| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "default.h" |
| 7 | #include "geometry.h" |
| 8 | #include "buffer.h" |
| 9 | |
| 10 | #include "../subdiv/bezier_curve.h" |
| 11 | #include "../subdiv/hermite_curve.h" |
| 12 | #include "../subdiv/bspline_curve.h" |
| 13 | #include "../subdiv/catmullrom_curve.h" |
| 14 | #include "../subdiv/linear_bezier_patch.h" |
| 15 | |
| 16 | namespace embree |
| 17 | { |
| 18 | /*! represents an array of bicubic bezier curves */ |
| 19 | struct CurveGeometry : public Geometry |
| 20 | { |
| 21 | /*! type of this geometry */ |
| 22 | static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE4; |
| 23 | |
| 24 | public: |
| 25 | |
| 26 | /*! bezier curve construction */ |
| 27 | CurveGeometry (Device* device, Geometry::GType gtype); |
| 28 | |
| 29 | public: |
| 30 | void setMask(unsigned mask); |
| 31 | void setNumTimeSteps (unsigned int numTimeSteps); |
| 32 | void setVertexAttributeCount (unsigned int N); |
| 33 | void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num); |
| 34 | void* getBuffer(RTCBufferType type, unsigned int slot); |
| 35 | void updateBuffer(RTCBufferType type, unsigned int slot); |
| 36 | void commit(); |
| 37 | bool verify(); |
| 38 | void setTessellationRate(float N); |
| 39 | void setMaxRadiusScale(float s); |
| 40 | void addElementsToCount (GeometryCounts & counts) const; |
| 41 | |
| 42 | public: |
| 43 | |
| 44 | /*! returns the number of vertices */ |
| 45 | __forceinline size_t numVertices() const { |
| 46 | return vertices[0].size(); |
| 47 | } |
| 48 | |
| 49 | /*! returns the i'th curve */ |
| 50 | __forceinline const unsigned int& curve(size_t i) const { |
| 51 | return curves[i]; |
| 52 | } |
| 53 | |
| 54 | /*! returns i'th vertex of the first time step */ |
| 55 | __forceinline Vec3ff vertex(size_t i) const { |
| 56 | return vertices0[i]; |
| 57 | } |
| 58 | |
| 59 | /*! returns i'th normal of the first time step */ |
| 60 | __forceinline Vec3fa normal(size_t i) const { |
| 61 | return normals0[i]; |
| 62 | } |
| 63 | |
| 64 | /*! returns i'th tangent of the first time step */ |
| 65 | __forceinline Vec3ff tangent(size_t i) const { |
| 66 | return tangents0[i]; |
| 67 | } |
| 68 | |
| 69 | /*! returns i'th normal derivative of the first time step */ |
| 70 | __forceinline Vec3fa dnormal(size_t i) const { |
| 71 | return dnormals0[i]; |
| 72 | } |
| 73 | |
| 74 | /*! returns i'th radius of the first time step */ |
| 75 | __forceinline float radius(size_t i) const { |
| 76 | return vertices0[i].w; |
| 77 | } |
| 78 | |
| 79 | /*! returns i'th vertex of itime'th timestep */ |
| 80 | __forceinline Vec3ff vertex(size_t i, size_t itime) const { |
| 81 | return vertices[itime][i]; |
| 82 | } |
| 83 | |
| 84 | /*! returns i'th normal of itime'th timestep */ |
| 85 | __forceinline Vec3fa normal(size_t i, size_t itime) const { |
| 86 | return normals[itime][i]; |
| 87 | } |
| 88 | |
| 89 | /*! returns i'th tangent of itime'th timestep */ |
| 90 | __forceinline Vec3ff tangent(size_t i, size_t itime) const { |
| 91 | return tangents[itime][i]; |
| 92 | } |
| 93 | |
| 94 | /*! returns i'th normal derivative of itime'th timestep */ |
| 95 | __forceinline Vec3fa dnormal(size_t i, size_t itime) const { |
| 96 | return dnormals[itime][i]; |
| 97 | } |
| 98 | |
| 99 | /*! returns i'th radius of itime'th timestep */ |
| 100 | __forceinline float radius(size_t i, size_t itime) const { |
| 101 | return vertices[itime][i].w; |
| 102 | } |
| 103 | |
| 104 | /*! gathers the curve starting with i'th vertex */ |
| 105 | __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i) const |
| 106 | { |
| 107 | p0 = vertex(i+0); |
| 108 | p1 = vertex(i+1); |
| 109 | p2 = vertex(i+2); |
| 110 | p3 = vertex(i+3); |
| 111 | } |
