| 1 | /* |
| 2 | * Copyright 2019 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/private/SkImageInfoPriv.h" |
| 9 | #include "include/private/SkMacros.h" |
| 10 | #include "src/core/SkArenaAlloc.h" |
| 11 | #include "src/core/SkBlendModePriv.h" |
| 12 | #include "src/core/SkColorFilterBase.h" |
| 13 | #include "src/core/SkColorSpacePriv.h" |
| 14 | #include "src/core/SkColorSpaceXformSteps.h" |
| 15 | #include "src/core/SkCoreBlitters.h" |
| 16 | #include "src/core/SkLRUCache.h" |
| 17 | #include "src/core/SkMatrixProvider.h" |
| 18 | #include "src/core/SkOpts.h" |
| 19 | #include "src/core/SkPaintPriv.h" |
| 20 | #include "src/core/SkVM.h" |
| 21 | #include "src/shaders/SkColorFilterShader.h" |
| 22 | |
| 23 | #include <cinttypes> |
| 24 | |
| 25 | namespace { |
| 26 | |
| 27 | // Uniforms set by the Blitter itself, |
| 28 | // rather than by the Shader, which follow this struct in the skvm::Uniforms buffer. |
| 29 | struct BlitterUniforms { |
| 30 | int right; // First device x + blit run length n, used to get device x coordinate. |
| 31 | int y; // Device y coordinate. |
| 32 | SkColor4f paint; // In device color space. |
| 33 | }; |
| 34 | static_assert(SkIsAlign4(sizeof(BlitterUniforms)), "" ); |
| 35 | static constexpr int kBlitterUniformsCount = sizeof(BlitterUniforms) / 4; |
| 36 | |
| 37 | enum class Coverage { Full, UniformA8, MaskA8, MaskLCD16, Mask3D }; |
| 38 | |
| 39 | struct Params { |
| 40 | sk_sp<SkShader> shader; |
| 41 | sk_sp<SkShader> clip; |
| 42 | SkColorInfo dst; |
| 43 | SkBlendMode blendMode; |
| 44 | Coverage coverage; |
| 45 | SkFilterQuality quality; |
| 46 | const SkMatrixProvider& matrices; |
| 47 | |
| 48 | Params withCoverage(Coverage c) const { |
| 49 | Params p = *this; |
| 50 | p.coverage = c; |
| 51 | return p; |
| 52 | } |
| 53 | }; |
| 54 | |
| 55 | SK_BEGIN_REQUIRE_DENSE; |
| 56 | struct Key { |
| 57 | uint64_t shader, |
| 58 | clip, |
| 59 | colorSpace; |
| 60 | uint8_t colorType, |
| 61 | alphaType, |
| 62 | blendMode, |
| 63 | coverage; |
| 64 | uint32_t padding{0}; |
| 65 | // Params::quality and Params::matrices are only passed to {shader,clip}->program(), |
| 66 | // not used here by the blitter itself. No need to include them in the key; |
| 67 | // they'll be folded into the shader key if used. |
| 68 | |
| 69 | bool operator==(const Key& that) const { |
| 70 | return this->shader == that.shader |
| 71 | && this->clip == that.clip |
| 72 | && this->colorSpace == that.colorSpace |
| 73 | && this->colorType == that.colorType |
| 74 | && this->alphaType == that.alphaType |
| 75 | && this->blendMode == that.blendMode |
| 76 | && this->coverage == that.coverage; |
| 77 | } |
| 78 | |
| 79 | Key withCoverage(Coverage c) const { |
| 80 | Key k = *this; |
| 81 | k.coverage = SkToU8(c); |
| 82 | return k; |
| 83 | } |
| 84 | }; |
| 85 | SK_END_REQUIRE_DENSE; |
| 86 | |
| 87 | static SkString debug_name(const Key& key) { |
| 88 | return SkStringPrintf( |
| 89 | "Shader-%" PRIx64 "_Clip-%" PRIx64 "_CS-%" PRIx64 "_CT-%d_AT-%d_Blend-%d_Cov-%d" , |
| 90 | key.shader, |
| 91 | key.clip, |
| 92 | key.colorSpace, |
| 93 | key.colorType, |
| 94 | key.alphaType, |
| 95 | key.blendMode, |
| 96 | key.coverage); |
| 97 | } |
| 98 | |
| 99 | static SkLRUCache<Key, skvm::Program>* try_acquire_program_cache() { |
| 100 | #if 1 && defined(SKVM_JIT) |
| 101 | thread_local static SkLRUCache<Key, skvm::Program> cache{64}; |
| 102 | return &cache; |
| 103 | #else |
| 104 | // iOS in particular does not support thread_local until iOS 9.0. |
| 105 | // On the other hand, we'll never be able to JIT there anyway. |
| 106 | // It's probably fine to not cache any interpreted programs, anywhere. |
| 107 | return nullptr; |
| 108 | #endif |
| 109 | } |
| 110 | |
| 111 | static void release_program_cache() { } |
| 112 | |
| 113 | // If build_program() can't build this program, cache_key() sets *ok to false. |
