1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkBlitter.h" |
9 | |
10 | #include "include/core/SkColor.h" |
11 | #include "include/core/SkColorFilter.h" |
12 | #include "include/core/SkString.h" |
13 | #include "include/private/SkColorData.h" |
14 | #include "include/private/SkTo.h" |
15 | #include "src/core/SkAntiRun.h" |
16 | #include "src/core/SkArenaAlloc.h" |
17 | #include "src/core/SkMask.h" |
18 | #include "src/core/SkMaskFilterBase.h" |
19 | #include "src/core/SkMatrixProvider.h" |
20 | #include "src/core/SkPaintPriv.h" |
21 | #include "src/core/SkReadBuffer.h" |
22 | #include "src/core/SkRegionPriv.h" |
23 | #include "src/core/SkTLazy.h" |
24 | #include "src/core/SkUtils.h" |
25 | #include "src/core/SkWriteBuffer.h" |
26 | #include "src/core/SkXfermodeInterpretation.h" |
27 | #include "src/shaders/SkShaderBase.h" |
28 | |
29 | // Hacks for testing. |
30 | bool gUseSkVMBlitter{false}; |
31 | bool gSkForceRasterPipelineBlitter{false}; |
32 | |
33 | SkBlitter::~SkBlitter() {} |
34 | |
35 | bool SkBlitter::isNullBlitter() const { return false; } |
36 | |
37 | const SkPixmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { |
38 | return nullptr; |
39 | } |
40 | |
41 | /* |
42 | void SkBlitter::blitH(int x, int y, int width) { |
43 | SkDEBUGFAIL("unimplemented"); |
44 | } |
45 | |
46 | |
47 | void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
48 | const int16_t runs[]) { |
49 | SkDEBUGFAIL("unimplemented"); |
50 | } |
51 | */ |
52 | |
53 | inline static SkAlpha ScalarToAlpha(SkScalar a) { |
54 | SkAlpha alpha = (SkAlpha)(a * 255); |
55 | return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
56 | } |
57 | |
58 | void SkBlitter::blitFatAntiRect(const SkRect& rect) { |
59 | SkIRect bounds = rect.roundOut(); |
60 | SkASSERT(bounds.width() >= 3); |
61 | |
62 | // skbug.com/7813 |
63 | // To ensure consistency of the threaded backend (a rect that's considered fat in the init-once |
64 | // phase must also be considered fat in the draw phase), we have to deal with rects with small |
65 | // heights because the horizontal tiling in the threaded backend may change the height. |
66 | // |
67 | // This also implies that we cannot do vertical tiling unless we can blit any rect (not just the |
68 | // fat one.) |
69 | if (bounds.height() == 0) { |
70 | return; |
71 | } |
72 | |
73 | int runSize = bounds.width() + 1; // +1 so we can set runs[bounds.width()] = 0 |
74 | void* storage = this->allocBlitMemory(runSize * (sizeof(int16_t) + sizeof(SkAlpha))); |
75 | int16_t* runs = reinterpret_cast<int16_t*>(storage); |
76 | SkAlpha* alphas = reinterpret_cast<SkAlpha*>(runs + runSize); |
77 | |
78 | runs[0] = 1; |
79 | runs[1] = bounds.width() - 2; |
80 | runs[bounds.width() - 1] = 1; |
81 | runs[bounds.width()] = 0; |
82 | |
83 | SkScalar partialL = bounds.fLeft + 1 - rect.fLeft; |
84 | SkScalar partialR = rect.fRight - (bounds.fRight - 1); |
85 | SkScalar partialT = bounds.fTop + 1 - rect.fTop; |
86 | SkScalar partialB = rect.fBottom - (bounds.fBottom - 1); |
87 | |
88 | if (bounds.height() == 1) { |
89 | partialT = rect.fBottom - rect.fTop; |
90 | } |
91 | |
92 | alphas[0] = ScalarToAlpha(partialL * partialT); |
93 | alphas[1] = ScalarToAlpha(partialT); |
94 | alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialT); |
95 | this->blitAntiH(bounds.fLeft, bounds.fTop, alphas, runs); |
96 | |
97 | if (bounds.height() > 2) { |
98 | this->blitAntiRect(bounds.fLeft, bounds.fTop + 1, bounds.width() - 2, bounds.height() - 2, |
99 | ScalarToAlpha(partialL), ScalarToAlpha(partialR)); |
100 | } |
101 | |
102 | if (bounds.height() > 1) { |
103 | alphas[0] = ScalarToAlpha(partialL * partialB); |
104 | alphas[1] = ScalarToAlpha(partialB); |
105 | alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialB); |
