| 1 | /**************************************************************************/ |
| 2 | /* transform_3d.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef TRANSFORM_3D_H |
| 32 | #define TRANSFORM_3D_H |
| 33 | |
| 34 | #include "core/math/aabb.h" |
| 35 | #include "core/math/basis.h" |
| 36 | #include "core/math/plane.h" |
| 37 | #include "core/templates/vector.h" |
| 38 | |
| 39 | struct _NO_DISCARD_ Transform3D { |
| 40 | Basis basis; |
| 41 | Vector3 origin; |
| 42 | |
| 43 | void invert(); |
| 44 | Transform3D inverse() const; |
| 45 | |
| 46 | void affine_invert(); |
| 47 | Transform3D affine_inverse() const; |
| 48 | |
| 49 | Transform3D rotated(const Vector3 &p_axis, real_t p_angle) const; |
| 50 | Transform3D rotated_local(const Vector3 &p_axis, real_t p_angle) const; |
| 51 | |
| 52 | void rotate(const Vector3 &p_axis, real_t p_angle); |
| 53 | void rotate_basis(const Vector3 &p_axis, real_t p_angle); |
| 54 | |
| 55 | void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false); |
| 56 | Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false) const; |
| 57 | |
| 58 | void scale(const Vector3 &p_scale); |
| 59 | Transform3D scaled(const Vector3 &p_scale) const; |
| 60 | Transform3D scaled_local(const Vector3 &p_scale) const; |
| 61 | void scale_basis(const Vector3 &p_scale); |
| 62 | void translate_local(real_t p_tx, real_t p_ty, real_t p_tz); |
| 63 | void translate_local(const Vector3 &p_translation); |
| 64 | Transform3D translated(const Vector3 &p_translation) const; |
| 65 | Transform3D translated_local(const Vector3 &p_translation) const; |
| 66 | |
| 67 | const Basis &get_basis() const { return basis; } |
| 68 | void set_basis(const Basis &p_basis) { basis = p_basis; } |
| 69 | |
| 70 | const Vector3 &get_origin() const { return origin; } |
| 71 | void set_origin(const Vector3 &p_origin) { origin = p_origin; } |
| 72 | |
| 73 | void orthonormalize(); |
| 74 | Transform3D orthonormalized() const; |
| 75 | void orthogonalize(); |
| 76 | Transform3D orthogonalized() const; |
| 77 | bool is_equal_approx(const Transform3D &p_transform) const; |
| 78 | bool is_finite() const; |
| 79 | |
| 80 | bool operator==(const Transform3D &p_transform) const; |
| 81 | bool operator!=(const Transform3D &p_transform) const; |
| 82 | |
| 83 | _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const; |
| 84 | _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const; |
| 85 | _FORCE_INLINE_ Vector<Vector3> xform(const Vector<Vector3> &p_array) const; |
| 86 | |
| 87 | // NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results. |
| 88 | // They use the transpose. |
| 89 | // For safe inverse transforms, xform by the affine_inverse. |
| 90 | _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const; |
| 91 | _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const; |
| 92 | _FORCE_INLINE_ Vector<Vector3> xform_inv(const Vector<Vector3> &p_array) const; |
| 93 | |
| 94 | // Safe with non-uniform scaling (uses affine_inverse). |
| 95 | _FORCE_INLINE_ Plane xform(const Plane &p_plane) const; |
| 96 | _FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const; |
| 97 | |
| 98 | // These fast versions use precomputed affine inverse, and should be used in bottleneck areas where |
| 99 | // multiple planes are to be transformed. |
| 100 | _FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const; |
| 101 | static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose); |
| 102 | |
| 103 | void operator*=(const Transform3D &p_transform); |
| 104 | Transform3D operator*(const Transform3D &p_transform) const; |
| 105 | void operator*=(const real_t p_val); |
| 106 | Transform3D operator*(const real_t p_val) const; |
| 107 | |
| 108 | Transform3D interpolate_with(const Transform3D &p_transform, real_t p_c) const; |
| 109 | |
| 110 | _FORCE_INLINE_ Transform3D inverse_xform(const Transform3D &t) const { |
| 111 | Vector3 v = t.origin - origin; |
| 112 | return Transform3D(basis.transpose_xform(t.basis), |
| 113 | basis.xform(v)); |
| 114 | } |
| 115 | |
| 116 | void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) { |
| 117 | basis.set(xx, xy, xz, yx, yy, yz, zx, zy, zz); |
| 118 | origin.x = tx; |
| 119 | origin.y = ty; |
| 120 | origin.z = tz; |
| 121 | } |
| 122 | |
| 123 | operator String() const; |
| 124 | |
| 125 | Transform3D() {} |
| 126 | Transform3D(const Basis &p_basis, const Vector3 &p_origin = Vector3()); |
| 127 | Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin); |
| 128 | Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz); |
| 129 | }; |
| 130 | |
| 131 | _FORCE_INLINE_ Vector3 Transform3D::xform(const Vector3 &p_vector) const { |
| 132 | return Vector3( |
| 133 | basis[0].dot(p_vector) + origin.x, |
| 134 | basis[1].dot(p_vector) + origin.y, |
| 135 | basis[2].dot(p_vector) + origin.z); |
| 136 | } |
| 137 | |
| 138 | _FORCE_INLINE_ Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { |
| 139 | Vector3 v = p_vector - origin; |
| 140 | |
| 141 | return Vector3( |
| 142 | (basis.rows[0][0] * v.x) + (basis.rows[1][0] * v.y) + (basis.rows[2][0] * v.z), |