| 114 | static Key cache_key(const Params& params, |
| 115 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc, bool* ok) { |
| 116 | auto hash_shader = [&](const sk_sp<SkShader>& shader) { |
| 117 | const SkShaderBase* sb = as_SB(shader); |
| 118 | skvm::Builder p; |
| 119 | |
| 120 | skvm::I32 dx = p.uniform32(uniforms->base, offsetof(BlitterUniforms, right)) |
| 121 | - p.index(), |
| 122 | dy = p.uniform32(uniforms->base, offsetof(BlitterUniforms, y)); |
| 123 | skvm::Coord device = {to_f32(dx) + 0.5f, |
| 124 | to_f32(dy) + 0.5f}, |
| 125 | local = device; |
| 126 | |
| 127 | skvm::Color paint = { |
| 128 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fR)), |
| 129 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fG)), |
| 130 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fB)), |
| 131 | p.uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fA)), |
| 132 | }; |
| 133 | |
| 134 | uint64_t hash = 0; |
| 135 | if (auto c = sb->program(&p, |
| 136 | device,local, paint, |
| 137 | params.matrices, /*localM=*/nullptr, |
| 138 | params.quality, params.dst, |
| 139 | uniforms,alloc)) { |
| 140 | hash = p.hash(); |
| 141 | // p.hash() folds in all instructions to produce r,g,b,a but does not know |
| 142 | // precisely which value we'll treat as which channel. Imagine the shader |
| 143 | // called std::swap(*r,*b)... it draws differently, but p.hash() is unchanged. |
| 144 | // We'll fold the hash of their IDs in order to disambiguate. |
| 145 | const skvm::Val outputs[] = { c.r.id, c.g.id, c.b.id, c.a.id }; |
| 146 | hash ^= SkOpts::hash(outputs, sizeof(outputs)); |
| 147 | } else { |
| 148 | *ok = false; |
| 149 | } |
| 150 | return hash; |
| 151 | }; |
| 152 | |
| 153 | SkASSERT(params.shader); |
| 154 | uint64_t shaderHash = hash_shader(params.shader); |
| 155 | |
| 156 | uint64_t clipHash = 0; |
| 157 | if (params.clip) { |
| 158 | clipHash = hash_shader(params.clip); |
| 159 | if (clipHash == 0) { |
| 160 | clipHash = 1; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | skvm::PixelFormat unused; |
| 165 | if (!SkColorType_to_PixelFormat(params.dst.colorType(), &unused)) { |
| 166 | // All existing SkColorTypes pass this check. We'd only get here adding new ones. |
| 167 | *ok = false; |
| 168 | } |
| 169 | |
| 170 | return { |
| 171 | shaderHash, |
| 172 | clipHash, |
| 173 | params.dst.colorSpace() ? params.dst.colorSpace()->hash() : 0, |
| 174 | SkToU8(params.dst.colorType()), |
| 175 | SkToU8(params.dst.alphaType()), |
| 176 | SkToU8(params.blendMode), |
| 177 | SkToU8(params.coverage), |
| 178 | }; |
| 179 | } |
| 180 | |
| 181 | static void build_program(skvm::Builder* p, const Params& params, |
| 182 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc) { |
| 183 | // First two arguments are always uniforms and the destination buffer. |
| 184 | uniforms->base = p->uniform(); |
| 185 | skvm::Arg dst_ptr = p->arg(SkColorTypeBytesPerPixel(params.dst.colorType())); |
| 186 | // A SpriteShader (in this file) may next use one argument as its varying source. |
| 187 | // Subsequent arguments depend on params.coverage: |
| 188 | // - Full: (no more arguments) |
| 189 | // - Mask3D: mul varying, add varying, 8-bit coverage varying |
| 190 | // - MaskA8: 8-bit coverage varying |
| 191 | // - MaskLCD16: 565 coverage varying |
| 192 | // - UniformA8: 8-bit coverage uniform |
| 193 | |
| 194 | skvm::I32 dx = p->uniform32(uniforms->base, offsetof(BlitterUniforms, right)) |
| 195 | - p->index(), |
| 196 | dy = p->uniform32(uniforms->base, offsetof(BlitterUniforms, y)); |
| 197 | skvm::Coord device = {to_f32(dx) + 0.5f, |
| 198 | to_f32(dy) + 0.5f}, |
| 199 | local = device; |
| 200 | |
| 201 | skvm::Color paint = { |
| 202 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fR)), |
| 203 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fG)), |
| 204 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fB)), |