106 | this->blitAntiH(bounds.fLeft, bounds.fBottom - 1, alphas, runs); |
107 | } |
108 | } |
109 | |
110 | void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
111 | if (alpha == 255) { |
112 | this->blitRect(x, y, 1, height); |
113 | } else { |
114 | int16_t runs[2]; |
115 | runs[0] = 1; |
116 | runs[1] = 0; |
117 | |
118 | while (--height >= 0) { |
119 | this->blitAntiH(x, y++, &alpha, runs); |
120 | } |
121 | } |
122 | } |
123 | |
124 | void SkBlitter::blitRect(int x, int y, int width, int height) { |
125 | SkASSERT(width > 0); |
126 | while (--height >= 0) { |
127 | this->blitH(x, y++, width); |
128 | } |
129 | } |
130 | |
131 | /// Default implementation doesn't check for easy optimizations |
132 | /// such as alpha == 255; also uses blitV(), which some subclasses |
133 | /// may not support. |
134 | void SkBlitter::blitAntiRect(int x, int y, int width, int height, |
135 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
136 | if (leftAlpha > 0) { // we may send in x = -1 with leftAlpha = 0 |
137 | this->blitV(x, y, height, leftAlpha); |
138 | } |
139 | x++; |
140 | if (width > 0) { |
141 | this->blitRect(x, y, width, height); |
142 | x += width; |
143 | } |
144 | if (rightAlpha > 0) { |
145 | this->blitV(x, y, height, rightAlpha); |
146 | } |
147 | } |
148 | |
149 | ////////////////////////////////////////////////////////////////////////////// |
150 | |
151 | static inline void bits_to_runs(SkBlitter* blitter, int x, int y, |
152 | const uint8_t bits[], |
153 | uint8_t left_mask, ptrdiff_t rowBytes, |
154 | uint8_t right_mask) { |
155 | int inFill = 0; |
156 | int pos = 0; |
157 | |
158 | while (--rowBytes >= 0) { |
159 | uint8_t b = *bits++ & left_mask; |
160 | if (rowBytes == 0) { |
161 | b &= right_mask; |
162 | } |
163 | |
164 | for (uint8_t test = 0x80U; test != 0; test >>= 1) { |
165 | if (b & test) { |
166 | if (!inFill) { |
167 | pos = x; |
168 | inFill = true; |
169 | } |
170 | } else { |
171 | if (inFill) { |
172 | blitter->blitH(pos, y, x - pos); |
173 | inFill = false; |
174 | } |
175 | } |
176 | x += 1; |
177 | } |
178 | left_mask = 0xFFU; |
179 | } |
180 | |
181 | // final cleanup |
182 | if (inFill) { |
183 | blitter->blitH(pos, y, x - pos); |
184 | } |
185 | } |
186 | |
187 | // maskBitCount is the number of 1's to place in the mask. It must be in the range between 1 and 8. |
188 | static uint8_t generate_right_mask(int maskBitCount) { |
189 | return static_cast<uint8_t>((0xFF00U >> maskBitCount) & 0xFF); |
190 | } |
191 | |
192 | void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
193 | SkASSERT(mask.fBounds.contains(clip)); |
194 | |
195 | if (mask.fFormat == SkMask::kLCD16_Format) { |
196 | return; // needs to be handled by subclass |
197 | } |
198 | |
199 | if (mask.fFormat == SkMask::kBW_Format) { |
200 | int cx = clip.fLeft; |
201 | int cy = clip.fTop; |
202 | int maskLeft = mask.fBounds.fLeft; |
203 | int maskRowBytes = mask.fRowBytes; |
204 | int height = clip.height(); |
205 | |
206 | const uint8_t* bits = mask.getAddr1(cx, cy); |
207 | |
208 | SkDEBUGCODE(const uint8_t* endOfImage = |
209 | mask.fImage + (mask.fBounds.height() - 1) * maskRowBytes |
210 | + ((mask.fBounds.width() + 7) >> 3)); |
211 | |
212 | if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { |
213 | while (--height >= 0) { |
214 | int affectedRightBit = mask.fBounds.width() - 1; |
215 | ptrdiff_t rowBytes = (affectedRightBit >> 3) + 1; |
216 | SkASSERT(bits + rowBytes <= endOfImage); |
217 | U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); |
218 | bits_to_runs(this, cx, cy, bits, 0xFF, rowBytes, rightMask); |
219 | bits += maskRowBytes; |
220 | cy += 1; |
221 | } |
222 | } else { |
223 | // Bits is calculated as the offset into the mask at the point {cx, cy} therefore, all |
