| 1 | void _split_inform_references(uint32_t p_node_id) { |
| 2 | TNode &node = _nodes[p_node_id]; |
| 3 | TLeaf &leaf = _node_get_leaf(node); |
| 4 | |
| 5 | for (int n = 0; n < leaf.num_items; n++) { |
| 6 | uint32_t ref_id = leaf.get_item_ref_id(n); |
| 7 | |
| 8 | ItemRef &ref = _refs[ref_id]; |
| 9 | ref.tnode_id = p_node_id; |
| 10 | ref.item_id = n; |
| 11 | } |
| 12 | } |
| 13 | |
| 14 | void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) { |
| 15 | // special case for low leaf sizes .. should static compile out |
| 16 | if constexpr (MAX_ITEMS < 4) { |
| 17 | uint32_t ind = group_a[0]; |
| 18 | |
| 19 | // add to b |
| 20 | group_b[num_b++] = ind; |
| 21 | |
| 22 | // remove from a |
| 23 | group_a[0] = group_a[num_a - 1]; |
| 24 | num_a--; |
| 25 | return; |
| 26 | } |
| 27 | |
| 28 | POINT center = full_bound.calculate_center(); |
| 29 | POINT size = full_bound.calculate_size(); |
| 30 | |
| 31 | int order[POINT::AXIS_COUNT]; |
| 32 | |
| 33 | order[0] = size.min_axis_index(); |
| 34 | order[POINT::AXIS_COUNT - 1] = size.max_axis_index(); |
| 35 | |
| 36 | static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size" ); |
| 37 | if constexpr (POINT::AXIS_COUNT == 3) { |
| 38 | order[1] = 3 - (order[0] + order[2]); |
| 39 | } |
| 40 | |
| 41 | // simplest case, split on the longest axis |
| 42 | int split_axis = order[0]; |
| 43 | for (int a = 0; a < num_a; a++) { |
| 44 | uint32_t ind = group_a[a]; |
| 45 | |
| 46 | if (temp_bounds[ind].min.coord[split_axis] > center.coord[split_axis]) { |
| 47 | // add to b |
| 48 | group_b[num_b++] = ind; |
| 49 | |
| 50 | // remove from a |
| 51 | group_a[a] = group_a[num_a - 1]; |
| 52 | num_a--; |
| 53 | |
| 54 | // do this one again, as it has been replaced |
| 55 | a--; |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | // detect when split on longest axis failed |
| 60 | int min_threshold = MAX_ITEMS / 4; |
| 61 | int min_group_size[POINT::AXIS_COUNT]; |
| 62 | min_group_size[0] = MIN(num_a, num_b); |
| 63 | if (min_group_size[0] < min_threshold) { |
| 64 | // slow but sure .. first move everything back into a |
| 65 | for (int b = 0; b < num_b; b++) { |
| 66 | group_a[num_a++] = group_b[b]; |
| 67 | } |
| 68 | num_b = 0; |
| 69 | |
| 70 | // now calculate the best split |
| 71 | for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) { |
| 72 | split_axis = order[axis]; |
| 73 | int count = 0; |
| 74 | |
| 75 | for (int a = 0; a < num_a; a++) { |
| 76 | uint32_t ind = group_a[a]; |
| 77 | |
| 78 | if (temp_bounds[ind].min.coord[split_axis] > center.coord[split_axis]) { |
| 79 | count++; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | min_group_size[axis] = MIN(count, num_a - count); |
| 84 | } // for axis |
| 85 | |
| 86 | // best axis |
| 87 | int best_axis = 0; |
| 88 | int best_min = min_group_size[0]; |
| 89 | for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) { |
| 90 | if (min_group_size[axis] > best_min) { |
| 91 | best_min = min_group_size[axis]; |
| 92 | best_axis = axis; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // now finally do the split |
| 97 | if (best_min > 0) { |
| 98 | split_axis = order[best_axis]; |
| 99 | |
| 100 | for (int a = 0; a < num_a; a++) { |
| 101 | uint32_t ind = group_a[a]; |
| 102 | |
| 103 | if (temp_bounds[ind].min.coord[split_axis] > center.coord[split_axis]) { |
| 104 | // add to b |
| 105 | group_b[num_b++] = ind; |
| 106 | |
| 107 | // remove from a |
| 108 | group_a[a] = group_a[num_a - 1]; |
