| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkPath.h" |
| 9 | #include "include/private/SkTo.h" |
| 10 | #include "src/core/SkAnalyticEdge.h" |
| 11 | #include "src/core/SkEdge.h" |
| 12 | #include "src/core/SkEdgeBuilder.h" |
| 13 | #include "src/core/SkEdgeClipper.h" |
| 14 | #include "src/core/SkGeometry.h" |
| 15 | #include "src/core/SkLineClipper.h" |
| 16 | #include "src/core/SkPathPriv.h" |
| 17 | #include "src/core/SkPathView.h" |
| 18 | #include "src/core/SkSafeMath.h" |
| 19 | |
| 20 | SkEdgeBuilder::Combine SkBasicEdgeBuilder::combineVertical(const SkEdge* edge, SkEdge* last) { |
| 21 | if (last->fCurveCount || last->fDX || edge->fX != last->fX) { |
| 22 | return kNo_Combine; |
| 23 | } |
| 24 | if (edge->fWinding == last->fWinding) { |
| 25 | if (edge->fLastY + 1 == last->fFirstY) { |
| 26 | last->fFirstY = edge->fFirstY; |
| 27 | return kPartial_Combine; |
| 28 | } |
| 29 | if (edge->fFirstY == last->fLastY + 1) { |
| 30 | last->fLastY = edge->fLastY; |
| 31 | return kPartial_Combine; |
| 32 | } |
| 33 | return kNo_Combine; |
| 34 | } |
| 35 | if (edge->fFirstY == last->fFirstY) { |
| 36 | if (edge->fLastY == last->fLastY) { |
| 37 | return kTotal_Combine; |
| 38 | } |
| 39 | if (edge->fLastY < last->fLastY) { |
| 40 | last->fFirstY = edge->fLastY + 1; |
| 41 | return kPartial_Combine; |
| 42 | } |
| 43 | last->fFirstY = last->fLastY + 1; |
| 44 | last->fLastY = edge->fLastY; |
| 45 | last->fWinding = edge->fWinding; |
| 46 | return kPartial_Combine; |
| 47 | } |
| 48 | if (edge->fLastY == last->fLastY) { |
| 49 | if (edge->fFirstY > last->fFirstY) { |
| 50 | last->fLastY = edge->fFirstY - 1; |
| 51 | return kPartial_Combine; |
| 52 | } |
| 53 | last->fLastY = last->fFirstY - 1; |
| 54 | last->fFirstY = edge->fFirstY; |
| 55 | last->fWinding = edge->fWinding; |
| 56 | return kPartial_Combine; |
| 57 | } |
| 58 | return kNo_Combine; |
| 59 | } |
| 60 | |
| 61 | SkEdgeBuilder::Combine SkAnalyticEdgeBuilder::combineVertical(const SkAnalyticEdge* edge, |
| 62 | SkAnalyticEdge* last) { |
| 63 | auto approximately_equal = [](SkFixed a, SkFixed b) { |
| 64 | return SkAbs32(a - b) < 0x100; |
| 65 | }; |
| 66 | |
| 67 | if (last->fCurveCount || last->fDX || edge->fX != last->fX) { |
| 68 | return kNo_Combine; |
| 69 | } |
| 70 | if (edge->fWinding == last->fWinding) { |
| 71 | if (edge->fLowerY == last->fUpperY) { |
| 72 | last->fUpperY = edge->fUpperY; |
| 73 | last->fY = last->fUpperY; |
| 74 | return kPartial_Combine; |
| 75 | } |
| 76 | if (approximately_equal(edge->fUpperY, last->fLowerY)) { |
| 77 | last->fLowerY = edge->fLowerY; |
| 78 | return kPartial_Combine; |
| 79 | } |
| 80 | return kNo_Combine; |
| 81 | } |
| 82 | if (approximately_equal(edge->fUpperY, last->fUpperY)) { |
| 83 | if (approximately_equal(edge->fLowerY, last->fLowerY)) { |
