | |
319 | // PSK requires a server callback. |
320 | if (hs->config->psk_server_callback != NULL) { |
321 | mask_k |= SSL_kPSK; |
322 | mask_a |= SSL_aPSK; |
323 | } |
324 | |
325 | *out_mask_k = mask_k; |
326 | *out_mask_a = mask_a; |
327 | } |
328 | |
329 | static const SSL_CIPHER *ssl3_choose_cipher( |
330 | SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello, |
331 | const SSLCipherPreferenceList *server_pref) { |
332 | SSL *const ssl = hs->ssl; |
333 | const STACK_OF(SSL_CIPHER) *prio, *allow; |
334 | // in_group_flags will either be NULL, or will point to an array of bytes |
335 | // which indicate equal-preference groups in the |prio| stack. See the |
336 | // comment about |in_group_flags| in the |SSLCipherPreferenceList| |
337 | // struct. |
338 | const bool *in_group_flags; |
339 | // group_min contains the minimal index so far found in a group, or -1 if no |
340 | // such value exists yet. |
341 | int group_min = -1; |
342 | |
343 | UniquePtr<STACK_OF(SSL_CIPHER)> client_pref = |
344 | ssl_parse_client_cipher_list(client_hello); |
345 | if (!client_pref) { |
346 | return nullptr; |
347 | } |
348 | |
349 | if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { |
350 | prio = server_pref->ciphers.get(); |
351 | in_group_flags = server_pref->in_group_flags; |
352 | allow = client_pref.get(); |
353 | } else { |
354 | prio = client_pref.get(); |
355 | in_group_flags = NULL; |
356 | allow = server_pref->ciphers.get(); |
357 | } |
358 | |
359 | uint32_t mask_k, mask_a; |
360 | ssl_get_compatible_server_ciphers(hs, &mask_k, &mask_a); |
361 | |
362 | for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) { |
363 | const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i); |
364 | |
365 | size_t cipher_index; |
366 | if (// Check if the cipher is supported for the current version. |
367 | SSL_CIPHER_get_min_version(c) <= ssl_protocol_version(ssl) && |
368 | ssl_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) && |
369 | // Check the cipher is supported for the server configuration. |
370 | (c->algorithm_mkey & mask_k) && |
371 | (c->algorithm_auth & mask_a) && |
372 | // Check the cipher is in the |allow| list. |
373 | sk_SSL_CIPHER_find(allow, &cipher_index, c)) { |
374 | if (in_group_flags != NULL && in_group_flags[i]) { |
375 | // This element of |prio| is in a group. Update the minimum index found |
376 | // so far and continue looking. |
377 | if (group_min == -1 || (size_t)group_min > cipher_index) { |
378 | group_min = cipher_index; |
379 | } |
380 | } else { |
381 | if (group_min != -1 && (size_t)group_min < cipher_index) { |
382 | cipher_index = group_min; |
383 | } |
384 | return sk_SSL_CIPHER_value(allow, cipher_index); |
385 | } |
386 | } |
387 | |
388 | if (in_group_flags != NULL && !in_group_flags[i] && group_min != -1) { |
389 | // We are about to leave a group, but we found a match in it, so that's |
390 | // our answer. |
391 | return sk_SSL_CIPHER_value(allow, group_min); |
392 | } |
393 | } |
394 | |
395 | return nullptr; |
396 | } |
397 | |
398 | static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) { |
399 | ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1); |
400 | hs->state = state12_read_client_hello; |
401 | return ssl_hs_ok; |
402 | } |
403 | |
404 | // is_probably_jdk11_with_tls13 returns whether |client_hello| was probably sent |
405 | // from a JDK 11 client with both TLS 1.3 and a prior version enabled. |
406 | static bool is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO *client_hello) { |
407 | // JDK 11 ClientHellos contain a number of unusual properties which should |
408 | // limit false positives. |
409 | |
410 | // JDK 11 does not support ChaCha20-Poly1305. This is unusual: many modern |
411 | // clients implement ChaCha20-Poly1305. |
412 | if (ssl_client_cipher_list_contains_cipher( |
413 | client_hello, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { |
414 | return false; |
415 | } |
416 | |
417 | // JDK 11 always sends extensions in a particular order. |
418 | constexpr uint16_t kMaxFragmentLength = 0x0001; |
419 | constexpr uint16_t kStatusRequestV2 = 0x0011; |
420 | static CONSTEXPR_ARRAY struct { |
421 | uint16_t id; |
422 | bool required; |
423 | } kJavaExtensions[] = { |
424 | {TLSEXT_TYPE_server_name, false}, |
425 | {kMaxFragmentLength, false}, |
426 | {TLSEXT_TYPE_status_request, false}, |
427 | {TLSEXT_TYPE_supported_groups, true}, |
428 | {TLSEXT_TYPE_ec_point_formats, false}, |
429 | {TLSEXT_TYPE_signature_algorithms, true}, |
430 | // Java always sends signature_algorithms_cert. |
431 | {TLSEXT_TYPE_signature_algorithms_cert, true}, |
432 | {TLSEXT_TYPE_application_layer_protocol_negotiation, false}, |
433 | {kStatusRequestV2, false}, |
434 | {TLSEXT_TYPE_extended_master_secret, false}, |
435 | {TLSEXT_TYPE_supported_versions, true}, |
436 | {TLSEXT_TYPE_cookie, false}, |
437 | {TLSEXT_TYPE_psk_key_exchange_modes, true}, |
438 | {TLSEXT_TYPE_key_share, true}, |
439 | {TLSEXT_TYPE_renegotiate, false}, |
440 | {TLSEXT_TYPE_pre_shared_key, false}, |
441 | }; |
442 | Span<const uint8_t> sigalgs, sigalgs_cert; |
443 | bool has_status_request = false, has_status_request_v2 = false; |
444 | CBS extensions, supported_groups; |
445 | CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); |
446 | for (const auto &java_extension : kJavaExtensions) { |
447 | CBS copy = extensions; |
448 | uint16_t id; |
449 | if (CBS_get_u16(©, &id) && id == java_extension.id) { |
450 | // The next extension is the one we expected. |
451 | extensions = copy; |
452 | CBS body; |
453 | if (!CBS_get_u16_length_prefixed(&extensions, &body)) { |
454 | return false; |
455 | } |
456 | switch (id) { |
457 | case TLSEXT_TYPE_status_request: |
458 | has_status_request = true; |
459 | break; |
460 | case kStatusRequestV2: |
461 | has_status_request_v2 = true; |
462 | break; |
463 | case TLSEXT_TYPE_signature_algorithms: |
464 | sigalgs = body; |
465 | break; |
466 | case TLSEXT_TYPE_signature_algorithms_cert: |
467 | sigalgs_cert = body; |
468 | break; |
469 | case TLSEXT_TYPE_supported_groups: |
470 | supported_groups = body; |
471 | break; |
472 | } |
473 | } else if (java_extension.required) { |
474 | return false; |
475 | } |
476 | } |
477 | if (CBS_len(&extensions) != 0) { |
478 | return false; |
479 | } |
480 | |
481 | // JDK 11 never advertises X25519. It is not offered by default, and |
482 | // -Djdk.tls.namedGroups=x25519 does not work. This is unusual: many modern |
483 | // clients implement X25519. |
484 | while (CBS_len(&supported_groups) > 0) { |
485 | uint16_t group; |
486 | if (!CBS_get_u16(&supported_groups, &group) || |
487 | group == SSL_CURVE_X25519) { |
488 | return false; |
489 | } |
490 | } |
