1 | /**************************************************************************/ |
2 | /* dynamic_bvh.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef DYNAMIC_BVH_H |
32 | #define DYNAMIC_BVH_H |
33 | |
34 | #include "core/math/aabb.h" |
35 | #include "core/templates/list.h" |
36 | #include "core/templates/local_vector.h" |
37 | #include "core/templates/paged_allocator.h" |
38 | #include "core/typedefs.h" |
39 | |
40 | // Based on bullet Dbvh |
41 | |
42 | /* |
43 | Bullet Continuous Collision Detection and Physics Library |
44 | Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org |
45 | |
46 | This software is provided 'as-is', without any express or implied warranty. |
47 | In no event will the authors be held liable for any damages arising from the use of this software. |
48 | Permission is granted to anyone to use this software for any purpose, |
49 | including commercial applications, and to alter it and redistribute it freely, |
50 | subject to the following restrictions: |
51 | |
52 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
53 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
54 | 3. This notice may not be removed or altered from any source distribution. |
55 | */ |
56 | |
57 | ///DynamicBVH implementation by Nathanael Presson |
58 | // The DynamicBVH class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree). |
59 | |
60 | class DynamicBVH { |
61 | struct Node; |
62 | |
63 | public: |
64 | struct ID { |
65 | Node *node = nullptr; |
66 | |
67 | public: |
68 | _FORCE_INLINE_ bool is_valid() const { return node != nullptr; } |
69 | }; |
70 | |
71 | private: |
72 | struct Volume { |
73 | Vector3 min, max; |
74 | |
75 | _FORCE_INLINE_ Vector3 get_center() const { return ((min + max) / 2); } |
76 | _FORCE_INLINE_ Vector3 get_length() const { return (max - min); } |
77 | |
78 | _FORCE_INLINE_ bool contains(const Volume &a) const { |
79 | return ((min.x <= a.min.x) && |
80 | (min.y <= a.min.y) && |
81 | (min.z <= a.min.z) && |
82 | (max.x >= a.max.x) && |
83 | (max.y >= a.max.y) && |
84 | (max.z >= a.max.z)); |
85 | } |
86 | |
87 | _FORCE_INLINE_ Volume merge(const Volume &b) const { |
88 | Volume r; |
89 | for (int i = 0; i < 3; ++i) { |
90 | if (min[i] < b.min[i]) { |
91 | r.min[i] = min[i]; |
92 | } else { |
93 | r.min[i] = b.min[i]; |
94 | } |
95 | if (max[i] > b.max[i]) { |
96 | r.max[i] = max[i]; |
97 | } else { |
98 | r.max[i] = b.max[i]; |
99 | } |
100 | } |
101 | return r; |
102 | } |
103 | |
104 | _FORCE_INLINE_ real_t get_size() const { |
105 | const Vector3 edges = get_length(); |
106 | return (edges.x * edges.y * edges.z + |
107 | edges.x + edges.y + edges.z); |
108 | } |
109 | |
110 | _FORCE_INLINE_ bool is_not_equal_to(const Volume &b) const { |
111 | return ((min.x != b.min.x) || |
112 | (min.y != b.min.y) || |
113 | (min.z != b.min.z) || |
114 | (max.x != b.max.x) || |
115 | (max.y != b.max.y) || |
116 | (max.z != b.max.z)); |
117 | } |
118 | |
119 | _FORCE_INLINE_ real_t get_proximity_to(const Volume &b) const { |
120 | const Vector3 d = (min + max) - (b.min + b.max); |
121 | return (Math::abs(d.x) + Math::abs(d.y) + Math::abs(d.z)); |
122 | } |
123 | |
124 | _FORCE_INLINE_ int select_by_proximity(const Volume &a, const Volume &b) const { |
125 | return (get_proximity_to(a) < get_proximity_to(b) ? 0 : 1); |
126 | } |
127 | |
128 | // |
129 | _FORCE_INLINE_ bool intersects(const Volume &b) const { |
130 | return ((min.x <= b.max.x) && |
131 | (max.x >= b.min.x) && |
132 | (min.y <= b.max.y) && |
133 | (max.y >= b.min.y) && |
134 | (min.z <= b.max.z) && |
135 | (max.z >= b.min.z)); |
136 | } |
137 | |
138 | _FORCE_INLINE_ bool intersects_convex(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const { |
139 | Vector3 half_extents = (max - min) * 0.5; |
140 | Vector3 ofs = min + half_extents; |
141 | |