| 112 | |
| 113 | /*! gathers the curve starting with i'th vertex of itime'th timestep */ |
| 114 | __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i, size_t itime) const |
| 115 | { |
| 116 | p0 = vertex(i+0,itime); |
| 117 | p1 = vertex(i+1,itime); |
| 118 | p2 = vertex(i+2,itime); |
| 119 | p3 = vertex(i+3,itime); |
| 120 | } |
| 121 | |
| 122 | /*! gathers the curve starting with i'th vertex */ |
| 123 | __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i) const |
| 124 | { |
| 125 | p0 = vertex(i+0); |
| 126 | p1 = vertex(i+1); |
| 127 | p2 = vertex(i+2); |
| 128 | p3 = vertex(i+3); |
| 129 | n0 = normal(i+0); |
| 130 | n1 = normal(i+1); |
| 131 | n2 = normal(i+2); |
| 132 | n3 = normal(i+3); |
| 133 | } |
| 134 | |
| 135 | /*! gathers the curve starting with i'th vertex of itime'th timestep */ |
| 136 | __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i, size_t itime) const |
| 137 | { |
| 138 | p0 = vertex(i+0,itime); |
| 139 | p1 = vertex(i+1,itime); |
| 140 | p2 = vertex(i+2,itime); |
| 141 | p3 = vertex(i+3,itime); |
| 142 | n0 = normal(i+0,itime); |
| 143 | n1 = normal(i+1,itime); |
| 144 | n2 = normal(i+2,itime); |
| 145 | n3 = normal(i+3,itime); |
| 146 | } |
| 147 | |
| 148 | /*! prefetches the curve starting with i'th vertex of itime'th timestep */ |
| 149 | __forceinline void prefetchL1_vertices(size_t i) const |
| 150 | { |
| 151 | prefetchL1(vertices0.getPtr(i)+0); |
| 152 | prefetchL1(vertices0.getPtr(i)+64); |
| 153 | } |
| 154 | |
| 155 | /*! prefetches the curve starting with i'th vertex of itime'th timestep */ |
| 156 | __forceinline void prefetchL2_vertices(size_t i) const |
| 157 | { |
| 158 | prefetchL2(vertices0.getPtr(i)+0); |
| 159 | prefetchL2(vertices0.getPtr(i)+64); |
| 160 | } |
| 161 | |
| 162 | /*! loads curve vertices for specified time */ |
| 163 | __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i, float time) const |
| 164 | { |
| 165 | float ftime; |
| 166 | const size_t itime = timeSegment(time, ftime); |
| 167 | |
| 168 | const float t0 = 1.0f - ftime; |
| 169 | const float t1 = ftime; |
| 170 | Vec3ff a0,a1,a2,a3; |
| 171 | gather(a0,a1,a2,a3,i,itime); |
| 172 | Vec3ff b0,b1,b2,b3; |
| 173 | gather(b0,b1,b2,b3,i,itime+1); |
| 174 | p0 = madd(Vec3ff(t0),a0,t1*b0); |
| 175 | p1 = madd(Vec3ff(t0),a1,t1*b1); |
| 176 | p2 = madd(Vec3ff(t0),a2,t1*b2); |
| 177 | p3 = madd(Vec3ff(t0),a3,t1*b3); |
| 178 | } |
| 179 | |
| 180 | /*! loads curve vertices for specified time */ |
| 181 | __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i, float time) const |
| 182 | { |
| 183 | float ftime; |
| 184 | const size_t itime = timeSegment(time, ftime); |
| 185 | |
| 186 | const float t0 = 1.0f - ftime; |
| 187 | const float t1 = ftime; |
| 188 | Vec3ff a0,a1,a2,a3; Vec3fa an0,an1,an2,an3; |
| 189 | gather(a0,a1,a2,a3,an0,an1,an2,an3,i,itime); |
| 190 | Vec3ff b0,b1,b2,b3; Vec3fa bn0,bn1,bn2,bn3; |
| 191 | gather(b0,b1,b2,b3,bn0,bn1,bn2,bn3,i,itime+1); |
| 192 | p0 = madd(Vec3ff(t0),a0,t1*b0); |
| 193 | p1 = madd(Vec3ff(t0),a1,t1*b1); |
| 194 | p2 = madd(Vec3ff(t0),a2,t1*b2); |
| 195 | p3 = madd(Vec3ff(t0),a3,t1*b3); |
| 196 | n0 = madd(Vec3ff(t0),an0,t1*bn0); |
| 197 | n1 = madd(Vec3ff(t0),an1,t1*bn1); |
| 198 | n2 = madd(Vec3ff(t0),an2,t1*bn2); |
| 199 | n3 = madd(Vec3ff(t0),an3,t1*bn3); |
| 200 | } |
| 201 | |
| 202 | template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa> |
| 203 | __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const size_t itime) const |
| 204 | { |
| 205 | Vec3ff v0,v1,v2,v3; Vec3fa n0,n1,n2,n3; |
| 206 | unsigned int vertexID = curve(primID); |
| 207 | gather(v0,v1,v2,v3,n0,n1,n2,n3,vertexID,itime); |
| 208 | SourceCurve3ff ccurve(v0,v1,v2,v3); |
| 209 | SourceCurve3fa ncurve(n0,n1,n2,n3); |