491 | |
492 | if (// JDK 11 always sends the same contents in signature_algorithms and |
493 | // signature_algorithms_cert. This is unusual: signature_algorithms_cert, |
494 | // if omitted, is treated as if it were signature_algorithms. |
495 | sigalgs != sigalgs_cert || |
496 | // When TLS 1.2 or below is enabled, JDK 11 sends status_request_v2 iff it |
497 | // sends status_request. This is unusual: status_request_v2 is not widely |
498 | // implemented. |
499 | has_status_request != has_status_request_v2) { |
500 | return false; |
501 | } |
502 | |
503 | return true; |
504 | } |
505 | |
506 | static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) { |
507 | SSL *const ssl = hs->ssl; |
508 | |
509 | SSLMessage msg; |
510 | if (!ssl->method->get_message(ssl, &msg)) { |
511 | return ssl_hs_read_message; |
512 | } |
513 | |
514 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) { |
515 | return ssl_hs_error; |
516 | } |
517 | |
518 | SSL_CLIENT_HELLO client_hello; |
519 | if (!ssl_client_hello_init(ssl, &client_hello, msg)) { |
520 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
521 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
522 | return ssl_hs_error; |
523 | } |
524 | |
525 | if (hs->config->handoff) { |
526 | return ssl_hs_handoff; |
527 | } |
528 | |
529 | // Run the early callback. |
530 | if (ssl->ctx->select_certificate_cb != NULL) { |
531 | switch (ssl->ctx->select_certificate_cb(&client_hello)) { |
532 | case ssl_select_cert_retry: |
533 | return ssl_hs_certificate_selection_pending; |
534 | |
535 | case ssl_select_cert_error: |
536 | // Connection rejected. |
537 | OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
538 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
539 | return ssl_hs_error; |
540 | |
541 | default: |
542 | /* fallthrough */; |
543 | } |
544 | } |
545 | |
546 | // Freeze the version range after the early callback. |
547 | if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) { |
548 | return ssl_hs_error; |
549 | } |
550 | |
551 | if (hs->config->jdk11_workaround && |
552 | is_probably_jdk11_with_tls13(&client_hello)) { |
553 | hs->apply_jdk11_workaround = true; |
554 | } |
555 | |
556 | uint8_t alert = SSL_AD_DECODE_ERROR; |
557 | if (!negotiate_version(hs, &alert, &client_hello)) { |
558 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
559 | return ssl_hs_error; |
560 | } |
561 | |
562 | hs->client_version = client_hello.version; |
563 | if (client_hello.random_len != SSL3_RANDOM_SIZE) { |
564 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
565 | return ssl_hs_error; |
566 | } |
567 | OPENSSL_memcpy(ssl->s3->client_random, client_hello.random, |
568 | client_hello.random_len); |
569 | |
570 | // Only null compression is supported. TLS 1.3 further requires the peer |
571 | // advertise no other compression. |
572 | if (OPENSSL_memchr(client_hello.compression_methods, 0, |
573 | client_hello.compression_methods_len) == NULL || |
574 | (ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
575 | client_hello.compression_methods_len != 1)) { |
576 | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST); |
577 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
578 | return ssl_hs_error; |
579 | } |
580 | |
581 | // TLS extensions. |
582 | if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) { |
583 | OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
584 | return ssl_hs_error; |
585 | } |
586 | |
587 | hs->state = state12_select_certificate; |
588 | return ssl_hs_ok; |
589 | } |
590 | |
591 | static enum ssl_hs_wait_t do_select_certificate(SSL_HANDSHAKE *hs) { |
592 | SSL *const ssl = hs->ssl; |
593 | |
594 | SSLMessage msg; |
595 | if (!ssl->method->get_message(ssl, &msg)) { |
596 | return ssl_hs_read_message; |
597 | } |
598 | |
599 | // Call |cert_cb| to update server certificates if required. |
600 | if (hs->config->cert->cert_cb != NULL) { |
601 | int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg); |
602 | if (rv == 0) { |
603 | OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); |
604 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
605 | return ssl_hs_error; |
606 | } |
607 | if (rv < 0) { |
608 | return ssl_hs_x509_lookup; |
609 | } |
610 | } |
611 | |
612 | if (!ssl_on_certificate_selected(hs)) { |
613 | return ssl_hs_error; |
614 | } |
615 | |
616 | if (hs->ocsp_stapling_requested && |
617 | ssl->ctx->legacy_ocsp_callback != nullptr) { |
618 | switch (ssl->ctx->legacy_ocsp_callback( |
619 | ssl, ssl->ctx->legacy_ocsp_callback_arg)) { |
620 | case SSL_TLSEXT_ERR_OK: |
621 | break; |
622 | case SSL_TLSEXT_ERR_NOACK: |
623 | hs->ocsp_stapling_requested = false; |
624 | break; |
625 | default: |
626 | OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR); |
627 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
628 | return ssl_hs_error; |
629 | } |
630 | } |
631 | |
632 | if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
633 | // Jump to the TLS 1.3 state machine. |
634 | hs->state = state12_tls13; |
635 | return ssl_hs_ok; |
636 | } |
637 | |
638 | ssl->s3->early_data_reason = ssl_early_data_protocol_version; |
639 | |
640 | SSL_CLIENT_HELLO client_hello; |
641 | if (!ssl_client_hello_init(ssl, &client_hello, msg)) { |
642 | return ssl_hs_error; |
643 | } |
644 | |
645 | // Negotiate the cipher suite. This must be done after |cert_cb| so the |
646 | // certificate is finalized. |
647 | SSLCipherPreferenceList *prefs = hs->config->cipher_list |
648 | ? hs->config->cipher_list.get() |
649 | : ssl->ctx->cipher_list.get(); |
650 | hs->new_cipher = ssl3_choose_cipher(hs, &client_hello, prefs); |
651 | if (hs->new_cipher == NULL) { |
652 | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER); |
653 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
654 | return ssl_hs_error; |
655 | } |
656 | |
657 | hs->state = state12_select_parameters; |
658 | return ssl_hs_ok; |
659 | } |
660 | |
661 | static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { |
662 | enum ssl_hs_wait_t wait = tls13_server_handshake(hs); |
663 | if (wait == ssl_hs_ok) { |
664 | hs->state = state12_finish_server_handshake; |
665 | return ssl_hs_ok; |
666 | } |
667 | |
668 | return wait; |
669 | } |
670 | |
671 | static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) { |
672 | SSL *const ssl = hs->ssl; |
673 | |
674 | SSLMessage msg; |
675 | if (!ssl->method->get_message(ssl, &msg)) { |
676 | return ssl_hs_read_message; |
677 | } |
678 | |
679 | SSL_CLIENT_HELLO client_hello; |
680 | if (!ssl_client_hello_init(ssl, &client_hello, msg)) { |
681 | return ssl_hs_error; |
682 | } |
683 | |
684 | // Determine whether we are doing session resumption. |
685 | UniquePtr<SSL_SESSION> session; |