142 | for (int i = 0; i < p_plane_count; i++) { |
143 | const Plane &p = p_planes[i]; |
144 | Vector3 point( |
145 | (p.normal.x > 0) ? -half_extents.x : half_extents.x, |
146 | (p.normal.y > 0) ? -half_extents.y : half_extents.y, |
147 | (p.normal.z > 0) ? -half_extents.z : half_extents.z); |
148 | point += ofs; |
149 | if (p.is_point_over(point)) { |
150 | return false; |
151 | } |
152 | } |
153 | |
154 | // Make sure all points in the shape aren't fully separated from the AABB on |
155 | // each axis. |
156 | int bad_point_counts_positive[3] = { 0 }; |
157 | int bad_point_counts_negative[3] = { 0 }; |
158 | |
159 | for (int k = 0; k < 3; k++) { |
160 | for (int i = 0; i < p_point_count; i++) { |
161 | if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) { |
162 | bad_point_counts_positive[k]++; |
163 | } |
164 | if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) { |
165 | bad_point_counts_negative[k]++; |
166 | } |
167 | } |
168 | |
169 | if (bad_point_counts_negative[k] == p_point_count) { |
170 | return false; |
171 | } |
172 | if (bad_point_counts_positive[k] == p_point_count) { |
173 | return false; |
174 | } |
175 | } |
176 | |
177 | return true; |
178 | } |
179 | }; |
180 | |
181 | struct Node { |
182 | Volume volume; |
183 | Node *parent = nullptr; |
184 | union { |
185 | Node *children[2]; |
186 | void *data; |
187 | }; |
188 | |
189 | _FORCE_INLINE_ bool is_leaf() const { return children[1] == nullptr; } |
190 | _FORCE_INLINE_ bool is_internal() const { return (!is_leaf()); } |
191 | |
192 | _FORCE_INLINE_ int get_index_in_parent() const { |
193 | ERR_FAIL_NULL_V(parent, 0); |
194 | return (parent->children[1] == this) ? 1 : 0; |
195 | } |
196 | void get_max_depth(int depth, int &maxdepth) { |
197 | if (is_internal()) { |
198 | children[0]->get_max_depth(depth + 1, maxdepth); |
199 | children[1]->get_max_depth(depth + 1, maxdepth); |
200 | } else { |
201 | maxdepth = MAX(maxdepth, depth); |
202 | } |
203 | } |
204 | |
205 | // |
206 | int count_leaves() const { |
207 | if (is_internal()) { |
208 | return children[0]->count_leaves() + children[1]->count_leaves(); |
209 | } else { |
210 | return (1); |
211 | } |
212 | } |
213 | |
214 | bool is_left_of_axis(const Vector3 &org, const Vector3 &axis) const { |
215 | return axis.dot(volume.get_center() - org) <= 0; |
216 | } |
217 | |
218 | Node() { |
219 | children[0] = nullptr; |
220 | children[1] = nullptr; |
221 | } |
222 | }; |
223 | |
224 | PagedAllocator<Node> node_allocator; |
225 | // Fields |
226 | Node *bvh_root = nullptr; |
227 | int lkhd = -1; |
228 | int total_leaves = 0; |
229 | uint32_t opath = 0; |
230 | uint32_t index = 0; |
231 | |
232 | enum { |
233 | ALLOCA_STACK_SIZE = 128 |
234 | }; |
235 | |
236 | _FORCE_INLINE_ void _delete_node(Node *p_node); |
237 | void _recurse_delete_node(Node *p_node); |
238 | _FORCE_INLINE_ Node *_create_node(Node *p_parent, void *p_data); |
239 | _FORCE_INLINE_ DynamicBVH::Node *_create_node_with_volume(Node *p_parent, const Volume &p_volume, void *p_data); |
240 | _FORCE_INLINE_ void _insert_leaf(Node *p_root, Node *p_leaf); |
241 | _FORCE_INLINE_ Node *_remove_leaf(Node *leaf); |
242 | void _fetch_leaves(Node *p_root, LocalVector<Node *> &r_leaves, int p_depth = -1); |
243 | static int _split(Node **leaves, int p_count, const Vector3 &p_org, const Vector3 &p_axis); |
244 | static Volume _bounds(Node **leaves, int p_count); |
245 | void _bottom_up(Node **leaves, int p_count); |
246 | Node *_top_down(Node **leaves, int p_count, int p_bu_threshold); |
247 | Node *_node_sort(Node *n, Node *&r); |
248 | |
249 | _FORCE_INLINE_ void _update(Node *leaf, int lookahead = -1); |
250 | |
251 | void (Node *p_node, List<ID> *r_elements); |
252 | |
253 | _FORCE_INLINE_ bool _ray_aabb(const Vector3 &rayFrom, const Vector3 &rayInvDirection, const unsigned int raySign[3], const Vector3 bounds[2], real_t &tmin, real_t lambda_min, real_t lambda_max) { |
