1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkPaint.h" |
9 | #include "src/core/SkScalerContext.h" |
10 | |
11 | #include "include/core/SkFontMetrics.h" |
12 | #include "include/core/SkMaskFilter.h" |
13 | #include "include/core/SkPathEffect.h" |
14 | #include "include/core/SkStrokeRec.h" |
15 | #include "include/private/SkColorData.h" |
16 | #include "include/private/SkTo.h" |
17 | #include "src/core/SkAutoMalloc.h" |
18 | #include "src/core/SkAutoPixmapStorage.h" |
19 | #include "src/core/SkDescriptor.h" |
20 | #include "src/core/SkDraw.h" |
21 | #include "src/core/SkFontPriv.h" |
22 | #include "src/core/SkGlyph.h" |
23 | #include "src/core/SkMaskGamma.h" |
24 | #include "src/core/SkMatrixProvider.h" |
25 | #include "src/core/SkPaintPriv.h" |
26 | #include "src/core/SkPathPriv.h" |
27 | #include "src/core/SkRasterClip.h" |
28 | #include "src/core/SkReadBuffer.h" |
29 | #include "src/core/SkRectPriv.h" |
30 | #include "src/core/SkStroke.h" |
31 | #include "src/core/SkSurfacePriv.h" |
32 | #include "src/core/SkTextFormatParams.h" |
33 | #include "src/core/SkWriteBuffer.h" |
34 | #include "src/utils/SkMatrix22.h" |
35 | #include <new> |
36 | |
37 | /////////////////////////////////////////////////////////////////////////////// |
38 | |
39 | #ifdef SK_DEBUG |
40 | #define DUMP_RECx |
41 | #endif |
42 | |
43 | SkScalerContextRec SkScalerContext::PreprocessRec(const SkTypeface& typeface, |
44 | const SkScalerContextEffects& effects, |
45 | const SkDescriptor& desc) { |
46 | SkScalerContextRec rec = |
47 | *static_cast<const SkScalerContextRec*>(desc.findEntry(kRec_SkDescriptorTag, nullptr)); |
48 | |
49 | // Allow the typeface to adjust the rec. |
50 | typeface.onFilterRec(&rec); |
51 | |
52 | if (effects.fMaskFilter) { |
53 | // Pre-blend is not currently applied to filtered text. |
54 | // The primary filter is blur, for which contrast makes no sense, |
55 | // and for which the destination guess error is more visible. |
56 | // Also, all existing users of blur have calibrated for linear. |
57 | rec.ignorePreBlend(); |
58 | } |
59 | |
60 | SkColor lumColor = rec.getLuminanceColor(); |
61 | |
62 | if (rec.fMaskFormat == SkMask::kA8_Format) { |
63 | U8CPU lum = SkComputeLuminance(SkColorGetR(lumColor), |
64 | SkColorGetG(lumColor), |
65 | SkColorGetB(lumColor)); |
66 | lumColor = SkColorSetRGB(lum, lum, lum); |
67 | } |
68 | |
69 | // TODO: remove CanonicalColor when we to fix up Chrome layout tests. |
70 | rec.setLuminanceColor(lumColor); |
71 | |
72 | return rec; |
73 | } |
74 | |
75 | SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, |
76 | const SkDescriptor* desc) |
77 | : fRec(PreprocessRec(*typeface, effects, *desc)) |
78 | , fTypeface(std::move(typeface)) |
79 | , fPathEffect(sk_ref_sp(effects.fPathEffect)) |
80 | , fMaskFilter(sk_ref_sp(effects.fMaskFilter)) |
81 | // Initialize based on our settings. Subclasses can also force this. |
82 | , fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != nullptr) |
83 | |
84 | , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec)) |
85 | { |
86 | #ifdef DUMP_REC |
87 | SkDebugf("SkScalerContext checksum %x count %d length %d\n" , |
88 | desc->getChecksum(), desc->getCount(), desc->getLength()); |
89 | SkDebugf("%s" , fRec.dump().c_str()); |
90 | SkDebugf(" effects %x\n" , desc->findEntry(kEffects_SkDescriptorTag, nullptr)); |
91 | #endif |
92 | } |
93 | |
94 | SkScalerContext::~SkScalerContext() {} |
95 | |
96 | /** |
97 | * In order to call cachedDeviceLuminance, cachedPaintLuminance, or |
98 | * cachedMaskGamma the caller must hold the mask_gamma_cache_mutex and continue |
99 | * to hold it until the returned pointer is refed or forgotten. |
100 | */ |
101 | static SkMutex& mask_gamma_cache_mutex() { |
102 | static SkMutex& mutex = *(new SkMutex); |
103 | return mutex; |
104 | } |
105 | |
106 | static SkMaskGamma* gLinearMaskGamma = nullptr; |
107 | static SkMaskGamma* gMaskGamma = nullptr; |
108 | static SkScalar gContrast = SK_ScalarMin; |
109 | static SkScalar gPaintGamma = SK_ScalarMin; |
110 | static SkScalar gDeviceGamma = SK_ScalarMin; |
111 | |
112 | /** |
113 | * The caller must hold the mask_gamma_cache_mutex() and continue to hold it until |
114 | * the returned SkMaskGamma pointer is refed or forgotten. |
115 | */ |
116 | static const SkMaskGamma& cached_mask_gamma(SkScalar contrast, SkScalar paintGamma, |
117 | SkScalar deviceGamma) { |
118 | mask_gamma_cache_mutex().assertHeld(); |
119 | if (0 == contrast && SK_Scalar1 == paintGamma && SK_Scalar1 == deviceGamma) { |
120 | if (nullptr == gLinearMaskGamma) { |
121 | gLinearMaskGamma = new SkMaskGamma; |
122 | } |
123 | return *gLinearMaskGamma; |
124 | } |
125 | if (gContrast != contrast || gPaintGamma != paintGamma || gDeviceGamma != deviceGamma) { |
126 | SkSafeUnref(gMaskGamma); |
127 | gMaskGamma = new SkMaskGamma(contrast, paintGamma, deviceGamma); |
128 | gContrast = contrast; |
129 | gPaintGamma = paintGamma; |
130 | gDeviceGamma = deviceGamma; |
131 | } |
132 | return *gMaskGamma; |
133 | } |
134 | |
135 | /** |
136 | * Expands fDeviceGamma, fPaintGamma, fContrast, and fLumBits into a mask pre-blend. |
137 | */ |
138 | SkMaskGamma::PreBlend SkScalerContext::GetMaskPreBlend(const SkScalerContextRec& rec) { |
139 | SkAutoMutexExclusive ama(mask_gamma_cache_mutex()); |
140 | |
141 | const SkMaskGamma& maskGamma = cached_mask_gamma(rec.getContrast(), |
142 | rec.getPaintGamma(), |
143 | rec.getDeviceGamma()); |
144 | |
