| 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef GrFragmentProcessor_DEFINED |
| 9 | #define GrFragmentProcessor_DEFINED |
| 10 | |
| 11 | #include <tuple> |
| 12 | |
| 13 | #include "include/private/SkSLSampleUsage.h" |
| 14 | #include "src/gpu/GrProcessor.h" |
| 15 | #include "src/gpu/ops/GrOp.h" |
| 16 | |
| 17 | class GrGLSLFragmentProcessor; |
| 18 | class GrPaint; |
| 19 | class GrPipeline; |
| 20 | class GrProcessorKeyBuilder; |
| 21 | class GrShaderCaps; |
| 22 | class GrSwizzle; |
| 23 | class GrTextureEffect; |
| 24 | |
| 25 | /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and |
| 26 | produce an output color. They may reference textures and uniforms. |
| 27 | */ |
| 28 | class GrFragmentProcessor : public GrProcessor { |
| 29 | public: |
| 30 | /** |
| 31 | * In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to |
| 32 | * only consider the input color's alpha. However, there is a competing desire to have reusable |
| 33 | * GrFragmentProcessor subclasses that can be used in other scenarios where the entire input |
| 34 | * color is considered. This function exists to filter the input color and pass it to a FP. It |
| 35 | * does so by returning a parent FP that multiplies the passed in FPs output by the parent's |
| 36 | * input alpha. The passed in FP will not receive an input color. |
| 37 | */ |
| 38 | static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha( |
| 39 | std::unique_ptr<GrFragmentProcessor> child); |
| 40 | |
| 41 | /** |
| 42 | * Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return |
| 43 | * the input modulated by the child's alpha. The passed in FP will not receive an input color. |
| 44 | * |
| 45 | * output = input * child.a |
| 46 | */ |
| 47 | static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha( |
| 48 | std::unique_ptr<GrFragmentProcessor> child); |
| 49 | |
| 50 | /** |
| 51 | * Returns a fragment processor that generates the passed-in color, modulated by the child's |
| 52 | * alpha channel. (Pass a null FP to use the alpha from sk_InColor instead of a child FP.) |
| 53 | */ |
| 54 | static std::unique_ptr<GrFragmentProcessor> ModulateAlpha( |
| 55 | std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color); |
| 56 | |
| 57 | /** |
| 58 | * Returns a fragment processor that generates the passed-in color, modulated by the child's |
| 59 | * RGBA color. (Pass a null FP to use the color from sk_InColor instead of a child FP.) |
| 60 | */ |
| 61 | static std::unique_ptr<GrFragmentProcessor> ModulateRGBA( |
| 62 | std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color); |
| 63 | |
| 64 | /** |
| 65 | * This assumes that the input color to the returned processor will be unpremul and that the |
| 66 | * passed processor (which becomes the returned processor's child) produces a premul output. |
| 67 | * The result of the returned processor is a premul of its input color modulated by the child |
| 68 | * processor's premul output. |
| 69 | */ |
| 70 | static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput( |
| 71 | std::unique_ptr<GrFragmentProcessor>); |
| 72 | |
| 73 | /** |
| 74 | * Returns a parent fragment processor that adopts the passed fragment processor as a child. |
| 75 | * The parent will ignore its input color and instead feed the passed in color as input to the |
| 76 | * child. |
| 77 | */ |
| 78 | static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>, |
| 79 | const SkPMColor4f&, |
| 80 | bool useUniform = true); |
| 81 | |
| 82 | /** |
| 83 | * Returns a fragment processor that premuls the input before calling the passed in fragment |
| 84 | * processor. |
| 85 | */ |
| 86 | static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>); |
| 87 | |
| 88 | /** |
| 89 | * Returns a fragment processor that calls the passed in fragment processor, and then swizzles |
| 90 | * the output. |
| 91 | */ |
| 92 | static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>, |
| 93 | const GrSwizzle&); |
| 94 | |
| 95 | /** |
| 96 | * Returns a fragment processor that calls the passed in fragment processor, and then ensures |
| 97 | * the output is a valid premul color by clamping RGB to [0, A]. |
| 98 | */ |
| 99 | static std::unique_ptr<GrFragmentProcessor> ClampPremulOutput( |
| 100 | std::unique_ptr<GrFragmentProcessor>); |
| 101 | |
| 102 | /** |
| 103 | * Returns a fragment processor that composes two fragment processors `f` and `g` into f(g(x)). |
| 104 | * This is equivalent to running them in series. This is not the same as transfer-mode |