| 205 | p->uniformF(uniforms->base, offsetof(BlitterUniforms, paint.fA)), |
| 206 | }; |
| 207 | |
| 208 | // See note about arguments above... a SpriteShader will call p->arg() once here. |
| 209 | skvm::Color src = as_SB(params.shader)->program(p, device,local, paint, |
| 210 | params.matrices, /*localM=*/nullptr, |
| 211 | params.quality, params.dst, |
| 212 | uniforms, alloc); |
| 213 | SkASSERT(src); |
| 214 | if (params.coverage == Coverage::Mask3D) { |
| 215 | skvm::F32 M = from_unorm(8, p->load8(p->varying<uint8_t>())), |
| 216 | A = from_unorm(8, p->load8(p->varying<uint8_t>())); |
| 217 | |
| 218 | src.r = min(src.r * M + A, src.a); |
| 219 | src.g = min(src.g * M + A, src.a); |
| 220 | src.b = min(src.b * M + A, src.a); |
| 221 | } |
| 222 | |
| 223 | // If we can determine this we can skip a fair bit of clamping! |
| 224 | bool src_in_gamut = false; |
| 225 | |
| 226 | // Normalized premul formats can surprisingly represent some out-of-gamut |
| 227 | // values (e.g. r=0xff, a=0xee fits in unorm8 but r = 1.07), but most code |
| 228 | // working with normalized premul colors is not prepared to handle r,g,b > a. |
| 229 | // So we clamp the shader to gamut here before blending and coverage. |
| 230 | // |
| 231 | // In addition, GL clamps all its color channels to limits of the format just |
| 232 | // before the blend step (~here). To match that auto-clamp, we clamp alpha to |
| 233 | // [0,1] too, just in case someone gave us a crazy alpha. |
| 234 | if (!src_in_gamut |
| 235 | && params.dst.alphaType() == kPremul_SkAlphaType |
| 236 | && SkColorTypeIsNormalized(params.dst.colorType())) { |
| 237 | src.a = clamp(src.a, 0.0f, 1.0f); |
| 238 | src.r = clamp(src.r, 0.0f, src.a); |
| 239 | src.g = clamp(src.g, 0.0f, src.a); |
| 240 | src.b = clamp(src.b, 0.0f, src.a); |
| 241 | src_in_gamut = true; |
| 242 | } |
| 243 | |
| 244 | // Load the destination color. |
| 245 | skvm::PixelFormat dstFormat; |
| 246 | SkAssertResult(SkColorType_to_PixelFormat(params.dst.colorType(), &dstFormat)); |
| 247 | skvm::Color dst = p->load(dstFormat, dst_ptr); |
| 248 | if (params.dst.isOpaque()) { |
| 249 | // When a destination is known opaque, we may assume it both starts and stays fully |
| 250 | // opaque, ignoring any math that disagrees. This sometimes trims a little work. |
| 251 | dst.a = p->splat(1.0f); |
| 252 | } else if (params.dst.alphaType() == kUnpremul_SkAlphaType) { |
| 253 | // All our blending works in terms of premul. |
| 254 | dst = premul(dst); |
| 255 | } |
| 256 | |
| 257 | // Load coverage. |
| 258 | skvm::Color cov; |
| 259 | switch (params.coverage) { |
| 260 | case Coverage::Full: |
| 261 | cov.r = cov.g = cov.b = cov.a = p->splat(1.0f); |
| 262 | break; |
| 263 | |
| 264 | case Coverage::UniformA8: |
| 265 | cov.r = cov.g = cov.b = cov.a = from_unorm(8, p->uniform8(p->uniform(), 0)); |
| 266 | break; |
| 267 | |
| 268 | case Coverage::Mask3D: |
| 269 | case Coverage::MaskA8: |
| 270 | cov.r = cov.g = cov.b = cov.a = from_unorm(8, p->load8(p->varying<uint8_t>())); |
| 271 | break; |
| 272 | |
| 273 | case Coverage::MaskLCD16: { |
| 274 | skvm::PixelFormat fmt; |
| 275 | SkAssertResult(SkColorType_to_PixelFormat(kRGB_565_SkColorType, &fmt)); |
| 276 | cov = p->load(fmt, p->varying<uint16_t>()); |
| 277 | cov.a = select(src.a < dst.a, min(cov.r, min(cov.g, cov.b)) |
| 278 | , max(cov.r, max(cov.g, cov.b))); |
| 279 | } break; |
| 280 | } |
| 281 | if (params.clip) { |
| 282 | skvm::Color clip = as_SB(params.clip)->program(p, device,local, paint, |
| 283 | params.matrices, /*localM=*/nullptr, |
| 284 | params.quality, params.dst, |
| 285 | uniforms, alloc); |
| 286 | SkAssertResult(clip); |
| 287 | cov.r *= clip.a; // We use the alpha channel of clip for all four. |
| 288 | cov.g *= clip.a; |
| 289 | cov.b *= clip.a; |
| 290 | cov.a *= clip.a; |
| 291 | } |
| 292 | |
