| 1 | /* | 
|---|
| 2 | * Copyright 2014 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef GrFragmentProcessor_DEFINED | 
|---|
| 9 | #define GrFragmentProcessor_DEFINED | 
|---|
| 10 |  | 
|---|
| 11 | #include <tuple> | 
|---|
| 12 |  | 
|---|
| 13 | #include "include/private/SkSLSampleUsage.h" | 
|---|
| 14 | #include "src/gpu/GrProcessor.h" | 
|---|
| 15 | #include "src/gpu/ops/GrOp.h" | 
|---|
| 16 |  | 
|---|
| 17 | class GrGLSLFragmentProcessor; | 
|---|
| 18 | class GrPaint; | 
|---|
| 19 | class GrPipeline; | 
|---|
| 20 | class GrProcessorKeyBuilder; | 
|---|
| 21 | class GrShaderCaps; | 
|---|
| 22 | class GrSwizzle; | 
|---|
| 23 | class GrTextureEffect; | 
|---|
| 24 |  | 
|---|
| 25 | /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and | 
|---|
| 26 | produce an output color. They may reference textures and uniforms. | 
|---|
| 27 | */ | 
|---|
| 28 | class GrFragmentProcessor : public GrProcessor { | 
|---|
| 29 | public: | 
|---|
| 30 | /** | 
|---|
| 31 | *  In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to | 
|---|
| 32 | *  only consider the input color's alpha. However, there is a competing desire to have reusable | 
|---|
| 33 | *  GrFragmentProcessor subclasses that can be used in other scenarios where the entire input | 
|---|
| 34 | *  color is considered. This function exists to filter the input color and pass it to a FP. It | 
|---|
| 35 | *  does so by returning a parent FP that multiplies the passed in FPs output by the parent's | 
|---|
| 36 | *  input alpha. The passed in FP will not receive an input color. | 
|---|
| 37 | */ | 
|---|
| 38 | static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha( | 
|---|
| 39 | std::unique_ptr<GrFragmentProcessor> child); | 
|---|
| 40 |  | 
|---|
| 41 | /** | 
|---|
| 42 | *  Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return | 
|---|
| 43 | *  the input modulated by the child's alpha. The passed in FP will not receive an input color. | 
|---|
| 44 | * | 
|---|
| 45 | *  output = input * child.a | 
|---|
| 46 | */ | 
|---|
| 47 | static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha( | 
|---|
| 48 | std::unique_ptr<GrFragmentProcessor> child); | 
|---|
| 49 |  | 
|---|
| 50 | /** | 
|---|
| 51 | *  Returns a fragment processor that generates the passed-in color, modulated by the child's | 
|---|
| 52 | *  alpha channel. (Pass a null FP to use the alpha from sk_InColor instead of a child FP.) | 
|---|
| 53 | */ | 
|---|
| 54 | static std::unique_ptr<GrFragmentProcessor> ModulateAlpha( | 
|---|
| 55 | std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color); | 
|---|
| 56 |  | 
|---|
| 57 | /** | 
|---|
| 58 | *  Returns a fragment processor that generates the passed-in color, modulated by the child's | 
|---|
| 59 | *  RGBA color. (Pass a null FP to use the color from sk_InColor instead of a child FP.) | 
|---|
| 60 | */ | 
|---|
| 61 | static std::unique_ptr<GrFragmentProcessor> ModulateRGBA( | 
|---|
| 62 | std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color); | 
|---|
| 63 |  | 
|---|
| 64 | /** | 
|---|
| 65 | *  This assumes that the input color to the returned processor will be unpremul and that the | 
|---|
| 66 | *  passed processor (which becomes the returned processor's child) produces a premul output. | 
|---|
| 67 | *  The result of the returned processor is a premul of its input color modulated by the child | 
|---|
| 68 | *  processor's premul output. | 
|---|
| 69 | */ | 
|---|
| 70 | static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput( | 
|---|
| 71 | std::unique_ptr<GrFragmentProcessor>); | 
|---|
| 72 |  | 
|---|
| 73 | /** | 
|---|
| 74 | *  Returns a parent fragment processor that adopts the passed fragment processor as a child. | 