224 | // addressing into the bit mask is relative to that point. Since this is an address |
225 | // calculated from a arbitrary bit in that byte, calculate the left most bit. |
226 | int bitsLeft = cx - ((cx - maskLeft) & 7); |
227 | |
228 | // Everything is relative to the bitsLeft. |
229 | int leftEdge = cx - bitsLeft; |
230 | SkASSERT(leftEdge >= 0); |
231 | int rightEdge = clip.fRight - bitsLeft; |
232 | SkASSERT(rightEdge > leftEdge); |
233 | |
234 | // Calculate left byte and mask |
235 | const uint8_t* leftByte = bits; |
236 | U8CPU leftMask = 0xFFU >> (leftEdge & 7); |
237 | |
238 | // Calculate right byte and mask |
239 | int affectedRightBit = rightEdge - 1; |
240 | const uint8_t* rightByte = bits + (affectedRightBit >> 3); |
241 | U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); |
242 | |
243 | // leftByte and rightByte are byte locations therefore, to get a count of bytes the |
244 | // code must add one. |
245 | ptrdiff_t rowBytes = rightByte - leftByte + 1; |
246 | |
247 | while (--height >= 0) { |
248 | SkASSERT(bits + rowBytes <= endOfImage); |
249 | bits_to_runs(this, bitsLeft, cy, bits, leftMask, rowBytes, rightMask); |
250 | bits += maskRowBytes; |
251 | cy += 1; |
252 | } |
253 | } |
254 | } else { |
255 | int width = clip.width(); |
256 | SkAutoSTMalloc<64, int16_t> runStorage(width + 1); |
257 | int16_t* runs = runStorage.get(); |
258 | const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); |
259 | |
260 | sk_memset16((uint16_t*)runs, 1, width); |
261 | runs[width] = 0; |
262 | |
263 | int height = clip.height(); |
264 | int y = clip.fTop; |
265 | while (--height >= 0) { |
266 | this->blitAntiH(clip.fLeft, y, aa, runs); |
267 | aa += mask.fRowBytes; |
268 | y += 1; |
269 | } |
270 | } |
271 | } |
272 | |
273 | /////////////////////// these are not virtual, just helpers |
274 | |
275 | void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { |
276 | if (clip.quickReject(mask.fBounds)) { |
277 | return; |
278 | } |
279 | |
280 | SkRegion::Cliperator clipper(clip, mask.fBounds); |
281 | |
282 | while (!clipper.done()) { |
283 | const SkIRect& cr = clipper.rect(); |
284 | this->blitMask(mask, cr); |
285 | clipper.next(); |
286 | } |
287 | } |
288 | |
289 | void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { |
290 | SkRegion::Cliperator clipper(clip, rect); |
291 | |
292 | while (!clipper.done()) { |
293 | const SkIRect& cr = clipper.rect(); |
294 | this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); |
295 | clipper.next(); |
296 | } |
297 | } |
298 | |
299 | void SkBlitter::blitRegion(const SkRegion& clip) { |
300 | SkRegionPriv::VisitSpans(clip, [this](const SkIRect& r) { |
301 | this->blitRect(r.left(), r.top(), r.width(), r.height()); |
302 | }); |
303 | } |
304 | |
305 | /////////////////////////////////////////////////////////////////////////////// |
306 | |
307 | void SkNullBlitter::blitH(int x, int y, int width) {} |
308 | |
309 | void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
310 | const int16_t runs[]) {} |
311 | |
312 | void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} |
313 | |
314 | void SkNullBlitter::blitRect(int x, int y, int width, int height) {} |
315 | |
316 | void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} |
317 | |
318 | const SkPixmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { |
319 | return nullptr; |
320 | } |
321 | |
322 | bool SkNullBlitter::isNullBlitter() const { return true; } |
323 | |
324 | /////////////////////////////////////////////////////////////////////////////// |
325 | |
326 | static int compute_anti_width(const int16_t runs[]) { |
327 | int width = 0; |
328 | |
329 | for (;;) { |
330 | int count = runs[0]; |
331 | |
332 | SkASSERT(count >= 0); |
333 | if (count == 0) { |
334 | break; |