145 | // TODO: remove CanonicalColor when we to fix up Chrome layout tests. |
146 | return maskGamma.preBlend(rec.getLuminanceColor()); |
147 | } |
148 | |
149 | size_t SkScalerContext::GetGammaLUTSize(SkScalar contrast, SkScalar paintGamma, |
150 | SkScalar deviceGamma, int* width, int* height) { |
151 | SkAutoMutexExclusive ama(mask_gamma_cache_mutex()); |
152 | const SkMaskGamma& maskGamma = cached_mask_gamma(contrast, |
153 | paintGamma, |
154 | deviceGamma); |
155 | |
156 | maskGamma.getGammaTableDimensions(width, height); |
157 | size_t size = (*width)*(*height)*sizeof(uint8_t); |
158 | |
159 | return size; |
160 | } |
161 | |
162 | bool SkScalerContext::GetGammaLUTData(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma, |
163 | uint8_t* data) { |
164 | SkAutoMutexExclusive ama(mask_gamma_cache_mutex()); |
165 | const SkMaskGamma& maskGamma = cached_mask_gamma(contrast, |
166 | paintGamma, |
167 | deviceGamma); |
168 | const uint8_t* gammaTables = maskGamma.getGammaTables(); |
169 | if (!gammaTables) { |
170 | return false; |
171 | } |
172 | |
173 | int width, height; |
174 | maskGamma.getGammaTableDimensions(&width, &height); |
175 | size_t size = width*height * sizeof(uint8_t); |
176 | memcpy(data, gammaTables, size); |
177 | return true; |
178 | } |
179 | |
180 | void SkScalerContext::getAdvance(SkGlyph* glyph) { |
181 | if (generateAdvance(glyph)) { |
182 | glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE; |
183 | } else { |
184 | this->getMetrics(glyph); |
185 | SkASSERT(glyph->fMaskFormat != MASK_FORMAT_UNKNOWN); |
186 | } |
187 | } |
188 | |
189 | void SkScalerContext::getMetrics(SkGlyph* glyph) { |
190 | bool generatingImageFromPath = fGenerateImageFromPath; |
191 | if (!generatingImageFromPath) { |
192 | generateMetrics(glyph); |
193 | SkASSERT(glyph->fMaskFormat != MASK_FORMAT_UNKNOWN); |
194 | } else { |
195 | SkPath devPath; |
196 | generatingImageFromPath = this->internalGetPath(glyph->getPackedID(), &devPath); |
197 | if (!generatingImageFromPath) { |
198 | generateMetrics(glyph); |
199 | SkASSERT(glyph->fMaskFormat != MASK_FORMAT_UNKNOWN); |
200 | } else { |
201 | uint8_t originMaskFormat = glyph->fMaskFormat; |
202 | if (!generateAdvance(glyph)) { |
203 | generateMetrics(glyph); |
204 | } |
205 | |
206 | if (originMaskFormat != MASK_FORMAT_UNKNOWN) { |
207 | glyph->fMaskFormat = originMaskFormat; |
208 | } else { |
209 | glyph->fMaskFormat = fRec.fMaskFormat; |
210 | } |
211 | |
212 | // If we are going to create the mask, then we cannot keep the color |
213 | if (SkMask::kARGB32_Format == glyph->fMaskFormat) { |
214 | glyph->fMaskFormat = SkMask::kA8_Format; |
215 | } |
216 | |
217 | const SkIRect ir = devPath.getBounds().roundOut(); |
218 | if (ir.isEmpty() || !SkRectPriv::Is16Bit(ir)) { |
219 | goto SK_ERROR; |
220 | } |
221 | glyph->fLeft = ir.fLeft; |
222 | glyph->fTop = ir.fTop; |
223 | glyph->fWidth = SkToU16(ir.width()); |
224 | glyph->fHeight = SkToU16(ir.height()); |
225 | |
226 | if (glyph->fWidth > 0) { |
227 | switch (glyph->fMaskFormat) { |
228 | case SkMask::kLCD16_Format: |
229 | if (fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag) { |
230 | glyph->fHeight += 2; |
231 | glyph->fTop -= 1; |
232 | } else { |
233 | glyph->fWidth += 2; |
234 | glyph->fLeft -= 1; |
235 | } |
236 | break; |
237 | default: |
238 | break; |
239 | } |
240 | } |
241 | } |
242 | } |
243 | |
244 | // if either dimension is empty, zap the image bounds of the glyph |
245 | if (0 == glyph->fWidth || 0 == glyph->fHeight) { |
246 | glyph->fWidth = 0; |
247 | glyph->fHeight = 0; |
248 | glyph->fTop = 0; |
249 | glyph->fLeft = 0; |
250 | glyph->fMaskFormat = 0; |
251 | return; |
252 | } |
253 | |
254 | if (fMaskFilter) { |
255 | SkMask src = glyph->mask(), |
256 | dst; |
257 | SkMatrix matrix; |
258 | |
259 | fRec.getMatrixFrom2x2(&matrix); |
260 | |
261 | src.fImage = nullptr; // only want the bounds from the filter |
262 | if (as_MFB(fMaskFilter)->filterMask(&dst, src, matrix, nullptr)) { |
263 | if (dst.fBounds.isEmpty() || !SkRectPriv::Is16Bit(dst.fBounds)) { |
264 | goto SK_ERROR; |
265 | } |
266 | SkASSERT(dst.fImage == nullptr); |
267 | glyph->fLeft = dst.fBounds.fLeft; |
268 | glyph->fTop = dst.fBounds.fTop; |
269 | glyph->fWidth = SkToU16(dst.fBounds.width()); |
270 | glyph->fHeight = SkToU16(dst.fBounds.height()); |
271 | glyph->fMaskFormat = dst.fFormat; |
272 | } |
273 | } |
274 | return; |
275 | |
276 | SK_ERROR: |
277 | // draw nothing 'cause we failed |
278 | glyph->fLeft = 0; |
279 | glyph->fTop = 0; |
280 | glyph->fWidth = 0; |
281 | glyph->fHeight = 0; |
282 | // put a valid value here, in case it was earlier set to |
283 | // MASK_FORMAT_JUST_ADVANCE |
284 | glyph->fMaskFormat = fRec.fMaskFormat; |
285 | } |
286 | |
287 | #define SK_SHOW_TEXT_BLIT_COVERAGE 0 |
288 | |
289 | static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) { |
290 | uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage; |
291 | unsigned rowBytes = mask.fRowBytes; |
292 | |
293 | for (int y = mask.fBounds.height() - 1; y >= 0; --y) { |
294 | for (int x = mask.fBounds.width() - 1; x >= 0; --x) { |
295 | dst[x] = lut[dst[x]]; |
296 | } |
297 | dst += rowBytes; |
298 | } |
299 | } |
300 | |
301 | static void pack4xHToLCD16(const SkPixmap& src, const SkMask& dst, |
302 | const SkMaskGamma::PreBlend& maskPreBlend, |
303 | const bool doBGR, const bool doVert) { |
304 | #define SAMPLES_PER_PIXEL 4 |
305 | #define LCD_PER_PIXEL 3 |