| 105 | * composition; there is no blending step. |
| 106 | */ |
| 107 | static std::unique_ptr<GrFragmentProcessor> Compose(std::unique_ptr<GrFragmentProcessor> f, |
| 108 | std::unique_ptr<GrFragmentProcessor> g); |
| 109 | |
| 110 | /** |
| 111 | * Makes a copy of this fragment processor that draws equivalently to the original. |
| 112 | * If the processor has child processors they are cloned as well. |
| 113 | */ |
| 114 | virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0; |
| 115 | |
| 116 | // The FP this was registered with as a child function. This will be null if this is a root. |
| 117 | const GrFragmentProcessor* parent() const { return fParent; } |
| 118 | |
| 119 | GrGLSLFragmentProcessor* createGLSLInstance() const; |
| 120 | |
| 121 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { |
| 122 | this->onGetGLSLProcessorKey(caps, b); |
| 123 | for (const auto& child : fChildProcessors) { |
| 124 | if (child) { |
| 125 | child->getGLSLProcessorKey(caps, b); |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | int numVaryingCoordsUsed() const { return this->usesVaryingCoordsDirectly() ? 1 : 0; } |
| 131 | |
| 132 | int numChildProcessors() const { return fChildProcessors.count(); } |
| 133 | int numNonNullChildProcessors() const; |
| 134 | |
| 135 | GrFragmentProcessor* childProcessor(int index) { return fChildProcessors[index].get(); } |
| 136 | const GrFragmentProcessor* childProcessor(int index) const { |
| 137 | return fChildProcessors[index].get(); |
| 138 | } |
| 139 | |
| 140 | SkDEBUGCODE(bool isInstantiated() const;) |
| 141 | |
| 142 | /** |
| 143 | * Does this FP require local coordinates to be produced by the primitive processor? This only |
| 144 | * returns true if this FP will directly read those local coordinates. FPs that are sampled |
| 145 | * explicitly do not require primitive-generated local coordinates (because the sample |
| 146 | * coordinates are supplied by the parent FP). |
| 147 | * |
| 148 | * If the root of an FP tree does not provide explicit coordinates, the geometry processor |
| 149 | * provides the original local coordinates to start. This may be implicit as part of vertex |
| 150 | * shader-lifted varyings, or by providing the base local coordinate to the fragment shader. |
| 151 | */ |
| 152 | bool usesVaryingCoordsDirectly() const { |
| 153 | return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag) && |
| 154 | !SkToBool(fFlags & kSampledWithExplicitCoords_Flag); |
| 155 | } |
| 156 | |
| 157 | /** |
| 158 | * Do any of the FPs in this tree require local coordinates to be produced by the primitive |
| 159 | * processor? This can return true even if this FP does not refer to sample coordinates, but |
| 160 | * true if a descendant FP uses them. |
| 161 | */ |
| 162 | bool usesVaryingCoords() const { |
| 163 | return (SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag) || |
| 164 | SkToBool(fFlags & kUsesSampleCoordsIndirectly_Flag)) && |
| 165 | !SkToBool(fFlags & kSampledWithExplicitCoords_Flag); |
| 166 | } |
| 167 | |
| 168 | /** |
| 169 | * True if this FP refers directly to the sample coordinate parameter of its function |
| 170 | * (e.g. uses EmitArgs::fSampleCoord in emitCode()). This also returns true if the |
| 171 | * coordinate reference comes from autogenerated code invoking 'sample(matrix)' expressions. |
| 172 | * |
| 173 | * Unlike usesVaryingCoords(), this can return true whether or not the FP is explicitly |
| 174 | * sampled, and does not change based on how the FP is composed. This property is specific to |
| 175 | * the FP's function and not the entire program. |
| 176 | */ |
| 177 | bool referencesSampleCoords() const { |
| 178 | return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag); |
| 179 | } |
| 180 | |
| 181 | // True if this FP's parent invokes it with 'sample(float2)' or a variable 'sample(matrix)' |
| 182 | bool isSampledWithExplicitCoords() const { |
| 183 | return SkToBool(fFlags & kSampledWithExplicitCoords_Flag); |
| 184 | } |
| 185 | |
| 186 | // True if the transform chain from root to this FP introduces perspective into the local |
| 187 | // coordinate expression. |
| 188 | bool hasPerspectiveTransform() const { |
| 189 | return SkToBool(fFlags & kNetTransformHasPerspective_Flag); |
| 190 | } |
| 191 | |
| 192 | // The SampleUsage describing how this FP is invoked by its parent using 'sample(matrix)' |
| 193 | // This only reflects the immediate sampling from parent to this FP |
| 194 | const SkSL::SampleUsage& sampleUsage() const { |
