| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "../common/default.h" |
| 7 | #include "../common/scene_curves.h" |
| 8 | |
| 9 | /* |
| 10 | |
| 11 | Implements Catmull-Rom curves with control points p0, p1, p2, p3. At |
| 12 | t=0 the curve goes through p1, with tangent (p2-p0)/3, and for t=1 |
| 13 | the curve goes through p2 with tangent (p3-p2)/2. |
| 14 | |
| 15 | */ |
| 16 | |
| 17 | namespace embree |
| 18 | { |
| 19 | class CatmullRomBasis |
| 20 | { |
| 21 | public: |
| 22 | |
| 23 | template<typename T> |
| 24 | static __forceinline Vec4<T> eval(const T& u) |
| 25 | { |
| 26 | const T t = u; |
| 27 | const T s = T(1.0f) - u; |
| 28 | const T n0 = - t * s * s; |
| 29 | const T n1 = 2.0f + t * t * (3.0f * t - 5.0f); |
| 30 | const T n2 = 2.0f + s * s * (3.0f * s - 5.0f); |
| 31 | const T n3 = - s * t * t; |
| 32 | return T(0.5f) * Vec4<T>(n0, n1, n2, n3); |
| 33 | } |
| 34 | |
| 35 | template<typename T> |
| 36 | static __forceinline Vec4<T> derivative(const T& u) |
| 37 | { |
| 38 | const T t = u; |
| 39 | const T s = 1.0f - u; |
| 40 | const T n0 = - s * s + 2.0f * s * t; |
| 41 | const T n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t; |
| 42 | const T n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s; |
| 43 | const T n3 = -2.0f * s * t + t * t; |
| 44 | return T(0.5f) * Vec4<T>(n0, n1, n2, n3); |
| 45 | } |
| 46 | |
| 47 | template<typename T> |
| 48 | static __forceinline Vec4<T> derivative2(const T& u) |
| 49 | { |
| 50 | const T t = u; |
| 51 | const T n0 = -3.0f * t + 2.0f; |
| 52 | const T n1 = 9.0f * t - 5.0f; |
| 53 | const T n2 = -9.0f * t + 4.0f; |
| 54 | const T n3 = 3.0f * t - 1.0f; |
| 55 | return Vec4<T>(n0, n1, n2, n3); |
| 56 | } |
| 57 | }; |
| 58 | |
| 59 | struct PrecomputedCatmullRomBasis |
| 60 | { |
| 61 | enum { N = 16 }; |
| 62 | public: |
| 63 | PrecomputedCatmullRomBasis() {} |
| 64 | PrecomputedCatmullRomBasis(int shift); |
| 65 | |
| 66 | /* basis for bspline evaluation */ |
| 67 | public: |
| 68 | float c0[N+1][N+1]; |
| 69 | float c1[N+1][N+1]; |
| 70 | float c2[N+1][N+1]; |
| 71 | float c3[N+1][N+1]; |
| 72 | |
| 73 | /* basis for bspline derivative evaluation */ |
| 74 | public: |
| 75 | float d0[N+1][N+1]; |
| 76 | float d1[N+1][N+1]; |
| 77 | float d2[N+1][N+1]; |
| 78 | float d3[N+1][N+1]; |
| 79 | }; |
| 80 | extern PrecomputedCatmullRomBasis catmullrom_basis0; |
| 81 | extern PrecomputedCatmullRomBasis catmullrom_basis1; |
| 82 | |
| 83 | template<typename Vertex> |
| 84 | struct CatmullRomCurveT |
| 85 | { |
| 86 | Vertex v0,v1,v2,v3; |
| 87 | |
| 88 | __forceinline CatmullRomCurveT() {} |
| 89 | |
| 90 | __forceinline CatmullRomCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) |
| 91 | : v0(v0), v1(v1), v2(v2), v3(v3) {} |
| 92 | |
| 93 | __forceinline Vertex begin() const { |
| 94 | return v1; |
| 95 | } |
| 96 | |
| 97 | __forceinline Vertex end() const { |
| 98 | return v2; |
| 99 | } |
| 100 | |
| 101 | __forceinline Vertex center() const { |
| 102 | return 0.25f*(v0+v1+v2+v3); |
| 103 | } |
| 104 | |
| 105 | __forceinline BBox<Vertex> bounds() const { |
| 106 | return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3)); |
| 107 | } |
| 108 | |
| 109 | __forceinline friend CatmullRomCurveT operator -( const CatmullRomCurveT& a, const Vertex& b ) { |
| 110 | return CatmullRomCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b); |
| 111 | } |
| 112 | |
| 113 | __forceinline CatmullRomCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const |
| 114 | { |
| 115 | const Vec3ff q0(xfmVector(space,v0-p), v0.w); |
| 116 | const Vec3ff q1(xfmVector(space,v1-p), v1.w); |
| 117 | const Vec3ff q2(xfmVector(space,v2-p), v2.w); |
| 118 | const Vec3ff q3(xfmVector(space,v3-p), v3.w); |
| 119 | return CatmullRomCurveT<Vec3ff>(q0,q1,q2,q3); |
| 120 | } |
| 121 | |
