1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "Matrix.hpp" |
16 | |
17 | #include "Point.hpp" |
18 | #include "Common/Math.hpp" |
19 | |
20 | namespace sw |
21 | { |
22 | Matrix Matrix::diag(float m11, float m22, float m33, float m44) |
23 | { |
24 | return Matrix(m11, 0, 0, 0, |
25 | 0, m22, 0, 0, |
26 | 0, 0, m33, 0, |
27 | 0, 0, 0, m44); |
28 | } |
29 | |
30 | Matrix::operator float*() |
31 | { |
32 | return &(*this)(1, 1); |
33 | } |
34 | |
35 | Matrix Matrix::operator+() const |
36 | { |
37 | return *this; |
38 | } |
39 | |
40 | Matrix Matrix::operator-() const |
41 | { |
42 | const Matrix &M = *this; |
43 | |
44 | return Matrix(-M(1, 1), -M(1, 2), -M(1, 3), -M(1, 4), |
45 | -M(2, 1), -M(2, 2), -M(2, 3), -M(2, 4), |
46 | -M(3, 1), -M(3, 2), -M(3, 3), -M(3, 4), |
47 | -M(4, 1), -M(4, 2), -M(4, 3), -M(4, 4)); |
48 | } |
49 | |
50 | Matrix Matrix::operator!() const |
51 | { |
52 | const Matrix &M = *this; |
53 | Matrix I; |
54 | |
55 | float M3344 = M(3, 3) * M(4, 4) - M(4, 3) * M(3, 4); |
56 | float M2344 = M(2, 3) * M(4, 4) - M(4, 3) * M(2, 4); |
57 | float M2334 = M(2, 3) * M(3, 4) - M(3, 3) * M(2, 4); |
58 | float M3244 = M(3, 2) * M(4, 4) - M(4, 2) * M(3, 4); |
59 | float M2244 = M(2, 2) * M(4, 4) - M(4, 2) * M(2, 4); |
60 | float M2234 = M(2, 2) * M(3, 4) - M(3, 2) * M(2, 4); |
61 | float M3243 = M(3, 2) * M(4, 3) - M(4, 2) * M(3, 3); |
62 | float M2243 = M(2, 2) * M(4, 3) - M(4, 2) * M(2, 3); |
63 | float M2233 = M(2, 2) * M(3, 3) - M(3, 2) * M(2, 3); |
64 | float M1344 = M(1, 3) * M(4, 4) - M(4, 3) * M(1, 4); |
65 | float M1334 = M(1, 3) * M(3, 4) - M(3, 3) * M(1, 4); |
66 | float M1244 = M(1, 2) * M(4, 4) - M(4, 2) * M(1, 4); |
67 | float M1234 = M(1, 2) * M(3, 4) - M(3, 2) * M(1, 4); |
68 | float M1243 = M(1, 2) * M(4, 3) - M(4, 2) * M(1, 3); |
69 | float M1233 = M(1, 2) * M(3, 3) - M(3, 2) * M(1, 3); |
70 | float M1324 = M(1, 3) * M(2, 4) - M(2, 3) * M(1, 4); |
71 | float M1224 = M(1, 2) * M(2, 4) - M(2, 2) * M(1, 4); |
72 | float M1223 = M(1, 2) * M(2, 3) - M(2, 2) * M(1, 3); |
73 | |
74 | // Adjoint Matrix |
75 | I(1, 1) = M(2, 2) * M3344 - M(3, 2) * M2344 + M(4, 2) * M2334; |
76 | I(2, 1) = -M(2, 1) * M3344 + M(3, 1) * M2344 - M(4, 1) * M2334; |
77 | I(3, 1) = M(2, 1) * M3244 - M(3, 1) * M2244 + M(4, 1) * M2234; |
78 | I(4, 1) = -M(2, 1) * M3243 + M(3, 1) * M2243 - M(4, 1) * M2233; |
79 | |
80 | I(1, 2) = -M(1, 2) * M3344 + M(3, 2) * M1344 - M(4, 2) * M1334; |
81 | I(2, 2) = M(1, 1) * M3344 - M(3, 1) * M1344 + M(4, 1) * M1334; |