| 195 | return fUsage; |
| 196 | } |
| 197 | |
| 198 | /** |
| 199 | * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color |
| 200 | * output under the following scenario: |
| 201 | * * all the color fragment processors report true to this query, |
| 202 | * * all the coverage fragment processors report true to this query, |
| 203 | * * the blend mode arithmetic allows for it it. |
| 204 | * To be compatible a fragment processor's output must be a modulation of its input color or |
| 205 | * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color |
| 206 | * or alpha that is modulated against the input cannot depend on the input's alpha. The computed |
| 207 | * value cannot depend on the input's color channels unless it unpremultiplies the input color |
| 208 | * channels by the input alpha. |
| 209 | */ |
| 210 | bool compatibleWithCoverageAsAlpha() const { |
| 211 | return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag); |
| 212 | } |
| 213 | |
| 214 | /** |
| 215 | * If this is true then all opaque input colors to the processor produce opaque output colors. |
| 216 | */ |
| 217 | bool preservesOpaqueInput() const { |
| 218 | return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag); |
| 219 | } |
| 220 | |
| 221 | /** |
| 222 | * Tests whether given a constant input color the processor produces a constant output color |
| 223 | * (for all fragments). If true outputColor will contain the constant color produces for |
| 224 | * inputColor. |
| 225 | */ |
| 226 | bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const { |
| 227 | if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) { |
| 228 | *outputColor = this->constantOutputForConstantInput(inputColor); |
| 229 | return true; |
| 230 | } |
| 231 | return false; |
| 232 | } |
| 233 | bool hasConstantOutputForConstantInput() const { |
| 234 | return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag); |
| 235 | } |
| 236 | |
| 237 | /** Returns true if this and other processor conservatively draw identically. It can only return |
| 238 | true when the two processor are of the same subclass (i.e. they return the same object from |
| 239 | from getFactory()). |
| 240 | |
| 241 | A return value of true from isEqual() should not be used to test whether the processor would |
| 242 | generate the same shader code. To test for identical code generation use getGLSLProcessorKey |
| 243 | */ |
| 244 | bool isEqual(const GrFragmentProcessor& that) const; |
| 245 | |
| 246 | void visitProxies(const GrOp::VisitProxyFunc& func) const; |
| 247 | |
| 248 | void visitTextureEffects(const std::function<void(const GrTextureEffect&)>&) const; |
| 249 | |
| 250 | GrTextureEffect* asTextureEffect(); |
| 251 | const GrTextureEffect* asTextureEffect() const; |
| 252 | |
| 253 | #if GR_TEST_UTILS |
| 254 | // Generates debug info for this processor tree by recursively calling dumpInfo() on this |
| 255 | // processor and its children. |
| 256 | SkString dumpTreeInfo() const; |
| 257 | #endif |
| 258 | |
| 259 | // A pre-order traversal iterator over a hierarchy of FPs. It can also iterate over all the FP |
| 260 | // hierarchies rooted in a GrPaint, GrProcessorSet, or GrPipeline. For these collections it |
| 261 | // iterates the tree rooted at each color FP and then each coverage FP. |
| 262 | // |
| 263 | // An iterator is constructed from one of the srcs and used like this: |
| 264 | // for (GrFragmentProcessor::Iter iter(pipeline); iter; ++iter) { |
| 265 | // GrFragmentProcessor& fp = *iter; |
| 266 | // } |
| 267 | // The exit test for the loop is using CIter's operator bool(). |
| 268 | // To use a range-for loop instead see CIterRange below. |
| 269 | class CIter; |
| 270 | |
| 271 | // Used to implement a range-for loop using CIter. Src is one of GrFragmentProcessor, |
| 272 | // GrPaint, GrProcessorSet, or GrPipeline. Type aliases for these defined below. |
| 273 | // Example usage: |
| 274 | // for (const auto& fp : GrFragmentProcessor::PaintRange(paint)) { |
| 275 | // if (fp.usesLocalCoords()) { |
| 276 | // ... |
| 277 | // } |
| 278 | // } |
| 279 | template <typename Src> class CIterRange; |
| 280 | |
| 281 | // We would use template deduction guides for CIter but for: |
| 282 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79501 |
| 283 | // Instead we use these specialized type aliases to make it prettier |
| 284 | // to construct CIters for particular sources of FPs. |
| 285 | using FPRange = CIterRange<GrFragmentProcessor>; |
| 286 | using PaintRange = CIterRange<GrPaint>; |
| 287 | |
