1 | void _split_inform_references(uint32_t p_node_id) { |
2 | TNode &node = _nodes[p_node_id]; |
3 | TLeaf &leaf = _node_get_leaf(node); |
4 | |
5 | for (int n = 0; n < leaf.num_items; n++) { |
6 | uint32_t ref_id = leaf.get_item_ref_id(n); |
7 | |
8 | ItemRef &ref = _refs[ref_id]; |
9 | ref.tnode_id = p_node_id; |
10 | ref.item_id = n; |
11 | } |
12 | } |
13 | |
14 | void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) { |
15 | // special case for low leaf sizes .. should static compile out |
16 | if constexpr (MAX_ITEMS < 4) { |
17 | uint32_t ind = group_a[0]; |
18 | |
19 | // add to b |
20 | group_b[num_b++] = ind; |
21 | |
22 | // remove from a |
23 | group_a[0] = group_a[num_a - 1]; |
24 | num_a--; |
25 | return; |
26 | } |
27 | |
28 | POINT center = full_bound.calculate_center(); |
29 | POINT size = full_bound.calculate_size(); |
30 | |
31 | int order[POINT::AXIS_COUNT]; |
32 | |
33 | order[0] = size.min_axis_index(); |
34 | order[POINT::AXIS_COUNT - 1] = size.max_axis_index(); |
35 | |
36 | static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size" ); |
37 | if constexpr (POINT::AXIS_COUNT == 3) { |
38 | order[1] = 3 - (order[0] + order[2]); |
39 | } |
40 | |
41 | // simplest case, split on the longest axis |
42 | int split_axis = order[0]; |
43 | for (int a = 0; a < num_a; a++) { |
44 | uint32_t ind = group_a[a]; |
45 | |
46 | if (temp_bounds[ind].min.coord[split_axis] > center.coord[split_axis]) { |
47 | // add to b |
48 | group_b[num_b++] = ind; |
49 | |
50 | // remove from a |
51 | group_a[a] = group_a[num_a - 1]; |
52 | num_a--; |
53 | |
54 | // do this one again, as it has been replaced |
55 | a--; |
56 | } |
57 | } |
58 | |
59 | // detect when split on longest axis failed |
60 | int min_threshold = MAX_ITEMS / 4; |
61 | int min_group_size[POINT::AXIS_COUNT]; |
62 | min_group_size[0] = MIN(num_a, num_b); |
63 | if (min_group_size[0] < min_threshold) { |
64 | // slow but sure .. first move everything back into a |
65 | for (int b = 0; b < num_b; b++) { |
66 | group_a[num_a++] = group_b[b]; |
67 | } |
68 | num_b = 0; |
69 | |
70 | // now calculate the best split |
71 | for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) { |
72 | split_axis = order[axis]; |
73 | int count = 0; |
74 | |
75 | for (int a = 0; a < num_a; a++) { |
76 | uint32_t ind = group_a[a]; |
77 | |
78 | if (temp_bounds[ind].min.coord[split_axis] > center.coord[split_axis]) { |
79 | count++; |
80 | } |
81 | } |
82 | |
83 | min_group_size[axis] = MIN(count, num_a - count); |
84 | } // for axis |
85 | |
86 | // best axis |
87 | int best_axis = 0; |
88 | int best_min = min_group_size[0]; |
89 | for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) { |
90 | if (min_group_size[axis] > best_min) { |
91 | best_min = min_group_size[axis]; |
92 | best_axis = axis; |
93 | } |
94 | } |
95 | |
96 | // now finally do the split |
97 | if (best_min > 0) { |
98 | split_axis = order[best_axis]; |
99 | |
100 | for (int a = 0; a < num_a; a++) { |
101 | uint32_t ind = group_a[a]; |
102 | |
103 | if (temp_bounds[ind].min.coord[split_axis] > center.coord[split_axis]) { |
104 | // add to b |
105 | group_b[num_b++] = ind; |
106 | |
107 | // remove from a |
108 | group_a[a] = group_a[num_a - 1]; |
109 | num_a--; |
110 | |