82 | I(3, 2) = -M(1, 1) * M3244 + M(3, 1) * M1244 - M(4, 1) * M1234; |
83 | I(4, 2) = M(1, 1) * M3243 - M(3, 1) * M1243 + M(4, 1) * M1233; |
84 | |
85 | I(1, 3) = M(1, 2) * M2344 - M(2, 2) * M1344 + M(4, 2) * M1324; |
86 | I(2, 3) = -M(1, 1) * M2344 + M(2, 1) * M1344 - M(4, 1) * M1324; |
87 | I(3, 3) = M(1, 1) * M2244 - M(2, 1) * M1244 + M(4, 1) * M1224; |
88 | I(4, 3) = -M(1, 1) * M2243 + M(2, 1) * M1243 - M(4, 1) * M1223; |
89 | |
90 | I(1, 4) = -M(1, 2) * M2334 + M(2, 2) * M1334 - M(3, 2) * M1324; |
91 | I(2, 4) = M(1, 1) * M2334 - M(2, 1) * M1334 + M(3, 1) * M1324; |
92 | I(3, 4) = -M(1, 1) * M2234 + M(2, 1) * M1234 - M(3, 1) * M1224; |
93 | I(4, 4) = M(1, 1) * M2233 - M(2, 1) * M1233 + M(3, 1) * M1223; |
94 | |
95 | // Division by determinant |
96 | I /= M(1, 1) * I(1, 1) + |
97 | M(2, 1) * I(1, 2) + |
98 | M(3, 1) * I(1, 3) + |
99 | M(4, 1) * I(1, 4); |
100 | |
101 | return I; |
102 | } |
103 | |
104 | Matrix Matrix::operator~() const |
105 | { |
106 | const Matrix &M = *this; |
107 | |
108 | return Matrix(M(1, 1), M(2, 1), M(3, 1), M(4, 1), |
109 | M(1, 2), M(2, 2), M(3, 2), M(4, 2), |
110 | M(1, 3), M(2, 3), M(3, 3), M(4, 3), |
111 | M(1, 4), M(2, 4), M(3, 4), M(4, 4)); |
112 | } |
113 | |
114 | Matrix &Matrix::operator+=(const Matrix &N) |
115 | { |
116 | Matrix &M = *this; |
117 | |
118 | M(1, 1) += N(1, 1); M(1, 2) += N(1, 2); M(1, 3) += N(1, 3); M(1, 4) += N(1, 4); |
119 | M(2, 1) += N(2, 1); M(2, 2) += N(2, 2); M(2, 3) += N(2, 3); M(2, 4) += N(2, 4); |
120 | M(3, 1) += N(3, 1); M(3, 2) += N(3, 2); M(3, 3) += N(3, 3); M(3, 4) += N(3, 4); |
121 | M(4, 1) += N(4, 1); M(4, 2) += N(4, 2); M(4, 3) += N(4, 3); M(4, 4) += N(4, 4); |
122 | |
123 | return M; |
124 | } |
125 | |
126 | Matrix &Matrix::operator-=(const Matrix &N) |
127 | { |
128 | Matrix &M = *this; |
129 | |
130 | M(1, 1) -= N(1, 1); M(1, 2) -= N(1, 2); M(1, 3) -= N(1, 3); M(1, 4) -= N(1, 4); |
131 | M(2, 1) -= N(2, 1); M(2, 2) -= N(2, 2); M(2, 3) -= N(2, 3); M(2, 4) -= N(2, 4); |
132 | M(3, 1) -= N(3, 1); M(3, 2) -= N(3, 2); M(3, 3) -= N(3, 3); M(3, 4) -= N(3, 4); |
133 | M(4, 1) -= N(4, 1); M(4, 2) -= N(4, 2); M(4, 3) -= N(4, 3); M(4, 4) -= N(4, 4); |
134 | |
135 | return M; |
136 | } |
137 | |
138 | Matrix &Matrix::operator*=(float s) |
139 | { |
140 | Matrix &M = *this; |
141 | |
142 | M(1, 1) *= s; M(1, 2) *= s; M(1, 3) *= s; M(1, 4) *= s; |
143 | M(2, 1) *= s; M(2, 2) *= s; M(2, 3) *= s; M(2, 4) *= s; |
144 | M(3, 1) *= s; M(3, 2) *= s; M(3, 3) *= s; M(3, 4) *= s; |