686 | bool tickets_supported = false, renew_ticket = false; |
687 | enum ssl_hs_wait_t wait = ssl_get_prev_session( |
688 | hs, &session, &tickets_supported, &renew_ticket, &client_hello); |
689 | if (wait != ssl_hs_ok) { |
690 | return wait; |
691 | } |
692 | |
693 | if (session) { |
694 | if (session->extended_master_secret && !hs->extended_master_secret) { |
695 | // A ClientHello without EMS that attempts to resume a session with EMS |
696 | // is fatal to the connection. |
697 | OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); |
698 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
699 | return ssl_hs_error; |
700 | } |
701 | |
702 | if (!ssl_session_is_resumable(hs, session.get()) || |
703 | // If the client offers the EMS extension, but the previous session |
704 | // didn't use it, then negotiate a new session. |
705 | hs->extended_master_secret != session->extended_master_secret) { |
706 | session.reset(); |
707 | } |
708 | } |
709 | |
710 | if (session) { |
711 | // Use the old session. |
712 | hs->ticket_expected = renew_ticket; |
713 | ssl->session = std::move(session); |
714 | ssl->s3->session_reused = true; |
715 | } else { |
716 | hs->ticket_expected = tickets_supported; |
717 | ssl_set_session(ssl, NULL); |
718 | if (!ssl_get_new_session(hs, 1 /* server */)) { |
719 | return ssl_hs_error; |
720 | } |
721 | |
722 | // Clear the session ID if we want the session to be single-use. |
723 | if (!(ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) { |
724 | hs->new_session->session_id_length = 0; |
725 | } |
726 | } |
727 | |
728 | if (ssl->ctx->dos_protection_cb != NULL && |
729 | ssl->ctx->dos_protection_cb(&client_hello) == 0) { |
730 | // Connection rejected for DOS reasons. |
731 | OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
732 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
733 | return ssl_hs_error; |
734 | } |
735 | |
736 | if (ssl->session == NULL) { |
737 | hs->new_session->cipher = hs->new_cipher; |
738 | |
739 | // Determine whether to request a client certificate. |
740 | hs->cert_request = !!(hs->config->verify_mode & SSL_VERIFY_PEER); |
741 | // Only request a certificate if Channel ID isn't negotiated. |
742 | if ((hs->config->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) && |
743 | ssl->s3->channel_id_valid) { |
744 | hs->cert_request = false; |
745 | } |
746 | // CertificateRequest may only be sent in certificate-based ciphers. |
747 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
748 | hs->cert_request = false; |
749 | } |
750 | |
751 | if (!hs->cert_request) { |
752 | // OpenSSL returns X509_V_OK when no certificates are requested. This is |
753 | // classed by them as a bug, but it's assumed by at least NGINX. |
754 | hs->new_session->verify_result = X509_V_OK; |
755 | } |
756 | } |
757 | |
758 | // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was |
759 | // deferred. Complete it now. |
760 | uint8_t alert = SSL_AD_DECODE_ERROR; |
761 | if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) { |
762 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
763 | return ssl_hs_error; |
764 | } |
765 | |
766 | // Now that all parameters are known, initialize the handshake hash and hash |
767 | // the ClientHello. |
768 | if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) || |
769 | !ssl_hash_message(hs, msg)) { |
770 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
771 | return ssl_hs_error; |
772 | } |
773 | |
774 | // Handback includes the whole handshake transcript, so we cannot free the |
775 | // transcript buffer in the handback case. |
776 | if (!hs->cert_request && !hs->handback) { |
777 | hs->transcript.FreeBuffer(); |
778 | } |
779 | |
780 | ssl->method->next_message(ssl); |
781 | |
782 | hs->state = state12_send_server_hello; |
783 | return ssl_hs_ok; |
784 | } |
785 | |
786 | static void copy_suffix(Span<uint8_t> out, Span<const uint8_t> in) { |
787 | out = out.subspan(out.size() - in.size()); |
788 | assert(out.size() == in.size()); |
789 | OPENSSL_memcpy(out.data(), in.data(), in.size()); |
790 | } |
791 | |
792 | static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) { |
793 | SSL *const ssl = hs->ssl; |
794 | |
795 | // We only accept ChannelIDs on connections with ECDHE in order to avoid a |
796 | // known attack while we fix ChannelID itself. |
797 | if (ssl->s3->channel_id_valid && |
798 | (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) { |
799 | ssl->s3->channel_id_valid = false; |
800 | } |
801 | |
802 | // If this is a resumption and the original handshake didn't support |
803 | // ChannelID then we didn't record the original handshake hashes in the |
804 | // session and so cannot resume with ChannelIDs. |
805 | if (ssl->session != NULL && |
806 | ssl->session->original_handshake_hash_len == 0) { |
807 | ssl->s3->channel_id_valid = false; |
808 | } |
809 | |
810 | struct OPENSSL_timeval now; |
811 | ssl_get_current_time(ssl, &now); |
812 | ssl->s3->server_random[0] = now.tv_sec >> 24; |
813 | ssl->s3->server_random[1] = now.tv_sec >> 16; |
814 | ssl->s3->server_random[2] = now.tv_sec >> 8; |
815 | ssl->s3->server_random[3] = now.tv_sec; |
816 | if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) { |
817 | return ssl_hs_error; |
818 | } |
819 | |
820 | // Implement the TLS 1.3 anti-downgrade feature. |
821 | if (ssl_supports_version(hs, TLS1_3_VERSION)) { |
822 | if (ssl_protocol_version(ssl) == TLS1_2_VERSION) { |
823 | if (hs->apply_jdk11_workaround) { |
824 | // JDK 11 implements the TLS 1.3 downgrade signal, so we cannot send it |
825 | // here. However, the signal is only effective if all TLS 1.2 |
826 | // ServerHellos produced by the server are marked. Thus we send a |
827 | // different non-standard signal for the time being, until JDK 11.0.2 is |
828 | // released and clients have updated. |
829 | copy_suffix(ssl->s3->server_random, kJDK11DowngradeRandom); |
830 | } else { |
831 | copy_suffix(ssl->s3->server_random, kTLS13DowngradeRandom); |
832 | } |
833 | } else { |
834 | copy_suffix(ssl->s3->server_random, kTLS12DowngradeRandom); |
835 | } |
836 | } |
837 | |
838 | const SSL_SESSION *session = hs->new_session.get(); |
839 | if (ssl->session != nullptr) { |
840 | session = ssl->session.get(); |
841 | } |
842 | |
843 | ScopedCBB cbb; |
844 | CBB body, session_id; |
845 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) || |
846 | !CBB_add_u16(&body, ssl->version) || |
847 | !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) || |
848 | !CBB_add_u8_length_prefixed(&body, &session_id) || |
849 | !CBB_add_bytes(&session_id, session->session_id, |
850 | session->session_id_length) || |
