| 1 | /* |
| 2 | * Copyright (c) 2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Collision/b2DynamicTree.h> |
| 20 | #include <string.h> |
| 21 | |
| 22 | b2DynamicTree::b2DynamicTree() |
| 23 | { |
| 24 | m_root = b2_nullNode; |
| 25 | |
| 26 | m_nodeCapacity = 16; |
| 27 | m_nodeCount = 0; |
| 28 | m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); |
| 29 | memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode)); |
| 30 | |
| 31 | // Build a linked list for the free list. |
| 32 | for (int32 i = 0; i < m_nodeCapacity - 1; ++i) |
| 33 | { |
| 34 | m_nodes[i].next = i + 1; |
| 35 | m_nodes[i].height = -1; |
| 36 | } |
| 37 | m_nodes[m_nodeCapacity-1].next = b2_nullNode; |
| 38 | m_nodes[m_nodeCapacity-1].height = -1; |
| 39 | m_freeList = 0; |
| 40 | |
| 41 | m_path = 0; |
| 42 | |
| 43 | m_insertionCount = 0; |
| 44 | } |
| 45 | |
| 46 | b2DynamicTree::~b2DynamicTree() |
| 47 | { |
| 48 | // This frees the entire tree in one shot. |
| 49 | b2Free(m_nodes); |
| 50 | } |
| 51 | |
| 52 | // Allocate a node from the pool. Grow the pool if necessary. |
| 53 | int32 b2DynamicTree::AllocateNode() |
| 54 | { |
| 55 | // Expand the node pool as needed. |
| 56 | if (m_freeList == b2_nullNode) |
| 57 | { |
| 58 | b2Assert(m_nodeCount == m_nodeCapacity); |
| 59 | |
| 60 | // The free list is empty. Rebuild a bigger pool. |
| 61 | b2TreeNode* oldNodes = m_nodes; |
| 62 | m_nodeCapacity *= 2; |
| 63 | m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); |
| 64 | memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode)); |
| 65 | b2Free(oldNodes); |
| 66 | |
| 67 | // Build a linked list for the free list. The parent |
| 68 | // pointer becomes the "next" pointer. |
| 69 | for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) |
| 70 | { |
| 71 | m_nodes[i].next = i + 1; |
| 72 | m_nodes[i].height = -1; |
| 73 | } |
| 74 | m_nodes[m_nodeCapacity-1].next = b2_nullNode; |
| 75 | m_nodes[m_nodeCapacity-1].height = -1; |
| 76 | m_freeList = m_nodeCount; |
| 77 | } |
| 78 | |
| 79 | // Peel a node off the free list. |
| 80 | int32 nodeId = m_freeList; |
| 81 | m_freeList = m_nodes[nodeId].next; |
| 82 | m_nodes[nodeId].parent = b2_nullNode; |
| 83 | m_nodes[nodeId].child1 = b2_nullNode; |
| 84 | m_nodes[nodeId].child2 = b2_nullNode; |
| 85 | m_nodes[nodeId].height = 0; |
| 86 | m_nodes[nodeId].userData = NULL; |
| 87 | ++m_nodeCount; |
| 88 | return nodeId; |
| 89 | } |
| 90 | |
| 91 | // Return a node to the pool. |
| 92 | void b2DynamicTree::FreeNode(int32 nodeId) |
| 93 | { |
| 94 | b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); |
| 95 | b2Assert(0 < m_nodeCount); |
| 96 | m_nodes[nodeId].next = m_freeList; |
| 97 | m_nodes[nodeId].height = -1; |
| 98 | m_freeList = nodeId; |
| 99 | --m_nodeCount; |
| 100 | } |
| 101 | |
| 102 | // Create a proxy in the tree as a leaf node. We return the index |
| 103 | // of the node instead of a pointer so that we can grow |
| 104 | // the node pool. |
| 105 | int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) |
| 106 | { |
| 107 | int32 proxyId = AllocateNode(); |
| 108 | |
| 109 | // Fatten the aabb. |
| 110 | b2Vec2 r(b2_aabbExtension, b2_aabbExtension); |
| 111 | m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r; |
| 112 | m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r; |
| 113 | m_nodes[proxyId].userData = userData; |
| 114 | m_nodes[proxyId].height = 0; |
| 115 | |
| 116 | InsertLeaf(proxyId); |
| 117 | |
| 118 | return proxyId; |
| 119 | } |
| 120 | |
| 121 | void b2DynamicTree::DestroyProxy(int32 proxyId) |
| 122 | { |
| 123 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
| 124 | b2Assert(m_nodes[proxyId].IsLeaf()); |
| 125 | |
| 126 | RemoveLeaf(proxyId); |
| 127 | FreeNode(proxyId); |
| 128 | } |
| 129 | |
| 130 | bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) |
| 131 | { |
| 132 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
| 133 | |
| 134 | b2Assert(m_nodes[proxyId].IsLeaf()); |