| 210 | ccurve = enlargeRadiusToMinWidth(context,this,ray_org,ccurve); |
| 211 | return TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); |
| 212 | } |
| 213 | |
| 214 | template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa> |
| 215 | __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const float time) const |
| 216 | { |
| 217 | float ftime; |
| 218 | const size_t itime = timeSegment(time, ftime); |
| 219 | const TensorLinearCubicBezierSurface3fa curve0 = getNormalOrientedCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context,ray_org,primID,itime+0); |
| 220 | const TensorLinearCubicBezierSurface3fa curve1 = getNormalOrientedCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context,ray_org,primID,itime+1); |
| 221 | return clerp(curve0,curve1,ftime); |
| 222 | } |
| 223 | |
| 224 | /*! gathers the hermite curve starting with i'th vertex */ |
| 225 | __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i) const |
| 226 | { |
| 227 | p0 = vertex (i+0); |
| 228 | p1 = vertex (i+1); |
| 229 | t0 = tangent(i+0); |
| 230 | t1 = tangent(i+1); |
| 231 | } |
| 232 | |
| 233 | /*! gathers the hermite curve starting with i'th vertex of itime'th timestep */ |
| 234 | __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i, size_t itime) const |
| 235 | { |
| 236 | p0 = vertex (i+0,itime); |
| 237 | p1 = vertex (i+1,itime); |
| 238 | t0 = tangent(i+0,itime); |
| 239 | t1 = tangent(i+1,itime); |
| 240 | } |
| 241 | |
| 242 | /*! loads curve vertices for specified time */ |
| 243 | __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i, float time) const |
| 244 | { |
| 245 | float ftime; |
| 246 | const size_t itime = timeSegment(time, ftime); |
| 247 | const float f0 = 1.0f - ftime, f1 = ftime; |
| 248 | Vec3ff ap0,at0,ap1,at1; |
| 249 | gather_hermite(ap0,at0,ap1,at1,i,itime); |
| 250 | Vec3ff bp0,bt0,bp1,bt1; |
| 251 | gather_hermite(bp0,bt0,bp1,bt1,i,itime+1); |
| 252 | p0 = madd(Vec3ff(f0),ap0,f1*bp0); |
| 253 | t0 = madd(Vec3ff(f0),at0,f1*bt0); |
| 254 | p1 = madd(Vec3ff(f0),ap1,f1*bp1); |
| 255 | t1 = madd(Vec3ff(f0),at1,f1*bt1); |
| 256 | } |
| 257 | |
| 258 | /*! gathers the hermite curve starting with i'th vertex */ |
| 259 | __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3ff& t1, Vec3fa& n1, Vec3fa& dn1, size_t i) const |
| 260 | { |
| 261 | p0 = vertex (i+0); |
| 262 | p1 = vertex (i+1); |
| 263 | t0 = tangent(i+0); |
| 264 | t1 = tangent(i+1); |
| 265 | n0 = normal(i+0); |
| 266 | n1 = normal(i+1); |
| 267 | dn0 = dnormal(i+0); |
| 268 | dn1 = dnormal(i+1); |
| 269 | } |
| 270 | |
| 271 | /*! gathers the hermite curve starting with i'th vertex of itime'th timestep */ |
| 272 | __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3ff& t1, Vec3fa& n1, Vec3fa& dn1, size_t i, size_t itime) const |
| 273 | { |
| 274 | p0 = vertex (i+0,itime); |
| 275 | p1 = vertex (i+1,itime); |
| 276 | t0 = tangent(i+0,itime); |
| 277 | t1 = tangent(i+1,itime); |
| 278 | n0 = normal(i+0,itime); |
| 279 | n1 = normal(i+1,itime); |
| 280 | dn0 = dnormal(i+0,itime); |
| 281 | dn1 = dnormal(i+1,itime); |
| 282 | } |
| 283 | |
| 284 | /*! loads curve vertices for specified time */ |
| 285 | __forceinline void gather_hermite(Vec3ff& p0, Vec3fa& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3fa& t1, Vec3fa& n1, Vec3fa& dn1, size_t i, float time) const |
| 286 | { |
| 287 | float ftime; |
| 288 | const size_t itime = timeSegment(time, ftime); |
| 289 | const float f0 = 1.0f - ftime, f1 = ftime; |
| 290 | Vec3ff ap0,at0,ap1,at1; Vec3fa an0,adn0,an1,adn1; |
| 291 | gather_hermite(ap0,at0,an0,adn0,ap1,at1,an1,adn1,i,itime); |
| 292 | Vec3ff bp0,bt0,bp1,bt1; Vec3fa bn0,bdn0,bn1,bdn1; |
| 293 | gather_hermite(bp0,bt0,bn0,bdn0,bp1,bt1,bn1,bdn1,i,itime+1); |
