| 1 | /**************************************************************************/ |
| 2 | /* bvh_abb.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef BVH_ABB_H |
| 32 | #define BVH_ABB_H |
| 33 | |
| 34 | // special optimized version of axis aligned bounding box |
| 35 | template <class BOUNDS = AABB, class POINT = Vector3> |
| 36 | struct BVH_ABB { |
| 37 | struct ConvexHull { |
| 38 | // convex hulls (optional) |
| 39 | const Plane *planes; |
| 40 | int num_planes; |
| 41 | const Vector3 *points; |
| 42 | int num_points; |
| 43 | }; |
| 44 | |
| 45 | struct Segment { |
| 46 | POINT from; |
| 47 | POINT to; |
| 48 | }; |
| 49 | |
| 50 | enum IntersectResult { |
| 51 | IR_MISS = 0, |
| 52 | IR_PARTIAL, |
| 53 | IR_FULL, |
| 54 | }; |
| 55 | |
| 56 | // we store mins with a negative value in order to test them with SIMD |
| 57 | POINT min; |
| 58 | POINT neg_max; |
| 59 | |
| 60 | bool operator==(const BVH_ABB &o) const { return (min == o.min) && (neg_max == o.neg_max); } |
| 61 | bool operator!=(const BVH_ABB &o) const { return (*this == o) == false; } |
| 62 | |
| 63 | void set(const POINT &_min, const POINT &_max) { |
| 64 | min = _min; |
| 65 | neg_max = -_max; |
| 66 | } |
| 67 | |
| 68 | // to and from standard AABB |
| 69 | void from(const BOUNDS &p_aabb) { |
| 70 | min = p_aabb.position; |
| 71 | neg_max = -(p_aabb.position + p_aabb.size); |
| 72 | } |
| 73 | |
| 74 | void to(BOUNDS &r_aabb) const { |
| 75 | r_aabb.position = min; |
| 76 | r_aabb.size = calculate_size(); |
| 77 | } |
| 78 | |
| 79 | void merge(const BVH_ABB &p_o) { |
| 80 | for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) { |
| 81 | neg_max[axis] = MIN(neg_max[axis], p_o.neg_max[axis]); |
| 82 | min[axis] = MIN(min[axis], p_o.min[axis]); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | POINT calculate_size() const { |
| 87 | return -neg_max - min; |
| 88 | } |
| 89 | |
| 90 | POINT calculate_center() const { |
| 91 | return POINT((calculate_size() * 0.5) + min); |
| 92 | } |
| 93 | |
| 94 | real_t get_proximity_to(const BVH_ABB &p_b) const { |
| 95 | const POINT d = (min - neg_max) - (p_b.min - p_b.neg_max); |
| 96 | real_t proximity = 0.0; |
| 97 | for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) { |
| 98 | proximity += Math::abs(d[axis]); |
| 99 | } |
| 100 | return proximity; |
| 101 | } |
| 102 | |
| 103 | int select_by_proximity(const BVH_ABB &p_a, const BVH_ABB &p_b) const { |
| 104 | return (get_proximity_to(p_a) < get_proximity_to(p_b) ? 0 : 1); |
| 105 | } |
| 106 | |
| 107 | uint32_t find_cutting_planes(const typename BVH_ABB::ConvexHull &p_hull, uint32_t *p_plane_ids) const { |
| 108 | uint32_t count = 0; |
| 109 | |
| 110 | for (int n = 0; n < p_hull.num_planes; n++) { |
| 111 | const Plane &p = p_hull.planes[n]; |
| 112 | if (intersects_plane(p)) { |
| 113 | p_plane_ids[count++] = n; |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | return count; |
| 118 | } |
| 119 | |
| 120 | bool intersects_plane(const Plane &p_p) const { |
| 121 | Vector3 size = calculate_size(); |
| 122 | Vector3 half_extents = size * 0.5; |
| 123 | Vector3 ofs = min + half_extents; |
| 124 | |
| 125 | // forward side of plane? |
| 126 | Vector3 point_offset( |
| 127 | (p_p.normal.x < 0) ? -half_extents.x : half_extents.x, |
| 128 | (p_p.normal.y < 0) ? -half_extents.y : half_extents.y, |
| 129 | (p_p.normal.z < 0) ? -half_extents.z : half_extents.z); |
| 130 | Vector3 point = point_offset + ofs; |
| 131 | |
| 132 | if (!p_p.is_point_over(point)) { |
| 133 | return false; |
| 134 | } |
| 135 | |
| 136 | point = -point_offset + ofs; |
| 137 | if (p_p.is_point_over(point)) { |
| 138 | return false; |
| 139 | } |
| 140 | |
| 141 | return true; |
| 142 | } |
| 143 | |
| 144 | bool intersects_convex_optimized(const ConvexHull &p_hull, const uint32_t *p_plane_ids, uint32_t p_num_planes) const { |
| 145 | Vector3 size = calculate_size(); |
| 146 | Vector3 half_extents = size * 0.5; |
| 147 | Vector3 ofs = min + half_extents; |
| 148 | |
| 149 | for (unsigned int i = 0; i < p_num_planes; i++) { |
| 150 | const Plane &p = p_hull.planes[p_plane_ids[i]]; |
| 151 | Vector3 point( |
| 152 | (p.normal.x > 0) ? -half_extents.x : half_extents.x, |
