1 | /* |
2 | * Copyright 2014 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkPathPriv.h" |
9 | #include "src/gpu/effects/GrConvexPolyEffect.h" |
10 | #include "src/gpu/effects/generated/GrAARectEffect.h" |
11 | #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
12 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
13 | #include "src/gpu/glsl/GrGLSLProgramDataManager.h" |
14 | #include "src/gpu/glsl/GrGLSLUniformHandler.h" |
15 | |
16 | ////////////////////////////////////////////////////////////////////////////// |
17 | |
18 | class GrGLConvexPolyEffect : public GrGLSLFragmentProcessor { |
19 | public: |
20 | GrGLConvexPolyEffect() { |
21 | for (size_t i = 0; i < SK_ARRAY_COUNT(fPrevEdges); ++i) { |
22 | fPrevEdges[i] = SK_ScalarNaN; |
23 | } |
24 | } |
25 | |
26 | void emitCode(EmitArgs&) override; |
27 | |
28 | static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); |
29 | |
30 | protected: |
31 | void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
32 | |
33 | private: |
34 | GrGLSLProgramDataManager::UniformHandle fEdgeUniform; |
35 | SkScalar fPrevEdges[3 * GrConvexPolyEffect::kMaxEdges]; |
36 | typedef GrGLSLFragmentProcessor INHERITED; |
37 | }; |
38 | |
39 | void GrGLConvexPolyEffect::emitCode(EmitArgs& args) { |
40 | const GrConvexPolyEffect& cpe = args.fFp.cast<GrConvexPolyEffect>(); |
41 | |
42 | const char *edgeArrayName; |
43 | fEdgeUniform = args.fUniformHandler->addUniformArray(&cpe, |
44 | kFragment_GrShaderFlag, |
45 | kHalf3_GrSLType, |
46 | "edges" , |
47 | cpe.getEdgeCount(), |
48 | &edgeArrayName); |
49 | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
50 | fragBuilder->codeAppend("\t\thalf alpha = 1.0;\n" ); |
51 | fragBuilder->codeAppend("\t\thalf edge;\n" ); |
52 | for (int i = 0; i < cpe.getEdgeCount(); ++i) { |
53 | fragBuilder->codeAppendf("\t\tedge = dot(%s[%d], half3(half(sk_FragCoord.x), " |
54 | "half(sk_FragCoord.y), " |
55 | "1));\n" , |
56 | edgeArrayName, i); |
57 | if (GrProcessorEdgeTypeIsAA(cpe.getEdgeType())) { |
58 | fragBuilder->codeAppend("\t\tedge = saturate(edge);\n" ); |
59 | } else { |
60 | fragBuilder->codeAppend("\t\tedge = edge >= 0.5 ? 1.0 : 0.0;\n" ); |
61 | } |
62 | fragBuilder->codeAppend("\t\talpha *= edge;\n" ); |
63 | } |
64 | |
65 | if (GrProcessorEdgeTypeIsInverseFill(cpe.getEdgeType())) { |
66 | fragBuilder->codeAppend("\talpha = 1.0 - alpha;\n" ); |
67 | } |
68 | |
69 | SkString inputSample = this->invokeChild(/*childIndex=*/0, args); |
70 | |
71 | fragBuilder->codeAppendf("\t%s = %s * alpha;\n" , args.fOutputColor, inputSample.c_str()); |
72 | } |
73 | |
74 | void GrGLConvexPolyEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
75 | const GrFragmentProcessor& effect) { |
76 | const GrConvexPolyEffect& cpe = effect.cast<GrConvexPolyEffect>(); |
77 | size_t byteSize = 3 * cpe.getEdgeCount() * sizeof(SkScalar); |
78 | if (0 != memcmp(fPrevEdges, cpe.getEdges(), byteSize)) { |
79 | pdman.set3fv(fEdgeUniform, cpe.getEdgeCount(), cpe.getEdges()); |
80 | memcpy(fPrevEdges, cpe.getEdges(), byteSize); |
81 | } |
82 | } |
83 | |
84 | void GrGLConvexPolyEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&, |
85 | GrProcessorKeyBuilder* b) { |
86 | const GrConvexPolyEffect& cpe = processor.cast<GrConvexPolyEffect>(); |