| 294 | p0 = madd(Vec3ff(f0),ap0,f1*bp0); |
| 295 | t0 = madd(Vec3ff(f0),at0,f1*bt0); |
| 296 | n0 = madd(Vec3ff(f0),an0,f1*bn0); |
| 297 | dn0= madd(Vec3ff(f0),adn0,f1*bdn0); |
| 298 | p1 = madd(Vec3ff(f0),ap1,f1*bp1); |
| 299 | t1 = madd(Vec3ff(f0),at1,f1*bt1); |
| 300 | n1 = madd(Vec3ff(f0),an1,f1*bn1); |
| 301 | dn1= madd(Vec3ff(f0),adn1,f1*bdn1); |
| 302 | } |
| 303 | |
| 304 | template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa> |
| 305 | __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedHermiteCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const size_t itime) const |
| 306 | { |
| 307 | Vec3ff v0,t0,v1,t1; Vec3fa n0,dn0,n1,dn1; |
| 308 | unsigned int vertexID = curve(primID); |
| 309 | gather_hermite(v0,t0,n0,dn0,v1,t1,n1,dn1,vertexID,itime); |
| 310 | |
| 311 | SourceCurve3ff ccurve(v0,t0,v1,t1); |
| 312 | SourceCurve3fa ncurve(n0,dn0,n1,dn1); |
| 313 | ccurve = enlargeRadiusToMinWidth(context,this,ray_org,ccurve); |
| 314 | return TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); |
| 315 | } |
| 316 | |
| 317 | template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa> |
| 318 | __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedHermiteCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const float time) const |
| 319 | { |
| 320 | float ftime; |
| 321 | const size_t itime = timeSegment(time, ftime); |
| 322 | const TensorLinearCubicBezierSurface3fa curve0 = getNormalOrientedHermiteCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context, ray_org, primID,itime+0); |
| 323 | const TensorLinearCubicBezierSurface3fa curve1 = getNormalOrientedHermiteCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context, ray_org, primID,itime+1); |
| 324 | return clerp(curve0,curve1,ftime); |
| 325 | } |
| 326 | |
| 327 | private: |
| 328 | void resizeBuffers(unsigned int numSteps); |
| 329 | |
| 330 | public: |
| 331 | BufferView<unsigned int> curves; //!< array of curve indices |
| 332 | BufferView<Vec3ff> vertices0; //!< fast access to first vertex buffer |
| 333 | BufferView<Vec3fa> normals0; //!< fast access to first normal buffer |
| 334 | BufferView<Vec3ff> tangents0; //!< fast access to first tangent buffer |
| 335 | BufferView<Vec3fa> dnormals0; //!< fast access to first normal derivative buffer |
| 336 | vector<BufferView<Vec3ff>> vertices; //!< vertex array for each timestep |
| 337 | vector<BufferView<Vec3fa>> normals; //!< normal array for each timestep |
| 338 | vector<BufferView<Vec3ff>> tangents; //!< tangent array for each timestep |
| 339 | vector<BufferView<Vec3fa>> dnormals; //!< normal derivative array for each timestep |
| 340 | BufferView<char> flags; //!< start, end flag per segment |
| 341 | vector<BufferView<char>> vertexAttribs; //!< user buffers |
| 342 | int tessellationRate; //!< tessellation rate for flat curve |
| 343 | float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii |
| 344 | }; |
| 345 | |
| 346 | namespace isa |
| 347 | { |
| 348 | |
| 349 | template<template<typename Ty> class Curve> |
| 350 | struct CurveGeometryInterface : public CurveGeometry |
| 351 | { |
| 352 | typedef Curve<Vec3ff> Curve3ff; |
| 353 | typedef Curve<Vec3fa> Curve3fa; |
| 354 | |
| 355 | CurveGeometryInterface (Device* device, Geometry::GType gtype) |
| 356 | : CurveGeometry(device,gtype) {} |
| 357 | |
| 358 | __forceinline const Curve3ff getCurveScaledRadius(size_t i, size_t itime = 0) const |
| 359 | { |
| 360 | const unsigned int index = curve(i); |
| 361 | Vec3ff v0 = vertex(index+0,itime); |
| 362 | Vec3ff v1 = vertex(index+1,itime); |
| 363 | Vec3ff v2 = vertex(index+2,itime); |
| 364 | Vec3ff v3 = vertex(index+3,itime); |
| 365 | v0.w *= maxRadiusScale; |
| 366 | v1.w *= maxRadiusScale; |
| 367 | v2.w *= maxRadiusScale; |