|---|
| 75 | *  The parent will ignore its input color and instead feed the passed in color as input to the | 
|---|
| 76 | *  child. | 
|---|
| 77 | */ | 
|---|
| 78 | static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>, | 
|---|
| 79 | const SkPMColor4f&, | 
|---|
| 80 | bool useUniform = true); | 
|---|
| 81 |  | 
|---|
| 82 | /** | 
|---|
| 83 | *  Returns a fragment processor that premuls the input before calling the passed in fragment | 
|---|
| 84 | *  processor. | 
|---|
| 85 | */ | 
|---|
| 86 | static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>); | 
|---|
| 87 |  | 
|---|
| 88 | /** | 
|---|
| 89 | *  Returns a fragment processor that calls the passed in fragment processor, and then swizzles | 
|---|
| 90 | *  the output. | 
|---|
| 91 | */ | 
|---|
| 92 | static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>, | 
|---|
| 93 | const GrSwizzle&); | 
|---|
| 94 |  | 
|---|
| 95 | /** | 
|---|
| 96 | *  Returns a fragment processor that calls the passed in fragment processor, and then ensures | 
|---|
| 97 | *  the output is a valid premul color by clamping RGB to [0, A]. | 
|---|
| 98 | */ | 
|---|
| 99 | static std::unique_ptr<GrFragmentProcessor> ClampPremulOutput( | 
|---|
| 100 | std::unique_ptr<GrFragmentProcessor>); | 
|---|
| 101 |  | 
|---|
| 102 | /** | 
|---|
| 103 | * Returns a fragment processor that composes two fragment processors `f` and `g` into f(g(x)). | 
|---|
| 104 | * This is equivalent to running them in series. This is not the same as transfer-mode | 
|---|
| 105 | * composition; there is no blending step. | 
|---|
| 106 | */ | 
|---|
| 107 | static std::unique_ptr<GrFragmentProcessor> Compose(std::unique_ptr<GrFragmentProcessor> f, | 
|---|
| 108 | std::unique_ptr<GrFragmentProcessor> g); | 
|---|
| 109 |  | 
|---|
| 110 | /** | 
|---|
| 111 | * Makes a copy of this fragment processor that draws equivalently to the original. | 
|---|
| 112 | * If the processor has child processors they are cloned as well. | 
|---|
| 113 | */ | 
|---|
| 114 | virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0; | 
|---|
| 115 |  | 
|---|
| 116 | // The FP this was registered with as a child function. This will be null if this is a root. | 
|---|
| 117 | const GrFragmentProcessor* parent() const { return fParent; } | 
|---|
| 118 |  | 
|---|
| 119 | GrGLSLFragmentProcessor* createGLSLInstance() const; | 
|---|
| 120 |  | 
|---|
| 121 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { | 
|---|
| 122 | this->onGetGLSLProcessorKey(caps, b); | 
|---|
| 123 | for (const auto& child : fChildProcessors) { | 
|---|
| 124 | if (child) { | 
|---|
| 125 | child->getGLSLProcessorKey(caps, b); | 
|---|
| 126 | } | 
|---|
| 127 | } | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | int numVaryingCoordsUsed() const { return this->usesVaryingCoordsDirectly() ? 1 : 0; } | 
|---|
| 131 |  | 
|---|
| 132 | int numChildProcessors() const { return fChildProcessors.count(); } | 
|---|
| 133 | int numNonNullChildProcessors() const; | 
|---|
| 134 |  | 
|---|
| 135 | GrFragmentProcessor* childProcessor(int index) { return fChildProcessors[index].get(); } | 
|---|
| 136 | const GrFragmentProcessor* childProcessor(int index) const { | 
|---|
| 137 | return fChildProcessors[index].get(); | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | SkDEBUGCODE(bool isInstantiated() const;) | 
|---|
| 141 |  | 
|---|
| 142 | /** | 
|---|
| 143 | * Does this FP require local coordinates to be produced by the primitive processor? This only | 
|---|
| 144 | * returns true if this FP will directly read those local coordinates. FPs that are sampled | 
|---|
| 145 | * explicitly do not require primitive-generated local coordinates (because the sample | 
|---|