| 84 | return kTotal_Combine; |
| 85 | } |
| 86 | if (edge->fLowerY < last->fLowerY) { |
| 87 | last->fUpperY = edge->fLowerY; |
| 88 | last->fY = last->fUpperY; |
| 89 | return kPartial_Combine; |
| 90 | } |
| 91 | last->fUpperY = last->fLowerY; |
| 92 | last->fY = last->fUpperY; |
| 93 | last->fLowerY = edge->fLowerY; |
| 94 | last->fWinding = edge->fWinding; |
| 95 | return kPartial_Combine; |
| 96 | } |
| 97 | if (approximately_equal(edge->fLowerY, last->fLowerY)) { |
| 98 | if (edge->fUpperY > last->fUpperY) { |
| 99 | last->fLowerY = edge->fUpperY; |
| 100 | return kPartial_Combine; |
| 101 | } |
| 102 | last->fLowerY = last->fUpperY; |
| 103 | last->fUpperY = edge->fUpperY; |
| 104 | last->fY = last->fUpperY; |
| 105 | last->fWinding = edge->fWinding; |
| 106 | return kPartial_Combine; |
| 107 | } |
| 108 | return kNo_Combine; |
| 109 | } |
| 110 | |
| 111 | template <typename Edge> |
| 112 | static bool is_vertical(const Edge* edge) { |
| 113 | return edge->fDX == 0 |
| 114 | && edge->fCurveCount == 0; |
| 115 | } |
| 116 | |
| 117 | // TODO: we can deallocate the edge if edge->setFoo() fails |
| 118 | // or when we don't use it (kPartial_Combine or kTotal_Combine). |
| 119 | |
| 120 | void SkBasicEdgeBuilder::addLine(const SkPoint pts[]) { |
| 121 | SkEdge* edge = fAlloc.make<SkEdge>(); |
| 122 | if (edge->setLine(pts[0], pts[1], fClipShift)) { |
| 123 | Combine combine = is_vertical(edge) && !fList.empty() |
| 124 | ? this->combineVertical(edge, (SkEdge*)fList.top()) |
| 125 | : kNo_Combine; |
| 126 | |
| 127 | switch (combine) { |
| 128 | case kTotal_Combine: fList.pop(); break; |
| 129 | case kPartial_Combine: break; |
| 130 | case kNo_Combine: fList.push_back(edge); break; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | void SkAnalyticEdgeBuilder::addLine(const SkPoint pts[]) { |
| 135 | SkAnalyticEdge* edge = fAlloc.make<SkAnalyticEdge>(); |
| 136 | if (edge->setLine(pts[0], pts[1])) { |
| 137 | |
| 138 | Combine combine = is_vertical(edge) && !fList.empty() |
| 139 | ? this->combineVertical(edge, (SkAnalyticEdge*)fList.top()) |
| 140 | : kNo_Combine; |
| 141 | |
| 142 | switch (combine) { |
| 143 | case kTotal_Combine: fList.pop(); break; |
| 144 | case kPartial_Combine: break; |
| 145 | case kNo_Combine: fList.push_back(edge); break; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | void SkBasicEdgeBuilder::addQuad(const SkPoint pts[]) { |
| 150 | SkQuadraticEdge* edge = fAlloc.make<SkQuadraticEdge>(); |
| 151 | if (edge->setQuadratic(pts, fClipShift)) { |
| 152 | fList.push_back(edge); |
| 153 | } |
| 154 | } |
| 155 | void SkAnalyticEdgeBuilder::addQuad(const SkPoint pts[]) { |
| 156 | SkAnalyticQuadraticEdge* edge = fAlloc.make<SkAnalyticQuadraticEdge>(); |
| 157 | if (edge->setQuadratic(pts)) { |