111 | // do this one again, as it has been replaced |
112 | a--; |
113 | } |
114 | } |
115 | } // if there was a split! |
116 | } // if the longest axis wasn't a good split |
117 | |
118 | // special case, none crossed threshold |
119 | if (!num_b) { |
120 | uint32_t ind = group_a[0]; |
121 | |
122 | // add to b |
123 | group_b[num_b++] = ind; |
124 | |
125 | // remove from a |
126 | group_a[0] = group_a[num_a - 1]; |
127 | num_a--; |
128 | } |
129 | // opposite problem! :) |
130 | if (!num_a) { |
131 | uint32_t ind = group_b[0]; |
132 | |
133 | // add to a |
134 | group_a[num_a++] = ind; |
135 | |
136 | // remove from b |
137 | group_b[0] = group_b[num_b - 1]; |
138 | num_b--; |
139 | } |
140 | } |
141 | |
142 | void _split_leaf_sort_groups(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds) { |
143 | BVHABB_CLASS groupb_aabb; |
144 | groupb_aabb.set_to_max_opposite_extents(); |
145 | for (int n = 0; n < num_b; n++) { |
146 | int which = group_b[n]; |
147 | groupb_aabb.merge(temp_bounds[which]); |
148 | } |
149 | BVHABB_CLASS groupb_aabb_new; |
150 | |
151 | BVHABB_CLASS rest_aabb; |
152 | |
153 | float best_size = FLT_MAX; |
154 | int best_candidate = -1; |
155 | |
156 | // find most likely from a to move into b |
157 | for (int check = 0; check < num_a; check++) { |
158 | rest_aabb.set_to_max_opposite_extents(); |
159 | groupb_aabb_new = groupb_aabb; |
160 | |
161 | // find aabb of all the rest |
162 | for (int rest = 0; rest < num_a; rest++) { |
163 | if (rest == check) { |
164 | continue; |
165 | } |
166 | |
167 | int which = group_a[rest]; |
168 | rest_aabb.merge(temp_bounds[which]); |
169 | } |
170 | |
171 | groupb_aabb_new.merge(temp_bounds[group_a[check]]); |
172 | |
173 | // now compare the sizes |
174 | float size = groupb_aabb_new.get_area() + rest_aabb.get_area(); |
175 | if (size < best_size) { |
176 | best_size = size; |
177 | best_candidate = check; |
178 | } |
179 | } |
180 | |
181 | // we should now have the best, move it from group a to group b |
182 | group_b[num_b++] = group_a[best_candidate]; |
183 | |
184 | // remove best candidate from group a |
185 | num_a--; |
186 | group_a[best_candidate] = group_a[num_a]; |
187 | } |
188 | |
189 | uint32_t split_leaf(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) { |
190 | return split_leaf_complex(p_node_id, p_added_item_aabb); |
191 | } |
192 | |
193 | // aabb is the new inserted node |
194 | uint32_t split_leaf_complex(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) { |
195 | VERBOSE_PRINT("split_leaf" ); |
196 | |
197 | // note the tnode before and AFTER splitting may be a different address |
198 | // in memory because the vector could get relocated. So we need to reget |
199 | // the tnode after the split |
200 | BVH_ASSERT(_nodes[p_node_id].is_leaf()); |
201 | |
202 | // first create child leaf nodes |
203 | uint32_t *child_ids = (uint32_t *)alloca(sizeof(uint32_t) * MAX_CHILDREN); |
204 | |
205 | for (int n = 0; n < MAX_CHILDREN; n++) { |
206 | // create node children |
207 | TNode *child_node = _nodes.request(child_ids[n]); |
208 | |
209 | child_node->clear(); |
210 | |
211 | // back link to parent |
212 | child_node->parent_id = p_node_id; |
213 | |
214 | // make each child a leaf node |