| 293 | // The math for some blend modes lets us fold coverage into src before the blend, |
| 294 | // which is simpler than the canonical post-blend lerp(). |
| 295 | if (SkBlendMode_ShouldPreScaleCoverage(params.blendMode, |
| 296 | params.coverage == Coverage::MaskLCD16)) { |
| 297 | src.r *= cov.r; |
| 298 | src.g *= cov.g; |
| 299 | src.b *= cov.b; |
| 300 | src.a *= cov.a; |
| 301 | |
| 302 | src = blend(params.blendMode, src, dst); |
| 303 | } else { |
| 304 | src = blend(params.blendMode, src, dst); |
| 305 | |
| 306 | src.r = lerp(dst.r, src.r, cov.r); |
| 307 | src.g = lerp(dst.g, src.g, cov.g); |
| 308 | src.b = lerp(dst.b, src.b, cov.b); |
| 309 | src.a = lerp(dst.a, src.a, cov.a); |
| 310 | } |
| 311 | |
| 312 | if (params.dst.isOpaque()) { |
| 313 | // (See the note above when loading the destination color.) |
| 314 | src.a = p->splat(1.0f); |
| 315 | } else if (params.dst.alphaType() == kUnpremul_SkAlphaType) { |
| 316 | src = unpremul(src); |
| 317 | } |
| 318 | |
| 319 | // Clamp to fit destination color format if needed. |
| 320 | if (src_in_gamut) { |
| 321 | // An in-gamut src blended with an in-gamut dst should stay in gamut. |
| 322 | // Being in-gamut implies all channels are in [0,1], so no need to clamp. |
| 323 | // We allow one ulp error above 1.0f, and about that much (~1.2e-7) below 0. |
| 324 | skvm::F32 lo = bit_cast(p->splat(0xb400'0000)), |
| 325 | hi = bit_cast(p->splat(0x3f80'0001)); |
| 326 | assert_true(src.r == clamp(src.r, lo, hi), src.r); |
| 327 | assert_true(src.g == clamp(src.g, lo, hi), src.g); |
| 328 | assert_true(src.b == clamp(src.b, lo, hi), src.b); |
| 329 | assert_true(src.a == clamp(src.a, lo, hi), src.a); |
| 330 | } else if (SkColorTypeIsNormalized(params.dst.colorType())) { |
| 331 | src.r = clamp01(src.r); |
| 332 | src.g = clamp01(src.g); |
| 333 | src.b = clamp01(src.b); |
| 334 | src.a = clamp01(src.a); |
| 335 | } |
| 336 | |
| 337 | // Write it out! |
| 338 | SkAssertResult(store(dstFormat, dst_ptr, src)); |
| 339 | } |
| 340 | |
| 341 | |
| 342 | struct NoopColorFilter : public SkColorFilterBase { |
| 343 | skvm::Color onProgram(skvm::Builder*, skvm::Color c, |
| 344 | SkColorSpace*, skvm::Uniforms*, SkArenaAlloc*) const override { |
| 345 | return c; |
| 346 | } |
| 347 | |
| 348 | bool onAppendStages(const SkStageRec&, bool) const override { return true; } |
| 349 | |
| 350 | // Only created here, should never be flattened / unflattened. |
| 351 | Factory getFactory() const override { return nullptr; } |
| 352 | const char* getTypeName() const override { return "NoopColorFilter" ; } |
| 353 | }; |
| 354 | |
| 355 | struct SpriteShader : public SkShaderBase { |
| 356 | explicit SpriteShader(SkPixmap sprite) : fSprite(sprite) {} |
| 357 | |
| 358 | SkPixmap fSprite; |
| 359 | |
| 360 | // Only created here temporarily... never serialized. |
| 361 | Factory getFactory() const override { return nullptr; } |
| 362 | const char* getTypeName() const override { return "SpriteShader" ; } |
| 363 | |
| 364 | bool isOpaque() const override { return fSprite.isOpaque(); } |
| 365 | |
| 366 | skvm::Color onProgram(skvm::Builder* p, |
| 367 | skvm::Coord /*device*/, skvm::Coord /*local*/, skvm::Color /*paint*/, |
| 368 | const SkMatrixProvider&, const SkMatrix* /*localM*/, |
| 369 | SkFilterQuality, const SkColorInfo& dst, |
| 370 | skvm::Uniforms* uniforms, SkArenaAlloc*) const override { |
| 371 | const SkColorType ct = fSprite.colorType(); |
| 372 | |
| 373 | skvm::PixelFormat fmt; |
| 374 | SkAssertResult(SkColorType_to_PixelFormat(ct, &fmt)); |
| 375 | |
| 376 | skvm::Color c = p->load(fmt, p->arg(SkColorTypeBytesPerPixel(ct))); |
| 377 | |
| 378 | return SkColorSpaceXformSteps{fSprite, dst}.program(p, uniforms, c); |
| 379 | } |
| 380 | }; |
| 381 | |
| 382 | struct DitherShader : public SkShaderBase { |
| 383 | explicit DitherShader(sk_sp<SkShader> shader) : fShader(std::move(shader)) {} |
| 384 | |