| 288 | // Sentinel type for range-for using CIter. |
| 289 | class EndCIter {}; |
| 290 | |
| 291 | protected: |
| 292 | enum OptimizationFlags : uint32_t { |
| 293 | kNone_OptimizationFlags, |
| 294 | kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1, |
| 295 | kPreservesOpaqueInput_OptimizationFlag = 0x2, |
| 296 | kConstantOutputForConstantInput_OptimizationFlag = 0x4, |
| 297 | kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| 298 | kPreservesOpaqueInput_OptimizationFlag | |
| 299 | kConstantOutputForConstantInput_OptimizationFlag |
| 300 | }; |
| 301 | GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags) |
| 302 | |
| 303 | /** |
| 304 | * Can be used as a helper to decide which fragment processor OptimizationFlags should be set. |
| 305 | * This assumes that the subclass output color will be a modulation of the input color with a |
| 306 | * value read from a texture of the passed color type and that the texture contains |
| 307 | * premultiplied color or alpha values that are in range. |
| 308 | * |
| 309 | * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped, |
| 310 | * callers must determine on their own if the sampling uses a decal strategy in any way, in |
| 311 | * which case the texture may become transparent regardless of the color type. |
| 312 | */ |
| 313 | static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) { |
| 314 | if (samplingDecal) { |
| 315 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| 316 | } else { |
| 317 | return ModulateForClampedSamplerOptFlags(alphaType); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | // As above, but callers should somehow ensure or assert their sampler still uses clamping |
| 322 | static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) { |
| 323 | if (alphaType == kOpaque_SkAlphaType) { |
| 324 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| 325 | kPreservesOpaqueInput_OptimizationFlag; |
| 326 | } else { |
| 327 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags) |
| 332 | : INHERITED(classID), fFlags(optimizationFlags) { |
| 333 | SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0); |
| 334 | } |
| 335 | |
| 336 | OptimizationFlags optimizationFlags() const { |
| 337 | return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags); |
| 338 | } |
| 339 | |
| 340 | /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/ |
| 341 | static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) { |
| 342 | return fp ? fp->optimizationFlags() : kAll_OptimizationFlags; |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * This allows one subclass to access another subclass's implementation of |
| 347 | * constantOutputForConstantInput. It must only be called when |
| 348 | * hasConstantOutputForConstantInput() is known to be true. |
| 349 | */ |
| 350 | static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor* fp, |
| 351 | const SkPMColor4f& input) { |
| 352 | if (fp) { |
| 353 | SkASSERT(fp->hasConstantOutputForConstantInput()); |
| 354 | return fp->constantOutputForConstantInput(input); |
| 355 | } else { |
| 356 | return input; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /** |
| 361 | * FragmentProcessor subclasses call this from their constructor to register any child |
| 362 | * FragmentProcessors they have. This must be called AFTER all texture accesses and coord |
| 363 | * transforms have been added. |
| 364 | * This is for processors whose shader code will be composed of nested processors whose output |
| 365 | * colors will be combined somehow to produce its output color. Registering these child |
| 366 | * processors will allow the ProgramBuilder to automatically handle their transformed coords and |
| 367 | * texture accesses and mangle their uniform and output color names. |
| 368 | * |
| 369 | * The SampleUsage parameter describes all of the ways that the child is sampled by the parent. |
| 370 | */ |
| 371 | void registerChild(std::unique_ptr<GrFragmentProcessor> child, |
| 372 | SkSL::SampleUsage sampleUsage = SkSL::SampleUsage::PassThrough()); |
| 373 | |
| 374 | /** |
| 375 | * This method takes an existing fragment processor, clones all of its children, and registers |
| 376 | * the clones as children of this fragment processor. |
| 377 | */ |
| 378 | void cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src); |
| 379 | |
| 380 | // FP implementations must call this function if their matching GrGLSLFragmentProcessor's |
| 381 | // emitCode() function uses the EmitArgs::fSampleCoord variable in generated SkSL. |