| 368 | v3.w *= maxRadiusScale; |
| 369 | return Curve3ff (v0,v1,v2,v3); |
| 370 | } |
| 371 | |
| 372 | __forceinline const Curve3ff getCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const |
| 373 | { |
| 374 | const unsigned int index = curve(i); |
| 375 | const Vec3ff v0 = vertex(index+0,itime); |
| 376 | const Vec3ff v1 = vertex(index+1,itime); |
| 377 | const Vec3ff v2 = vertex(index+2,itime); |
| 378 | const Vec3ff v3 = vertex(index+3,itime); |
| 379 | const Vec3ff w0(xfmPoint(space,(Vec3fa)v0), maxRadiusScale*v0.w); |
| 380 | const Vec3ff w1(xfmPoint(space,(Vec3fa)v1), maxRadiusScale*v1.w); |
| 381 | const Vec3ff w2(xfmPoint(space,(Vec3fa)v2), maxRadiusScale*v2.w); |
| 382 | const Vec3ff w3(xfmPoint(space,(Vec3fa)v3), maxRadiusScale*v3.w); |
| 383 | return Curve3ff(w0,w1,w2,w3); |
| 384 | } |
| 385 | |
| 386 | __forceinline const Curve3ff getCurveScaledRadius(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const |
| 387 | { |
| 388 | const float r_scale = r_scale0*scale; |
| 389 | const unsigned int index = curve(i); |
| 390 | const Vec3ff v0 = vertex(index+0,itime); |
| 391 | const Vec3ff v1 = vertex(index+1,itime); |
| 392 | const Vec3ff v2 = vertex(index+2,itime); |
| 393 | const Vec3ff v3 = vertex(index+3,itime); |
| 394 | const Vec3ff w0(xfmPoint(space,((Vec3fa)v0-ofs)*Vec3fa(scale)), maxRadiusScale*v0.w*r_scale); |
| 395 | const Vec3ff w1(xfmPoint(space,((Vec3fa)v1-ofs)*Vec3fa(scale)), maxRadiusScale*v1.w*r_scale); |
| 396 | const Vec3ff w2(xfmPoint(space,((Vec3fa)v2-ofs)*Vec3fa(scale)), maxRadiusScale*v2.w*r_scale); |
| 397 | const Vec3ff w3(xfmPoint(space,((Vec3fa)v3-ofs)*Vec3fa(scale)), maxRadiusScale*v3.w*r_scale); |
| 398 | return Curve3ff(w0,w1,w2,w3); |
| 399 | } |
| 400 | |
| 401 | __forceinline const Curve3fa getNormalCurve(size_t i, size_t itime = 0) const |
| 402 | { |
| 403 | const unsigned int index = curve(i); |
| 404 | const Vec3fa n0 = normal(index+0,itime); |
| 405 | const Vec3fa n1 = normal(index+1,itime); |
| 406 | const Vec3fa n2 = normal(index+2,itime); |
| 407 | const Vec3fa n3 = normal(index+3,itime); |
| 408 | return Curve3fa (n0,n1,n2,n3); |
| 409 | } |
| 410 | |
| 411 | __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(size_t i, size_t itime = 0) const |
| 412 | { |
| 413 | const Curve3ff center = getCurveScaledRadius(i,itime); |
| 414 | const Curve3fa normal = getNormalCurve(i,itime); |
| 415 | const TensorLinearCubicBezierSurface3fa ocurve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(center,normal); |
| 416 | return ocurve; |
| 417 | } |
| 418 | |
| 419 | __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const { |
| 420 | return getOrientedCurveScaledRadius(i,itime).xfm(space); |
| 421 | } |
| 422 | |
| 423 | __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const Vec3fa& ofs, const float scale, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { |
| 424 | return getOrientedCurveScaledRadius(i,itime).xfm(space,ofs,scale); |
| 425 | } |
| 426 | |
| 427 | /*! check if the i'th primitive is valid at the itime'th time step */ |
| 428 | __forceinline bool valid(Geometry::GType ctype, size_t i, const range<size_t>& itime_range) const |
| 429 | { |
| 430 | const unsigned int index = curve(i); |
| 431 | if (index+3 >= numVertices()) return false; |
| 432 | |
| 433 | for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) |
| 434 | { |
| 435 | const float r0 = radius(index+0,itime); |
| 436 | const float r1 = radius(index+1,itime); |
| 437 | const float r2 = radius(index+2,itime); |
| 438 | const float r3 = radius(index+3,itime); |
| 439 | if (!isvalid(r0) || !isvalid(r1) || !isvalid(r2) || !isvalid(r3)) |
| 440 | return false; |
| 441 | |
| 442 | const Vec3fa v0 = vertex(index+0,itime); |