| 385 | sk_sp<SkShader> fShader; |
| 386 | |
| 387 | // Only created here temporarily... never serialized. |
| 388 | Factory getFactory() const override { return nullptr; } |
| 389 | const char* getTypeName() const override { return "DitherShader" ; } |
| 390 | |
| 391 | bool isOpaque() const override { return fShader->isOpaque(); } |
| 392 | |
| 393 | skvm::Color onProgram(skvm::Builder* p, |
| 394 | skvm::Coord device, skvm::Coord local, skvm::Color paint, |
| 395 | const SkMatrixProvider& matrices, const SkMatrix* localM, |
| 396 | SkFilterQuality quality, const SkColorInfo& dst, |
| 397 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const override { |
| 398 | // Run our wrapped shader. |
| 399 | skvm::Color c = as_SB(fShader)->program(p, device,local, paint, |
| 400 | matrices,localM, quality,dst, uniforms,alloc); |
| 401 | if (!c) { |
| 402 | return {}; |
| 403 | } |
| 404 | |
| 405 | float rate = 0.0f; |
| 406 | switch (dst.colorType()) { |
| 407 | case kARGB_4444_SkColorType: rate = 1/15.0f; break; |
| 408 | case kRGB_565_SkColorType: rate = 1/63.0f; break; |
| 409 | case kGray_8_SkColorType: |
| 410 | case kRGB_888x_SkColorType: |
| 411 | case kRGBA_8888_SkColorType: |
| 412 | case kBGRA_8888_SkColorType: rate = 1/255.0f; break; |
| 413 | case kRGB_101010x_SkColorType: |
| 414 | case kRGBA_1010102_SkColorType: |
| 415 | case kBGR_101010x_SkColorType: |
| 416 | case kBGRA_1010102_SkColorType: rate = 1/1023.0f; break; |
| 417 | |
| 418 | case kUnknown_SkColorType: |
| 419 | case kAlpha_8_SkColorType: |
| 420 | case kRGBA_F16_SkColorType: |
| 421 | case kRGBA_F16Norm_SkColorType: |
| 422 | case kRGBA_F32_SkColorType: |
| 423 | case kR8G8_unorm_SkColorType: |
| 424 | case kA16_float_SkColorType: |
| 425 | case kA16_unorm_SkColorType: |
| 426 | case kR16G16_float_SkColorType: |
| 427 | case kR16G16_unorm_SkColorType: |
| 428 | case kR16G16B16A16_unorm_SkColorType: return c; |
| 429 | } |
| 430 | |
| 431 | // See SkRasterPipeline dither stage. |
| 432 | // This is 8x8 ordered dithering. From here we'll only need dx and dx^dy. |
| 433 | SkASSERT(local.x.id == device.x.id); |
| 434 | SkASSERT(local.y.id == device.y.id); |
| 435 | skvm::I32 X = trunc(device.x - 0.5f), |
| 436 | Y = X ^ trunc(device.y - 0.5f); |
| 437 | |
| 438 | // If X's low bits are abc and Y's def, M is fcebda, |
| 439 | // 6 bits producing all values [0,63] shuffled over an 8x8 grid. |
| 440 | skvm::I32 M = shl(Y & 1, 5) |
| 441 | | shl(X & 1, 4) |
| 442 | | shl(Y & 2, 2) |
| 443 | | shl(X & 2, 1) |
| 444 | | shr(Y & 4, 1) |
| 445 | | shr(X & 4, 2); |
| 446 | |
| 447 | // Scale to [0,1) by /64, then to (-0.5,0.5) using 63/128 (~0.492) as 0.5-ε, |
| 448 | // and finally scale all that by rate. We keep dither strength strictly |
| 449 | // within ±0.5 to not change exact values like 0 or 1. |
| 450 | |
| 451 | // rate could be a uniform, but since it's based on the destination SkColorType, |
| 452 | // we can bake it in without hurting the cache hit rate. |
| 453 | float scale = rate * ( 2/128.0f), |
| 454 | bias = rate * (-63/128.0f); |
| 455 | skvm::F32 dither = to_f32(M) * scale + bias; |
| 456 | c.r += dither; |
| 457 | c.g += dither; |
| 458 | c.b += dither; |
| 459 | |
| 460 | c.r = clamp(c.r, 0.0f, c.a); |
| 461 | c.g = clamp(c.g, 0.0f, c.a); |
| 462 | c.b = clamp(c.b, 0.0f, c.a); |
| 463 | return c; |
| 464 | } |
| 465 | }; |
| 466 | |
| 467 | static Params effective_params(const SkPixmap& device, |
| 468 | const SkPixmap* sprite, |
| 469 | SkPaint paint, |
| 470 | const SkMatrixProvider& matrices, |
| 471 | sk_sp<SkShader> clip) { |
| 472 | // Sprites take priority over any shader. (There's rarely one set, and it's meaningless.) |
| 473 | if (sprite) { |
| 474 | paint.setShader(sk_make_sp<SpriteShader>(*sprite)); |
| 475 | } |
| 476 | |
| 477 | // Normal blitters will have already folded color filters into their shader, |