| 122 | __forceinline Vertex eval(const float t) const |
| 123 | { |
| 124 | const Vec4<float> b = CatmullRomBasis::eval(t); |
| 125 | return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); |
| 126 | } |
| 127 | |
| 128 | __forceinline Vertex eval_du(const float t) const |
| 129 | { |
| 130 | const Vec4<float> b = CatmullRomBasis::derivative(t); |
| 131 | return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); |
| 132 | } |
| 133 | |
| 134 | __forceinline Vertex eval_dudu(const float t) const |
| 135 | { |
| 136 | const Vec4<float> b = CatmullRomBasis::derivative2(t); |
| 137 | return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); |
| 138 | } |
| 139 | |
| 140 | __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const |
| 141 | { |
| 142 | p = eval(t); |
| 143 | dp = eval_du(t); |
| 144 | ddp = eval_dudu(t); |
| 145 | } |
| 146 | |
| 147 | template<int M> |
| 148 | __forceinline Vec4vf<M> veval(const vfloat<M>& t) const |
| 149 | { |
| 150 | const Vec4vf<M> b = CatmullRomBasis::eval(t); |
| 151 | return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); |
| 152 | } |
| 153 | |
| 154 | template<int M> |
| 155 | __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const |
| 156 | { |
| 157 | const Vec4vf<M> b = CatmullRomBasis::derivative(t); |
| 158 | return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); |
| 159 | } |
| 160 | |
| 161 | template<int M> |
| 162 | __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const |
| 163 | { |
| 164 | const Vec4vf<M> b = CatmullRomBasis::derivative2(t); |
| 165 | return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); |
| 166 | } |
| 167 | |
| 168 | template<int M> |
| 169 | __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const |
| 170 | { |
| 171 | p = veval<M>(t); |
| 172 | dp = veval_du<M>(t); |
| 173 | } |
| 174 | |
| 175 | template<int M> |
| 176 | __forceinline Vec4vf<M> eval0(const int ofs, const int size) const |
| 177 | { |
| 178 | assert(size <= PrecomputedCatmullRomBasis::N); |
| 179 | assert(ofs <= size); |
| 180 | return madd(vfloat<M>::loadu(&catmullrom_basis0.c0[size][ofs]), Vec4vf<M>(v0), |
| 181 | madd(vfloat<M>::loadu(&catmullrom_basis0.c1[size][ofs]), Vec4vf<M>(v1), |
| 182 | madd(vfloat<M>::loadu(&catmullrom_basis0.c2[size][ofs]), Vec4vf<M>(v2), |
| 183 | vfloat<M>::loadu(&catmullrom_basis0.c3[size][ofs]) * Vec4vf<M>(v3)))); |
| 184 | } |
| 185 | |
| 186 | template<int M> |
| 187 | __forceinline Vec4vf<M> eval1(const int ofs, const int size) const |
| 188 | { |
| 189 | assert(size <= PrecomputedCatmullRomBasis::N); |
| 190 | assert(ofs <= size); |
| 191 | return madd(vfloat<M>::loadu(&catmullrom_basis1.c0[size][ofs]), Vec4vf<M>(v0), |
| 192 | madd(vfloat<M>::loadu(&catmullrom_basis1.c1[size][ofs]), Vec4vf<M>(v1), |
| 193 | madd(vfloat<M>::loadu(&catmullrom_basis1.c2[size][ofs]), Vec4vf<M>(v2), |
| 194 | vfloat<M>::loadu(&catmullrom_basis1.c3[size][ofs]) * Vec4vf<M>(v3)))); |
| 195 | } |
| 196 | |
| 197 | template<int M> |
| 198 | __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const |
| 199 | { |
| 200 | assert(size <= PrecomputedCatmullRomBasis::N); |
| 201 | assert(ofs <= size); |
| 202 | return madd(vfloat<M>::loadu(&catmullrom_basis0.d0[size][ofs]), Vec4vf<M>(v0), |
| 203 | madd(vfloat<M>::loadu(&catmullrom_basis0.d1[size][ofs]), Vec4vf<M>(v1), |
| 204 | madd(vfloat<M>::loadu(&catmullrom_basis0.d2[size][ofs]), Vec4vf<M>(v2), |
| 205 | vfloat<M>::loadu(&catmullrom_basis0.d3[size][ofs]) * Vec4vf<M>(v3)))); |
| 206 | } |
| 207 | |
| 208 | template<int M> |
| 209 | __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const |
| 210 | { |
| 211 | assert(size <= PrecomputedCatmullRomBasis::N); |
| 212 | assert(ofs <= size); |
| 213 | return madd(vfloat<M>::loadu(&catmullrom_basis1.d0[size][ofs]), Vec4vf<M>(v0), |