306 | SkASSERT(kAlpha_8_SkColorType == src.colorType()); |
307 | SkASSERT(SkMask::kLCD16_Format == dst.fFormat); |
308 | |
309 | // doVert in this function means swap x and y when writing to dst. |
310 | if (doVert) { |
311 | SkASSERT(src.width() == (dst.fBounds.height() - 2) * 4); |
312 | SkASSERT(src.height() == dst.fBounds.width()); |
313 | } else { |
314 | SkASSERT(src.width() == (dst.fBounds.width() - 2) * 4); |
315 | SkASSERT(src.height() == dst.fBounds.height()); |
316 | } |
317 | |
318 | const int sample_width = src.width(); |
319 | const int height = src.height(); |
320 | |
321 | uint16_t* dstImage = (uint16_t*)dst.fImage; |
322 | size_t dstRB = dst.fRowBytes; |
323 | // An N tap FIR is defined by |
324 | // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N] |
325 | // or |
326 | // out[n] = sum(i, 0, N, coeff[i]*x[n-i]) |
327 | |
328 | // The strategy is to use one FIR (different coefficients) for each of r, g, and b. |
329 | // This means using every 4th FIR output value of each FIR and discarding the rest. |
330 | // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'. |
331 | // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.) |
332 | |
333 | // These are in some fixed point repesentation. |
334 | // Adding up to more than one simulates ink spread. |
335 | // For implementation reasons, these should never add up to more than two. |
336 | |
337 | // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast'). |
338 | // Calculated using tools/generate_fir_coeff.py |
339 | // With this one almost no fringing is ever seen, but it is imperceptibly blurry. |
340 | // The lcd smoothed text is almost imperceptibly different from gray, |
341 | // but is still sharper on small stems and small rounded corners than gray. |
342 | // This also seems to be about as wide as one can get and only have a three pixel kernel. |
343 | // TODO: calculate these at runtime so parameters can be adjusted (esp contrast). |
344 | static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = { |
345 | //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted. |
346 | { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, }, |
347 | //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric |
348 | { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, }, |
349 | //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted. |
350 | { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, }, |
351 | }; |
352 | |
353 | for (int y = 0; y < height; ++y) { |
354 | uint16_t* dstP; |
355 | size_t dstPDelta; |
356 | if (doVert) { |
357 | dstP = dstImage + y; |
358 | dstPDelta = dstRB; |
359 | } else { |
360 | dstP = SkTAddOffset<uint16_t>(dstImage, dstRB * y); |
361 | dstPDelta = sizeof(uint16_t); |
362 | } |
363 | |
364 | const uint8_t* srcP = src.addr8(0, y); |
365 | |
366 | // TODO: this fir filter implementation is straight forward, but slow. |
367 | // It should be possible to make it much faster. |
368 | for (int sample_x = -4; sample_x < sample_width + 4; sample_x += 4) { |
369 | int fir[LCD_PER_PIXEL] = { 0 }; |
370 | for (int sample_index = std::max(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4) |
371 | ; sample_index < std::min(sample_x + 8, sample_width) |
372 | ; ++sample_index, ++coeff_index) |
373 | { |
374 | int sample_value = srcP[sample_index]; |
375 | for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { |
376 | fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value; |
377 | } |
378 | } |
379 | for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { |
380 | fir[subpxl_index] /= 0x100; |
381 | fir[subpxl_index] = std::min(fir[subpxl_index], 255); |
382 | } |
383 | |
384 | U8CPU r, g, b; |
385 | if (doBGR) { |
386 | r = fir[2]; |
387 | g = fir[1]; |
388 | b = fir[0]; |
389 | } else { |
390 | r = fir[0]; |
391 | g = fir[1]; |
392 | b = fir[2]; |
393 | } |
394 | if (maskPreBlend.isApplicable()) { |
395 | r = maskPreBlend.fR[r]; |
396 | g = maskPreBlend.fG[g]; |
397 | b = maskPreBlend.fB[b]; |
398 | } |
399 | #if SK_SHOW_TEXT_BLIT_COVERAGE |
400 | r = std::max(r, 10); g = std::max(g, 10); b = std::max(b, 10); |
401 | #endif |
402 | *dstP = SkPack888ToRGB16(r, g, b); |
403 | dstP = SkTAddOffset<uint16_t>(dstP, dstPDelta); |
404 | } |
405 | } |
406 | } |
407 | |
408 | static inline int convert_8_to_1(unsigned byte) { |
409 | SkASSERT(byte <= 0xFF); |
410 | return byte >> 7; |
411 | } |
412 | |
413 | static uint8_t pack_8_to_1(const uint8_t alpha[8]) { |
414 | unsigned bits = 0; |
415 | for (int i = 0; i < 8; ++i) { |
416 | bits <<= 1; |
417 | bits |= convert_8_to_1(alpha[i]); |
418 | } |
419 | return SkToU8(bits); |
420 | } |
421 | |
422 | static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) { |
423 | const int height = mask.fBounds.height(); |
424 | const int width = mask.fBounds.width(); |
425 | const int octs = width >> 3; |
426 | const int leftOverBits = width & 7; |
427 | |
428 | uint8_t* dst = mask.fImage; |
429 | const int dstPad = mask.fRowBytes - SkAlign8(width)/8; |
430 | SkASSERT(dstPad >= 0); |
431 | |
432 | SkASSERT(width >= 0); |
433 | SkASSERT(srcRB >= (size_t)width); |
434 | const size_t srcPad = srcRB - width; |
435 | |
436 | for (int y = 0; y < height; ++y) { |
437 | for (int i = 0; i < octs; ++i) { |
438 | *dst++ = pack_8_to_1(src); |
439 | src += 8; |
440 | } |
441 | if (leftOverBits > 0) { |
442 | unsigned bits = 0; |
443 | int shift = 7; |
444 | for (int i = 0; i < leftOverBits; ++i, --shift) { |
445 | bits |= convert_8_to_1(*src++) << shift; |