| 158 | fList.push_back(edge); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | void SkBasicEdgeBuilder::addCubic(const SkPoint pts[]) { |
| 163 | SkCubicEdge* edge = fAlloc.make<SkCubicEdge>(); |
| 164 | if (edge->setCubic(pts, fClipShift)) { |
| 165 | fList.push_back(edge); |
| 166 | } |
| 167 | } |
| 168 | void SkAnalyticEdgeBuilder::addCubic(const SkPoint pts[]) { |
| 169 | SkAnalyticCubicEdge* edge = fAlloc.make<SkAnalyticCubicEdge>(); |
| 170 | if (edge->setCubic(pts)) { |
| 171 | fList.push_back(edge); |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | // TODO: merge addLine() and addPolyLine()? |
| 176 | |
| 177 | SkEdgeBuilder::Combine SkBasicEdgeBuilder::addPolyLine(const SkPoint pts[], |
| 178 | char* arg_edge, char** arg_edgePtr) { |
| 179 | auto edge = (SkEdge*) arg_edge; |
| 180 | auto edgePtr = (SkEdge**)arg_edgePtr; |
| 181 | |
| 182 | if (edge->setLine(pts[0], pts[1], fClipShift)) { |
| 183 | return is_vertical(edge) && edgePtr > (SkEdge**)fEdgeList |
| 184 | ? this->combineVertical(edge, edgePtr[-1]) |
| 185 | : kNo_Combine; |
| 186 | } |
| 187 | return SkEdgeBuilder::kPartial_Combine; // A convenient lie. Same do-nothing behavior. |
| 188 | } |
| 189 | SkEdgeBuilder::Combine SkAnalyticEdgeBuilder::addPolyLine(const SkPoint pts[], |
| 190 | char* arg_edge, char** arg_edgePtr) { |
| 191 | auto edge = (SkAnalyticEdge*) arg_edge; |
| 192 | auto edgePtr = (SkAnalyticEdge**)arg_edgePtr; |
| 193 | |
| 194 | if (edge->setLine(pts[0], pts[1])) { |
| 195 | return is_vertical(edge) && edgePtr > (SkAnalyticEdge**)fEdgeList |
| 196 | ? this->combineVertical(edge, edgePtr[-1]) |
| 197 | : kNo_Combine; |
| 198 | } |
| 199 | return SkEdgeBuilder::kPartial_Combine; // As above. |
| 200 | } |
| 201 | |
| 202 | SkRect SkBasicEdgeBuilder::recoverClip(const SkIRect& src) const { |
| 203 | return { SkIntToScalar(src.fLeft >> fClipShift), |
| 204 | SkIntToScalar(src.fTop >> fClipShift), |
| 205 | SkIntToScalar(src.fRight >> fClipShift), |
| 206 | SkIntToScalar(src.fBottom >> fClipShift), }; |
| 207 | } |
| 208 | SkRect SkAnalyticEdgeBuilder::recoverClip(const SkIRect& src) const { |
| 209 | return SkRect::Make(src); |
| 210 | } |
| 211 | |
| 212 | char* SkBasicEdgeBuilder::allocEdges(size_t n, size_t* size) { |
| 213 | *size = sizeof(SkEdge); |
| 214 | return (char*)fAlloc.makeArrayDefault<SkEdge>(n); |
| 215 | } |
| 216 | char* SkAnalyticEdgeBuilder::allocEdges(size_t n, size_t* size) { |
| 217 | *size = sizeof(SkAnalyticEdge); |
| 218 | return (char*)fAlloc.makeArrayDefault<SkAnalyticEdge>(n); |
| 219 | } |
| 220 | |
| 221 | // TODO: maybe get rid of buildPoly() entirely? |
| 222 | int SkEdgeBuilder::buildPoly(const SkPathView& path, const SkIRect* iclip, bool canCullToTheRight) { |
| 223 | size_t maxEdgeCount = path.fPoints.size(); |
| 224 | if (iclip) { |
| 225 | // clipping can turn 1 line into (up to) kMaxClippedLineSegments, since |