| 443 | const Vec3fa v1 = vertex(index+1,itime); |
| 444 | const Vec3fa v2 = vertex(index+2,itime); |
| 445 | const Vec3fa v3 = vertex(index+3,itime); |
| 446 | if (!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3)) |
| 447 | return false; |
| 448 | |
| 449 | if (ctype == Geometry::GTY_SUBTYPE_ORIENTED_CURVE) |
| 450 | { |
| 451 | const Vec3fa n0 = normal(index+0,itime); |
| 452 | const Vec3fa n1 = normal(index+1,itime); |
| 453 | if (!isvalid(n0) || !isvalid(n1)) |
| 454 | return false; |
| 455 | |
| 456 | const BBox3fa b = getOrientedCurveScaledRadius(i,itime).accurateBounds(); |
| 457 | if (!isvalid(b)) |
| 458 | return false; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | return true; |
| 463 | } |
| 464 | |
| 465 | template<int N> |
| 466 | void interpolate_impl(const RTCInterpolateArguments* const args) |
| 467 | { |
| 468 | unsigned int primID = args->primID; |
| 469 | float u = args->u; |
| 470 | RTCBufferType bufferType = args->bufferType; |
| 471 | unsigned int bufferSlot = args->bufferSlot; |
| 472 | float* P = args->P; |
| 473 | float* dPdu = args->dPdu; |
| 474 | float* ddPdudu = args->ddPdudu; |
| 475 | unsigned int valueCount = args->valueCount; |
| 476 | |
| 477 | /* calculate base pointer and stride */ |
| 478 | assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) || |
| 479 | (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size())); |
| 480 | const char* src = nullptr; |
| 481 | size_t stride = 0; |
| 482 | if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { |
| 483 | src = vertexAttribs[bufferSlot].getPtr(); |
| 484 | stride = vertexAttribs[bufferSlot].getStride(); |
| 485 | } else { |
| 486 | src = vertices[bufferSlot].getPtr(); |
| 487 | stride = vertices[bufferSlot].getStride(); |
| 488 | } |
| 489 | |
| 490 | for (unsigned int i=0; i<valueCount; i+=N) |
| 491 | { |
| 492 | size_t ofs = i*sizeof(float); |
| 493 | const size_t index = curves[primID]; |
| 494 | const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>((int)valueCount); |
| 495 | const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+0)*stride+ofs]); |
| 496 | const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+1)*stride+ofs]); |
| 497 | const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+2)*stride+ofs]); |
| 498 | const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+3)*stride+ofs]); |
| 499 | |
| 500 | const Curve<vfloat<N>> curve(p0,p1,p2,p3); |
| 501 | if (P ) mem<vfloat<N>>::storeu(valid,P+i, curve.eval(u)); |
| 502 | if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i, curve.eval_du(u)); |
| 503 | if (ddPdudu) mem<vfloat<N>>::storeu(valid,ddPdudu+i,curve.eval_dudu(u)); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | void interpolate(const RTCInterpolateArguments* const args) { |
| 508 | interpolate_impl<4>(args); |
| 509 | } |
| 510 | }; |
| 511 | |
| 512 | template<template<typename Ty> class Curve> |
| 513 | struct HermiteCurveGeometryInterface : public CurveGeometry |
| 514 | { |
| 515 | typedef Curve<Vec3ff> HermiteCurve3ff; |
| 516 | typedef Curve<Vec3fa> HermiteCurve3fa; |
| 517 | |
| 518 | HermiteCurveGeometryInterface (Device* device, Geometry::GType gtype) |
| 519 | : CurveGeometry(device,gtype) {} |
| 520 | |
| 521 | __forceinline const HermiteCurve3ff getCurveScaledRadius(size_t i, size_t itime = 0) const |
| 522 | { |
| 523 | const unsigned int index = curve(i); |
| 524 | Vec3ff v0 = vertex(index+0,itime); |
| 525 | Vec3ff v1 = vertex(index+1,itime); |
| 526 | Vec3ff t0 = tangent(index+0,itime); |
| 527 | Vec3ff t1 = tangent(index+1,itime); |
| 528 | v0.w *= maxRadiusScale; |
| 529 | v1.w *= maxRadiusScale; |
| 530 | t0.w *= maxRadiusScale; |
| 531 | t1.w *= maxRadiusScale; |
| 532 | return HermiteCurve3ff (v0,t0,v1,t1); |