335 | } |
336 | width += count; |
337 | runs += count; |
338 | } |
339 | return width; |
340 | } |
341 | |
342 | static inline bool y_in_rect(int y, const SkIRect& rect) { |
343 | return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); |
344 | } |
345 | |
346 | static inline bool x_in_rect(int x, const SkIRect& rect) { |
347 | return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); |
348 | } |
349 | |
350 | void SkRectClipBlitter::blitH(int left, int y, int width) { |
351 | SkASSERT(width > 0); |
352 | |
353 | if (!y_in_rect(y, fClipRect)) { |
354 | return; |
355 | } |
356 | |
357 | int right = left + width; |
358 | |
359 | if (left < fClipRect.fLeft) { |
360 | left = fClipRect.fLeft; |
361 | } |
362 | if (right > fClipRect.fRight) { |
363 | right = fClipRect.fRight; |
364 | } |
365 | |
366 | width = right - left; |
367 | if (width > 0) { |
368 | fBlitter->blitH(left, y, width); |
369 | } |
370 | } |
371 | |
372 | void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], |
373 | const int16_t runs[]) { |
374 | if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { |
375 | return; |
376 | } |
377 | |
378 | int x0 = left; |
379 | int x1 = left + compute_anti_width(runs); |
380 | |
381 | if (x1 <= fClipRect.fLeft) { |
382 | return; |
383 | } |
384 | |
385 | SkASSERT(x0 < x1); |
386 | if (x0 < fClipRect.fLeft) { |
387 | int dx = fClipRect.fLeft - x0; |
388 | SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); |
389 | runs += dx; |
390 | aa += dx; |
391 | x0 = fClipRect.fLeft; |
392 | } |
393 | |
394 | SkASSERT(x0 < x1 && runs[x1 - x0] == 0); |
395 | if (x1 > fClipRect.fRight) { |
396 | x1 = fClipRect.fRight; |
397 | SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); |
398 | ((int16_t*)runs)[x1 - x0] = 0; |
399 | } |
400 | |
401 | SkASSERT(x0 < x1 && runs[x1 - x0] == 0); |
402 | SkASSERT(compute_anti_width(runs) == x1 - x0); |
403 | |
404 | fBlitter->blitAntiH(x0, y, aa, runs); |
405 | } |
406 | |
407 | void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
408 | SkASSERT(height > 0); |
409 | |
410 | if (!x_in_rect(x, fClipRect)) { |
411 | return; |
412 | } |
413 | |
414 | int y0 = y; |
415 | int y1 = y + height; |
416 | |
417 | if (y0 < fClipRect.fTop) { |
418 | y0 = fClipRect.fTop; |
419 | } |
420 | if (y1 > fClipRect.fBottom) { |
421 | y1 = fClipRect.fBottom; |
422 | } |
423 | |
424 | if (y0 < y1) { |
425 | fBlitter->blitV(x, y0, y1 - y0, alpha); |
426 | } |
427 | } |
428 | |
429 | void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { |
430 | SkIRect r; |
431 | |
432 | r.setLTRB(left, y, left + width, y + height); |
433 | if (r.intersect(fClipRect)) { |
434 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
435 | } |
436 | } |
437 | |
438 | void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, |
439 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
440 | SkIRect r; |
441 | |
442 | // The *true* width of the rectangle blitted is width+2: |
443 | r.setLTRB(left, y, left + width + 2, y + height); |
444 | if (r.intersect(fClipRect)) { |
445 | if (r.fLeft != left) { |
446 | SkASSERT(r.fLeft > left); |
447 | leftAlpha = 255; |
448 | } |
449 | if (r.fRight != left + width + 2) { |
450 | SkASSERT(r.fRight < left + width + 2); |
451 | rightAlpha = 255; |
452 | } |
453 | if (255 == leftAlpha && 255 == rightAlpha) { |
454 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
455 | } else if (1 == r.width()) { |
456 | if (r.fLeft == left) { |
457 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); |
458 | } else { |
459 | SkASSERT(r.fLeft == left + width + 1); |
460 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); |
461 | } |
462 | } else { |
463 | fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), |
464 | leftAlpha, rightAlpha); |
465 | } |
466 | } |