145 | M(4, 1) *= s; M(4, 2) *= s; M(4, 3) *= s; M(4, 4) *= s; |
146 | |
147 | return M; |
148 | } |
149 | |
150 | Matrix &Matrix::operator*=(const Matrix &M) |
151 | { |
152 | return *this = *this * M; |
153 | } |
154 | |
155 | Matrix &Matrix::operator/=(float s) |
156 | { |
157 | float r = 1.0f / s; |
158 | |
159 | return *this *= r; |
160 | } |
161 | |
162 | bool operator==(const Matrix &M, const Matrix &N) |
163 | { |
164 | if(M(1, 1) == N(1, 1) && M(1, 2) == N(1, 2) && M(1, 3) == N(1, 3) && M(1, 4) == N(1, 4) && |
165 | M(2, 1) == N(2, 1) && M(2, 2) == N(2, 2) && M(2, 3) == N(2, 3) && M(2, 4) == N(2, 4) && |
166 | M(3, 1) == N(3, 1) && M(3, 2) == N(3, 2) && M(3, 3) == N(3, 3) && M(3, 4) == N(3, 4) && |
167 | M(4, 1) == N(4, 1) && M(4, 2) == N(4, 2) && M(4, 3) == N(4, 3) && M(4, 4) == N(4, 4)) |
168 | return true; |
169 | else |
170 | return false; |
171 | } |
172 | |
173 | bool operator!=(const Matrix &M, const Matrix &N) |
174 | { |
175 | if(M(1, 1) != N(1, 1) || M(1, 2) != N(1, 2) || M(1, 3) != N(1, 3) || M(1, 4) != N(1, 4) || |
176 | M(2, 1) != N(2, 1) || M(2, 2) != N(2, 2) || M(2, 3) != N(2, 3) || M(2, 4) != N(2, 4) || |
177 | M(3, 1) != N(3, 1) || M(3, 2) != N(3, 2) || M(3, 3) != N(3, 3) || M(3, 4) != N(3, 4) || |
178 | M(4, 1) != N(4, 1) || M(4, 2) != N(4, 2) || M(4, 3) != N(4, 3) || M(4, 4) != N(4, 4)) |
179 | return true; |
180 | else |
181 | return false; |
182 | } |
183 | |
184 | Matrix operator+(const Matrix &M, const Matrix &N) |
185 | { |
186 | return Matrix(M(1, 1) + N(1, 1), M(1, 2) + N(1, 2), M(1, 3) + N(1, 3), M(1, 4) + N(1, 4), |
187 | M(2, 1) + N(2, 1), M(2, 2) + N(2, 2), M(2, 3) + N(2, 3), M(2, 4) + N(2, 4), |
188 | M(3, 1) + N(3, 1), M(3, 2) + N(3, 2), M(3, 3) + N(3, 3), M(3, 4) + N(3, 4), |
189 | M(4, 1) + N(4, 1), M(4, 2) + N(4, 2), M(4, 3) + N(4, 3), M(4, 4) + N(4, 4)); |
190 | } |
191 | |
192 | Matrix operator-(const Matrix &M, const Matrix &N) |
193 | { |
194 | return Matrix(M(1, 1) - N(1, 1), M(1, 2) - N(1, 2), M(1, 3) - N(1, 3), M(1, 4) - N(1, 4), |
195 | M(2, 1) - N(2, 1), M(2, 2) - N(2, 2), M(2, 3) - N(2, 3), M(2, 4) - N(2, 4), |
196 | M(3, 1) - N(3, 1), M(3, 2) - N(3, 2), M(3, 3) - N(3, 3), M(3, 4) - N(3, 4), |
197 | M(4, 1) - N(4, 1), M(4, 2) - N(4, 2), M(4, 3) - N(4, 3), M(4, 4) - N(4, 4)); |
198 | } |
199 | |
200 | Matrix operator*(float s, const Matrix &M) |
201 | { |
202 | return Matrix(s * M(1, 1), s * M(1, 2), s * M(1, 3), s * M(1, 4), |
203 | s * M(2, 1), s * M(2, 2), s * M(2, 3), s * M(2, 4), |