| 146 | * coordinates are supplied by the parent FP). | 
|---|
| 147 | * | 
|---|
| 148 | * If the root of an FP tree does not provide explicit coordinates, the geometry processor | 
|---|
| 149 | * provides the original local coordinates to start. This may be implicit as part of vertex | 
|---|
| 150 | * shader-lifted varyings, or by providing the base local coordinate to the fragment shader. | 
|---|
| 151 | */ | 
|---|
| 152 | bool usesVaryingCoordsDirectly() const { | 
|---|
| 153 | return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag) && | 
|---|
| 154 | !SkToBool(fFlags & kSampledWithExplicitCoords_Flag); | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|
| 157 | /** | 
|---|
| 158 | * Do any of the FPs in this tree require local coordinates to be produced by the primitive | 
|---|
| 159 | * processor? This can return true even if this FP does not refer to sample coordinates, but | 
|---|
| 160 | * true if a descendant FP uses them. | 
|---|
| 161 | */ | 
|---|
| 162 | bool usesVaryingCoords() const { | 
|---|
| 163 | return (SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag) || | 
|---|
| 164 | SkToBool(fFlags & kUsesSampleCoordsIndirectly_Flag)) && | 
|---|
| 165 | !SkToBool(fFlags & kSampledWithExplicitCoords_Flag); | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | /** | 
|---|
| 169 | * True if this FP refers directly to the sample coordinate parameter of its function | 
|---|
| 170 | * (e.g. uses EmitArgs::fSampleCoord in emitCode()). This also returns true if the | 
|---|
| 171 | * coordinate reference comes from autogenerated code invoking 'sample(matrix)' expressions. | 
|---|
| 172 | * | 
|---|
| 173 | * Unlike usesVaryingCoords(), this can return true whether or not the FP is explicitly | 
|---|
| 174 | * sampled, and does not change based on how the FP is composed. This property is specific to | 
|---|
| 175 | * the FP's function and not the entire program. | 
|---|
| 176 | */ | 
|---|
| 177 | bool referencesSampleCoords() const { | 
|---|
| 178 | return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag); | 
|---|
| 179 | } | 
|---|
| 180 |  | 
|---|
| 181 | // True if this FP's parent invokes it with 'sample(float2)' or a variable 'sample(matrix)' | 
|---|
| 182 | bool isSampledWithExplicitCoords() const { | 
|---|
| 183 | return SkToBool(fFlags & kSampledWithExplicitCoords_Flag); | 
|---|
| 184 | } | 
|---|
| 185 |  | 
|---|
| 186 | // True if the transform chain from root to this FP introduces perspective into the local | 
|---|
| 187 | // coordinate expression. | 
|---|
| 188 | bool hasPerspectiveTransform() const { | 
|---|
| 189 | return SkToBool(fFlags & kNetTransformHasPerspective_Flag); | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | // The SampleUsage describing how this FP is invoked by its parent using 'sample(matrix)' | 
|---|
| 193 | // This only reflects the immediate sampling from parent to this FP | 
|---|
| 194 | const SkSL::SampleUsage& sampleUsage() const { | 
|---|
| 195 | return fUsage; | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | /** | 
|---|
| 199 | * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color | 
|---|
| 200 | * output under the following scenario: | 
|---|
| 201 | *   * all the color fragment processors report true to this query, | 
|---|
| 202 | *   * all the coverage fragment processors report true to this query, | 
|---|
| 203 | *   * the blend mode arithmetic allows for it it. | 
|---|
| 204 | * To be compatible a fragment processor's output must be a modulation of its input color or | 
|---|
| 205 | * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color | 
|---|
| 206 | * or alpha that is modulated against the input cannot depend on the input's alpha. The computed | 