467 | } |
468 | |
469 | void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
470 | SkASSERT(mask.fBounds.contains(clip)); |
471 | |
472 | SkIRect r = clip; |
473 | |
474 | if (r.intersect(fClipRect)) { |
475 | fBlitter->blitMask(mask, r); |
476 | } |
477 | } |
478 | |
479 | const SkPixmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { |
480 | return fBlitter->justAnOpaqueColor(value); |
481 | } |
482 | |
483 | /////////////////////////////////////////////////////////////////////////////// |
484 | |
485 | void SkRgnClipBlitter::blitH(int x, int y, int width) { |
486 | SkRegion::Spanerator span(*fRgn, y, x, x + width); |
487 | int left, right; |
488 | |
489 | while (span.next(&left, &right)) { |
490 | SkASSERT(left < right); |
491 | fBlitter->blitH(left, y, right - left); |
492 | } |
493 | } |
494 | |
495 | void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], |
496 | const int16_t runs[]) { |
497 | int width = compute_anti_width(runs); |
498 | SkRegion::Spanerator span(*fRgn, y, x, x + width); |
499 | int left, right; |
500 | SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) |
501 | |
502 | int prevRite = x; |
503 | while (span.next(&left, &right)) { |
504 | SkASSERT(x <= left); |
505 | SkASSERT(left < right); |
506 | SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); |
507 | |
508 | SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); |
509 | |
510 | // now zero before left |
511 | if (left > prevRite) { |
512 | int index = prevRite - x; |
513 | ((uint8_t*)aa)[index] = 0; // skip runs after right |
514 | ((int16_t*)runs)[index] = SkToS16(left - prevRite); |
515 | } |
516 | |
517 | prevRite = right; |
518 | } |
519 | |
520 | if (prevRite > x) { |
521 | ((int16_t*)runs)[prevRite - x] = 0; |
522 | |
523 | if (x < 0) { |
524 | int skip = runs[0]; |
525 | SkASSERT(skip >= -x); |
526 | aa += skip; |
527 | runs += skip; |
528 | x += skip; |
529 | } |
530 | fBlitter->blitAntiH(x, y, aa, runs); |
531 | } |
532 | } |
533 | |
534 | void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
535 | SkIRect bounds; |
536 | bounds.setXYWH(x, y, 1, height); |
537 | |
538 | SkRegion::Cliperator iter(*fRgn, bounds); |
539 | |
540 | while (!iter.done()) { |
541 | const SkIRect& r = iter.rect(); |
542 | SkASSERT(bounds.contains(r)); |
543 | |
544 | fBlitter->blitV(x, r.fTop, r.height(), alpha); |
545 | iter.next(); |
546 | } |
547 | } |
548 | |
549 | void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { |
550 | SkIRect bounds; |
551 | bounds.setXYWH(x, y, width, height); |
552 | |
553 | SkRegion::Cliperator iter(*fRgn, bounds); |
554 | |
555 | while (!iter.done()) { |
556 | const SkIRect& r = iter.rect(); |
557 | SkASSERT(bounds.contains(r)); |
558 | |
559 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
560 | iter.next(); |
561 | } |
562 | } |
563 | |
564 | void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, |
565 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
566 | // The *true* width of the rectangle to blit is width + 2 |
567 | SkIRect bounds; |
568 | bounds.setXYWH(x, y, width + 2, height); |
569 | |
570 | SkRegion::Cliperator iter(*fRgn, bounds); |
571 | |
572 | while (!iter.done()) { |
573 | const SkIRect& r = iter.rect(); |
574 | SkASSERT(bounds.contains(r)); |
575 | SkASSERT(r.fLeft >= x); |
576 | SkASSERT(r.fRight <= x + width + 2); |
577 | |
578 | SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; |
579 | SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? |
580 | rightAlpha : 255; |
581 | |
582 | if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { |
583 | fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); |
584 | } else if (1 == r.width()) { |
585 | if (r.fLeft == x) { |
586 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), |