446 | } |
447 | *dst++ = bits; |
448 | } |
449 | src += srcPad; |
450 | dst += dstPad; |
451 | } |
452 | } |
453 | |
454 | static void generateMask(const SkMask& mask, const SkPath& path, |
455 | const SkMaskGamma::PreBlend& maskPreBlend, |
456 | bool doBGR, bool doVert) { |
457 | SkPaint paint; |
458 | |
459 | int srcW = mask.fBounds.width(); |
460 | int srcH = mask.fBounds.height(); |
461 | int dstW = srcW; |
462 | int dstH = srcH; |
463 | int dstRB = mask.fRowBytes; |
464 | |
465 | SkMatrix matrix; |
466 | matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), |
467 | -SkIntToScalar(mask.fBounds.fTop)); |
468 | |
469 | paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat); |
470 | switch (mask.fFormat) { |
471 | case SkMask::kBW_Format: |
472 | dstRB = 0; // signals we need a copy |
473 | break; |
474 | case SkMask::kA8_Format: |
475 | break; |
476 | case SkMask::kLCD16_Format: |
477 | if (doVert) { |
478 | dstW = 4*dstH - 8; |
479 | dstH = srcW; |
480 | matrix.setAll(0, 4, -SkIntToScalar(mask.fBounds.fTop + 1) * 4, |
481 | 1, 0, -SkIntToScalar(mask.fBounds.fLeft), |
482 | 0, 0, 1); |
483 | } else { |
484 | dstW = 4*dstW - 8; |
485 | matrix.setAll(4, 0, -SkIntToScalar(mask.fBounds.fLeft + 1) * 4, |
486 | 0, 1, -SkIntToScalar(mask.fBounds.fTop), |
487 | 0, 0, 1); |
488 | } |
489 | dstRB = 0; // signals we need a copy |
490 | break; |
491 | default: |
492 | SkDEBUGFAIL("unexpected mask format" ); |
493 | } |
494 | |
495 | SkRasterClip clip; |
496 | clip.setRect(SkIRect::MakeWH(dstW, dstH)); |
497 | |
498 | const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH); |
499 | SkAutoPixmapStorage dst; |
500 | |
501 | if (0 == dstRB) { |
502 | if (!dst.tryAlloc(info)) { |
503 | // can't allocate offscreen, so empty the mask and return |
504 | sk_bzero(mask.fImage, mask.computeImageSize()); |
505 | return; |
506 | } |
507 | } else { |
508 | dst.reset(info, mask.fImage, dstRB); |
509 | } |
510 | sk_bzero(dst.writable_addr(), dst.computeByteSize()); |
511 | |
512 | SkDraw draw; |
513 | SkSimpleMatrixProvider matrixProvider(matrix); |
514 | draw.fDst = dst; |
515 | draw.fRC = &clip; |
516 | draw.fMatrixProvider = &matrixProvider; |
517 | draw.drawPath(path, paint); |
518 | |
519 | switch (mask.fFormat) { |
520 | case SkMask::kBW_Format: |
521 | packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes()); |
522 | break; |
523 | case SkMask::kA8_Format: |
524 | if (maskPreBlend.isApplicable()) { |
525 | applyLUTToA8Mask(mask, maskPreBlend.fG); |
526 | } |
527 | break; |
528 | case SkMask::kLCD16_Format: |
529 | pack4xHToLCD16(dst, mask, maskPreBlend, doBGR, doVert); |
530 | break; |
531 | default: |
532 | break; |
533 | } |
534 | } |
535 | |
536 | void SkScalerContext::getImage(const SkGlyph& origGlyph) { |
537 | const SkGlyph* glyph = &origGlyph; |
538 | SkGlyph tmpGlyph{origGlyph.getPackedID()}; |
539 | |
540 | // in case we need to call generateImage on a mask-format that is different |
541 | // (i.e. larger) than what our caller allocated by looking at origGlyph. |
542 | SkAutoMalloc tmpGlyphImageStorage; |
543 | |
544 | if (fMaskFilter) { // restore the prefilter bounds |
545 | |
546 | // need the original bounds, sans our maskfilter |
547 | sk_sp<SkMaskFilter> mf = std::move(fMaskFilter); |
548 | this->getMetrics(&tmpGlyph); |
549 | fMaskFilter = std::move(mf); |
550 | |
551 | // we need the prefilter bounds to be <= filter bounds |
552 | SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth); |
553 | SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight); |
554 | |
555 | if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) { |
556 | tmpGlyph.fImage = origGlyph.fImage; |
557 | } else { |
558 | tmpGlyphImageStorage.reset(tmpGlyph.imageSize()); |
559 | tmpGlyph.fImage = tmpGlyphImageStorage.get(); |
560 | } |
561 | glyph = &tmpGlyph; |
562 | } |
563 | |
564 | if (!fGenerateImageFromPath) { |
565 | generateImage(*glyph); |
566 | } else { |
567 | SkPath devPath; |
568 | SkMask mask = glyph->mask(); |
569 | |
570 | if (!this->internalGetPath(glyph->getPackedID(), &devPath)) { |
571 | generateImage(*glyph); |
572 | } else { |
573 | SkASSERT(SkMask::kARGB32_Format != origGlyph.fMaskFormat); |
574 | SkASSERT(SkMask::kARGB32_Format != mask.fFormat); |
575 | const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); |
576 | const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); |
577 | generateMask(mask, devPath, fPreBlend, doBGR, doVert); |
578 | } |
579 | } |
580 | |
581 | if (fMaskFilter) { |
582 | // the src glyph image shouldn't be 3D |
583 | SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat); |
584 | |
585 | SkMask srcM = glyph->mask(), |
586 | dstM; |
587 | SkMatrix matrix; |
588 | |
589 | fRec.getMatrixFrom2x2(&matrix); |
590 | |
591 | if (as_MFB(fMaskFilter)->filterMask(&dstM, srcM, matrix, nullptr)) { |
592 | int width = std::min<int>(origGlyph.fWidth, dstM.fBounds.width()); |
593 | int height = std::min<int>(origGlyph.fHeight, dstM.fBounds.height()); |
594 | int dstRB = origGlyph.rowBytes(); |
595 | int srcRB = dstM.fRowBytes; |
596 | |
597 | const uint8_t* src = (const uint8_t*)dstM.fImage; |
598 | uint8_t* dst = (uint8_t*)origGlyph.fImage; |
599 | |
600 | if (SkMask::k3D_Format == dstM.fFormat) { |
601 | // we have to copy 3 times as much |
602 | height *= 3; |
603 | } |
604 | |
605 | // clean out our glyph, since it may be larger than dstM |
606 | //sk_bzero(dst, height * dstRB); |
607 | |