| 533 | } |
| 534 | |
| 535 | __forceinline const HermiteCurve3ff getCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const |
| 536 | { |
| 537 | const unsigned int index = curve(i); |
| 538 | const Vec3ff v0 = vertex(index+0,itime); |
| 539 | const Vec3ff v1 = vertex(index+1,itime); |
| 540 | const Vec3ff t0 = tangent(index+0,itime); |
| 541 | const Vec3ff t1 = tangent(index+1,itime); |
| 542 | const Vec3ff V0(xfmPoint(space,(Vec3fa)v0),maxRadiusScale*v0.w); |
| 543 | const Vec3ff V1(xfmPoint(space,(Vec3fa)v1),maxRadiusScale*v1.w); |
| 544 | const Vec3ff T0(xfmVector(space,(Vec3fa)t0),maxRadiusScale*t0.w); |
| 545 | const Vec3ff T1(xfmVector(space,(Vec3fa)t1),maxRadiusScale*t1.w); |
| 546 | return HermiteCurve3ff(V0,T0,V1,T1); |
| 547 | } |
| 548 | |
| 549 | __forceinline const HermiteCurve3ff getCurveScaledRadius(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const |
| 550 | { |
| 551 | const float r_scale = r_scale0*scale; |
| 552 | const unsigned int index = curve(i); |
| 553 | const Vec3ff v0 = vertex(index+0,itime); |
| 554 | const Vec3ff v1 = vertex(index+1,itime); |
| 555 | const Vec3ff t0 = tangent(index+0,itime); |
| 556 | const Vec3ff t1 = tangent(index+1,itime); |
| 557 | const Vec3ff V0(xfmPoint(space,(v0-ofs)*Vec3fa(scale)), maxRadiusScale*v0.w*r_scale); |
| 558 | const Vec3ff V1(xfmPoint(space,(v1-ofs)*Vec3fa(scale)), maxRadiusScale*v1.w*r_scale); |
| 559 | const Vec3ff T0(xfmVector(space,t0*Vec3fa(scale)), maxRadiusScale*t0.w*r_scale); |
| 560 | const Vec3ff T1(xfmVector(space,t1*Vec3fa(scale)), maxRadiusScale*t1.w*r_scale); |
| 561 | return HermiteCurve3ff(V0,T0,V1,T1); |
| 562 | } |
| 563 | |
| 564 | __forceinline const HermiteCurve3fa getNormalCurve(size_t i, size_t itime = 0) const |
| 565 | { |
| 566 | const unsigned int index = curve(i); |
| 567 | const Vec3fa n0 = normal(index+0,itime); |
| 568 | const Vec3fa n1 = normal(index+1,itime); |
| 569 | const Vec3fa dn0 = dnormal(index+0,itime); |
| 570 | const Vec3fa dn1 = dnormal(index+1,itime); |
| 571 | return HermiteCurve3fa (n0,dn0,n1,dn1); |
| 572 | } |
| 573 | |
| 574 | __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(size_t i, size_t itime = 0) const |
| 575 | { |
| 576 | const HermiteCurve3ff center = getCurveScaledRadius(i,itime); |
| 577 | const HermiteCurve3fa normal = getNormalCurve(i,itime); |
| 578 | const TensorLinearCubicBezierSurface3fa ocurve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(center,normal); |
| 579 | return ocurve; |
| 580 | } |
| 581 | |
| 582 | __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const { |
| 583 | return getOrientedCurveScaledRadius(i,itime).xfm(space); |
| 584 | } |
| 585 | |
| 586 | __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const Vec3fa& ofs, const float scale, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { |
| 587 | return getOrientedCurveScaledRadius(i,itime).xfm(space,ofs,scale); |
| 588 | } |
| 589 | |
| 590 | /*! check if the i'th primitive is valid at the itime'th time step */ |
| 591 | __forceinline bool valid(Geometry::GType ctype, size_t i, const range<size_t>& itime_range) const |
| 592 | { |
| 593 | const unsigned int index = curve(i); |
| 594 | if (index+1 >= numVertices()) return false; |
| 595 | |
| 596 | for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) |
| 597 | { |
| 598 | const Vec3ff v0 = vertex(index+0,itime); |
| 599 | const Vec3ff v1 = vertex(index+1,itime); |
| 600 | if (!isvalid4(v0) || !isvalid4(v1)) |
| 601 | return false; |
| 602 | |
| 603 | const Vec3ff t0 = tangent(index+0,itime); |
| 604 | const Vec3ff t1 = tangent(index+1,itime); |
| 605 | if (!isvalid4(t0) || !isvalid4(t1)) |
| 606 | return false; |
| 607 | |
| 608 | if (ctype == Geometry::GTY_SUBTYPE_ORIENTED_CURVE) |
| 609 | { |