| 478 | // but we may still need to do that here for SpriteShaders. |
| 479 | if (paint.getColorFilter()) { |
| 480 | SkPaintPriv::RemoveColorFilter(&paint, device.colorSpace()); |
| 481 | } |
| 482 | SkASSERT(!paint.getColorFilter()); |
| 483 | |
| 484 | // If there's no explicit shader, the paint color is the shader, |
| 485 | // but if there is a shader, it's modulated by the paint alpha. |
| 486 | sk_sp<SkShader> shader = paint.refShader(); |
| 487 | if (!shader) { |
| 488 | shader = SkShaders::Color(paint.getColor4f(), nullptr); |
| 489 | } else if (paint.getAlphaf() < 1.0f) { |
| 490 | shader = sk_make_sp<SkColorFilterShader>(std::move(shader), |
| 491 | paint.getAlphaf(), |
| 492 | sk_make_sp<NoopColorFilter>()); |
| 493 | } |
| 494 | |
| 495 | // Add dither to the end of the shader pipeline if requested and needed. |
| 496 | if (paint.isDither() && !as_SB(shader)->isConstant()) { |
| 497 | shader = sk_make_sp<DitherShader>(std::move(shader)); |
| 498 | } |
| 499 | |
| 500 | // The most common blend mode is SrcOver, and it can be strength-reduced |
| 501 | // _greatly_ to Src mode when the shader is opaque. |
| 502 | // |
| 503 | // In general all the information we use to make decisions here need to |
| 504 | // be reflected in Params and Key to make program caching sound, and it |
| 505 | // might appear that shader->isOpaque() is a property of the shader's |
| 506 | // uniforms than its fundamental program structure and so unsafe to use. |
| 507 | // |
| 508 | // Opacity is such a powerful property that SkShaderBase::program() |
| 509 | // forces opacity for any shader subclass that claims isOpaque(), so |
| 510 | // the opaque bit is strongly guaranteed to be part of the program and |
| 511 | // not just a property of the uniforms. The shader program hash includes |
| 512 | // this information, making it safe to use anywhere in the blitter codegen. |
| 513 | SkBlendMode blendMode = paint.getBlendMode(); |
| 514 | if (blendMode == SkBlendMode::kSrcOver && shader->isOpaque()) { |
| 515 | blendMode = SkBlendMode::kSrc; |
| 516 | } |
| 517 | |
| 518 | return { |
| 519 | std::move(shader), |
| 520 | std::move(clip), |
| 521 | { device.colorType(), device.alphaType(), device.refColorSpace() }, |
| 522 | blendMode, |
| 523 | Coverage::Full, // Placeholder... withCoverage() will change as needed. |
| 524 | paint.getFilterQuality(), |
| 525 | matrices, |
| 526 | }; |
| 527 | } |
| 528 | |
| 529 | class Blitter final : public SkBlitter { |
| 530 | public: |
| 531 | Blitter(const SkPixmap& device, |
| 532 | const SkPaint& paint, |
| 533 | const SkPixmap* sprite, |
| 534 | SkIPoint spriteOffset, |
| 535 | const SkMatrixProvider& matrices, |
| 536 | sk_sp<SkShader> clip, |
| 537 | bool* ok) |
| 538 | : fDevice(device) |
| 539 | , fSprite(sprite ? *sprite : SkPixmap{}) |
| 540 | , fSpriteOffset(spriteOffset) |
| 541 | , fUniforms(kBlitterUniformsCount) |
| 542 | , fParams(effective_params(device, sprite, paint, matrices, std::move(clip))) |
| 543 | , fKey(cache_key(fParams, &fUniforms, &fAlloc, ok)) |
| 544 | , fPaint([&]{ |
| 545 | SkColor4f color = paint.getColor4f(); |
| 546 | SkColorSpaceXformSteps{sk_srgb_singleton(), kUnpremul_SkAlphaType, |
| 547 | device.colorSpace(), kUnpremul_SkAlphaType} |
| 548 | .apply(color.vec()); |
| 549 | return color; |
| 550 | }()) {} |
| 551 | |
| 552 | ~Blitter() override { |
| 553 | if (SkLRUCache<Key, skvm::Program>* cache = try_acquire_program_cache()) { |
| 554 | auto cache_program = [&](skvm::Program&& program, Coverage coverage) { |
| 555 | if (!program.empty()) { |
| 556 | Key key = fKey.withCoverage(coverage); |
| 557 | if (skvm::Program* found = cache->find(key)) { |
| 558 | *found = std::move(program); |
| 559 | } else { |
| 560 | cache->insert(key, std::move(program)); |
| 561 | } |
| 562 | } |
| 563 | }; |
| 564 | cache_program(std::move(fBlitH), Coverage::Full); |