851 | !CBB_add_u16(&body, ssl_cipher_get_value(hs->new_cipher)) || |
852 | !CBB_add_u8(&body, 0 /* no compression */) || |
853 | !ssl_add_serverhello_tlsext(hs, &body) || |
854 | !ssl_add_message_cbb(ssl, cbb.get())) { |
855 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
856 | return ssl_hs_error; |
857 | } |
858 | |
859 | if (ssl->session != NULL) { |
860 | hs->state = state12_send_server_finished; |
861 | } else { |
862 | hs->state = state12_send_server_certificate; |
863 | } |
864 | return ssl_hs_ok; |
865 | } |
866 | |
867 | static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) { |
868 | SSL *const ssl = hs->ssl; |
869 | ScopedCBB cbb; |
870 | |
871 | if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
872 | if (!ssl_has_certificate(hs)) { |
873 | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET); |
874 | return ssl_hs_error; |
875 | } |
876 | |
877 | if (!ssl_output_cert_chain(hs)) { |
878 | return ssl_hs_error; |
879 | } |
880 | |
881 | if (hs->certificate_status_expected) { |
882 | CBB body, ocsp_response; |
883 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
884 | SSL3_MT_CERTIFICATE_STATUS) || |
885 | !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) || |
886 | !CBB_add_u24_length_prefixed(&body, &ocsp_response) || |
887 | !CBB_add_bytes( |
888 | &ocsp_response, |
889 | CRYPTO_BUFFER_data(hs->config->cert->ocsp_response.get()), |
890 | CRYPTO_BUFFER_len(hs->config->cert->ocsp_response.get())) || |
891 | !ssl_add_message_cbb(ssl, cbb.get())) { |
892 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
893 | return ssl_hs_error; |
894 | } |
895 | } |
896 | } |
897 | |
898 | // Assemble ServerKeyExchange parameters if needed. |
899 | uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
900 | uint32_t alg_a = hs->new_cipher->algorithm_auth; |
901 | if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) || |
902 | ((alg_a & SSL_aPSK) && hs->config->psk_identity_hint)) { |
903 | // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend |
904 | // the client and server randoms for the signing transcript. |
905 | CBB child; |
906 | if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) || |
907 | !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) || |
908 | !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) { |
909 | return ssl_hs_error; |
910 | } |
911 | |
912 | // PSK ciphers begin with an identity hint. |
913 | if (alg_a & SSL_aPSK) { |
914 | size_t len = hs->config->psk_identity_hint == nullptr |
915 | ? 0 |
916 | : strlen(hs->config->psk_identity_hint.get()); |
917 | if (!CBB_add_u16_length_prefixed(cbb.get(), &child) || |
918 | !CBB_add_bytes(&child, |
919 | (const uint8_t *)hs->config->psk_identity_hint.get(), |
920 | len)) { |
921 | return ssl_hs_error; |
922 | } |
923 | } |
924 | |
925 | if (alg_k & SSL_kECDHE) { |
926 | // Determine the group to use. |
927 | uint16_t group_id; |
928 | if (!tls1_get_shared_group(hs, &group_id)) { |
929 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
930 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
931 | return ssl_hs_error; |
932 | } |
933 | hs->new_session->group_id = group_id; |
934 | |
935 | // Set up ECDH, generate a key, and emit the public half. |
936 | hs->key_shares[0] = SSLKeyShare::Create(group_id); |
937 | if (!hs->key_shares[0] || |
938 | !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) || |
939 | !CBB_add_u16(cbb.get(), group_id) || |
940 | !CBB_add_u8_length_prefixed(cbb.get(), &child) || |
941 | !hs->key_shares[0]->Offer(&child)) { |
942 | return ssl_hs_error; |
943 | } |
944 | } else { |
945 | assert(alg_k & SSL_kPSK); |
946 | } |
947 | |
948 | if (!CBBFinishArray(cbb.get(), &hs->server_params)) { |
949 | return ssl_hs_error; |
950 | } |
951 | } |
952 | |
953 | hs->state = state12_send_server_key_exchange; |
954 | return ssl_hs_ok; |
955 | } |
956 | |
957 | static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) { |
958 | SSL *const ssl = hs->ssl; |
959 | |
960 | if (hs->server_params.size() == 0) { |
961 | hs->state = state12_send_server_hello_done; |
962 | return ssl_hs_ok; |
963 | } |
964 | |
965 | ScopedCBB cbb; |
966 | CBB body, child; |
967 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
968 | SSL3_MT_SERVER_KEY_EXCHANGE) || |
969 | // |hs->server_params| contains a prefix for signing. |
970 | hs->server_params.size() < 2 * SSL3_RANDOM_SIZE || |
971 | !CBB_add_bytes(&body, hs->server_params.data() + 2 * SSL3_RANDOM_SIZE, |
972 | hs->server_params.size() - 2 * SSL3_RANDOM_SIZE)) { |
973 | return ssl_hs_error; |
974 | } |
975 | |
976 | // Add a signature. |
977 | if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
978 | if (!ssl_has_private_key(hs)) { |
979 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
980 | return ssl_hs_error; |
981 | } |
982 | |
983 | // Determine the signature algorithm. |
984 | uint16_t signature_algorithm; |
985 | if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) { |
986 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
987 | return ssl_hs_error; |
988 | } |
989 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
990 | if (!CBB_add_u16(&body, signature_algorithm)) { |
991 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
992 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
993 | return ssl_hs_error; |
994 | } |
995 | } |
996 | |
997 | // Add space for the signature. |
998 | const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get()); |
999 | uint8_t *ptr; |
1000 | if (!CBB_add_u16_length_prefixed(&body, &child) || |
1001 | !CBB_reserve(&child, &ptr, max_sig_len)) { |
1002 | return ssl_hs_error; |
1003 | } |
1004 | |
1005 | size_t sig_len; |
1006 | switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, |
1007 | signature_algorithm, hs->server_params)) { |
1008 | case ssl_private_key_success: |
1009 | if (!CBB_did_write(&child, sig_len)) { |
1010 | return ssl_hs_error; |
1011 | } |
1012 | break; |
1013 | case ssl_private_key_failure: |
1014 | return ssl_hs_error; |
1015 | case ssl_private_key_retry: |
1016 | return ssl_hs_private_key_operation; |
1017 | } |
1018 | } |
1019 | |
1020 | if (!ssl_add_message_cbb(ssl, cbb.get())) { |
1021 | return ssl_hs_error; |
1022 | } |
1023 | |
1024 | hs->server_params.Reset(); |
1025 | |
1026 | hs->state = state12_send_server_hello_done; |
1027 | return ssl_hs_ok; |
1028 | } |
1029 | |
1030 | static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) { |
1031 | SSL *const ssl = hs->ssl; |
1032 | |
1033 | ScopedCBB cbb; |
1034 | CBB body; |
1035 | |
1036 | if (hs->cert_request) { |
1037 | CBB cert_types, sigalgs_cbb; |
1038 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
1039 | SSL3_MT_CERTIFICATE_REQUEST) || |
1040 | !CBB_add_u8_length_prefixed(&body, &cert_types) || |