| 610 | const Vec3fa n0 = normal(index+0,itime); |
| 611 | const Vec3fa n1 = normal(index+1,itime); |
| 612 | if (!isvalid(n0) || !isvalid(n1)) |
| 613 | return false; |
| 614 | |
| 615 | const Vec3fa dn0 = dnormal(index+0,itime); |
| 616 | const Vec3fa dn1 = dnormal(index+1,itime); |
| 617 | if (!isvalid(dn0) || !isvalid(dn1)) |
| 618 | return false; |
| 619 | |
| 620 | const BBox3fa b = getOrientedCurveScaledRadius(i,itime).accurateBounds(); |
| 621 | if (!isvalid(b)) |
| 622 | return false; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | return true; |
| 627 | } |
| 628 | |
| 629 | template<int N> |
| 630 | void interpolate_impl(const RTCInterpolateArguments* const args) |
| 631 | { |
| 632 | unsigned int primID = args->primID; |
| 633 | float u = args->u; |
| 634 | RTCBufferType bufferType = args->bufferType; |
| 635 | unsigned int bufferSlot = args->bufferSlot; |
| 636 | float* P = args->P; |
| 637 | float* dPdu = args->dPdu; |
| 638 | float* ddPdudu = args->ddPdudu; |
| 639 | unsigned int valueCount = args->valueCount; |
| 640 | |
| 641 | /* we interpolate vertex attributes linearly for hermite basis */ |
| 642 | if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) |
| 643 | { |
| 644 | assert(bufferSlot <= vertexAttribs.size()); |
| 645 | const char* vsrc = vertexAttribs[bufferSlot].getPtr(); |
| 646 | const size_t vstride = vertexAttribs[bufferSlot].getStride(); |
| 647 | |
| 648 | for (unsigned int i=0; i<valueCount; i+=N) |
| 649 | { |
| 650 | const size_t ofs = i*sizeof(float); |
| 651 | const size_t index = curves[primID]; |
| 652 | const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>((int)valueCount); |
| 653 | const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+0)*vstride+ofs]); |
| 654 | const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+1)*vstride+ofs]); |
| 655 | |
| 656 | if (P ) mem<vfloat<N>>::storeu(valid,P+i, madd(1.0f-u,p0,u*p1)); |
| 657 | if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i, p1-p0); |
| 658 | if (ddPdudu) mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero)); |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | /* interpolation for vertex buffers */ |
| 663 | else |
| 664 | { |
| 665 | assert(bufferSlot < numTimeSteps); |
| 666 | const char* vsrc = vertices[bufferSlot].getPtr(); |
| 667 | const char* tsrc = tangents[bufferSlot].getPtr(); |
| 668 | const size_t vstride = vertices[bufferSlot].getStride(); |
| 669 | const size_t tstride = vertices[bufferSlot].getStride(); |
| 670 | |
| 671 | for (unsigned int i=0; i<valueCount; i+=N) |
| 672 | { |
| 673 | const size_t ofs = i*sizeof(float); |
| 674 | const size_t index = curves[primID]; |
| 675 | const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>((int)valueCount); |
| 676 | const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+0)*vstride+ofs]); |
| 677 | const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+1)*vstride+ofs]); |
| 678 | const vfloat<N> t0 = mem<vfloat<N>>::loadu(valid,(float*)&tsrc[(index+0)*tstride+ofs]); |
| 679 | const vfloat<N> t1 = mem<vfloat<N>>::loadu(valid,(float*)&tsrc[(index+1)*tstride+ofs]); |
| 680 | |
| 681 | const HermiteCurveT<vfloat<N>> curve(p0,t0,p1,t1); |
| 682 | if (P ) mem<vfloat<N>>::storeu(valid,P+i, curve.eval(u)); |
| 683 | if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i, curve.eval_du(u)); |
| 684 | if (ddPdudu) mem<vfloat<N>>::storeu(valid,ddPdudu+i,curve.eval_dudu(u)); |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | void interpolate(const RTCInterpolateArguments* const args) { |
| 690 | interpolate_impl<4>(args); |
| 691 | } |
| 692 | }; |
| 693 | } |
| 694 | |
| 695 | DECLARE_ISA_FUNCTION(CurveGeometry*, createCurves, Device* COMMA Geometry::GType); |
| 696 | } |
| 697 | |