| 109 | num_a--; |
| 110 | |
| 111 | // do this one again, as it has been replaced |
| 112 | a--; |
| 113 | } |
| 114 | } |
| 115 | } // if there was a split! |
| 116 | } // if the longest axis wasn't a good split |
| 117 | |
| 118 | // special case, none crossed threshold |
| 119 | if (!num_b) { |
| 120 | uint32_t ind = group_a[0]; |
| 121 | |
| 122 | // add to b |
| 123 | group_b[num_b++] = ind; |
| 124 | |
| 125 | // remove from a |
| 126 | group_a[0] = group_a[num_a - 1]; |
| 127 | num_a--; |
| 128 | } |
| 129 | // opposite problem! :) |
| 130 | if (!num_a) { |
| 131 | uint32_t ind = group_b[0]; |
| 132 | |
| 133 | // add to a |
| 134 | group_a[num_a++] = ind; |
| 135 | |
| 136 | // remove from b |
| 137 | group_b[0] = group_b[num_b - 1]; |
| 138 | num_b--; |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | void _split_leaf_sort_groups(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds) { |
| 143 | BVHABB_CLASS groupb_aabb; |
| 144 | groupb_aabb.set_to_max_opposite_extents(); |
| 145 | for (int n = 0; n < num_b; n++) { |
| 146 | int which = group_b[n]; |
| 147 | groupb_aabb.merge(temp_bounds[which]); |
| 148 | } |
| 149 | BVHABB_CLASS groupb_aabb_new; |
| 150 | |
| 151 | BVHABB_CLASS rest_aabb; |
| 152 | |
| 153 | float best_size = FLT_MAX; |
| 154 | int best_candidate = -1; |
| 155 | |
| 156 | // find most likely from a to move into b |
| 157 | for (int check = 0; check < num_a; check++) { |
| 158 | rest_aabb.set_to_max_opposite_extents(); |
| 159 | groupb_aabb_new = groupb_aabb; |
| 160 | |
| 161 | // find aabb of all the rest |
| 162 | for (int rest = 0; rest < num_a; rest++) { |
| 163 | if (rest == check) { |
| 164 | continue; |
| 165 | } |
| 166 | |
| 167 | int which = group_a[rest]; |
| 168 | rest_aabb.merge(temp_bounds[which]); |
| 169 | } |
| 170 | |
| 171 | groupb_aabb_new.merge(temp_bounds[group_a[check]]); |
| 172 | |
| 173 | // now compare the sizes |
| 174 | float size = groupb_aabb_new.get_area() + rest_aabb.get_area(); |
| 175 | if (size < best_size) { |
| 176 | best_size = size; |
| 177 | best_candidate = check; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | // we should now have the best, move it from group a to group b |
| 182 | group_b[num_b++] = group_a[best_candidate]; |
| 183 | |
| 184 | // remove best candidate from group a |
| 185 | num_a--; |
| 186 | group_a[best_candidate] = group_a[num_a]; |
| 187 | } |
| 188 | |
| 189 | uint32_t split_leaf(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) { |
| 190 | return split_leaf_complex(p_node_id, p_added_item_aabb); |
| 191 | } |
| 192 | |
| 193 | // aabb is the new inserted node |
| 194 | uint32_t split_leaf_complex(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) { |
| 195 | VERBOSE_PRINT("split_leaf" ); |
| 196 | |
| 197 | // note the tnode before and AFTER splitting may be a different address |
| 198 | // in memory because the vector could get relocated. So we need to reget |
| 199 | // the tnode after the split |
| 200 | BVH_ASSERT(_nodes[p_node_id].is_leaf()); |
| 201 | |
| 202 | // first create child leaf nodes |
| 203 | uint32_t *child_ids = (uint32_t *)alloca(sizeof(uint32_t) * MAX_CHILDREN); |
| 204 | |
| 205 | for (int n = 0; n < MAX_CHILDREN; n++) { |
| 206 | // create node children |
| 207 | TNode *child_node = _nodes.request(child_ids[n]); |
| 208 | |
| 209 | child_node->clear(); |
| 210 | |
| 211 | // back link to parent |
| 212 | child_node->parent_id = p_node_id; |
| 213 | |