204 | s * M(3, 1), s * M(3, 2), s * M(3, 3), s * M(3, 4), |
205 | s * M(4, 1), s * M(4, 2), s * M(4, 3), s * M(4, 4)); |
206 | } |
207 | |
208 | Matrix operator*(const Matrix &M, float s) |
209 | { |
210 | return Matrix(M(1, 1) * s, M(1, 2) * s, M(1, 3) * s, M(1, 4) * s, |
211 | M(2, 1) * s, M(2, 2) * s, M(2, 3) * s, M(2, 4) * s, |
212 | M(3, 1) * s, M(3, 2) * s, M(3, 3) * s, M(3, 4) * s, |
213 | M(4, 1) * s, M(4, 2) * s, M(4, 3) * s, M(4, 4) * s); |
214 | } |
215 | |
216 | Matrix operator*(const Matrix &M, const Matrix &N) |
217 | { |
218 | return Matrix(M(1, 1) * N(1, 1) + M(1, 2) * N(2, 1) + M(1, 3) * N(3, 1) + M(1, 4) * N(4, 1), M(1, 1) * N(1, 2) + M(1, 2) * N(2, 2) + M(1, 3) * N(3, 2) + M(1, 4) * N(4, 2), M(1, 1) * N(1, 3) + M(1, 2) * N(2, 3) + M(1, 3) * N(3, 3) + M(1, 4) * N(4, 3), M(1, 1) * N(1, 4) + M(1, 2) * N(2, 4) + M(1, 3) * N(3, 4) + M(1, 4) * N(4, 4), |
219 | M(2, 1) * N(1, 1) + M(2, 2) * N(2, 1) + M(2, 3) * N(3, 1) + M(2, 4) * N(4, 1), M(2, 1) * N(1, 2) + M(2, 2) * N(2, 2) + M(2, 3) * N(3, 2) + M(2, 4) * N(4, 2), M(2, 1) * N(1, 3) + M(2, 2) * N(2, 3) + M(2, 3) * N(3, 3) + M(2, 4) * N(4, 3), M(2, 1) * N(1, 4) + M(2, 2) * N(2, 4) + M(2, 3) * N(3, 4) + M(2, 4) * N(4, 4), |
220 | M(3, 1) * N(1, 1) + M(3, 2) * N(2, 1) + M(3, 3) * N(3, 1) + M(3, 4) * N(4, 1), M(3, 1) * N(1, 2) + M(3, 2) * N(2, 2) + M(3, 3) * N(3, 2) + M(3, 4) * N(4, 2), M(3, 1) * N(1, 3) + M(3, 2) * N(2, 3) + M(3, 3) * N(3, 3) + M(3, 4) * N(4, 3), M(3, 1) * N(1, 4) + M(3, 2) * N(2, 4) + M(3, 3) * N(3, 4) + M(3, 4) * N(4, 4), |
221 | M(4, 1) * N(1, 1) + M(4, 2) * N(2, 1) + M(4, 3) * N(3, 1) + M(4, 4) * N(4, 1), M(4, 1) * N(1, 2) + M(4, 2) * N(2, 2) + M(4, 3) * N(3, 2) + M(4, 4) * N(4, 2), M(4, 1) * N(1, 3) + M(4, 2) * N(2, 3) + M(4, 3) * N(3, 3) + M(4, 4) * N(4, 3), M(4, 1) * N(1, 4) + M(4, 2) * N(2, 4) + M(4, 3) * N(3, 4) + M(4, 4) * N(4, 4)); |
222 | } |
223 | |
224 | Matrix operator/(const Matrix &M, float s) |
225 | { |
226 | float r = 1.0f / s; |
227 | |
228 | return M * r; |
229 | } |
230 | |
231 | float4 Matrix::operator*(const float4 &v) const |
232 | { |
233 | const Matrix &M = *this; |
234 | float Mx = M(1, 1) * v.x + M(1, 2) * v.y + M(1, 3) * v.z + M(1, 4) * v.w; |
235 | float My = M(2, 1) * v.x + M(2, 2) * v.y + M(2, 3) * v.z + M(2, 4) * v.w; |
236 | float Mz = M(3, 1) * v.x + M(3, 2) * v.y + M(3, 3) * v.z + M(3, 4) * v.w; |
237 | float Mw = M(4, 1) * v.x + M(4, 2) * v.y + M(4, 3) * v.z + M(4, 4) * v.w; |
238 | |
239 | return {Mx, My, Mz, Mw}; |
240 | } |
241 | |