608 | while (--height >= 0) { |
609 | memcpy(dst, src, width); |
610 | src += srcRB; |
611 | dst += dstRB; |
612 | } |
613 | SkMask::FreeImage(dstM.fImage); |
614 | } |
615 | } |
616 | } |
617 | |
618 | bool SkScalerContext::getPath(SkPackedGlyphID glyphID, SkPath* path) { |
619 | return this->internalGetPath(glyphID, path); |
620 | } |
621 | |
622 | void SkScalerContext::getFontMetrics(SkFontMetrics* fm) { |
623 | SkASSERT(fm); |
624 | this->generateFontMetrics(fm); |
625 | } |
626 | |
627 | /////////////////////////////////////////////////////////////////////////////// |
628 | |
629 | bool SkScalerContext::internalGetPath(SkPackedGlyphID glyphID, SkPath* devPath) { |
630 | SkPath path; |
631 | if (!generatePath(glyphID.glyphID(), &path)) { |
632 | return false; |
633 | } |
634 | |
635 | if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { |
636 | SkFixed dx = glyphID.getSubXFixed(); |
637 | SkFixed dy = glyphID.getSubYFixed(); |
638 | if (dx | dy) { |
639 | path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy)); |
640 | } |
641 | } |
642 | |
643 | if (fRec.fFrameWidth > 0 || fPathEffect != nullptr) { |
644 | // need the path in user-space, with only the point-size applied |
645 | // so that our stroking and effects will operate the same way they |
646 | // would if the user had extracted the path themself, and then |
647 | // called drawPath |
648 | SkPath localPath; |
649 | SkMatrix matrix, inverse; |
650 | |
651 | fRec.getMatrixFrom2x2(&matrix); |
652 | if (!matrix.invert(&inverse)) { |
653 | // assume devPath is already empty. |
654 | return true; |
655 | } |
656 | path.transform(inverse, &localPath); |
657 | // now localPath is only affected by the paint settings, and not the canvas matrix |
658 | |
659 | SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); |
660 | |
661 | if (fRec.fFrameWidth > 0) { |
662 | rec.setStrokeStyle(fRec.fFrameWidth, |
663 | SkToBool(fRec.fFlags & kFrameAndFill_Flag)); |
664 | // glyphs are always closed contours, so cap type is ignored, |
665 | // so we just pass something. |
666 | rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap, |
667 | (SkPaint::Join)fRec.fStrokeJoin, |
668 | fRec.fMiterLimit); |
669 | } |
670 | |
671 | if (fPathEffect) { |
672 | SkPath effectPath; |
673 | if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr)) { |
674 | localPath.swap(effectPath); |
675 | } |
676 | } |
677 | |
678 | if (rec.needToApply()) { |
679 | SkPath strokePath; |
680 | if (rec.applyToPath(&strokePath, localPath)) { |
681 | localPath.swap(strokePath); |
682 | } |
683 | } |
684 | |
685 | // now return stuff to the caller |
686 | if (devPath) { |
687 | localPath.transform(matrix, devPath); |
688 | } |
689 | } else { // nothing tricky to do |
690 | if (devPath) { |
691 | devPath->swap(path); |
692 | } |
693 | } |
694 | |
695 | if (devPath) { |
696 | devPath->updateBoundsCache(); |
697 | } |
698 | return true; |
699 | } |
700 | |
701 | |
702 | void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const { |
703 | dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0, |
704 | fPost2x2[1][0], fPost2x2[1][1], 0, |
705 | 0, 0, 1); |
706 | } |
707 | |
708 | void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const { |
709 | *m = SkFontPriv::MakeTextMatrix(fTextSize, fPreScaleX, fPreSkewX); |
710 | } |
711 | |
712 | void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const { |
713 | this->getLocalMatrix(m); |
714 | |
715 | // now concat the device matrix |
716 | SkMatrix deviceMatrix; |
717 | this->getMatrixFrom2x2(&deviceMatrix); |
718 | m->postConcat(deviceMatrix); |
719 | } |
720 | |
721 | bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA, |
722 | SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out) |
723 | { |
724 | // A is the 'total' matrix. |
725 | SkMatrix A; |
726 | this->getSingleMatrix(&A); |
727 | |
728 | // The caller may find the 'total' matrix useful when dealing directly with EM sizes. |
729 | if (A_out) { |
730 | *A_out = A; |
731 | } |
732 | |
733 | // GA is the matrix A with rotation removed. |
734 | SkMatrix GA; |
735 | bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0; |
736 | if (skewedOrFlipped) { |
737 | // QR by Givens rotations. G is Q^T and GA is R. G is rotational (no reflections). |
738 | // h is where A maps the horizontal baseline. |
739 | SkPoint h = SkPoint::Make(SK_Scalar1, 0); |
740 | A.mapPoints(&h, 1); |
741 | |
742 | // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0). |
743 | SkMatrix G; |
744 | SkComputeGivensRotation(h, &G); |
745 | |
746 | GA = G; |
747 | GA.preConcat(A); |
748 | |
749 | // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational. |
750 | if (G_inv) { |
751 | G_inv->setAll( |
752 | G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX), |
753 | -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY), |
754 | G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2)); |
755 | } |
756 | } else { |
757 | GA = A; |
758 | if (G_inv) { |
759 | G_inv->reset(); |
760 | } |
761 | } |
762 | |
763 | // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices. |
764 | // All underlying ports have issues with zero text size, so use the matricies to zero. |
765 | // If one of the scale factors is less than 1/256 then an EM filling square will |
766 | // never affect any pixels. |
767 | // If there are any nonfinite numbers in the matrix, bail out and set the matrices to zero. |
768 | if (SkScalarAbs(GA.get(SkMatrix::kMScaleX)) <= SK_ScalarNearlyZero || |