|---|
| 207 | * value cannot depend on the input's color channels unless it unpremultiplies the input color | 
|---|
| 208 | * channels by the input alpha. | 
|---|
| 209 | */ | 
|---|
| 210 | bool compatibleWithCoverageAsAlpha() const { | 
|---|
| 211 | return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag); | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 | /** | 
|---|
| 215 | * If this is true then all opaque input colors to the processor produce opaque output colors. | 
|---|
| 216 | */ | 
|---|
| 217 | bool preservesOpaqueInput() const { | 
|---|
| 218 | return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag); | 
|---|
| 219 | } | 
|---|
| 220 |  | 
|---|
| 221 | /** | 
|---|
| 222 | * Tests whether given a constant input color the processor produces a constant output color | 
|---|
| 223 | * (for all fragments). If true outputColor will contain the constant color produces for | 
|---|
| 224 | * inputColor. | 
|---|
| 225 | */ | 
|---|
| 226 | bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const { | 
|---|
| 227 | if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) { | 
|---|
| 228 | *outputColor = this->constantOutputForConstantInput(inputColor); | 
|---|
| 229 | return true; | 
|---|
| 230 | } | 
|---|
| 231 | return false; | 
|---|
| 232 | } | 
|---|
| 233 | bool hasConstantOutputForConstantInput() const { | 
|---|
| 234 | return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag); | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 | /** Returns true if this and other processor conservatively draw identically. It can only return | 
|---|
| 238 | true when the two processor are of the same subclass (i.e. they return the same object from | 
|---|
| 239 | from getFactory()). | 
|---|
| 240 |  | 
|---|
| 241 | A return value of true from isEqual() should not be used to test whether the processor would | 
|---|
| 242 | generate the same shader code. To test for identical code generation use getGLSLProcessorKey | 
|---|
| 243 | */ | 
|---|
| 244 | bool isEqual(const GrFragmentProcessor& that) const; | 
|---|
| 245 |  | 
|---|
| 246 | void visitProxies(const GrOp::VisitProxyFunc& func) const; | 
|---|
| 247 |  | 
|---|
| 248 | void visitTextureEffects(const std::function<void(const GrTextureEffect&)>&) const; | 
|---|
| 249 |  | 
|---|
| 250 | GrTextureEffect* asTextureEffect(); | 
|---|
| 251 | const GrTextureEffect* asTextureEffect() const; | 
|---|
| 252 |  | 
|---|
| 253 | #if GR_TEST_UTILS | 
|---|
| 254 | // Generates debug info for this processor tree by recursively calling dumpInfo() on this | 
|---|
| 255 | // processor and its children. | 
|---|
| 256 | SkString dumpTreeInfo() const; | 
|---|
| 257 | #endif | 
|---|
| 258 |  | 
|---|
| 259 | // A pre-order traversal iterator over a hierarchy of FPs. It can also iterate over all the FP | 
|---|
| 260 | // hierarchies rooted in a GrPaint, GrProcessorSet, or GrPipeline. For these collections it | 
|---|
| 261 | // iterates the tree rooted at each color FP and then each coverage FP. | 
|---|
| 262 | // | 
|---|
| 263 | // An iterator is constructed from one of the srcs and used like this: | 
|---|
| 264 | //   for (GrFragmentProcessor::Iter iter(pipeline); iter; ++iter) { | 
|---|
| 265 | //       GrFragmentProcessor& fp = *iter; | 
|---|
| 266 | //   } | 
|---|
| 267 | // The exit test for the loop is using CIter's operator bool(). | 
|---|
| 268 | // To use a range-for loop instead see CIterRange below. | 
|---|
| 269 | class CIter; | 
|---|
| 270 |  | 
|---|
| 271 | // Used to implement a range-for loop using CIter. Src is one of GrFragmentProcessor, | 
|---|
| 272 | // GrPaint, GrProcessorSet, or GrPipeline. Type aliases for these defined below. | 
|---|