215 | node_make_leaf(child_ids[n]); |
216 | } |
217 | |
218 | // don't get any leaves or nodes till AFTER the split |
219 | TNode &tnode = _nodes[p_node_id]; |
220 | uint32_t orig_leaf_id = tnode.get_leaf_id(); |
221 | const TLeaf &orig_leaf = _node_get_leaf(tnode); |
222 | |
223 | // store the final child ids |
224 | for (int n = 0; n < MAX_CHILDREN; n++) { |
225 | tnode.children[n] = child_ids[n]; |
226 | } |
227 | |
228 | // mark as no longer a leaf node |
229 | tnode.num_children = MAX_CHILDREN; |
230 | |
231 | // 2 groups, A and B, and assign children to each to split equally |
232 | int max_children = orig_leaf.num_items + 1; // plus 1 for the wildcard .. the item being added |
233 | //CRASH_COND(max_children > MAX_CHILDREN); |
234 | |
235 | uint16_t *group_a = (uint16_t *)alloca(sizeof(uint16_t) * max_children); |
236 | uint16_t *group_b = (uint16_t *)alloca(sizeof(uint16_t) * max_children); |
237 | |
238 | // we are copying the ABBs. This is ugly, but we need one extra for the inserted item... |
239 | BVHABB_CLASS *temp_bounds = (BVHABB_CLASS *)alloca(sizeof(BVHABB_CLASS) * max_children); |
240 | |
241 | int num_a = max_children; |
242 | int num_b = 0; |
243 | |
244 | // setup - start with all in group a |
245 | for (int n = 0; n < orig_leaf.num_items; n++) { |
246 | group_a[n] = n; |
247 | temp_bounds[n] = orig_leaf.get_aabb(n); |
248 | } |
249 | // wildcard |
250 | int wildcard = orig_leaf.num_items; |
251 | |
252 | group_a[wildcard] = wildcard; |
253 | temp_bounds[wildcard] = p_added_item_aabb; |
254 | |
255 | // we can choose here either an equal split, or just 1 in the new leaf |
256 | _split_leaf_sort_groups_simple(num_a, num_b, group_a, group_b, temp_bounds, tnode.aabb); |
257 | |
258 | uint32_t wildcard_node = BVHCommon::INVALID; |
259 | |
260 | // now there should be equal numbers in both groups |
261 | for (int n = 0; n < num_a; n++) { |
262 | int which = group_a[n]; |
263 | |
264 | if (which != wildcard) { |
265 | const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which); |
266 | uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which); |
267 | //const Item &source_item = orig_leaf.get_item(which); |
268 | _node_add_item(tnode.children[0], source_item_ref_id, source_item_aabb); |
269 | } else { |
270 | wildcard_node = tnode.children[0]; |
271 | } |
272 | } |
273 | for (int n = 0; n < num_b; n++) { |
274 | int which = group_b[n]; |
275 | |
276 | if (which != wildcard) { |
277 | const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which); |
278 | uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which); |
279 | //const Item &source_item = orig_leaf.get_item(which); |
280 | _node_add_item(tnode.children[1], source_item_ref_id, source_item_aabb); |
281 | } else { |
282 | wildcard_node = tnode.children[1]; |
283 | } |
284 | } |
285 | |
286 | // now remove all items from the parent and replace with the child nodes |
287 | _leaves.free(orig_leaf_id); |
288 | |
289 | // we should keep the references up to date! |
290 | for (int n = 0; n < MAX_CHILDREN; n++) { |
291 | _split_inform_references(tnode.children[n]); |
292 | } |
293 | |
294 | refit_upward(p_node_id); |
295 | |
296 | BVH_ASSERT(wildcard_node != BVHCommon::INVALID); |
297 | return wildcard_node; |
298 | } |
299 | |