| 143 | (basis.rows[0][1] * v.x) + (basis.rows[1][1] * v.y) + (basis.rows[2][1] * v.z), |
| 144 | (basis.rows[0][2] * v.x) + (basis.rows[1][2] * v.y) + (basis.rows[2][2] * v.z)); |
| 145 | } |
| 146 | |
| 147 | // Neither the plane regular xform or xform_inv are particularly efficient, |
| 148 | // as they do a basis inverse. For xforming a large number |
| 149 | // of planes it is better to pre-calculate the inverse transpose basis once |
| 150 | // and reuse it for each plane, by using the 'fast' version of the functions. |
| 151 | _FORCE_INLINE_ Plane Transform3D::xform(const Plane &p_plane) const { |
| 152 | Basis b = basis.inverse(); |
| 153 | b.transpose(); |
| 154 | return xform_fast(p_plane, b); |
| 155 | } |
| 156 | |
| 157 | _FORCE_INLINE_ Plane Transform3D::xform_inv(const Plane &p_plane) const { |
| 158 | Transform3D inv = affine_inverse(); |
| 159 | Basis basis_transpose = basis.transposed(); |
| 160 | return xform_inv_fast(p_plane, inv, basis_transpose); |
| 161 | } |
| 162 | |
| 163 | _FORCE_INLINE_ AABB Transform3D::xform(const AABB &p_aabb) const { |
| 164 | /* https://dev.theomader.com/transform-bounding-boxes/ */ |
| 165 | Vector3 min = p_aabb.position; |
| 166 | Vector3 max = p_aabb.position + p_aabb.size; |
| 167 | Vector3 tmin, tmax; |
| 168 | for (int i = 0; i < 3; i++) { |
| 169 | tmin[i] = tmax[i] = origin[i]; |
| 170 | for (int j = 0; j < 3; j++) { |
| 171 | real_t e = basis[i][j] * min[j]; |
| 172 | real_t f = basis[i][j] * max[j]; |
| 173 | if (e < f) { |
| 174 | tmin[i] += e; |
| 175 | tmax[i] += f; |
| 176 | } else { |
| 177 | tmin[i] += f; |
| 178 | tmax[i] += e; |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | AABB r_aabb; |
| 183 | r_aabb.position = tmin; |
| 184 | r_aabb.size = tmax - tmin; |
| 185 | return r_aabb; |
| 186 | } |
| 187 | |
| 188 | _FORCE_INLINE_ AABB Transform3D::xform_inv(const AABB &p_aabb) const { |
| 189 | /* define vertices */ |
| 190 | Vector3 vertices[8] = { |
| 191 | Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), |
| 192 | Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), |
| 193 | Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), |
| 194 | Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z), |
| 195 | Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), |
| 196 | Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), |
| 197 | Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), |
| 198 | Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z) |
| 199 | }; |
| 200 | |
| 201 | AABB ret; |
| 202 | |
| 203 | ret.position = xform_inv(vertices[0]); |
| 204 | |
| 205 | for (int i = 1; i < 8; i++) { |
| 206 | ret.expand_to(xform_inv(vertices[i])); |
| 207 | } |
| 208 | |
| 209 | return ret; |
| 210 | } |
| 211 | |
| 212 | Vector<Vector3> Transform3D::xform(const Vector<Vector3> &p_array) const { |
| 213 | Vector<Vector3> array; |
| 214 | array.resize(p_array.size()); |
| 215 | |
| 216 | const Vector3 *r = p_array.ptr(); |
| 217 | Vector3 *w = array.ptrw(); |
| 218 | |
| 219 | for (int i = 0; i < p_array.size(); ++i) { |
| 220 | w[i] = xform(r[i]); |
| 221 | } |
| 222 | return array; |
| 223 | } |
| 224 | |
| 225 | Vector<Vector3> Transform3D::xform_inv(const Vector<Vector3> &p_array) const { |
| 226 | Vector<Vector3> array; |
| 227 | array.resize(p_array.size()); |
| 228 | |
| 229 | const Vector3 *r = p_array.ptr(); |
| 230 | Vector3 *w = array.ptrw(); |
| 231 | |
| 232 | for (int i = 0; i < p_array.size(); ++i) { |
| 233 | w[i] = xform_inv(r[i]); |
| 234 | } |
| 235 | return array; |
| 236 | } |
| 237 | |
| 238 | _FORCE_INLINE_ Plane Transform3D::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const { |
| 239 | // Transform a single point on the plane. |
| 240 | Vector3 point = p_plane.normal * p_plane.d; |
| 241 | point = xform(point); |
| 242 | |
| 243 | // Use inverse transpose for correct normals with non-uniform scaling. |
| 244 | Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal); |
| 245 | normal.normalize(); |
| 246 | |
| 247 | real_t d = normal.dot(point); |
| 248 | return Plane(normal, d); |
| 249 | } |
| 250 | |
| 251 | _FORCE_INLINE_ Plane Transform3D::xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose) { |
| 252 | // Transform a single point on the plane. |
| 253 | Vector3 point = p_plane.normal * p_plane.d; |
| 254 | point = p_inverse.xform(point); |
| 255 | |
| 256 | // Note that instead of precalculating the transpose, an alternative |
| 257 | // would be to use the transpose for the basis transform. |
| 258 | // However that would be less SIMD friendly (requiring a swizzle). |
| 259 | // So the cost is one extra precalced value in the calling code. |
| 260 | // This is probably worth it, as this could be used in bottleneck areas. And |
| 261 | // where it is not a bottleneck, the non-fast method is fine. |
| 262 | |
| 263 | // Use transpose for correct normals with non-uniform scaling. |
| 264 | Vector3 normal = p_basis_transpose.xform(p_plane.normal); |
| 265 | normal.normalize(); |
| 266 | |
| 267 | real_t d = normal.dot(point); |
| 268 | return Plane(normal, d); |
| 269 | } |
| 270 | |
| 271 | #endif // TRANSFORM_3D_H |
| 272 | |