| 273 | // Example usage: | 
|---|
| 274 | //   for (const auto& fp : GrFragmentProcessor::PaintRange(paint)) { | 
|---|
| 275 | //       if (fp.usesLocalCoords()) { | 
|---|
| 276 | //       ... | 
|---|
| 277 | //       } | 
|---|
| 278 | //   } | 
|---|
| 279 | template <typename Src> class CIterRange; | 
|---|
| 280 |  | 
|---|
| 281 | // We would use template deduction guides for CIter but for: | 
|---|
| 282 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79501 | 
|---|
| 283 | // Instead we use these specialized type aliases to make it prettier | 
|---|
| 284 | // to construct CIters for particular sources of FPs. | 
|---|
| 285 | using FPRange = CIterRange<GrFragmentProcessor>; | 
|---|
| 286 | using PaintRange = CIterRange<GrPaint>; | 
|---|
| 287 |  | 
|---|
| 288 | // Sentinel type for range-for using CIter. | 
|---|
| 289 | class EndCIter {}; | 
|---|
| 290 |  | 
|---|
| 291 | protected: | 
|---|
| 292 | enum OptimizationFlags : uint32_t { | 
|---|
| 293 | kNone_OptimizationFlags, | 
|---|
| 294 | kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1, | 
|---|
| 295 | kPreservesOpaqueInput_OptimizationFlag = 0x2, | 
|---|
| 296 | kConstantOutputForConstantInput_OptimizationFlag = 0x4, | 
|---|
| 297 | kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag | | 
|---|
| 298 | kPreservesOpaqueInput_OptimizationFlag | | 
|---|
| 299 | kConstantOutputForConstantInput_OptimizationFlag | 
|---|
| 300 | }; | 
|---|
| 301 | GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags) | 
|---|
| 302 |  | 
|---|
| 303 | /** | 
|---|
| 304 | * Can be used as a helper to decide which fragment processor OptimizationFlags should be set. | 
|---|
| 305 | * This assumes that the subclass output color will be a modulation of the input color with a | 
|---|
| 306 | * value read from a texture of the passed color type and that the texture contains | 
|---|
| 307 | * premultiplied color or alpha values that are in range. | 
|---|
| 308 | * | 
|---|
| 309 | * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped, | 
|---|
| 310 | * callers must determine on their own if the sampling uses a decal strategy in any way, in | 
|---|
| 311 | * which case the texture may become transparent regardless of the color type. | 
|---|
| 312 | */ | 
|---|
| 313 | static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) { | 
|---|
| 314 | if (samplingDecal) { | 
|---|
| 315 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; | 
|---|
| 316 | } else { | 
|---|
| 317 | return ModulateForClampedSamplerOptFlags(alphaType); | 
|---|
| 318 | } | 
|---|
| 319 | } | 
|---|
| 320 |  | 
|---|
| 321 | // As above, but callers should somehow ensure or assert their sampler still uses clamping | 
|---|
| 322 | static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) { | 
|---|
| 323 | if (alphaType == kOpaque_SkAlphaType) { | 
|---|
| 324 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag | | 
|---|
| 325 | kPreservesOpaqueInput_OptimizationFlag; | 
|---|
| 326 | } else { | 
|---|
| 327 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; | 
|---|
| 328 | } | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags) | 
|---|
| 332 | : INHERITED(classID), fFlags(optimizationFlags) { | 
|---|
| 333 | SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0); | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | OptimizationFlags optimizationFlags() const { | 
|---|
| 337 | return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags); | 
|---|
| 338 | } | 
|---|
| 339 |  | 
|---|
| 340 | /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/ | 
|---|
| 341 | static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) { | 
|---|
| 342 | return fp ? fp->optimizationFlags() : kAll_OptimizationFlags; | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 | /** | 