| 214 | // make each child a leaf node |
| 215 | node_make_leaf(child_ids[n]); |
| 216 | } |
| 217 | |
| 218 | // don't get any leaves or nodes till AFTER the split |
| 219 | TNode &tnode = _nodes[p_node_id]; |
| 220 | uint32_t orig_leaf_id = tnode.get_leaf_id(); |
| 221 | const TLeaf &orig_leaf = _node_get_leaf(tnode); |
| 222 | |
| 223 | // store the final child ids |
| 224 | for (int n = 0; n < MAX_CHILDREN; n++) { |
| 225 | tnode.children[n] = child_ids[n]; |
| 226 | } |
| 227 | |
| 228 | // mark as no longer a leaf node |
| 229 | tnode.num_children = MAX_CHILDREN; |
| 230 | |
| 231 | // 2 groups, A and B, and assign children to each to split equally |
| 232 | int max_children = orig_leaf.num_items + 1; // plus 1 for the wildcard .. the item being added |
| 233 | //CRASH_COND(max_children > MAX_CHILDREN); |
| 234 | |
| 235 | uint16_t *group_a = (uint16_t *)alloca(sizeof(uint16_t) * max_children); |
| 236 | uint16_t *group_b = (uint16_t *)alloca(sizeof(uint16_t) * max_children); |
| 237 | |
| 238 | // we are copying the ABBs. This is ugly, but we need one extra for the inserted item... |
| 239 | BVHABB_CLASS *temp_bounds = (BVHABB_CLASS *)alloca(sizeof(BVHABB_CLASS) * max_children); |
| 240 | |
| 241 | int num_a = max_children; |
| 242 | int num_b = 0; |
| 243 | |
| 244 | // setup - start with all in group a |
| 245 | for (int n = 0; n < orig_leaf.num_items; n++) { |
| 246 | group_a[n] = n; |
| 247 | temp_bounds[n] = orig_leaf.get_aabb(n); |
| 248 | } |
| 249 | // wildcard |
| 250 | int wildcard = orig_leaf.num_items; |
| 251 | |
| 252 | group_a[wildcard] = wildcard; |
| 253 | temp_bounds[wildcard] = p_added_item_aabb; |
| 254 | |
| 255 | // we can choose here either an equal split, or just 1 in the new leaf |
| 256 | _split_leaf_sort_groups_simple(num_a, num_b, group_a, group_b, temp_bounds, tnode.aabb); |
| 257 | |
| 258 | uint32_t wildcard_node = BVHCommon::INVALID; |
| 259 | |
| 260 | // now there should be equal numbers in both groups |
| 261 | for (int n = 0; n < num_a; n++) { |
| 262 | int which = group_a[n]; |
| 263 | |
| 264 | if (which != wildcard) { |
| 265 | const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which); |
| 266 | uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which); |
| 267 | //const Item &source_item = orig_leaf.get_item(which); |
| 268 | _node_add_item(tnode.children[0], source_item_ref_id, source_item_aabb); |
| 269 | } else { |
| 270 | wildcard_node = tnode.children[0]; |
| 271 | } |
| 272 | } |
| 273 | for (int n = 0; n < num_b; n++) { |
| 274 | int which = group_b[n]; |
| 275 | |
| 276 | if (which != wildcard) { |
| 277 | const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which); |
| 278 | uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which); |
| 279 | //const Item &source_item = orig_leaf.get_item(which); |
| 280 | _node_add_item(tnode.children[1], source_item_ref_id, source_item_aabb); |
| 281 | } else { |
| 282 | wildcard_node = tnode.children[1]; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | // now remove all items from the parent and replace with the child nodes |
| 287 | _leaves.free(orig_leaf_id); |
| 288 | |
| 289 | // we should keep the references up to date! |
| 290 | for (int n = 0; n < MAX_CHILDREN; n++) { |
| 291 | _split_inform_references(tnode.children[n]); |
| 292 | } |
| 293 | |
| 294 | refit_upward(p_node_id); |
| 295 | |
| 296 | BVH_ASSERT(wildcard_node != BVHCommon::INVALID); |
| 297 | return wildcard_node; |
| 298 | } |
| 299 | |