| 565 | cache_program(std::move(fBlitAntiH), Coverage::UniformA8); |
| 566 | cache_program(std::move(fBlitMaskA8), Coverage::MaskA8); |
| 567 | cache_program(std::move(fBlitMask3D), Coverage::Mask3D); |
| 568 | cache_program(std::move(fBlitMaskLCD16), Coverage::MaskLCD16); |
| 569 | |
| 570 | release_program_cache(); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | private: |
| 575 | SkPixmap fDevice; |
| 576 | const SkPixmap fSprite; // See isSprite(). |
| 577 | const SkIPoint fSpriteOffset; |
| 578 | skvm::Uniforms fUniforms; // Most data is copied directly into fUniforms, |
| 579 | SkArenaAlloc fAlloc{2*sizeof(void*)}; // but a few effects need to ref large content. |
| 580 | const Params fParams; |
| 581 | const Key fKey; |
| 582 | const SkColor4f fPaint; |
| 583 | skvm::Program fBlitH, |
| 584 | fBlitAntiH, |
| 585 | fBlitMaskA8, |
| 586 | fBlitMask3D, |
| 587 | fBlitMaskLCD16; |
| 588 | |
| 589 | skvm::Program buildProgram(Coverage coverage) { |
| 590 | Key key = fKey.withCoverage(coverage); |
| 591 | { |
| 592 | skvm::Program p; |
| 593 | if (SkLRUCache<Key, skvm::Program>* cache = try_acquire_program_cache()) { |
| 594 | if (skvm::Program* found = cache->find(key)) { |
| 595 | p = std::move(*found); |
| 596 | } |
| 597 | release_program_cache(); |
| 598 | } |
| 599 | if (!p.empty()) { |
| 600 | return p; |
| 601 | } |
| 602 | } |
| 603 | // We don't really _need_ to rebuild fUniforms here. |
| 604 | // It's just more natural to have effects unconditionally emit them, |
| 605 | // and more natural to rebuild fUniforms than to emit them into a dummy buffer. |
| 606 | // fUniforms should reuse the exact same memory, so this is very cheap. |
| 607 | SkDEBUGCODE(size_t prev = fUniforms.buf.size();) |
| 608 | fUniforms.buf.resize(kBlitterUniformsCount); |
| 609 | skvm::Builder builder; |
| 610 | build_program(&builder, fParams.withCoverage(coverage), &fUniforms, &fAlloc); |
| 611 | SkASSERTF(fUniforms.buf.size() == prev, |
| 612 | "%zu, prev was %zu" , fUniforms.buf.size(), prev); |
| 613 | |
| 614 | skvm::Program program = builder.done(debug_name(key).c_str()); |
| 615 | if (false) { |
| 616 | static std::atomic<int> missed{0}, |
| 617 | total{0}; |
| 618 | if (!program.hasJIT()) { |
| 619 | SkDebugf("\ncouldn't JIT %s\n" , debug_name(key).c_str()); |
| 620 | builder.dump(); |
| 621 | program.dump(); |
| 622 | |
| 623 | SkString path = SkStringPrintf("/tmp/%s.dot" , debug_name(key).c_str()); |
| 624 | SkFILEWStream tmp(path.c_str()); |
| 625 | builder.dot(&tmp); |
| 626 | |
| 627 | missed++; |
| 628 | } |
| 629 | if (0 == total++) { |
| 630 | atexit([]{ SkDebugf("SkVMBlitter compiled %d programs, %d without JIT.\n" , |
| 631 | total.load(), missed.load()); }); |
| 632 | } |
| 633 | } |
| 634 | return program; |
| 635 | } |
| 636 | |
| 637 | void updateUniforms(int right, int y) { |
| 638 | BlitterUniforms uniforms{right, y, fPaint}; |
| 639 | memcpy(fUniforms.buf.data(), &uniforms, sizeof(BlitterUniforms)); |
| 640 | } |
| 641 | |
| 642 | const void* isSprite(int x, int y) const { |
| 643 | if (fSprite.colorType() != kUnknown_SkColorType) { |
| 644 | return fSprite.addr(x - fSpriteOffset.x(), |
| 645 | y - fSpriteOffset.y()); |
| 646 | } |
| 647 | return nullptr; |
| 648 | } |
| 649 | |
| 650 | void blitH(int x, int y, int w) override { |
| 651 | if (fBlitH.empty()) { |
| 652 | fBlitH = this->buildProgram(Coverage::Full); |
| 653 | } |
| 654 | this->updateUniforms(x+w, y); |
| 655 | if (const void* sprite = this->isSprite(x,y)) { |
| 656 | fBlitH.eval(w, fUniforms.buf.data(), fDevice.addr(x,y), sprite); |
| 657 | } else { |
| 658 | fBlitH.eval(w, fUniforms.buf.data(), fDevice.addr(x,y)); |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | void blitAntiH(int x, int y, const SkAlpha cov[], const int16_t runs[]) override { |
| 663 | if (fBlitAntiH.empty()) { |
| 664 | fBlitAntiH = this->buildProgram(Coverage::UniformA8); |
| 665 | } |