|---|
| 346 | * This allows one subclass to access another subclass's implementation of | 
|---|
| 347 | * constantOutputForConstantInput. It must only be called when | 
|---|
| 348 | * hasConstantOutputForConstantInput() is known to be true. | 
|---|
| 349 | */ | 
|---|
| 350 | static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor* fp, | 
|---|
| 351 | const SkPMColor4f& input) { | 
|---|
| 352 | if (fp) { | 
|---|
| 353 | SkASSERT(fp->hasConstantOutputForConstantInput()); | 
|---|
| 354 | return fp->constantOutputForConstantInput(input); | 
|---|
| 355 | } else { | 
|---|
| 356 | return input; | 
|---|
| 357 | } | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | /** | 
|---|
| 361 | * FragmentProcessor subclasses call this from their constructor to register any child | 
|---|
| 362 | * FragmentProcessors they have. This must be called AFTER all texture accesses and coord | 
|---|
| 363 | * transforms have been added. | 
|---|
| 364 | * This is for processors whose shader code will be composed of nested processors whose output | 
|---|
| 365 | * colors will be combined somehow to produce its output color. Registering these child | 
|---|
| 366 | * processors will allow the ProgramBuilder to automatically handle their transformed coords and | 
|---|
| 367 | * texture accesses and mangle their uniform and output color names. | 
|---|
| 368 | * | 
|---|
| 369 | * The SampleUsage parameter describes all of the ways that the child is sampled by the parent. | 
|---|
| 370 | */ | 
|---|
| 371 | void registerChild(std::unique_ptr<GrFragmentProcessor> child, | 
|---|
| 372 | SkSL::SampleUsage sampleUsage = SkSL::SampleUsage::PassThrough()); | 
|---|
| 373 |  | 
|---|
| 374 | /** | 
|---|
| 375 | * This method takes an existing fragment processor, clones all of its children, and registers | 
|---|
| 376 | * the clones as children of this fragment processor. | 
|---|
| 377 | */ | 
|---|
| 378 | void cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src); | 
|---|
| 379 |  | 
|---|
| 380 | // FP implementations must call this function if their matching GrGLSLFragmentProcessor's | 
|---|
| 381 | // emitCode() function uses the EmitArgs::fSampleCoord variable in generated SkSL. | 
|---|
| 382 | void setUsesSampleCoordsDirectly() { | 
|---|
| 383 | fFlags |= kUsesSampleCoordsDirectly_Flag; | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | private: | 
|---|
| 387 | virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const { | 
|---|
| 388 | SK_ABORT( "Subclass must override this if advertising this optimization."); | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | /** Returns a new instance of the appropriate *GL* implementation class | 
|---|
| 392 | for the given GrFragmentProcessor; caller is responsible for deleting | 
|---|
| 393 | the object. */ | 
|---|
| 394 | virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0; | 
|---|
| 395 |  | 
|---|
| 396 | /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */ | 
|---|
| 397 | virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0; | 
|---|
| 398 |  | 
|---|
| 399 | /** | 
|---|
| 400 | * Subclass implements this to support isEqual(). It will only be called if it is known that | 
|---|
| 401 | * the two processors are of the same subclass (i.e. they return the same object from | 
|---|
| 402 | * getFactory()). | 
|---|
| 403 | */ | 
|---|
| 404 | virtual bool onIsEqual(const GrFragmentProcessor&) const = 0; | 
|---|
| 405 |  | 
|---|
| 406 | enum PrivateFlags { | 
|---|
| 407 | kFirstPrivateFlag = kAll_OptimizationFlags + 1, | 
|---|
| 408 |  | 
|---|
| 409 | // Propagate up the FP tree to the root | 
|---|
| 410 | kUsesSampleCoordsIndirectly_Flag = kFirstPrivateFlag, | 