254 | real_t tmax, tymin, tymax, tzmin, tzmax; |
255 | tmin = (bounds[raySign[0]].x - rayFrom.x) * rayInvDirection.x; |
256 | tmax = (bounds[1 - raySign[0]].x - rayFrom.x) * rayInvDirection.x; |
257 | tymin = (bounds[raySign[1]].y - rayFrom.y) * rayInvDirection.y; |
258 | tymax = (bounds[1 - raySign[1]].y - rayFrom.y) * rayInvDirection.y; |
259 | |
260 | if ((tmin > tymax) || (tymin > tmax)) { |
261 | return false; |
262 | } |
263 | |
264 | if (tymin > tmin) { |
265 | tmin = tymin; |
266 | } |
267 | |
268 | if (tymax < tmax) { |
269 | tmax = tymax; |
270 | } |
271 | |
272 | tzmin = (bounds[raySign[2]].z - rayFrom.z) * rayInvDirection.z; |
273 | tzmax = (bounds[1 - raySign[2]].z - rayFrom.z) * rayInvDirection.z; |
274 | |
275 | if ((tmin > tzmax) || (tzmin > tmax)) { |
276 | return false; |
277 | } |
278 | if (tzmin > tmin) { |
279 | tmin = tzmin; |
280 | } |
281 | if (tzmax < tmax) { |
282 | tmax = tzmax; |
283 | } |
284 | return ((tmin < lambda_max) && (tmax > lambda_min)); |
285 | } |
286 | |
287 | public: |
288 | // Methods |
289 | void clear(); |
290 | bool is_empty() const { return (nullptr == bvh_root); } |
291 | void optimize_bottom_up(); |
292 | void optimize_top_down(int bu_threshold = 128); |
293 | void optimize_incremental(int passes); |
294 | ID insert(const AABB &p_box, void *p_userdata); |
295 | bool update(const ID &p_id, const AABB &p_box); |
296 | void remove(const ID &p_id); |
297 | void get_elements(List<ID> *r_elements); |
298 | |
299 | int get_leaf_count() const; |
300 | int get_max_depth() const; |
301 | |
302 | /* Discouraged, but works as a reference on how it must be used */ |
303 | struct DefaultQueryResult { |
304 | virtual bool operator()(void *p_data) = 0; //return true whether you want to continue the query |
305 | virtual ~DefaultQueryResult() {} |
306 | }; |
307 | |
308 | template <class QueryResult> |
309 | _FORCE_INLINE_ void aabb_query(const AABB &p_aabb, QueryResult &r_result); |
310 | template <class QueryResult> |
311 | _FORCE_INLINE_ void convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result); |
312 | template <class QueryResult> |
313 | _FORCE_INLINE_ void ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result); |
314 | |
315 | void set_index(uint32_t p_index); |
316 | uint32_t get_index() const; |
317 | |
318 | ~DynamicBVH(); |
319 | }; |
320 | |
321 | template <class QueryResult> |
322 | void DynamicBVH::aabb_query(const AABB &p_box, QueryResult &r_result) { |
323 | if (!bvh_root) { |
324 | return; |
325 | } |
326 | |
327 | Volume volume; |
328 | volume.min = p_box.position; |
329 | volume.max = p_box.position + p_box.size; |
330 | |
331 | const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *)); |
332 | stack[0] = bvh_root; |
333 | int32_t depth = 1; |
334 | int32_t threshold = ALLOCA_STACK_SIZE - 2; |
335 | |
336 | LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time. |
337 | |
338 | do { |
339 | depth--; |
340 | const Node *n = stack[depth]; |
341 | if (n->volume.intersects(volume)) { |
342 | if (n->is_internal()) { |
343 | if (depth > threshold) { |
344 | if (aux_stack.is_empty()) { |
345 | aux_stack.resize(ALLOCA_STACK_SIZE * 2); |
346 | memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *)); |
347 | } else { |
348 | aux_stack.resize(aux_stack.size() * 2); |
349 | } |
350 | stack = aux_stack.ptr(); |
351 | threshold = aux_stack.size() - 2; |
352 | } |
353 | stack[depth++] = n->children[0]; |
354 | stack[depth++] = n->children[1]; |
355 | } else { |
356 | if (r_result(n->data)) { |
357 | return; |
358 | } |
359 | } |
360 | } |
361 | } while (depth > 0); |
362 | } |
363 | |
364 | template <class QueryResult> |
365 | void DynamicBVH::convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result) { |