87 | static_assert(kGrClipEdgeTypeCnt <= 8); |
88 | uint32_t key = (cpe.getEdgeCount() << 3) | (int) cpe.getEdgeType(); |
89 | b->add32(key); |
90 | } |
91 | |
92 | ////////////////////////////////////////////////////////////////////////////// |
93 | |
94 | GrFPResult GrConvexPolyEffect::Make(std::unique_ptr<GrFragmentProcessor> inputFP, |
95 | GrClipEdgeType type, const SkPath& path) { |
96 | if (path.getSegmentMasks() != SkPath::kLine_SegmentMask || !path.isConvex()) { |
97 | return GrFPFailure(std::move(inputFP)); |
98 | } |
99 | |
100 | SkPathPriv::FirstDirection dir; |
101 | // The only way this should fail is if the clip is effectively a infinitely thin line. In that |
102 | // case nothing is inside the clip. It'd be nice to detect this at a higher level and either |
103 | // skip the draw or omit the clip element. |
104 | if (!SkPathPriv::CheapComputeFirstDirection(path, &dir)) { |
105 | if (GrProcessorEdgeTypeIsInverseFill(type)) { |
106 | return GrFPSuccess( |
107 | GrFragmentProcessor::ModulateRGBA(std::move(inputFP), SK_PMColor4fWHITE)); |
108 | } |
109 | // This could use ConstColor instead of ModulateRGBA but it would trigger a debug print |
110 | // about a coverage processor not being compatible with the alpha-as-coverage optimization. |
111 | // We don't really care about this unlikely case so we just use ModulateRGBA to suppress |
112 | // the print. |
113 | return GrFPSuccess( |
114 | GrFragmentProcessor::ModulateRGBA(std::move(inputFP), SK_PMColor4fTRANSPARENT)); |
115 | } |
116 | |
117 | SkScalar edges[3 * kMaxEdges]; |
118 | SkPoint pts[4]; |
119 | SkPath::Verb verb; |
120 | SkPath::Iter iter(path, true); |
121 | |
122 | // SkPath considers itself convex so long as there is a convex contour within it, |
123 | // regardless of any degenerate contours such as a string of moveTos before it. |
124 | // Iterate here to consume any degenerate contours and only process the points |
125 | // on the actual convex contour. |
126 | int n = 0; |
127 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
128 | switch (verb) { |
129 | case SkPath::kMove_Verb: |
130 | SkASSERT(n == 0); |
131 | break; |
132 | case SkPath::kClose_Verb: |
133 | break; |
134 | case SkPath::kLine_Verb: { |
135 | if (n >= kMaxEdges) { |
136 | return GrFPFailure(std::move(inputFP)); |
137 | } |
138 | if (pts[0] != pts[1]) { |
139 | SkVector v = pts[1] - pts[0]; |
140 | v.normalize(); |
141 | if (SkPathPriv::kCCW_FirstDirection == dir) { |
142 | edges[3 * n] = v.fY; |
143 | edges[3 * n + 1] = -v.fX; |
144 | } else { |
145 | edges[3 * n] = -v.fY; |
146 | edges[3 * n + 1] = v.fX; |
147 | } |
148 | edges[3 * n + 2] = -(edges[3 * n] * pts[1].fX + edges[3 * n + 1] * pts[1].fY); |
149 | ++n; |
150 | } |
151 | break; |
152 | } |
153 | default: |
154 | return GrFPFailure(std::move(inputFP)); |
155 | } |
156 | } |
157 | |
158 | if (path.isInverseFillType()) { |
159 | type = GrInvertProcessorEdgeType(type); |
160 | } |
161 | return GrConvexPolyEffect::Make(std::move(inputFP), type, n, edges); |
162 | } |
163 | |
164 | GrFPResult GrConvexPolyEffect::Make(std::unique_ptr<GrFragmentProcessor> inputFP, |
165 | GrClipEdgeType edgeType, const SkRect& rect) { |