|---|
| 411 |  | 
|---|
| 412 | // Does not propagate at all | 
|---|
| 413 | kUsesSampleCoordsDirectly_Flag = kFirstPrivateFlag << 1, | 
|---|
| 414 |  | 
|---|
| 415 | // Propagates down the FP to all its leaves | 
|---|
| 416 | kSampledWithExplicitCoords_Flag = kFirstPrivateFlag << 2, | 
|---|
| 417 | kNetTransformHasPerspective_Flag = kFirstPrivateFlag << 3, | 
|---|
| 418 | }; | 
|---|
| 419 | void addAndPushFlagToChildren(PrivateFlags flag); | 
|---|
| 420 |  | 
|---|
| 421 | SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors; | 
|---|
| 422 | const GrFragmentProcessor* fParent = nullptr; | 
|---|
| 423 | uint32_t fFlags = 0; | 
|---|
| 424 | SkSL::SampleUsage fUsage; | 
|---|
| 425 |  | 
|---|
| 426 | typedef GrProcessor INHERITED; | 
|---|
| 427 | }; | 
|---|
| 428 |  | 
|---|
| 429 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 430 |  | 
|---|
| 431 | GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags) | 
|---|
| 432 |  | 
|---|
| 433 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 434 |  | 
|---|
| 435 | class GrFragmentProcessor::CIter { | 
|---|
| 436 | public: | 
|---|
| 437 | explicit CIter(const GrFragmentProcessor& fp) { fFPStack.push_back(&fp); } | 
|---|
| 438 | explicit CIter(const GrPaint&); | 
|---|
| 439 | explicit CIter(const GrPipeline&); | 
|---|
| 440 |  | 
|---|
| 441 | const GrFragmentProcessor& operator*() const  { return *fFPStack.back(); } | 
|---|
| 442 | const GrFragmentProcessor* operator->() const { return fFPStack.back(); } | 
|---|
| 443 |  | 
|---|
| 444 | CIter& operator++(); | 
|---|
| 445 |  | 
|---|
| 446 | operator bool() const { return !fFPStack.empty(); } | 
|---|
| 447 |  | 
|---|
| 448 | bool operator!=(const EndCIter&) { return (bool)*this; } | 
|---|
| 449 |  | 
|---|
| 450 | // Hopefully this does not actually get called because of RVO. | 
|---|
| 451 | CIter(const CIter&) = default; | 
|---|
| 452 |  | 
|---|
| 453 | // Because each iterator carries a stack we want to avoid copies. | 
|---|
| 454 | CIter& operator=(const CIter&) = delete; | 
|---|
| 455 |  | 
|---|
| 456 | protected: | 
|---|
| 457 | CIter() = delete; | 
|---|
| 458 |  | 
|---|
| 459 | SkSTArray<4, const GrFragmentProcessor*, true> fFPStack; | 
|---|
| 460 | }; | 
|---|
| 461 |  | 
|---|
| 462 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 463 |  | 
|---|
| 464 | template <typename Src> class GrFragmentProcessor::CIterRange { | 
|---|
| 465 | public: | 
|---|
| 466 | explicit CIterRange(const Src& t) : fT(t) {} | 
|---|
| 467 | CIter begin() const { return CIter(fT); } | 
|---|
| 468 | EndCIter end() const { return EndCIter(); } | 
|---|
| 469 |  | 
|---|
| 470 | private: | 
|---|
| 471 | const Src& fT; | 
|---|
| 472 | }; | 
|---|
| 473 |  | 
|---|
| 474 | /** | 
|---|
| 475 | * Some fragment-processor creation methods have preconditions that might not be satisfied by the | 
|---|
| 476 | * calling code. Those methods can return a `GrFPResult` from their factory methods. If creation | 
|---|
| 477 | * succeeds, the new fragment processor is created and `success` is true. If a precondition is not | 
|---|
| 478 | * met, `success` is set to false and the input FP is returned unchanged. | 
|---|
| 479 | */ | 
|---|
| 480 | using GrFPResult = std::tuple<bool /*success*/, std::unique_ptr<GrFragmentProcessor>>; | 
|---|
| 481 | static inline GrFPResult GrFPFailure(std::unique_ptr<GrFragmentProcessor> fp) { | 
|---|
| 482 | return {false, std::move(fp)}; | 
|---|
| 483 | } | 
|---|
| 484 | static inline GrFPResult GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp) { | 
|---|
| 485 | return {true, std::move(fp)}; | 
|---|
| 486 | } | 
|---|
| 487 |  | 
|---|
| 488 | #endif | 
|---|
| 489 |  | 
|---|