769 | SkScalarAbs(GA.get(SkMatrix::kMScaleY)) <= SK_ScalarNearlyZero || |
770 | !GA.isFinite()) |
771 | { |
772 | s->fX = SK_Scalar1; |
773 | s->fY = SK_Scalar1; |
774 | sA->setScale(0, 0); |
775 | if (GsA) { |
776 | GsA->setScale(0, 0); |
777 | } |
778 | if (G_inv) { |
779 | G_inv->reset(); |
780 | } |
781 | return false; |
782 | } |
783 | |
784 | // At this point, given GA, create s. |
785 | switch (preMatrixScale) { |
786 | case kFull_PreMatrixScale: |
787 | s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX)); |
788 | s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); |
789 | break; |
790 | case kVertical_PreMatrixScale: { |
791 | SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); |
792 | s->fX = yScale; |
793 | s->fY = yScale; |
794 | break; |
795 | } |
796 | case kVerticalInteger_PreMatrixScale: { |
797 | SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); |
798 | SkScalar intYScale = SkScalarRoundToScalar(realYScale); |
799 | if (intYScale == 0) { |
800 | intYScale = SK_Scalar1; |
801 | } |
802 | s->fX = intYScale; |
803 | s->fY = intYScale; |
804 | break; |
805 | } |
806 | } |
807 | |
808 | // The 'remaining' matrix sA is the total matrix A without the scale. |
809 | if (!skewedOrFlipped && ( |
810 | (kFull_PreMatrixScale == preMatrixScale) || |
811 | (kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY()))) |
812 | { |
813 | // If GA == A and kFull_PreMatrixScale, sA is identity. |
814 | // If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity. |
815 | sA->reset(); |
816 | } else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) { |
817 | // If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1. |
818 | sA->reset(); |
819 | sA->setScaleX(A.getScaleX() / s->fY); |
820 | } else { |
821 | // TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales. |
822 | *sA = A; |
823 | sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); |
824 | } |
825 | |
826 | // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale. |
827 | if (GsA) { |
828 | *GsA = GA; |
829 | // G is rotational so reorders with the scale. |
830 | GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); |
831 | } |
832 | |
833 | return true; |
834 | } |
835 | |
836 | SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() const { |
837 | return fRec.computeAxisAlignmentForHText(); |
838 | } |
839 | |
840 | SkAxisAlignment SkScalerContextRec::computeAxisAlignmentForHText() const { |
841 | // Why fPost2x2 can be used here. |
842 | // getSingleMatrix multiplies in getLocalMatrix, which consists of |
843 | // * fTextSize (a scale, which has no effect) |
844 | // * fPreScaleX (a scale in x, which has no effect) |
845 | // * fPreSkewX (has no effect, but would on vertical text alignment). |
846 | // In other words, making the text bigger, stretching it along the |
847 | // horizontal axis, or fake italicizing it does not move the baseline. |
848 | if (!SkToBool(fFlags & SkScalerContext::kBaselineSnap_Flag)) { |
849 | return kNone_SkAxisAlignment; |
850 | } |
851 | |
852 | if (0 == fPost2x2[1][0]) { |
853 | // The x axis is mapped onto the x axis. |
854 | return kX_SkAxisAlignment; |
855 | } |
856 | if (0 == fPost2x2[0][0]) { |
857 | // The x axis is mapped onto the y axis. |
858 | return kY_SkAxisAlignment; |
859 | } |
860 | return kNone_SkAxisAlignment; |
861 | } |
862 | |
863 | void SkScalerContextRec::setLuminanceColor(SkColor c) { |
864 | fLumBits = SkMaskGamma::CanonicalColor( |
865 | SkColorSetRGB(SkColorGetR(c), SkColorGetG(c), SkColorGetB(c))); |
866 | } |
867 | |
868 | extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc); |
869 | |
870 | std::unique_ptr<SkScalerContext> SkTypeface::createScalerContext( |
871 | const SkScalerContextEffects& effects, const SkDescriptor* desc) const { |
872 | auto answer = std::unique_ptr<SkScalerContext>{this->onCreateScalerContext(effects, desc)}; |
873 | SkASSERT(answer != nullptr); |
874 | return answer; |
875 | } |
876 | |
877 | /* |
878 | * Return the scalar with only limited fractional precision. Used to consolidate matrices |
879 | * that vary only slightly when we create our key into the font cache, since the font scaler |
880 | * typically returns the same looking resuts for tiny changes in the matrix. |
881 | */ |
882 | static SkScalar sk_relax(SkScalar x) { |
883 | SkScalar n = SkScalarRoundToScalar(x * 1024); |
884 | return n / 1024.0f; |
885 | } |
886 | |
887 | static SkMask::Format compute_mask_format(const SkFont& font) { |
888 | switch (font.getEdging()) { |
889 | case SkFont::Edging::kAlias: |
890 | return SkMask::kBW_Format; |
891 | case SkFont::Edging::kAntiAlias: |
892 | return SkMask::kA8_Format; |
893 | case SkFont::Edging::kSubpixelAntiAlias: |
894 | return SkMask::kLCD16_Format; |
895 | } |
896 | SkASSERT(false); |
897 | return SkMask::kA8_Format; |
898 | } |
899 | |
900 | // Beyond this size, LCD doesn't appreciably improve quality, but it always |
901 | // cost more RAM and draws slower, so we set a cap. |
902 | #ifndef SK_MAX_SIZE_FOR_LCDTEXT |
903 | #define SK_MAX_SIZE_FOR_LCDTEXT 48 |
904 | #endif |
905 | |
906 | const SkScalar gMaxSize2ForLCDText = SK_MAX_SIZE_FOR_LCDTEXT * SK_MAX_SIZE_FOR_LCDTEXT; |
907 | |
908 | static bool too_big_for_lcd(const SkScalerContextRec& rec, bool checkPost2x2) { |
909 | if (checkPost2x2) { |
910 | SkScalar area = rec.fPost2x2[0][0] * rec.fPost2x2[1][1] - |
911 | rec.fPost2x2[1][0] * rec.fPost2x2[0][1]; |