587 | effectiveLeftAlpha); |
588 | } else { |
589 | SkASSERT(r.fLeft == x + width + 1); |
590 | fBlitter->blitV(r.fLeft, r.fTop, r.height(), |
591 | effectiveRightAlpha); |
592 | } |
593 | } else { |
594 | fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), |
595 | effectiveLeftAlpha, effectiveRightAlpha); |
596 | } |
597 | iter.next(); |
598 | } |
599 | } |
600 | |
601 | |
602 | void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
603 | SkASSERT(mask.fBounds.contains(clip)); |
604 | |
605 | SkRegion::Cliperator iter(*fRgn, clip); |
606 | const SkIRect& r = iter.rect(); |
607 | SkBlitter* blitter = fBlitter; |
608 | |
609 | while (!iter.done()) { |
610 | blitter->blitMask(mask, r); |
611 | iter.next(); |
612 | } |
613 | } |
614 | |
615 | const SkPixmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { |
616 | return fBlitter->justAnOpaqueColor(value); |
617 | } |
618 | |
619 | /////////////////////////////////////////////////////////////////////////////// |
620 | |
621 | SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, |
622 | const SkIRect* ir) { |
623 | if (clip) { |
624 | const SkIRect& clipR = clip->getBounds(); |
625 | |
626 | if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { |
627 | blitter = &fNullBlitter; |
628 | } else if (clip->isRect()) { |
629 | if (ir == nullptr || !clipR.contains(*ir)) { |
630 | fRectBlitter.init(blitter, clipR); |
631 | blitter = &fRectBlitter; |
632 | } |
633 | } else { |
634 | fRgnBlitter.init(blitter, clip); |
635 | blitter = &fRgnBlitter; |
636 | } |
637 | } |
638 | return blitter; |
639 | } |
640 | |
641 | /////////////////////////////////////////////////////////////////////////////// |
642 | |
643 | #include "src/core/SkCoreBlitters.h" |
644 | |
645 | bool SkBlitter::UseRasterPipelineBlitter(const SkPixmap& device, const SkPaint& paint, |
646 | const SkMatrix& matrix) { |
647 | if (gSkForceRasterPipelineBlitter) { |
648 | return true; |
649 | } |
650 | #if 0 || defined(SK_FORCE_RASTER_PIPELINE_BLITTER) |
651 | return true; |
652 | #else |
653 | |
654 | const SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter()); |
655 | |
656 | // The legacy blitters cannot handle any of these complex features (anymore). |
657 | if (device.alphaType() == kUnpremul_SkAlphaType || |
658 | paint.getBlendMode() > SkBlendMode::kLastCoeffMode || |
659 | (mf && mf->getFormat() == SkMask::k3D_Format)) { |
660 | return true; |
661 | } |
662 | |
663 | // All the real legacy fast paths are for shaders and SrcOver. |
664 | // Choosing SkRasterPipelineBlitter will also let us to hit its single-color memset path. |
665 | if (!paint.getShader() && paint.getBlendMode() != SkBlendMode::kSrcOver) { |
666 | return true; |
667 | } |
668 | |
669 | auto cs = device.colorSpace(); |
670 | // We check (indirectly via makeContext()) later on if the shader can handle the colorspace |
671 | // in legacy mode, so here we just focus on if a single color needs raster-pipeline. |
672 | if (cs && !paint.getShader()) { |
673 | if (!paint.getColor4f().fitsInBytes() || !cs->isSRGB()) { |
674 | return true; |
675 | } |
676 | } |
677 | |
678 | // Only kN32 and 565 are handled by legacy blitters now, 565 mostly just for Android. |
679 | return device.colorType() != kN32_SkColorType |
680 | && device.colorType() != kRGB_565_SkColorType; |
681 | #endif |
682 | } |
683 | |
684 | SkBlitter* SkBlitter::Choose(const SkPixmap& device, |
685 | const SkMatrixProvider& matrixProvider, |
686 | const SkPaint& origPaint, |
687 | SkArenaAlloc* alloc, |
688 | bool drawCoverage, |
689 | sk_sp<SkShader> clipShader) { |
690 | SkASSERT(alloc); |
691 | |
692 | if (kUnknown_SkColorType == device.colorType()) { |
693 | return alloc->make<SkNullBlitter>(); |
694 | } |
695 | |
696 | // We may tweak the original paint as we go. |