366 | if (!bvh_root) { |
367 | return; |
368 | } |
369 | |
370 | //generate a volume anyway to improve pre-testing |
371 | Volume volume; |
372 | for (int i = 0; i < p_point_count; i++) { |
373 | if (i == 0) { |
374 | volume.min = p_points[0]; |
375 | volume.max = p_points[0]; |
376 | } else { |
377 | volume.min.x = MIN(volume.min.x, p_points[i].x); |
378 | volume.min.y = MIN(volume.min.y, p_points[i].y); |
379 | volume.min.z = MIN(volume.min.z, p_points[i].z); |
380 | |
381 | volume.max.x = MAX(volume.max.x, p_points[i].x); |
382 | volume.max.y = MAX(volume.max.y, p_points[i].y); |
383 | volume.max.z = MAX(volume.max.z, p_points[i].z); |
384 | } |
385 | } |
386 | |
387 | const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *)); |
388 | stack[0] = bvh_root; |
389 | int32_t depth = 1; |
390 | int32_t threshold = ALLOCA_STACK_SIZE - 2; |
391 | |
392 | LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time. |
393 | |
394 | do { |
395 | depth--; |
396 | const Node *n = stack[depth]; |
397 | if (n->volume.intersects(volume) && n->volume.intersects_convex(p_planes, p_plane_count, p_points, p_point_count)) { |
398 | if (n->is_internal()) { |
399 | if (depth > threshold) { |
400 | if (aux_stack.is_empty()) { |
401 | aux_stack.resize(ALLOCA_STACK_SIZE * 2); |
402 | memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *)); |
403 | } else { |
404 | aux_stack.resize(aux_stack.size() * 2); |
405 | } |
406 | stack = aux_stack.ptr(); |
407 | threshold = aux_stack.size() - 2; |
408 | } |
409 | stack[depth++] = n->children[0]; |
410 | stack[depth++] = n->children[1]; |
411 | } else { |
412 | if (r_result(n->data)) { |
413 | return; |
414 | } |
415 | } |
416 | } |
417 | } while (depth > 0); |
418 | } |
419 | template <class QueryResult> |
420 | void DynamicBVH::ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result) { |
421 | if (!bvh_root) { |
422 | return; |
423 | } |
424 | |
425 | Vector3 ray_dir = (p_to - p_from); |
426 | ray_dir.normalize(); |
427 | |
428 | ///what about division by zero? --> just set rayDirection[i] to INF/B3_LARGE_FLOAT |
429 | Vector3 inv_dir; |
430 | inv_dir[0] = ray_dir[0] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[0]; |
431 | inv_dir[1] = ray_dir[1] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[1]; |
432 | inv_dir[2] = ray_dir[2] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[2]; |
433 | unsigned int signs[3] = { inv_dir[0] < 0.0, inv_dir[1] < 0.0, inv_dir[2] < 0.0 }; |
434 | |
435 | real_t lambda_max = ray_dir.dot(p_to - p_from); |
436 | |
437 | Vector3 bounds[2]; |
438 | |
439 | const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *)); |
440 | stack[0] = bvh_root; |
441 | int32_t depth = 1; |
442 | int32_t threshold = ALLOCA_STACK_SIZE - 2; |
443 | |
444 | LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time. |
445 | |
446 | do { |
447 | depth--; |
448 | const Node *node = stack[depth]; |
449 | bounds[0] = node->volume.min; |
450 | bounds[1] = node->volume.max; |
451 | real_t tmin = 1.f, lambda_min = 0.f; |
452 | unsigned int result1 = false; |
453 | result1 = _ray_aabb(p_from, inv_dir, signs, bounds, tmin, lambda_min, lambda_max); |
454 | if (result1) { |
455 | if (node->is_internal()) { |
456 | if (depth > threshold) { |
457 | if (aux_stack.is_empty()) { |
458 | aux_stack.resize(ALLOCA_STACK_SIZE * 2); |
459 | memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *)); |
460 | } else { |
461 | aux_stack.resize(aux_stack.size() * 2); |
462 | } |
463 | stack = aux_stack.ptr(); |
464 | threshold = aux_stack.size() - 2; |
465 | } |
466 | stack[depth++] = node->children[0]; |
467 | stack[depth++] = node->children[1]; |
468 | } else { |
469 | if (r_result(node->data)) { |
470 | return; |
471 | } |
472 | } |
473 | } |
474 | } while (depth > 0); |
475 | } |
476 | |
477 | #endif // DYNAMIC_BVH_H |
478 | |