912 | area *= rec.fTextSize * rec.fTextSize; |
913 | return area > gMaxSize2ForLCDText; |
914 | } else { |
915 | return rec.fTextSize > SK_MAX_SIZE_FOR_LCDTEXT; |
916 | } |
917 | } |
918 | |
919 | // The only reason this is not file static is because it needs the context of SkScalerContext to |
920 | // access SkPaint::computeLuminanceColor. |
921 | void SkScalerContext::MakeRecAndEffects(const SkFont& font, const SkPaint& paint, |
922 | const SkSurfaceProps& surfaceProps, |
923 | SkScalerContextFlags scalerContextFlags, |
924 | const SkMatrix& deviceMatrix, |
925 | SkScalerContextRec* rec, |
926 | SkScalerContextEffects* effects) { |
927 | SkASSERT(!deviceMatrix.hasPerspective()); |
928 | |
929 | sk_bzero(rec, sizeof(SkScalerContextRec)); |
930 | |
931 | SkTypeface* typeface = font.getTypefaceOrDefault(); |
932 | |
933 | rec->fFontID = typeface->uniqueID(); |
934 | rec->fTextSize = font.getSize(); |
935 | rec->fPreScaleX = font.getScaleX(); |
936 | rec->fPreSkewX = font.getSkewX(); |
937 | |
938 | bool checkPost2x2 = false; |
939 | |
940 | const SkMatrix::TypeMask mask = deviceMatrix.getType(); |
941 | if (mask & SkMatrix::kScale_Mask) { |
942 | rec->fPost2x2[0][0] = sk_relax(deviceMatrix.getScaleX()); |
943 | rec->fPost2x2[1][1] = sk_relax(deviceMatrix.getScaleY()); |
944 | checkPost2x2 = true; |
945 | } else { |
946 | rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1; |
947 | } |
948 | if (mask & SkMatrix::kAffine_Mask) { |
949 | rec->fPost2x2[0][1] = sk_relax(deviceMatrix.getSkewX()); |
950 | rec->fPost2x2[1][0] = sk_relax(deviceMatrix.getSkewY()); |
951 | checkPost2x2 = true; |
952 | } else { |
953 | rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0; |
954 | } |
955 | |
956 | SkPaint::Style style = paint.getStyle(); |
957 | SkScalar strokeWidth = paint.getStrokeWidth(); |
958 | |
959 | unsigned flags = 0; |
960 | |
961 | if (font.isEmbolden()) { |
962 | #ifdef SK_USE_FREETYPE_EMBOLDEN |
963 | flags |= SkScalerContext::kEmbolden_Flag; |
964 | #else |
965 | SkScalar fakeBoldScale = SkScalarInterpFunc(font.getSize(), |
966 | kStdFakeBoldInterpKeys, |
967 | kStdFakeBoldInterpValues, |
968 | kStdFakeBoldInterpLength); |
969 | SkScalar = font.getSize() * fakeBoldScale; |
970 | |
971 | if (style == SkPaint::kFill_Style) { |
972 | style = SkPaint::kStrokeAndFill_Style; |
973 | strokeWidth = extra; // ignore paint's strokeWidth if it was "fill" |
974 | } else { |
975 | strokeWidth += extra; |
976 | } |
977 | #endif |
978 | } |
979 | |
980 | if (style != SkPaint::kFill_Style && strokeWidth > 0) { |
981 | rec->fFrameWidth = strokeWidth; |
982 | rec->fMiterLimit = paint.getStrokeMiter(); |
983 | rec->fStrokeJoin = SkToU8(paint.getStrokeJoin()); |
984 | rec->fStrokeCap = SkToU8(paint.getStrokeCap()); |
985 | |
986 | if (style == SkPaint::kStrokeAndFill_Style) { |
987 | flags |= SkScalerContext::kFrameAndFill_Flag; |
988 | } |
989 | } else { |
990 | rec->fFrameWidth = 0; |
991 | rec->fMiterLimit = 0; |
992 | rec->fStrokeJoin = 0; |
993 | rec->fStrokeCap = 0; |
994 | } |
995 | |
996 | rec->fMaskFormat = SkToU8(compute_mask_format(font)); |
997 | |
998 | if (SkMask::kLCD16_Format == rec->fMaskFormat) { |
999 | if (too_big_for_lcd(*rec, checkPost2x2)) { |
1000 | rec->fMaskFormat = SkMask::kA8_Format; |
1001 | flags |= SkScalerContext::kGenA8FromLCD_Flag; |
1002 | } else { |
1003 | SkPixelGeometry geometry = surfaceProps.pixelGeometry(); |
1004 | |
1005 | switch (geometry) { |
1006 | case kUnknown_SkPixelGeometry: |
1007 | // eeek, can't support LCD |
1008 | rec->fMaskFormat = SkMask::kA8_Format; |
1009 | flags |= SkScalerContext::kGenA8FromLCD_Flag; |
1010 | break; |
1011 | case kRGB_H_SkPixelGeometry: |
1012 | // our default, do nothing. |
1013 | break; |
1014 | case kBGR_H_SkPixelGeometry: |
1015 | flags |= SkScalerContext::kLCD_BGROrder_Flag; |
1016 | break; |
1017 | case kRGB_V_SkPixelGeometry: |
1018 | flags |= SkScalerContext::kLCD_Vertical_Flag; |
1019 | break; |
1020 | case kBGR_V_SkPixelGeometry: |
1021 | flags |= SkScalerContext::kLCD_Vertical_Flag; |
1022 | flags |= SkScalerContext::kLCD_BGROrder_Flag; |
1023 | break; |
1024 | } |
1025 | } |
1026 | } |
1027 | |
1028 | if (font.isEmbeddedBitmaps()) { |
1029 | flags |= SkScalerContext::kEmbeddedBitmapText_Flag; |
1030 | } |
1031 | if (font.isSubpixel()) { |
1032 | flags |= SkScalerContext::kSubpixelPositioning_Flag; |
1033 | } |
1034 | if (font.isForceAutoHinting()) { |
1035 | flags |= SkScalerContext::kForceAutohinting_Flag; |
1036 | } |
1037 | if (font.isLinearMetrics()) { |
1038 | flags |= SkScalerContext::kLinearMetrics_Flag; |
1039 | } |
1040 | if (font.isBaselineSnap()) { |
1041 | flags |= SkScalerContext::kBaselineSnap_Flag; |
1042 | } |
1043 | rec->fFlags = SkToU16(flags); |
1044 | |
1045 | // these modify fFlags, so do them after assigning fFlags |
1046 | rec->setHinting(font.getHinting()); |
1047 | rec->setLuminanceColor(SkPaintPriv::ComputeLuminanceColor(paint)); |
1048 | |
1049 | // For now always set the paint gamma equal to the device gamma. |
1050 | // The math in SkMaskGamma can handle them being different, |
1051 | // but it requires superluminous masks when |
1052 | // Ex : deviceGamma(x) < paintGamma(x) and x is sufficiently large. |
1053 | rec->setDeviceGamma(SK_GAMMA_EXPONENT); |
1054 | rec->setPaintGamma(SK_GAMMA_EXPONENT); |
1055 | |
1056 | #ifdef SK_GAMMA_CONTRAST |
1057 | rec->setContrast(SK_GAMMA_CONTRAST); |
1058 | #else |
1059 | // A value of 0.5 for SK_GAMMA_CONTRAST appears to be a good compromise. |