| 666 | for (int16_t run = *runs; run > 0; run = *runs) { |
| 667 | this->updateUniforms(x+run, y); |
| 668 | if (const void* sprite = this->isSprite(x,y)) { |
| 669 | fBlitAntiH.eval(run, fUniforms.buf.data(), fDevice.addr(x,y), sprite, cov); |
| 670 | } else { |
| 671 | fBlitAntiH.eval(run, fUniforms.buf.data(), fDevice.addr(x,y), cov); |
| 672 | } |
| 673 | x += run; |
| 674 | runs += run; |
| 675 | cov += run; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | void blitMask(const SkMask& mask, const SkIRect& clip) override { |
| 680 | if (mask.fFormat == SkMask::kBW_Format) { |
| 681 | return SkBlitter::blitMask(mask, clip); |
| 682 | } |
| 683 | |
| 684 | const skvm::Program* program = nullptr; |
| 685 | switch (mask.fFormat) { |
| 686 | default: SkUNREACHABLE; // ARGB and SDF masks shouldn't make it here. |
| 687 | |
| 688 | case SkMask::k3D_Format: |
| 689 | if (fBlitMask3D.empty()) { |
| 690 | fBlitMask3D = this->buildProgram(Coverage::Mask3D); |
| 691 | } |
| 692 | program = &fBlitMask3D; |
| 693 | break; |
| 694 | |
| 695 | case SkMask::kA8_Format: |
| 696 | if (fBlitMaskA8.empty()) { |
| 697 | fBlitMaskA8 = this->buildProgram(Coverage::MaskA8); |
| 698 | } |
| 699 | program = &fBlitMaskA8; |
| 700 | break; |
| 701 | |
| 702 | case SkMask::kLCD16_Format: |
| 703 | if (fBlitMaskLCD16.empty()) { |
| 704 | fBlitMaskLCD16 = this->buildProgram(Coverage::MaskLCD16); |
| 705 | } |
| 706 | program = &fBlitMaskLCD16; |
| 707 | break; |
| 708 | } |
| 709 | |
| 710 | SkASSERT(program); |
| 711 | if (program) { |
| 712 | for (int y = clip.top(); y < clip.bottom(); y++) { |
| 713 | int x = clip.left(), |
| 714 | w = clip.width(); |
| 715 | void* dptr = fDevice.writable_addr(x,y); |
| 716 | auto mptr = (const uint8_t*)mask.getAddr(x,y); |
| 717 | this->updateUniforms(x+w,y); |
| 718 | |
| 719 | if (program == &fBlitMask3D) { |
| 720 | size_t plane = mask.computeImageSize(); |
| 721 | if (const void* sprite = this->isSprite(x,y)) { |
| 722 | program->eval(w, fUniforms.buf.data(), dptr, sprite, mptr + 1*plane |
| 723 | , mptr + 2*plane |
| 724 | , mptr + 0*plane); |
| 725 | } else { |
| 726 | program->eval(w, fUniforms.buf.data(), dptr, mptr + 1*plane |
| 727 | , mptr + 2*plane |
| 728 | , mptr + 0*plane); |
| 729 | } |
| 730 | } else { |
| 731 | if (const void* sprite = this->isSprite(x,y)) { |
| 732 | program->eval(w, fUniforms.buf.data(), dptr, sprite, mptr); |
| 733 | } else { |
| 734 | program->eval(w, fUniforms.buf.data(), dptr, mptr); |
| 735 | } |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | } |
| 740 | }; |
| 741 | |
| 742 | } // namespace |
| 743 | |
| 744 | SkBlitter* SkCreateSkVMBlitter(const SkPixmap& device, |
| 745 | const SkPaint& paint, |
| 746 | const SkMatrixProvider& matrices, |
| 747 | SkArenaAlloc* alloc, |
| 748 | sk_sp<SkShader> clip) { |
| 749 | bool ok = true; |
| 750 | auto blitter = alloc->make<Blitter>(device, paint, /*sprite=*/nullptr, SkIPoint{0,0}, |
| 751 | matrices, std::move(clip), &ok); |
| 752 | return ok ? blitter : nullptr; |
| 753 | } |
| 754 | |
| 755 | SkBlitter* SkCreateSkVMSpriteBlitter(const SkPixmap& device, |
| 756 | const SkPaint& paint, |
| 757 | const SkPixmap& sprite, |
| 758 | int left, int top, |
| 759 | SkArenaAlloc* alloc, |
| 760 | sk_sp<SkShader> clip) { |
| 761 | if (paint.getMaskFilter()) { |
| 762 | // TODO: SkVM support for mask filters? definitely possible! |
| 763 | return nullptr; |
| 764 | } |
| 765 | if (skvm::PixelFormat unused; !SkColorType_to_PixelFormat(sprite.colorType(), &unused)) { |
| 766 | // All existing SkColorTypes pass this check. We'd only get here adding new ones. |
| 767 | return nullptr; |
| 768 | } |
| 769 | bool ok = true; |
| 770 | auto blitter = alloc->make<Blitter>(device, paint, &sprite, SkIPoint{left,top}, |
| 771 | SkSimpleMatrixProvider{SkMatrix{}}, std::move(clip), &ok); |
| 772 | return ok ? blitter : nullptr; |
| 773 | } |
| 774 | |