| 226 | // we turn portions that are clipped out on the left/right into vertical |
| 227 | // segments. |
| 228 | SkSafeMath safe; |
| 229 | maxEdgeCount = safe.mul(maxEdgeCount, SkLineClipper::kMaxClippedLineSegments); |
| 230 | if (!safe) { |
| 231 | return 0; |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | size_t edgeSize; |
| 236 | char* edge = this->allocEdges(maxEdgeCount, &edgeSize); |
| 237 | |
| 238 | SkDEBUGCODE(char* edgeStart = edge); |
| 239 | char** edgePtr = fAlloc.makeArrayDefault<char*>(maxEdgeCount); |
| 240 | fEdgeList = (void**)edgePtr; |
| 241 | |
| 242 | SkPathEdgeIter iter(path); |
| 243 | if (iclip) { |
| 244 | SkRect clip = this->recoverClip(*iclip); |
| 245 | |
| 246 | while (auto e = iter.next()) { |
| 247 | switch (e.fEdge) { |
| 248 | case SkPathEdgeIter::Edge::kLine: { |
| 249 | SkPoint lines[SkLineClipper::kMaxPoints]; |
| 250 | int lineCount = SkLineClipper::ClipLine(e.fPts, clip, lines, canCullToTheRight); |
| 251 | SkASSERT(lineCount <= SkLineClipper::kMaxClippedLineSegments); |
| 252 | for (int i = 0; i < lineCount; i++) { |
| 253 | switch( this->addPolyLine(lines + i, edge, edgePtr) ) { |
| 254 | case kTotal_Combine: edgePtr--; break; |
| 255 | case kPartial_Combine: break; |
| 256 | case kNo_Combine: *edgePtr++ = edge; |
| 257 | edge += edgeSize; |
| 258 | } |
| 259 | } |
| 260 | break; |
| 261 | } |
| 262 | default: |
| 263 | SkDEBUGFAIL("unexpected verb" ); |
| 264 | break; |
| 265 | } |
| 266 | } |
| 267 | } else { |
| 268 | while (auto e = iter.next()) { |
| 269 | switch (e.fEdge) { |
| 270 | case SkPathEdgeIter::Edge::kLine: { |
| 271 | switch( this->addPolyLine(e.fPts, edge, edgePtr) ) { |
| 272 | case kTotal_Combine: edgePtr--; break; |
| 273 | case kPartial_Combine: break; |
| 274 | case kNo_Combine: *edgePtr++ = edge; |
| 275 | edge += edgeSize; |
| 276 | } |
| 277 | break; |
| 278 | } |
| 279 | default: |
| 280 | SkDEBUGFAIL("unexpected verb" ); |
| 281 | break; |
| 282 | } |
| 283 | } |
| 284 | } |
| 285 | SkASSERT((size_t)(edge - edgeStart) <= maxEdgeCount * edgeSize); |
| 286 | SkASSERT((size_t)(edgePtr - (char**)fEdgeList) <= maxEdgeCount); |
| 287 | return SkToInt(edgePtr - (char**)fEdgeList); |
| 288 | } |
| 289 | |
| 290 | int SkEdgeBuilder::build(const SkPathView& path, const SkIRect* iclip, bool canCullToTheRight) { |
| 291 | SkAutoConicToQuads quadder; |
| 292 | const SkScalar conicTol = SK_Scalar1 / 4; |
| 293 | bool is_finite = true; |
| 294 | |
| 295 | SkPathEdgeIter iter(path); |
| 296 | if (iclip) { |
| 297 | SkRect clip = this->recoverClip(*iclip); |
| 298 | struct Rec { |
| 299 | SkEdgeBuilder* fBuilder; |
| 300 | bool fIsFinite; |
| 301 | } rec = { this, true }; |
| 302 | |
| 303 | SkEdgeClipper::ClipPath(path, clip, canCullToTheRight, |
| 304 | [](SkEdgeClipper* clipper, bool, void* ctx) { |