1060 | // With lower values small text appears washed out (though correctly so). |
1061 | // With higher values lcd fringing is worse and the smoothing effect of |
1062 | // partial coverage is diminished. |
1063 | rec->setContrast(0.5f); |
1064 | #endif |
1065 | |
1066 | if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kFakeGamma)) { |
1067 | rec->ignoreGamma(); |
1068 | } |
1069 | if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kBoostContrast)) { |
1070 | rec->setContrast(0); |
1071 | } |
1072 | |
1073 | new (effects) SkScalerContextEffects{paint}; |
1074 | } |
1075 | |
1076 | SkDescriptor* SkScalerContext::MakeDescriptorForPaths(SkFontID typefaceID, |
1077 | SkAutoDescriptor* ad) { |
1078 | SkScalerContextRec rec; |
1079 | memset((void*)&rec, 0, sizeof(rec)); |
1080 | rec.fFontID = typefaceID; |
1081 | rec.fTextSize = SkFontPriv::kCanonicalTextSizeForPaths; |
1082 | rec.fPreScaleX = rec.fPost2x2[0][0] = rec.fPost2x2[1][1] = SK_Scalar1; |
1083 | return AutoDescriptorGivenRecAndEffects(rec, SkScalerContextEffects(), ad); |
1084 | } |
1085 | |
1086 | SkDescriptor* SkScalerContext::CreateDescriptorAndEffectsUsingPaint( |
1087 | const SkFont& font, const SkPaint& paint, const SkSurfaceProps& surfaceProps, |
1088 | SkScalerContextFlags scalerContextFlags, const SkMatrix& deviceMatrix, SkAutoDescriptor* ad, |
1089 | SkScalerContextEffects* effects) |
1090 | { |
1091 | SkScalerContextRec rec; |
1092 | MakeRecAndEffects(font, paint, surfaceProps, scalerContextFlags, deviceMatrix, &rec, effects); |
1093 | return AutoDescriptorGivenRecAndEffects(rec, *effects, ad); |
1094 | } |
1095 | |
1096 | static size_t calculate_size_and_flatten(const SkScalerContextRec& rec, |
1097 | const SkScalerContextEffects& effects, |
1098 | SkBinaryWriteBuffer* effectBuffer) { |
1099 | size_t descSize = sizeof(rec); |
1100 | int entryCount = 1; |
1101 | |
1102 | if (effects.fPathEffect || effects.fMaskFilter) { |
1103 | if (effects.fPathEffect) { effectBuffer->writeFlattenable(effects.fPathEffect); } |
1104 | if (effects.fMaskFilter) { effectBuffer->writeFlattenable(effects.fMaskFilter); } |
1105 | entryCount += 1; |
1106 | descSize += effectBuffer->bytesWritten(); |
1107 | } |
1108 | |
1109 | descSize += SkDescriptor::ComputeOverhead(entryCount); |
1110 | return descSize; |
1111 | } |
1112 | |
1113 | static void generate_descriptor(const SkScalerContextRec& rec, |
1114 | const SkBinaryWriteBuffer& effectBuffer, |
1115 | SkDescriptor* desc) { |
1116 | desc->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); |
1117 | |
1118 | if (effectBuffer.bytesWritten() > 0) { |
1119 | effectBuffer.writeToMemory(desc->addEntry(kEffects_SkDescriptorTag, |
1120 | effectBuffer.bytesWritten(), |
1121 | nullptr)); |
1122 | } |
1123 | |
1124 | desc->computeChecksum(); |
1125 | } |
1126 | |
1127 | SkDescriptor* SkScalerContext::AutoDescriptorGivenRecAndEffects( |
1128 | const SkScalerContextRec& rec, |
1129 | const SkScalerContextEffects& effects, |
1130 | SkAutoDescriptor* ad) |
1131 | { |
1132 | SkBinaryWriteBuffer buf; |
1133 | |
1134 | ad->reset(calculate_size_and_flatten(rec, effects, &buf)); |
1135 | generate_descriptor(rec, buf, ad->getDesc()); |
1136 | |
1137 | return ad->getDesc(); |
1138 | } |
1139 | |
1140 | std::unique_ptr<SkDescriptor> SkScalerContext::DescriptorGivenRecAndEffects( |
1141 | const SkScalerContextRec& rec, |
1142 | const SkScalerContextEffects& effects) |
1143 | { |
1144 | SkBinaryWriteBuffer buf; |
1145 | |
1146 | auto desc = SkDescriptor::Alloc(calculate_size_and_flatten(rec, effects, &buf)); |
1147 | generate_descriptor(rec, buf, desc.get()); |
1148 | |
1149 | return desc; |
1150 | } |
1151 | |
1152 | void SkScalerContext::DescriptorBufferGiveRec(const SkScalerContextRec& rec, void* buffer) { |
1153 | generate_descriptor(rec, SkBinaryWriteBuffer{}, (SkDescriptor*)buffer); |
1154 | } |
1155 | |
1156 | bool SkScalerContext::CheckBufferSizeForRec(const SkScalerContextRec& rec, |
1157 | const SkScalerContextEffects& effects, |
1158 | size_t size) { |
1159 | SkBinaryWriteBuffer buf; |
1160 | return size >= calculate_size_and_flatten(rec, effects, &buf); |
1161 | } |
1162 | |
1163 | SkScalerContext* SkScalerContext::MakeEmptyContext( |
1164 | sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, |
1165 | const SkDescriptor* desc) { |
1166 | class SkScalerContext_Empty : public SkScalerContext { |
1167 | public: |
1168 | SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, |
1169 | const SkDescriptor* desc) |
1170 | : SkScalerContext(std::move(typeface), effects, desc) {} |
1171 | |
1172 | protected: |
1173 | unsigned generateGlyphCount() override { |
1174 | return 0; |
1175 | } |
1176 | bool generateAdvance(SkGlyph* glyph) override { |
1177 | glyph->zeroMetrics(); |
1178 | return true; |
1179 | } |
1180 | void generateMetrics(SkGlyph* glyph) override { |
1181 | glyph->fMaskFormat = fRec.fMaskFormat; |
1182 | glyph->zeroMetrics(); |
1183 | } |
1184 | void generateImage(const SkGlyph& glyph) override {} |
1185 | bool generatePath(SkGlyphID glyph, SkPath* path) override { |
1186 | path->reset(); |
1187 | return false; |
1188 | } |
1189 | void generateFontMetrics(SkFontMetrics* metrics) override { |
1190 | if (metrics) { |
1191 | sk_bzero(metrics, sizeof(*metrics)); |
1192 | } |
1193 | } |
1194 | }; |
1195 | |
1196 | return new SkScalerContext_Empty{std::move(typeface), effects, desc}; |
1197 | } |
1198 | |
1199 | |
1200 | |
1201 | |
1202 | |