242 | float Matrix::det(const Matrix &M) |
243 | { |
244 | float M3344 = M(3, 3) * M(4, 4) - M(4, 3) * M(3, 4); |
245 | float M2344 = M(2, 3) * M(4, 4) - M(4, 3) * M(2, 4); |
246 | float M2334 = M(2, 3) * M(3, 4) - M(3, 3) * M(2, 4); |
247 | float M1344 = M(1, 3) * M(4, 4) - M(4, 3) * M(1, 4); |
248 | float M1334 = M(1, 3) * M(3, 4) - M(3, 3) * M(1, 4); |
249 | float M1324 = M(1, 3) * M(2, 4) - M(2, 3) * M(1, 4); |
250 | |
251 | return M(1, 1) * (M(2, 2) * M3344 - M(3, 2) * M2344 + M(4, 2) * M2334) - |
252 | M(2, 1) * (M(1, 2) * M3344 - M(3, 2) * M1344 + M(4, 2) * M1334) + |
253 | M(3, 1) * (M(1, 2) * M2344 - M(2, 2) * M1344 + M(4, 2) * M1324) - |
254 | M(4, 1) * (M(1, 2) * M2334 - M(2, 2) * M1334 + M(3, 2) * M1324); |
255 | } |
256 | |
257 | float Matrix::det(float m11) |
258 | { |
259 | return m11; |
260 | } |
261 | |
262 | float Matrix::det(float m11, float m12, |
263 | float m21, float m22) |
264 | { |
265 | return m11 * m22 - m12 * m21; |
266 | } |
267 | |
268 | float Matrix::det(float m11, float m12, float m13, |
269 | float m21, float m22, float m23, |
270 | float m31, float m32, float m33) |
271 | { |
272 | return m11 * (m22 * m33 - m32 * m23) - |
273 | m21 * (m12 * m33 - m32 * m13) + |
274 | m31 * (m12 * m23 - m22 * m13); |
275 | } |
276 | |
277 | float Matrix::det(float m11, float m12, float m13, float m14, |
278 | float m21, float m22, float m23, float m24, |
279 | float m31, float m32, float m33, float m34, |
280 | float m41, float m42, float m43, float m44) |
281 | { |
282 | float M3344 = m33 * m44 - m43 * m34; |
283 | float M2344 = m23 * m44 - m43 * m24; |
284 | float M2334 = m23 * m34 - m33 * m24; |
285 | float M1344 = m13 * m44 - m43 * m14; |
286 | float M1334 = m13 * m34 - m33 * m14; |
287 | float M1324 = m13 * m24 - m23 * m14; |
288 | |
289 | return m11 * (m22 * M3344 - m32 * M2344 + m42 * M2334) - |
290 | m21 * (m12 * M3344 - m32 * M1344 + m42 * M1334) + |
291 | m31 * (m12 * M2344 - m22 * M1344 + m42 * M1324) - |
292 | m41 * (m12 * M2334 - m22 * M1334 + m32 * M1324); |
293 | } |
294 | |
295 | float Matrix::det(const Vector &v1, const Vector &v2, const Vector &v3) |
296 | { |
297 | return v1 * (v2 % v3); |
298 | } |
299 | |
300 | float Matrix::det3(const Matrix &M) |
301 | { |
302 | return M(1, 1) * (M(2, 2) * M(3, 3) - M(3, 2) * M(2, 3)) - |
303 | M(2, 1) * (M(1, 2) * M(3, 3) - M(3, 2) * M(1, 3)) + |
304 | M(3, 1) * (M(1, 2) * M(2, 3) - M(2, 2) * M(1, 3)); |
305 | } |
306 | |
307 | float Matrix::tr(const Matrix &M) |
308 | { |