| 153 | (p.normal.y > 0) ? -half_extents.y : half_extents.y, |
| 154 | (p.normal.z > 0) ? -half_extents.z : half_extents.z); |
| 155 | point += ofs; |
| 156 | if (p.is_point_over(point)) { |
| 157 | return false; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | bool intersects_convex_partial(const ConvexHull &p_hull) const { |
| 165 | BOUNDS bb; |
| 166 | to(bb); |
| 167 | return bb.intersects_convex_shape(p_hull.planes, p_hull.num_planes, p_hull.points, p_hull.num_points); |
| 168 | } |
| 169 | |
| 170 | IntersectResult intersects_convex(const ConvexHull &p_hull) const { |
| 171 | if (intersects_convex_partial(p_hull)) { |
| 172 | // fully within? very important for tree checks |
| 173 | if (is_within_convex(p_hull)) { |
| 174 | return IR_FULL; |
| 175 | } |
| 176 | |
| 177 | return IR_PARTIAL; |
| 178 | } |
| 179 | |
| 180 | return IR_MISS; |
| 181 | } |
| 182 | |
| 183 | bool is_within_convex(const ConvexHull &p_hull) const { |
| 184 | // use half extents routine |
| 185 | BOUNDS bb; |
| 186 | to(bb); |
| 187 | return bb.inside_convex_shape(p_hull.planes, p_hull.num_planes); |
| 188 | } |
| 189 | |
| 190 | bool is_point_within_hull(const ConvexHull &p_hull, const Vector3 &p_pt) const { |
| 191 | for (int n = 0; n < p_hull.num_planes; n++) { |
| 192 | if (p_hull.planes[n].distance_to(p_pt) > 0.0f) { |
| 193 | return false; |
| 194 | } |
| 195 | } |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | bool intersects_segment(const Segment &p_s) const { |
| 200 | BOUNDS bb; |
| 201 | to(bb); |
| 202 | return bb.intersects_segment(p_s.from, p_s.to); |
| 203 | } |
| 204 | |
| 205 | bool intersects_point(const POINT &p_pt) const { |
| 206 | if (_any_lessthan(-p_pt, neg_max)) { |
| 207 | return false; |
| 208 | } |
| 209 | if (_any_lessthan(p_pt, min)) { |
| 210 | return false; |
| 211 | } |
| 212 | return true; |
| 213 | } |
| 214 | |
| 215 | // Very hot in profiling, make sure optimized |
| 216 | bool intersects(const BVH_ABB &p_o) const { |
| 217 | if (_any_morethan(p_o.min, -neg_max)) { |
| 218 | return false; |
| 219 | } |
| 220 | if (_any_morethan(min, -p_o.neg_max)) { |
| 221 | return false; |
| 222 | } |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | // for pre-swizzled tester (this object) |
| 227 | bool intersects_swizzled(const BVH_ABB &p_o) const { |
| 228 | if (_any_lessthan(min, p_o.min)) { |
| 229 | return false; |
| 230 | } |
| 231 | if (_any_lessthan(neg_max, p_o.neg_max)) { |
| 232 | return false; |
| 233 | } |
| 234 | return true; |
| 235 | } |
| 236 | |
| 237 | bool is_other_within(const BVH_ABB &p_o) const { |
| 238 | if (_any_lessthan(p_o.neg_max, neg_max)) { |
| 239 | return false; |
| 240 | } |
| 241 | if (_any_lessthan(p_o.min, min)) { |
| 242 | return false; |
| 243 | } |
| 244 | return true; |
| 245 | } |
| 246 | |
| 247 | void grow(const POINT &p_change) { |
| 248 | neg_max -= p_change; |
| 249 | min -= p_change; |
| 250 | } |
| 251 | |
| 252 | void expand(real_t p_change) { |
| 253 | POINT change; |
| 254 | for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) { |
| 255 | change[axis] = p_change; |
| 256 | } |
| 257 | grow(change); |
| 258 | } |
| 259 | |
| 260 | // Actually surface area metric. |
| 261 | float get_area() const { |
| 262 | POINT d = calculate_size(); |
| 263 | return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x); |
| 264 | } |
| 265 | |
| 266 | void set_to_max_opposite_extents() { |
| 267 | for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) { |
| 268 | neg_max[axis] = FLT_MAX; |
| 269 | } |
| 270 | min = neg_max; |
| 271 | } |
| 272 | |
| 273 | bool _any_morethan(const POINT &p_a, const POINT &p_b) const { |
| 274 | for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) { |
| 275 | if (p_a[axis] > p_b[axis]) { |
| 276 | return true; |
| 277 | } |
| 278 | } |
| 279 | return false; |
| 280 | } |
| 281 | |
| 282 | bool _any_lessthan(const POINT &p_a, const POINT &p_b) const { |
| 283 | for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) { |
| 284 | if (p_a[axis] < p_b[axis]) { |
| 285 | return true; |
| 286 | } |
| 287 | } |
| 288 | return false; |
| 289 | } |
| 290 | }; |
| 291 | |
| 292 | #endif // BVH_ABB_H |
| 293 | |