| 214 | madd(vfloat<M>::loadu(&catmullrom_basis1.d1[size][ofs]), Vec4vf<M>(v1), |
| 215 | madd(vfloat<M>::loadu(&catmullrom_basis1.d2[size][ofs]), Vec4vf<M>(v2), |
| 216 | vfloat<M>::loadu(&catmullrom_basis1.d3[size][ofs]) * Vec4vf<M>(v3)))); |
| 217 | } |
| 218 | |
| 219 | /* calculates bounds of catmull-rom curve geometry */ |
| 220 | __forceinline BBox3fa accurateRoundBounds() const |
| 221 | { |
| 222 | const int N = 7; |
| 223 | const float scale = 1.0f/(3.0f*(N-1)); |
| 224 | Vec4vfx pl(pos_inf), pu(neg_inf); |
| 225 | for (int i=0; i<=N; i+=VSIZEX) |
| 226 | { |
| 227 | vintx vi = vintx(i)+vintx(step); |
| 228 | vboolx valid = vi <= vintx(N); |
| 229 | const Vec4vfx p = eval0<VSIZEX>(i,N); |
| 230 | const Vec4vfx dp = derivative0<VSIZEX>(i,N); |
| 231 | const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); |
| 232 | const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); |
| 233 | pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min |
| 234 | pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min |
| 235 | } |
| 236 | const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); |
| 237 | const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); |
| 238 | const float r_min = reduce_min(pl.w); |
| 239 | const float r_max = reduce_max(pu.w); |
| 240 | const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); |
| 241 | return enlarge(BBox3fa(lower,upper),upper_r); |
| 242 | } |
| 243 | |
| 244 | /* calculates bounds when tessellated into N line segments */ |
| 245 | __forceinline BBox3fa accurateFlatBounds(int N) const |
| 246 | { |
| 247 | if (likely(N == 4)) |
| 248 | { |
| 249 | const Vec4vf4 pi = eval0<4>(0,4); |
| 250 | const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); |
| 251 | const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); |
| 252 | const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); |
| 253 | const Vec3ff pe = end(); |
| 254 | return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w)))); |
| 255 | } |
| 256 | else |
| 257 | { |
| 258 | Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); |
| 259 | for (int i=0; i<=N; i+=VSIZEX) |
| 260 | { |
| 261 | vboolx valid = vintx(i)+vintx(step) <= vintx(N); |
| 262 | const Vec4vfx pi = eval0<VSIZEX>(i,N); |
| 263 | |
| 264 | pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min |
| 265 | pl.y = select(valid,min(pl.y,pi.y),pl.y); |
| 266 | pl.z = select(valid,min(pl.z,pi.z),pl.z); |
| 267 | |
| 268 | pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min |
| 269 | pu.y = select(valid,max(pu.y,pi.y),pu.y); |
| 270 | pu.z = select(valid,max(pu.z,pi.z),pu.z); |
| 271 | |
| 272 | ru = select(valid,max(ru,abs(pi.w)),ru); |
| 273 | } |
| 274 | const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); |
| 275 | const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); |
| 276 | const Vec3fa upper_r(reduce_max(ru)); |
| 277 | return enlarge(BBox3fa(lower,upper),upper_r); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | friend __forceinline embree_ostream operator<<(embree_ostream cout, const CatmullRomCurveT& curve) { |
| 282 | return cout << "CatmullRomCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }" ; |
| 283 | } |
| 284 | }; |
| 285 | |
| 286 | template<typename CurveGeometry> |
| 287 | __forceinline CatmullRomCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CatmullRomCurveT<Vec3ff>& curve) |
| 288 | { |
| 289 | return CatmullRomCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), |
| 290 | enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), |
| 291 | enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), |
| 292 | enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); |
| 293 | } |
| 294 | |
| 295 | typedef CatmullRomCurveT<Vec3fa> CatmullRomCurve3fa; |
| 296 | } |
| 297 | |
| 298 | |