1041 | !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) || |
1042 | !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN) || |
1043 | // TLS 1.2 has no way to specify different signature algorithms for |
1044 | // certificates and the online signature, so emit the more restrictive |
1045 | // certificate list. |
1046 | (ssl_protocol_version(ssl) >= TLS1_2_VERSION && |
1047 | (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) || |
1048 | !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb, true /* certs */))) || |
1049 | !ssl_add_client_CA_list(hs, &body) || |
1050 | !ssl_add_message_cbb(ssl, cbb.get())) { |
1051 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1052 | return ssl_hs_error; |
1053 | } |
1054 | } |
1055 | |
1056 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
1057 | SSL3_MT_SERVER_HELLO_DONE) || |
1058 | !ssl_add_message_cbb(ssl, cbb.get())) { |
1059 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1060 | return ssl_hs_error; |
1061 | } |
1062 | |
1063 | hs->state = state12_read_client_certificate; |
1064 | return ssl_hs_flush; |
1065 | } |
1066 | |
1067 | static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) { |
1068 | SSL *const ssl = hs->ssl; |
1069 | |
1070 | if (hs->handback && hs->new_cipher->algorithm_mkey == SSL_kECDHE) { |
1071 | return ssl_hs_handback; |
1072 | } |
1073 | if (!hs->cert_request) { |
1074 | hs->state = state12_verify_client_certificate; |
1075 | return ssl_hs_ok; |
1076 | } |
1077 | |
1078 | SSLMessage msg; |
1079 | if (!ssl->method->get_message(ssl, &msg)) { |
1080 | return ssl_hs_read_message; |
1081 | } |
1082 | |
1083 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) { |
1084 | return ssl_hs_error; |
1085 | } |
1086 | |
1087 | if (!ssl_hash_message(hs, msg)) { |
1088 | return ssl_hs_error; |
1089 | } |
1090 | |
1091 | CBS certificate_msg = msg.body; |
1092 | uint8_t alert = SSL_AD_DECODE_ERROR; |
1093 | if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey, |
1094 | hs->config->retain_only_sha256_of_client_certs |
1095 | ? hs->new_session->peer_sha256 |
1096 | : nullptr, |
1097 | &certificate_msg, ssl->ctx->pool)) { |
1098 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
1099 | return ssl_hs_error; |
1100 | } |
1101 | |
1102 | if (CBS_len(&certificate_msg) != 0 || |
1103 | !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { |
1104 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1105 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1106 | return ssl_hs_error; |
1107 | } |
1108 | |
1109 | if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0) { |
1110 | // No client certificate so the handshake buffer may be discarded. |
1111 | hs->transcript.FreeBuffer(); |
1112 | |
1113 | if (hs->config->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) { |
1114 | // Fail for TLS only if we required a certificate |
1115 | OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); |
1116 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
1117 | return ssl_hs_error; |
1118 | } |
1119 | |
1120 | // OpenSSL returns X509_V_OK when no certificates are received. This is |
1121 | // classed by them as a bug, but it's assumed by at least NGINX. |
1122 | hs->new_session->verify_result = X509_V_OK; |
1123 | } else if (hs->config->retain_only_sha256_of_client_certs) { |
1124 | // The hash will have been filled in. |
1125 | hs->new_session->peer_sha256_valid = 1; |
1126 | } |
1127 | |
1128 | ssl->method->next_message(ssl); |
1129 | hs->state = state12_verify_client_certificate; |
1130 | return ssl_hs_ok; |
1131 | } |
1132 | |
1133 | static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) { |
1134 | if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) > 0) { |
1135 | switch (ssl_verify_peer_cert(hs)) { |
1136 | case ssl_verify_ok: |
1137 | break; |
1138 | case ssl_verify_invalid: |
1139 | return ssl_hs_error; |
1140 | case ssl_verify_retry: |
1141 | return ssl_hs_certificate_verify; |
1142 | } |
1143 | } |
1144 | |
1145 | hs->state = state12_read_client_key_exchange; |
1146 | return ssl_hs_ok; |
1147 | } |
1148 | |
1149 | static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) { |
1150 | SSL *const ssl = hs->ssl; |
1151 | SSLMessage msg; |
1152 | if (!ssl->method->get_message(ssl, &msg)) { |
1153 | return ssl_hs_read_message; |
1154 | } |
1155 | |
1156 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) { |
1157 | return ssl_hs_error; |
1158 | } |
1159 | |
1160 | CBS client_key_exchange = msg.body; |
1161 | uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
1162 | uint32_t alg_a = hs->new_cipher->algorithm_auth; |
1163 | |
1164 | // If using a PSK key exchange, parse the PSK identity. |
1165 | if (alg_a & SSL_aPSK) { |
1166 | CBS psk_identity; |
1167 | |
1168 | // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK, |
1169 | // then this is the only field in the message. |
1170 | if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) || |
1171 | ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) { |
1172 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1173 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1174 | return ssl_hs_error; |
1175 | } |
1176 | |
1177 | if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN || |
1178 | CBS_contains_zero_byte(&psk_identity)) { |
1179 | OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
1180 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
1181 | return ssl_hs_error; |
1182 | } |
1183 | char *raw = nullptr; |
1184 | if (!CBS_strdup(&psk_identity, &raw)) { |
1185 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
1186 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1187 | return ssl_hs_error; |
1188 | } |
1189 | hs->new_session->psk_identity.reset(raw); |
1190 | } |
1191 | |
1192 | // Depending on the key exchange method, compute |premaster_secret|. |
1193 | Array<uint8_t> premaster_secret; |
1194 | if (alg_k & SSL_kRSA) { |
1195 | CBS encrypted_premaster_secret; |
1196 | if (!CBS_get_u16_length_prefixed(&client_key_exchange, |
1197 | &encrypted_premaster_secret) || |
1198 | CBS_len(&client_key_exchange) != 0) { |
1199 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1200 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1201 | return ssl_hs_error; |
1202 | } |
1203 | |
1204 | // Allocate a buffer large enough for an RSA decryption. |
1205 | Array<uint8_t> decrypt_buf; |
1206 | if (!decrypt_buf.Init(EVP_PKEY_size(hs->local_pubkey.get()))) { |
1207 | return ssl_hs_error; |
1208 | } |
1209 | |
1210 | // Decrypt with no padding. PKCS#1 padding will be removed as part of the |
1211 | // timing-sensitive code below. |
1212 | size_t decrypt_len; |