| 382 | void setUsesSampleCoordsDirectly() { |
| 383 | fFlags |= kUsesSampleCoordsDirectly_Flag; |
| 384 | } |
| 385 | |
| 386 | private: |
| 387 | virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const { |
| 388 | SK_ABORT("Subclass must override this if advertising this optimization." ); |
| 389 | } |
| 390 | |
| 391 | /** Returns a new instance of the appropriate *GL* implementation class |
| 392 | for the given GrFragmentProcessor; caller is responsible for deleting |
| 393 | the object. */ |
| 394 | virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0; |
| 395 | |
| 396 | /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */ |
| 397 | virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0; |
| 398 | |
| 399 | /** |
| 400 | * Subclass implements this to support isEqual(). It will only be called if it is known that |
| 401 | * the two processors are of the same subclass (i.e. they return the same object from |
| 402 | * getFactory()). |
| 403 | */ |
| 404 | virtual bool onIsEqual(const GrFragmentProcessor&) const = 0; |
| 405 | |
| 406 | enum PrivateFlags { |
| 407 | kFirstPrivateFlag = kAll_OptimizationFlags + 1, |
| 408 | |
| 409 | // Propagate up the FP tree to the root |
| 410 | kUsesSampleCoordsIndirectly_Flag = kFirstPrivateFlag, |
| 411 | |
| 412 | // Does not propagate at all |
| 413 | kUsesSampleCoordsDirectly_Flag = kFirstPrivateFlag << 1, |
| 414 | |
| 415 | // Propagates down the FP to all its leaves |
| 416 | kSampledWithExplicitCoords_Flag = kFirstPrivateFlag << 2, |
| 417 | kNetTransformHasPerspective_Flag = kFirstPrivateFlag << 3, |
| 418 | }; |
| 419 | void addAndPushFlagToChildren(PrivateFlags flag); |
| 420 | |
| 421 | SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors; |
| 422 | const GrFragmentProcessor* fParent = nullptr; |
| 423 | uint32_t fFlags = 0; |
| 424 | SkSL::SampleUsage fUsage; |
| 425 | |
| 426 | typedef GrProcessor INHERITED; |
| 427 | }; |
| 428 | |
| 429 | ////////////////////////////////////////////////////////////////////////////// |
| 430 | |
| 431 | GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags) |
| 432 | |
| 433 | ////////////////////////////////////////////////////////////////////////////// |
| 434 | |
| 435 | class GrFragmentProcessor::CIter { |
| 436 | public: |
| 437 | explicit CIter(const GrFragmentProcessor& fp) { fFPStack.push_back(&fp); } |
| 438 | explicit CIter(const GrPaint&); |
| 439 | explicit CIter(const GrPipeline&); |
| 440 | |
| 441 | const GrFragmentProcessor& operator*() const { return *fFPStack.back(); } |
| 442 | const GrFragmentProcessor* operator->() const { return fFPStack.back(); } |
| 443 | |
| 444 | CIter& operator++(); |
| 445 | |
| 446 | operator bool() const { return !fFPStack.empty(); } |
| 447 | |
| 448 | bool operator!=(const EndCIter&) { return (bool)*this; } |
| 449 | |
| 450 | // Hopefully this does not actually get called because of RVO. |
| 451 | CIter(const CIter&) = default; |
| 452 | |
| 453 | // Because each iterator carries a stack we want to avoid copies. |
| 454 | CIter& operator=(const CIter&) = delete; |
| 455 | |
| 456 | protected: |
| 457 | CIter() = delete; |
| 458 | |
| 459 | SkSTArray<4, const GrFragmentProcessor*, true> fFPStack; |
| 460 | }; |
| 461 | |
| 462 | ////////////////////////////////////////////////////////////////////////////// |
| 463 | |
| 464 | template <typename Src> class GrFragmentProcessor::CIterRange { |
| 465 | public: |
| 466 | explicit CIterRange(const Src& t) : fT(t) {} |
| 467 | CIter begin() const { return CIter(fT); } |
| 468 | EndCIter end() const { return EndCIter(); } |
| 469 | |
| 470 | private: |
| 471 | const Src& fT; |
| 472 | }; |
| 473 | |
| 474 | /** |
| 475 | * Some fragment-processor creation methods have preconditions that might not be satisfied by the |
| 476 | * calling code. Those methods can return a `GrFPResult` from their factory methods. If creation |
| 477 | * succeeds, the new fragment processor is created and `success` is true. If a precondition is not |
| 478 | * met, `success` is set to false and the input FP is returned unchanged. |
| 479 | */ |
| 480 | using GrFPResult = std::tuple<bool /*success*/, std::unique_ptr<GrFragmentProcessor>>; |
| 481 | static inline GrFPResult GrFPFailure(std::unique_ptr<GrFragmentProcessor> fp) { |
| 482 | return {false, std::move(fp)}; |
| 483 | } |
| 484 | static inline GrFPResult GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp) { |
| 485 | return {true, std::move(fp)}; |
| 486 | } |
| 487 | |
| 488 | #endif |
| 489 | |