697 | SkTCopyOnFirstWrite<SkPaint> paint(origPaint); |
698 | |
699 | // We have the most fast-paths for SrcOver, so see if we can act like SrcOver. |
700 | if (paint->getBlendMode() != SkBlendMode::kSrcOver) { |
701 | switch (SkInterpretXfermode(*paint, SkColorTypeIsAlwaysOpaque(device.colorType()))) { |
702 | case kSrcOver_SkXfermodeInterpretation: |
703 | paint.writable()->setBlendMode(SkBlendMode::kSrcOver); |
704 | break; |
705 | case kSkipDrawing_SkXfermodeInterpretation: |
706 | return alloc->make<SkNullBlitter>(); |
707 | default: |
708 | break; |
709 | } |
710 | } |
711 | |
712 | // A Clear blend mode will ignore the entire color pipeline, as if Src mode with 0x00000000. |
713 | if (paint->getBlendMode() == SkBlendMode::kClear) { |
714 | SkPaint* p = paint.writable(); |
715 | p->setShader(nullptr); |
716 | p->setColorFilter(nullptr); |
717 | p->setBlendMode(SkBlendMode::kSrc); |
718 | p->setColor(0x00000000); |
719 | } |
720 | |
721 | if (paint->getColorFilter()) { |
722 | SkPaintPriv::RemoveColorFilter(paint.writable(), device.colorSpace()); |
723 | } |
724 | SkASSERT(!paint->getColorFilter()); |
725 | |
726 | if (drawCoverage) { |
727 | if (device.colorType() == kAlpha_8_SkColorType) { |
728 | SkASSERT(!paint->getShader()); |
729 | SkASSERT(paint->isSrcOver()); |
730 | return alloc->make<SkA8_Coverage_Blitter>(device, *paint); |
731 | } |
732 | return alloc->make<SkNullBlitter>(); |
733 | } |
734 | |
735 | if (paint->isDither() && !SkPaintPriv::ShouldDither(*paint, device.colorType())) { |
736 | paint.writable()->setDither(false); |
737 | } |
738 | |
739 | if (gUseSkVMBlitter) { |
740 | if (auto blitter = SkCreateSkVMBlitter(device, *paint, matrixProvider, |
741 | alloc, clipShader)) { |
742 | return blitter; |
743 | } |
744 | } |
745 | |
746 | // Same basic idea used a few times: try SkRP, then try SkVM, then give up with a null-blitter. |
747 | // (Setting gUseSkVMBlitter is the only way we prefer SkVM over SkRP at the moment.) |
748 | auto create_SkRP_or_SkVMBlitter = [&]() -> SkBlitter* { |
749 | if (auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrixProvider, |
750 | alloc, clipShader)) { |
751 | return blitter; |
752 | } |
753 | if (auto blitter = SkCreateSkVMBlitter(device, *paint, matrixProvider, |
754 | alloc, clipShader)) { |
755 | return blitter; |
756 | } |
757 | return alloc->make<SkNullBlitter>(); |
758 | }; |
759 | |
760 | SkMatrix ctm = matrixProvider.localToDevice(); |
761 | // We'll end here for many interesting cases: color spaces, color filters, most color types. |
762 | if (UseRasterPipelineBlitter(device, *paint, ctm) || clipShader) { |
763 | return create_SkRP_or_SkVMBlitter(); |
764 | } |
765 | |
766 | // Everything but legacy kN32_SkColorType and kRGB_565_SkColorType should already be handled. |
767 | SkASSERT(device.colorType() == kN32_SkColorType || |
768 | device.colorType() == kRGB_565_SkColorType); |
769 | |
770 | // And we should either have a shader, be blending with SrcOver, or both. |
771 | SkASSERT(paint->getShader() || paint->getBlendMode() == SkBlendMode::kSrcOver); |
772 | |
773 | // Legacy blitters keep their shader state on a shader context. |
774 | SkShaderBase::Context* shaderContext = nullptr; |
775 | if (paint->getShader()) { |
776 | shaderContext = as_SB(paint->getShader())->makeContext( |
777 | {*paint, ctm, nullptr, device.colorType(), device.colorSpace()}, |
778 | alloc); |
779 | |
780 | // Creating the context isn't always possible... try fallbacks before giving up. |
781 | if (!shaderContext) { |
782 | return create_SkRP_or_SkVMBlitter(); |
783 | } |
784 | } |
785 | |
786 | switch (device.colorType()) { |
787 | case kN32_SkColorType: |
788 | if (shaderContext) { |
789 | return alloc->make<SkARGB32_Shader_Blitter>(device, *paint, shaderContext); |