1213 | switch (ssl_private_key_decrypt(hs, decrypt_buf.data(), &decrypt_len, |
1214 | decrypt_buf.size(), |
1215 | encrypted_premaster_secret)) { |
1216 | case ssl_private_key_success: |
1217 | break; |
1218 | case ssl_private_key_failure: |
1219 | return ssl_hs_error; |
1220 | case ssl_private_key_retry: |
1221 | return ssl_hs_private_key_operation; |
1222 | } |
1223 | |
1224 | if (decrypt_len != decrypt_buf.size()) { |
1225 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
1226 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
1227 | return ssl_hs_error; |
1228 | } |
1229 | |
1230 | CONSTTIME_SECRET(decrypt_buf.data(), decrypt_len); |
1231 | |
1232 | // Prepare a random premaster, to be used on invalid padding. See RFC 5246, |
1233 | // section 7.4.7.1. |
1234 | if (!premaster_secret.Init(SSL_MAX_MASTER_KEY_LENGTH) || |
1235 | !RAND_bytes(premaster_secret.data(), premaster_secret.size())) { |
1236 | return ssl_hs_error; |
1237 | } |
1238 | |
1239 | // The smallest padded premaster is 11 bytes of overhead. Small keys are |
1240 | // publicly invalid. |
1241 | if (decrypt_len < 11 + premaster_secret.size()) { |
1242 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
1243 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
1244 | return ssl_hs_error; |
1245 | } |
1246 | |
1247 | // Check the padding. See RFC 3447, section 7.2.2. |
1248 | size_t padding_len = decrypt_len - premaster_secret.size(); |
1249 | uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) & |
1250 | constant_time_eq_int_8(decrypt_buf[1], 2); |
1251 | for (size_t i = 2; i < padding_len - 1; i++) { |
1252 | good &= ~constant_time_is_zero_8(decrypt_buf[i]); |
1253 | } |
1254 | good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]); |
1255 | |
1256 | // The premaster secret must begin with |client_version|. This too must be |
1257 | // checked in constant time (http://eprint.iacr.org/2003/052/). |
1258 | good &= constant_time_eq_8(decrypt_buf[padding_len], |
1259 | (unsigned)(hs->client_version >> 8)); |
1260 | good &= constant_time_eq_8(decrypt_buf[padding_len + 1], |
1261 | (unsigned)(hs->client_version & 0xff)); |
1262 | |
1263 | // Select, in constant time, either the decrypted premaster or the random |
1264 | // premaster based on |good|. |
1265 | for (size_t i = 0; i < premaster_secret.size(); i++) { |
1266 | premaster_secret[i] = constant_time_select_8( |
1267 | good, decrypt_buf[padding_len + i], premaster_secret[i]); |
1268 | } |
1269 | } else if (alg_k & SSL_kECDHE) { |
1270 | // Parse the ClientKeyExchange. |
1271 | CBS peer_key; |
1272 | if (!CBS_get_u8_length_prefixed(&client_key_exchange, &peer_key) || |
1273 | CBS_len(&client_key_exchange) != 0) { |
1274 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1275 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1276 | return ssl_hs_error; |
1277 | } |
1278 | |
1279 | // Compute the premaster. |
1280 | uint8_t alert = SSL_AD_DECODE_ERROR; |
1281 | if (!hs->key_shares[0]->Finish(&premaster_secret, &alert, peer_key)) { |
1282 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
1283 | return ssl_hs_error; |
1284 | } |
1285 | |
1286 | // The key exchange state may now be discarded. |
1287 | hs->key_shares[0].reset(); |
1288 | hs->key_shares[1].reset(); |
1289 | } else if (!(alg_k & SSL_kPSK)) { |
1290 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1291 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
1292 | return ssl_hs_error; |
1293 | } |
1294 | |
1295 | // For a PSK cipher suite, the actual pre-master secret is combined with the |
1296 | // pre-shared key. |
1297 | if (alg_a & SSL_aPSK) { |
1298 | if (hs->config->psk_server_callback == NULL) { |
1299 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1300 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1301 | return ssl_hs_error; |
1302 | } |
1303 | |
1304 | // Look up the key for the identity. |
1305 | uint8_t psk[PSK_MAX_PSK_LEN]; |
1306 | unsigned psk_len = hs->config->psk_server_callback( |
1307 | ssl, hs->new_session->psk_identity.get(), psk, sizeof(psk)); |
1308 | if (psk_len > PSK_MAX_PSK_LEN) { |
1309 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1310 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1311 | return ssl_hs_error; |
1312 | } else if (psk_len == 0) { |
1313 | // PSK related to the given identity not found. |
1314 | OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
1315 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY); |
1316 | return ssl_hs_error; |
1317 | } |
1318 | |
1319 | if (alg_k & SSL_kPSK) { |
1320 | // In plain PSK, other_secret is a block of 0s with the same length as the |
1321 | // pre-shared key. |
1322 | if (!premaster_secret.Init(psk_len)) { |
1323 | return ssl_hs_error; |
1324 | } |
1325 | OPENSSL_memset(premaster_secret.data(), 0, premaster_secret.size()); |
1326 | } |
1327 | |
1328 | ScopedCBB new_premaster; |
1329 | CBB child; |
1330 | if (!CBB_init(new_premaster.get(), |
1331 | 2 + psk_len + 2 + premaster_secret.size()) || |
1332 | !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || |
1333 | !CBB_add_bytes(&child, premaster_secret.data(), |
1334 | premaster_secret.size()) || |
1335 | !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || |
1336 | !CBB_add_bytes(&child, psk, psk_len) || |
1337 | !CBBFinishArray(new_premaster.get(), &premaster_secret)) { |
1338 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
1339 | return ssl_hs_error; |
1340 | } |
1341 | } |
1342 | |
1343 | if (!ssl_hash_message(hs, msg)) { |
1344 | return ssl_hs_error; |
1345 | } |
1346 | |
1347 | // Compute the master secret. |
1348 | hs->new_session->master_key_length = tls1_generate_master_secret( |
1349 | hs, hs->new_session->master_key, premaster_secret); |
1350 | if (hs->new_session->master_key_length == 0) { |
1351 | return ssl_hs_error; |
1352 | } |
1353 | hs->new_session->extended_master_secret = hs->extended_master_secret; |
1354 | CONSTTIME_DECLASSIFY(hs->new_session->master_key, |
1355 | hs->new_session->master_key_length); |
1356 | |
1357 | ssl->method->next_message(ssl); |
1358 | hs->state = state12_read_client_certificate_verify; |
1359 | return ssl_hs_ok; |
1360 | } |
1361 | |
1362 | static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) { |
1363 | SSL *const ssl = hs->ssl; |
1364 | |
1365 | // Only RSA and ECDSA client certificates are supported, so a |
1366 | // CertificateVerify is required if and only if there's a client certificate. |
1367 | if (!hs->peer_pubkey) { |
1368 | hs->transcript.FreeBuffer(); |
1369 | hs->state = state12_read_change_cipher_spec; |
1370 | return ssl_hs_ok; |
1371 | } |
1372 | |
1373 | SSLMessage msg; |
1374 | if (!ssl->method->get_message(ssl, &msg)) { |
1375 | return ssl_hs_read_message; |
1376 | } |