| 305 | Rec* rec = (Rec*)ctx; |
| 306 | SkPoint pts[4]; |
| 307 | SkPath::Verb verb; |
| 308 | |
| 309 | while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) { |
| 310 | const int count = SkPathPriv::PtsInIter(verb); |
| 311 | if (!SkScalarsAreFinite(&pts[0].fX, count*2)) { |
| 312 | rec->fIsFinite = false; |
| 313 | return; |
| 314 | } |
| 315 | switch (verb) { |
| 316 | case SkPath::kLine_Verb: rec->fBuilder->addLine (pts); break; |
| 317 | case SkPath::kQuad_Verb: rec->fBuilder->addQuad (pts); break; |
| 318 | case SkPath::kCubic_Verb: rec->fBuilder->addCubic(pts); break; |
| 319 | default: break; |
| 320 | } |
| 321 | } |
| 322 | }, &rec); |
| 323 | is_finite = rec.fIsFinite; |
| 324 | } else { |
| 325 | auto handle_quad = [this](const SkPoint pts[3]) { |
| 326 | SkPoint monoX[5]; |
| 327 | int n = SkChopQuadAtYExtrema(pts, monoX); |
| 328 | for (int i = 0; i <= n; i++) { |
| 329 | this->addQuad(&monoX[i * 2]); |
| 330 | } |
| 331 | }; |
| 332 | while (auto e = iter.next()) { |
| 333 | switch (e.fEdge) { |
| 334 | case SkPathEdgeIter::Edge::kLine: |
| 335 | this->addLine(e.fPts); |
| 336 | break; |
| 337 | case SkPathEdgeIter::Edge::kQuad: { |
| 338 | handle_quad(e.fPts); |
| 339 | break; |
| 340 | } |
| 341 | case SkPathEdgeIter::Edge::kConic: { |
| 342 | const SkPoint* quadPts = quadder.computeQuads( |
| 343 | e.fPts, iter.conicWeight(), conicTol); |
| 344 | for (int i = 0; i < quadder.countQuads(); ++i) { |
| 345 | handle_quad(quadPts); |
| 346 | quadPts += 2; |
| 347 | } |
| 348 | } break; |
| 349 | case SkPathEdgeIter::Edge::kCubic: { |
| 350 | SkPoint monoY[10]; |
| 351 | int n = SkChopCubicAtYExtrema(e.fPts, monoY); |
| 352 | for (int i = 0; i <= n; i++) { |
| 353 | this->addCubic(&monoY[i * 3]); |
| 354 | } |
| 355 | break; |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | fEdgeList = fList.begin(); |
| 361 | return is_finite ? fList.count() : 0; |
| 362 | } |
| 363 | |
| 364 | int SkEdgeBuilder::buildEdges(const SkPathView& path, |
| 365 | const SkIRect* shiftedClip) { |
| 366 | // If we're convex, then we need both edges, even if the right edge is past the clip. |
| 367 | const bool canCullToTheRight = !path.isConvex(); |
| 368 | |
| 369 | // We can use our buildPoly() optimization if all the segments are lines. |
| 370 | // (Edges are homogeneous and stored contiguously in memory, no need for indirection.) |
| 371 | const int count = SkPath::kLine_SegmentMask == path.fSegmentMask |
| 372 | ? this->buildPoly(path, shiftedClip, canCullToTheRight) |
| 373 | : this->build (path, shiftedClip, canCullToTheRight); |
| 374 | |
| 375 | SkASSERT(count >= 0); |
| 376 | |
| 377 | // If we can't cull to the right, we should have count > 1 (or 0). |
| 378 | if (!canCullToTheRight) { |
| 379 | SkASSERT(count != 1); |
| 380 | } |
| 381 | return count; |
| 382 | } |
| 383 | |