166 | // TODO: Replace calls to this method with calling GrAARectEffect::Make directly |
167 | return GrFPSuccess(GrAARectEffect::Make(std::move(inputFP), edgeType, rect)); |
168 | } |
169 | |
170 | GrConvexPolyEffect::~GrConvexPolyEffect() {} |
171 | |
172 | void GrConvexPolyEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
173 | GrProcessorKeyBuilder* b) const { |
174 | GrGLConvexPolyEffect::GenKey(*this, caps, b); |
175 | } |
176 | |
177 | GrGLSLFragmentProcessor* GrConvexPolyEffect::onCreateGLSLInstance() const { |
178 | return new GrGLConvexPolyEffect; |
179 | } |
180 | |
181 | GrConvexPolyEffect::GrConvexPolyEffect(std::unique_ptr<GrFragmentProcessor> inputFP, |
182 | GrClipEdgeType edgeType, int n, const SkScalar edges[]) |
183 | : INHERITED(kGrConvexPolyEffect_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag) |
184 | , fEdgeType(edgeType) |
185 | , fEdgeCount(n) { |
186 | // Factory function should have already ensured this. |
187 | SkASSERT(n <= kMaxEdges); |
188 | memcpy(fEdges, edges, 3 * n * sizeof(SkScalar)); |
189 | // Outset the edges by 0.5 so that a pixel with center on an edge is 50% covered in the AA case |
190 | // and 100% covered in the non-AA case. |
191 | for (int i = 0; i < n; ++i) { |
192 | fEdges[3 * i + 2] += SK_ScalarHalf; |
193 | } |
194 | |
195 | this->registerChild(std::move(inputFP)); |
196 | } |
197 | |
198 | GrConvexPolyEffect::GrConvexPolyEffect(const GrConvexPolyEffect& that) |
199 | : INHERITED(kGrConvexPolyEffect_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag) |
200 | , fEdgeType(that.fEdgeType) |
201 | , fEdgeCount(that.fEdgeCount) { |
202 | this->cloneAndRegisterAllChildProcessors(that); |
203 | memcpy(fEdges, that.fEdges, 3 * that.fEdgeCount * sizeof(SkScalar)); |
204 | } |
205 | |
206 | std::unique_ptr<GrFragmentProcessor> GrConvexPolyEffect::clone() const { |
207 | return std::unique_ptr<GrFragmentProcessor>(new GrConvexPolyEffect(*this)); |
208 | } |
209 | |
210 | bool GrConvexPolyEffect::onIsEqual(const GrFragmentProcessor& other) const { |
211 | const GrConvexPolyEffect& cpe = other.cast<GrConvexPolyEffect>(); |
212 | // ignore the fact that 0 == -0 and just use memcmp. |
213 | return (cpe.fEdgeType == fEdgeType && cpe.fEdgeCount == fEdgeCount && |
214 | 0 == memcmp(cpe.fEdges, fEdges, 3 * fEdgeCount * sizeof(SkScalar))); |
215 | } |
216 | |
217 | ////////////////////////////////////////////////////////////////////////////// |
218 | |
219 | GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConvexPolyEffect); |
220 | |
221 | #if GR_TEST_UTILS |
222 | std::unique_ptr<GrFragmentProcessor> GrConvexPolyEffect::TestCreate(GrProcessorTestData* d) { |
223 | int count = d->fRandom->nextULessThan(kMaxEdges) + 1; |
224 | SkScalar edges[kMaxEdges * 3]; |
225 | for (int i = 0; i < 3 * count; ++i) { |
226 | edges[i] = d->fRandom->nextSScalar1(); |
227 | } |
228 | |
229 | bool success; |
230 | std::unique_ptr<GrFragmentProcessor> fp = d->inputFP(); |
231 | do { |
232 | GrClipEdgeType edgeType = |
233 | static_cast<GrClipEdgeType>(d->fRandom->nextULessThan(kGrClipEdgeTypeCnt)); |
234 | std::tie(success, fp) = GrConvexPolyEffect::Make(std::move(fp), edgeType, count, edges); |
235 | } while (!success); |
236 | return fp; |
237 | } |
238 | #endif |
239 | |