1377 | |
1378 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) { |
1379 | return ssl_hs_error; |
1380 | } |
1381 | |
1382 | CBS certificate_verify = msg.body, signature; |
1383 | |
1384 | // Determine the signature algorithm. |
1385 | uint16_t signature_algorithm = 0; |
1386 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
1387 | if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) { |
1388 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1389 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1390 | return ssl_hs_error; |
1391 | } |
1392 | uint8_t alert = SSL_AD_DECODE_ERROR; |
1393 | if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) { |
1394 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
1395 | return ssl_hs_error; |
1396 | } |
1397 | hs->new_session->peer_signature_algorithm = signature_algorithm; |
1398 | } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, |
1399 | hs->peer_pubkey.get())) { |
1400 | OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); |
1401 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); |
1402 | return ssl_hs_error; |
1403 | } |
1404 | |
1405 | // Parse and verify the signature. |
1406 | if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) || |
1407 | CBS_len(&certificate_verify) != 0) { |
1408 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1409 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1410 | return ssl_hs_error; |
1411 | } |
1412 | |
1413 | if (!ssl_public_key_verify(ssl, signature, signature_algorithm, |
1414 | hs->peer_pubkey.get(), hs->transcript.buffer())) { |
1415 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); |
1416 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
1417 | return ssl_hs_error; |
1418 | } |
1419 | |
1420 | // The handshake buffer is no longer necessary, and we may hash the current |
1421 | // message. |
1422 | hs->transcript.FreeBuffer(); |
1423 | if (!ssl_hash_message(hs, msg)) { |
1424 | return ssl_hs_error; |
1425 | } |
1426 | |
1427 | ssl->method->next_message(ssl); |
1428 | hs->state = state12_read_change_cipher_spec; |
1429 | return ssl_hs_ok; |
1430 | } |
1431 | |
1432 | static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) { |
1433 | if (hs->handback && hs->ssl->session != NULL) { |
1434 | return ssl_hs_handback; |
1435 | } |
1436 | hs->state = state12_process_change_cipher_spec; |
1437 | return ssl_hs_read_change_cipher_spec; |
1438 | } |
1439 | |
1440 | static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { |
1441 | if (!tls1_change_cipher_state(hs, evp_aead_open)) { |
1442 | return ssl_hs_error; |
1443 | } |
1444 | |
1445 | hs->state = state12_read_next_proto; |
1446 | return ssl_hs_ok; |
1447 | } |
1448 | |
1449 | static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) { |
1450 | SSL *const ssl = hs->ssl; |
1451 | |
1452 | if (!hs->next_proto_neg_seen) { |
1453 | hs->state = state12_read_channel_id; |
1454 | return ssl_hs_ok; |
1455 | } |
1456 | |
1457 | SSLMessage msg; |
1458 | if (!ssl->method->get_message(ssl, &msg)) { |
1459 | return ssl_hs_read_message; |
1460 | } |
1461 | |
1462 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) || |
1463 | !ssl_hash_message(hs, msg)) { |
1464 | return ssl_hs_error; |
1465 | } |
1466 | |
1467 | CBS next_protocol = msg.body, selected_protocol, padding; |
1468 | if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) || |
1469 | !CBS_get_u8_length_prefixed(&next_protocol, &padding) || |
1470 | CBS_len(&next_protocol) != 0) { |
1471 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1472 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1473 | return ssl_hs_error; |
1474 | } |
1475 | |
1476 | if (!ssl->s3->next_proto_negotiated.CopyFrom(selected_protocol)) { |
1477 | return ssl_hs_error; |
1478 | } |
1479 | |
1480 | ssl->method->next_message(ssl); |
1481 | hs->state = state12_read_channel_id; |
1482 | return ssl_hs_ok; |
1483 | } |
1484 | |
1485 | static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) { |
1486 | SSL *const ssl = hs->ssl; |
1487 | |
1488 | if (!ssl->s3->channel_id_valid) { |
1489 | hs->state = state12_read_client_finished; |
1490 | return ssl_hs_ok; |
1491 | } |
1492 | |
1493 | SSLMessage msg; |
1494 | if (!ssl->method->get_message(ssl, &msg)) { |
1495 | return ssl_hs_read_message; |
1496 | } |
1497 | |
1498 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) || |
1499 | !tls1_verify_channel_id(hs, msg) || |
1500 | !ssl_hash_message(hs, msg)) { |
1501 | return ssl_hs_error; |
1502 | } |
1503 | |
1504 | ssl->method->next_message(ssl); |
1505 | hs->state = state12_read_client_finished; |
1506 | return ssl_hs_ok; |
1507 | } |
1508 | |
1509 | static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) { |
1510 | SSL *const ssl = hs->ssl; |
1511 | enum ssl_hs_wait_t wait = ssl_get_finished(hs); |
1512 | if (wait != ssl_hs_ok) { |
1513 | return wait; |
1514 | } |
1515 | |
1516 | if (ssl->session != NULL) { |
1517 | hs->state = state12_finish_server_handshake; |
1518 | } else { |
1519 | hs->state = state12_send_server_finished; |
1520 | } |
1521 | |
1522 | // If this is a full handshake with ChannelID then record the handshake |
1523 | // hashes in |hs->new_session| in case we need them to verify a |
1524 | // ChannelID signature on a resumption of this session in the future. |
1525 | if (ssl->session == NULL && ssl->s3->channel_id_valid && |
1526 | !tls1_record_handshake_hashes_for_channel_id(hs)) { |
1527 | return ssl_hs_error; |
1528 | } |
1529 | |
1530 | return ssl_hs_ok; |
1531 | } |
1532 | |
1533 | static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) { |
1534 | SSL *const ssl = hs->ssl; |
1535 | |
1536 | if (hs->ticket_expected) { |
1537 | const SSL_SESSION *session; |
1538 | UniquePtr<SSL_SESSION> session_copy; |
1539 | if (ssl->session == NULL) { |
1540 | // Fix the timeout to measure from the ticket issuance time. |
1541 | ssl_session_rebase_time(ssl, hs->new_session.get()); |
1542 | session = hs->new_session.get(); |
1543 | } else { |
1544 | // We are renewing an existing session. Duplicate the session to adjust |
1545 | // the timeout. |
1546 | session_copy = |
1547 | SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH); |
1548 | if (!session_copy) { |
1549 | return ssl_hs_error; |
1550 | } |
1551 | |
1552 | ssl_session_rebase_time(ssl, session_copy.get()); |
1553 | session = session_copy.get(); |
1554 | } |
1555 | |
1556 | ScopedCBB cbb; |
1557 | CBB body, ticket; |
1558 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
1559 | SSL3_MT_NEW_SESSION_TICKET) || |
1560 | !CBB_add_u32(&body, session->timeout) || |
1561 | !CBB_add_u16_length_prefixed(&body, &ticket) || |
1562 | !ssl_encrypt_ticket(hs, &ticket, session) || |