309 | return M(1, 1) + M(2, 2) + M(3, 3) + M(4, 4); |
310 | } |
311 | |
312 | Matrix &Matrix::orthogonalise() |
313 | { |
314 | // NOTE: Numnerically instable, won't return exact the same result when already orhtogonal |
315 | |
316 | Matrix &M = *this; |
317 | |
318 | Vector v1(M(1, 1), M(2, 1), M(3, 1)); |
319 | Vector v2(M(1, 2), M(2, 2), M(3, 2)); |
320 | Vector v3(M(1, 3), M(2, 3), M(3, 3)); |
321 | |
322 | v2 -= v1 * (v1 * v2) / (v1 * v1); |
323 | v3 -= v1 * (v1 * v3) / (v1 * v1); |
324 | v3 -= v2 * (v2 * v3) / (v2 * v2); |
325 | |
326 | v1 /= Vector::N(v1); |
327 | v2 /= Vector::N(v2); |
328 | v3 /= Vector::N(v3); |
329 | |
330 | M(1, 1) = v1.x; M(1, 2) = v2.x; M(1, 3) = v3.x; |
331 | M(2, 1) = v1.y; M(2, 2) = v2.y; M(2, 3) = v3.y; |
332 | M(3, 1) = v1.z; M(3, 2) = v2.z; M(3, 3) = v3.z; |
333 | |
334 | return *this; |
335 | } |
336 | |
337 | Matrix Matrix::eulerRotate(const Vector &v) |
338 | { |
339 | float cz = cos(v.z); |
340 | float sz = sin(v.z); |
341 | float cx = cos(v.x); |
342 | float sx = sin(v.x); |
343 | float cy = cos(v.y); |
344 | float sy = sin(v.y); |
345 | |
346 | float sxsy = sx * sy; |
347 | float sxcy = sx * cy; |
348 | |
349 | return Matrix(cy * cz - sxsy * sz, -cy * sz - sxsy * cz, -sy * cx, |
350 | cx * sz, cx * cz, -sx, |
351 | sy * cz + sxcy * sz, -sy * sz + sxcy * cz, cy * cx); |
352 | } |
353 | |
354 | Matrix Matrix::eulerRotate(float x, float y, float z) |
355 | { |
356 | return eulerRotate(Vector(x, y, z)); |
357 | } |
358 | |
359 | Matrix Matrix::translate(const Vector &v) |
360 | { |
361 | return Matrix(1, 0, 0, v.x, |
362 | 0, 1, 0, v.y, |
363 | 0, 0, 1, v.z, |
364 | 0, 0, 0, 1); |
365 | } |
366 | |
367 | Matrix Matrix::translate(float x, float y, float z) |
368 | { |
369 | return translate(Vector(x, y, z)); |
370 | } |
371 | |
372 | Matrix Matrix::scale(const Vector &v) |
373 | { |
374 | return Matrix(v.x, 0, 0, |
375 | 0, v.y, 0, |
376 | 0, 0, v.z); |
377 | } |
378 | |
379 | Matrix Matrix::scale(float x, float y, float z) |
380 | { |
381 | return scale(Vector(x, y, z)); |
382 | } |
383 | |
384 | Matrix Matrix::lookAt(const Vector &v) |
385 | { |
386 | Vector y = v; |
387 | y /= Vector::N(y); |
388 | |
389 | Vector x = y % Vector(0, 0, 1); |
390 | x /= Vector::N(x); |
391 | |
392 | Vector z = x % y; |
393 | z /= Vector::N(z); |
394 | |
395 | return ~Matrix(x, y, z); |
396 | } |
397 | |
398 | Matrix Matrix::lookAt(float x, float y, float z) |
399 | { |
400 | return translate(Vector(x, y, z)); |
401 | } |
402 | } |
403 | |