790 | } else if (paint->getColor() == SK_ColorBLACK) { |
791 | return alloc->make<SkARGB32_Black_Blitter>(device, *paint); |
792 | } else if (paint->getAlpha() == 0xFF) { |
793 | return alloc->make<SkARGB32_Opaque_Blitter>(device, *paint); |
794 | } else { |
795 | return alloc->make<SkARGB32_Blitter>(device, *paint); |
796 | } |
797 | |
798 | case kRGB_565_SkColorType: |
799 | if (shaderContext && SkRGB565_Shader_Blitter::Supports(device, *paint)) { |
800 | return alloc->make<SkRGB565_Shader_Blitter>(device, *paint, shaderContext); |
801 | } else { |
802 | return create_SkRP_or_SkVMBlitter(); |
803 | } |
804 | |
805 | default: |
806 | SkASSERT(false); |
807 | return alloc->make<SkNullBlitter>(); |
808 | } |
809 | } |
810 | |
811 | /////////////////////////////////////////////////////////////////////////////// |
812 | |
813 | SkShaderBlitter::SkShaderBlitter(const SkPixmap& device, const SkPaint& paint, |
814 | SkShaderBase::Context* shaderContext) |
815 | : INHERITED(device) |
816 | , fShader(paint.getShader()) |
817 | , fShaderContext(shaderContext) { |
818 | SkASSERT(fShader); |
819 | SkASSERT(fShaderContext); |
820 | |
821 | fShader->ref(); |
822 | fShaderFlags = fShaderContext->getFlags(); |
823 | fConstInY = SkToBool(fShaderFlags & SkShaderBase::kConstInY32_Flag); |
824 | } |
825 | |
826 | SkShaderBlitter::~SkShaderBlitter() { |
827 | fShader->unref(); |
828 | } |
829 | |
830 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
831 | |
832 | #ifdef SK_DEBUG |
833 | |
834 | void SkRectClipCheckBlitter::blitH(int x, int y, int width) { |
835 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1))); |
836 | fBlitter->blitH(x, y, width); |
837 | } |
838 | |
839 | void SkRectClipCheckBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { |
840 | const int16_t* iter = runs; |
841 | for (; *iter; iter += *iter) |
842 | ; |
843 | int width = iter - runs; |
844 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1))); |
845 | fBlitter->blitAntiH(x, y, aa, runs); |
846 | } |
847 | |
848 | void SkRectClipCheckBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
849 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, height))); |
850 | fBlitter->blitV(x, y, height, alpha); |
851 | } |
852 | |
853 | void SkRectClipCheckBlitter::blitRect(int x, int y, int width, int height) { |
854 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, height))); |
855 | fBlitter->blitRect(x, y, width, height); |
856 | } |
857 | |
858 | void SkRectClipCheckBlitter::blitAntiRect(int x, int y, int width, int height, |
859 | SkAlpha leftAlpha, SkAlpha rightAlpha) { |
860 | bool skipLeft = !leftAlpha; |
861 | bool skipRight = !rightAlpha; |
862 | SkIRect r = SkIRect::MakeXYWH(x + skipLeft, y, width + 2 - skipRight - skipLeft, height); |
863 | SkASSERT(r.isEmpty() || fClipRect.contains(r)); |
864 | fBlitter->blitAntiRect(x, y, width, height, leftAlpha, rightAlpha); |
865 | } |
866 | |
867 | void SkRectClipCheckBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
868 | SkASSERT(mask.fBounds.contains(clip)); |
869 | SkASSERT(fClipRect.contains(clip)); |
870 | fBlitter->blitMask(mask, clip); |
871 | } |
872 | |
873 | const SkPixmap* SkRectClipCheckBlitter::justAnOpaqueColor(uint32_t* value) { |
874 | return fBlitter->justAnOpaqueColor(value); |
875 | } |
876 | |
877 | void SkRectClipCheckBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { |
878 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 2, 1))); |
879 | fBlitter->blitAntiH2(x, y, a0, a1); |
880 | } |
881 | |
882 | void SkRectClipCheckBlitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) { |
883 | SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, 2))); |
884 | fBlitter->blitAntiV2(x, y, a0, a1); |
885 | } |
886 | |
887 | #endif |
888 | |