1563 | !ssl_add_message_cbb(ssl, cbb.get())) { |
1564 | return ssl_hs_error; |
1565 | } |
1566 | } |
1567 | |
1568 | if (!ssl->method->add_change_cipher_spec(ssl) || |
1569 | !tls1_change_cipher_state(hs, evp_aead_seal) || |
1570 | !ssl_send_finished(hs)) { |
1571 | return ssl_hs_error; |
1572 | } |
1573 | |
1574 | if (ssl->session != NULL) { |
1575 | hs->state = state12_read_change_cipher_spec; |
1576 | } else { |
1577 | hs->state = state12_finish_server_handshake; |
1578 | } |
1579 | return ssl_hs_flush; |
1580 | } |
1581 | |
1582 | static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) { |
1583 | SSL *const ssl = hs->ssl; |
1584 | |
1585 | if (hs->handback) { |
1586 | return ssl_hs_handback; |
1587 | } |
1588 | |
1589 | ssl->method->on_handshake_complete(ssl); |
1590 | |
1591 | // If we aren't retaining peer certificates then we can discard it now. |
1592 | if (hs->new_session != NULL && |
1593 | hs->config->retain_only_sha256_of_client_certs) { |
1594 | hs->new_session->certs.reset(); |
1595 | ssl->ctx->x509_method->session_clear(hs->new_session.get()); |
1596 | } |
1597 | |
1598 | if (ssl->session != NULL) { |
1599 | ssl->s3->established_session = UpRef(ssl->session); |
1600 | } else { |
1601 | ssl->s3->established_session = std::move(hs->new_session); |
1602 | ssl->s3->established_session->not_resumable = false; |
1603 | } |
1604 | |
1605 | hs->handshake_finalized = true; |
1606 | ssl->s3->initial_handshake_complete = true; |
1607 | ssl_update_cache(hs, SSL_SESS_CACHE_SERVER); |
1608 | |
1609 | hs->state = state12_done; |
1610 | return ssl_hs_ok; |
1611 | } |
1612 | |
1613 | enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) { |
1614 | while (hs->state != state12_done) { |
1615 | enum ssl_hs_wait_t ret = ssl_hs_error; |
1616 | enum tls12_server_hs_state_t state = |
1617 | static_cast<enum tls12_server_hs_state_t>(hs->state); |
1618 | switch (state) { |
1619 | case state12_start_accept: |
1620 | ret = do_start_accept(hs); |
1621 | break; |
1622 | case state12_read_client_hello: |
1623 | ret = do_read_client_hello(hs); |
1624 | break; |
1625 | case state12_select_certificate: |
1626 | ret = do_select_certificate(hs); |
1627 | break; |
1628 | case state12_tls13: |
1629 | ret = do_tls13(hs); |
1630 | break; |
1631 | case state12_select_parameters: |
1632 | ret = do_select_parameters(hs); |
1633 | break; |
1634 | case state12_send_server_hello: |
1635 | ret = do_send_server_hello(hs); |
1636 | break; |
1637 | case state12_send_server_certificate: |
1638 | ret = do_send_server_certificate(hs); |
1639 | break; |
1640 | case state12_send_server_key_exchange: |
1641 | ret = do_send_server_key_exchange(hs); |
1642 | break; |
1643 | case state12_send_server_hello_done: |
1644 | ret = do_send_server_hello_done(hs); |
1645 | break; |
1646 | case state12_read_client_certificate: |
1647 | ret = do_read_client_certificate(hs); |
1648 | break; |
1649 | case state12_verify_client_certificate: |
1650 | ret = do_verify_client_certificate(hs); |
1651 | break; |
1652 | case state12_read_client_key_exchange: |
1653 | ret = do_read_client_key_exchange(hs); |
1654 | break; |
1655 | case state12_read_client_certificate_verify: |
1656 | ret = do_read_client_certificate_verify(hs); |
1657 | break; |
1658 | case state12_read_change_cipher_spec: |
1659 | ret = do_read_change_cipher_spec(hs); |
1660 | break; |
1661 | case state12_process_change_cipher_spec: |
1662 | ret = do_process_change_cipher_spec(hs); |
1663 | break; |
1664 | case state12_read_next_proto: |
1665 | ret = do_read_next_proto(hs); |
1666 | break; |
1667 | case state12_read_channel_id: |
1668 | ret = do_read_channel_id(hs); |
1669 | break; |
1670 | case state12_read_client_finished: |
1671 | ret = do_read_client_finished(hs); |
1672 | break; |
1673 | case state12_send_server_finished: |
1674 | ret = do_send_server_finished(hs); |
1675 | break; |
1676 | case state12_finish_server_handshake: |
1677 | ret = do_finish_server_handshake(hs); |
1678 | break; |
1679 | case state12_done: |
1680 | ret = ssl_hs_ok; |
1681 | break; |
1682 | } |
1683 | |
1684 | if (hs->state != state) { |
1685 | ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1); |
1686 | } |
1687 | |
1688 | if (ret != ssl_hs_ok) { |
1689 | return ret; |
1690 | } |
1691 | } |
1692 | |
1693 | ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); |
1694 | return ssl_hs_ok; |
1695 | } |
1696 | |
1697 | const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) { |
1698 | enum tls12_server_hs_state_t state = |
1699 | static_cast<enum tls12_server_hs_state_t>(hs->state); |
1700 | switch (state) { |
1701 | case state12_start_accept: |
1702 | return "TLS server start_accept" ; |
1703 | case state12_read_client_hello: |
1704 | return "TLS server read_client_hello" ; |
1705 | case state12_select_certificate: |
1706 | return "TLS server select_certificate" ; |
1707 | case state12_tls13: |
1708 | return tls13_server_handshake_state(hs); |
1709 | case state12_select_parameters: |
1710 | return "TLS server select_parameters" ; |
1711 | case state12_send_server_hello: |
1712 | return "TLS server send_server_hello" ; |
1713 | case state12_send_server_certificate: |
1714 | return "TLS server send_server_certificate" ; |
1715 | case state12_send_server_key_exchange: |
1716 | return "TLS server send_server_key_exchange" ; |
1717 | case state12_send_server_hello_done: |
1718 | return "TLS server send_server_hello_done" ; |
1719 | case state12_read_client_certificate: |
1720 | return "TLS server read_client_certificate" ; |
1721 | case state12_verify_client_certificate: |
1722 | return "TLS server verify_client_certificate" ; |
1723 | case state12_read_client_key_exchange: |
1724 | return "TLS server read_client_key_exchange" ; |
1725 | case state12_read_client_certificate_verify: |
1726 | return "TLS server read_client_certificate_verify" ; |
1727 | case state12_read_change_cipher_spec: |
1728 | return "TLS server read_change_cipher_spec" ; |
1729 | case state12_process_change_cipher_spec: |
1730 | return "TLS server process_change_cipher_spec" ; |
1731 | case state12_read_next_proto: |
1732 | return "TLS server read_next_proto" ; |
1733 | case state12_read_channel_id: |
1734 | return "TLS server read_channel_id" ; |
1735 | case state12_read_client_finished: |
1736 | return "TLS server read_client_finished" ; |
1737 | case state12_send_server_finished: |
1738 | return "TLS server send_server_finished" ; |
1739 | case state12_finish_server_handshake: |
1740 | return "TLS server finish_server_handshake" ; |
1741 | case state12_done: |
1742 | return "TLS server done" ; |
1743 | } |
1744 | |
1745 | return "TLS server unknown" ; |
1746 | } |
1747 | |
1748 | BSSL_NAMESPACE_END |
1749 | |