| 135 | |
| 136 | if (m_nodes[proxyId].aabb.Contains(aabb)) |
| 137 | { |
| 138 | return false; |
| 139 | } |
| 140 | |
| 141 | RemoveLeaf(proxyId); |
| 142 | |
| 143 | // Extend AABB. |
| 144 | b2AABB b = aabb; |
| 145 | b2Vec2 r(b2_aabbExtension, b2_aabbExtension); |
| 146 | b.lowerBound = b.lowerBound - r; |
| 147 | b.upperBound = b.upperBound + r; |
| 148 | |
| 149 | // Predict AABB displacement. |
| 150 | b2Vec2 d = b2_aabbMultiplier * displacement; |
| 151 | |
| 152 | if (d.x < 0.0f) |
| 153 | { |
| 154 | b.lowerBound.x += d.x; |
| 155 | } |
| 156 | else |
| 157 | { |
| 158 | b.upperBound.x += d.x; |
| 159 | } |
| 160 | |
| 161 | if (d.y < 0.0f) |
| 162 | { |
| 163 | b.lowerBound.y += d.y; |
| 164 | } |
| 165 | else |
| 166 | { |
| 167 | b.upperBound.y += d.y; |
| 168 | } |
| 169 | |
| 170 | m_nodes[proxyId].aabb = b; |
| 171 | |
| 172 | InsertLeaf(proxyId); |
| 173 | return true; |
| 174 | } |
| 175 | |
| 176 | void b2DynamicTree::InsertLeaf(int32 leaf) |
| 177 | { |
| 178 | ++m_insertionCount; |
| 179 | |
| 180 | if (m_root == b2_nullNode) |
| 181 | { |
| 182 | m_root = leaf; |
| 183 | m_nodes[m_root].parent = b2_nullNode; |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | // Find the best sibling for this node |
| 188 | b2AABB leafAABB = m_nodes[leaf].aabb; |
| 189 | int32 index = m_root; |
| 190 | while (m_nodes[index].IsLeaf() == false) |
| 191 | { |
| 192 | int32 child1 = m_nodes[index].child1; |
| 193 | int32 child2 = m_nodes[index].child2; |
| 194 | |
| 195 | float32 area = m_nodes[index].aabb.GetPerimeter(); |
| 196 | |
| 197 | b2AABB combinedAABB; |
| 198 | combinedAABB.Combine(m_nodes[index].aabb, leafAABB); |
| 199 | float32 combinedArea = combinedAABB.GetPerimeter(); |
| 200 | |
| 201 | // Cost of creating a new parent for this node and the new leaf |
| 202 | float32 cost = 2.0f * combinedArea; |
| 203 | |
| 204 | // Minimum cost of pushing the leaf further down the tree |
| 205 | float32 inheritanceCost = 2.0f * (combinedArea - area); |
| 206 | |
| 207 | // Cost of descending into child1 |
| 208 | float32 cost1; |
| 209 | if (m_nodes[child1].IsLeaf()) |
| 210 | { |
| 211 | b2AABB aabb; |
| 212 | aabb.Combine(leafAABB, m_nodes[child1].aabb); |
| 213 | cost1 = aabb.GetPerimeter() + inheritanceCost; |
| 214 | } |
| 215 | else |
| 216 | { |
| 217 | b2AABB aabb; |
| 218 | aabb.Combine(leafAABB, m_nodes[child1].aabb); |
| 219 | float32 oldArea = m_nodes[child1].aabb.GetPerimeter(); |
| 220 | float32 newArea = aabb.GetPerimeter(); |
| 221 | cost1 = (newArea - oldArea) + inheritanceCost; |
| 222 | } |
| 223 | |
| 224 | // Cost of descending into child2 |
| 225 | float32 cost2; |
| 226 | if (m_nodes[child2].IsLeaf()) |
| 227 | { |
| 228 | b2AABB aabb; |
| 229 | aabb.Combine(leafAABB, m_nodes[child2].aabb); |
| 230 | cost2 = aabb.GetPerimeter() + inheritanceCost; |
| 231 | } |
| 232 | else |
| 233 | { |
| 234 | b2AABB aabb; |
| 235 | aabb.Combine(leafAABB, m_nodes[child2].aabb); |
| 236 | float32 oldArea = m_nodes[child2].aabb.GetPerimeter(); |
| 237 | float32 newArea = aabb.GetPerimeter(); |
| 238 | cost2 = newArea - oldArea + inheritanceCost; |
| 239 | } |
| 240 | |
| 241 | // Descend according to the minimum cost. |
| 242 | if (cost < cost1 && cost < cost2) |
| 243 | { |
| 244 | break; |
| 245 | } |
| 246 | |
| 247 | // Descend |
| 248 | if (cost1 < cost2) |
| 249 | { |
| 250 | index = child1; |
| 251 | } |
| 252 | else |
| 253 | { |
| 254 | index = child2; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | int32 sibling = index; |
| 259 | |
| 260 | // Create a new parent. |
| 261 | int32 oldParent = m_nodes[sibling].parent; |
| 262 | int32 newParent = AllocateNode(); |
| 263 | m_nodes[newParent].parent = oldParent; |
| 264 | m_nodes[newParent].userData = NULL; |
| 265 | m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb); |
| 266 | m_nodes[newParent].height = m_nodes[sibling].height + 1; |
| 267 | |
| 268 | if (oldParent != b2_nullNode) |
| 269 | { |
| 270 | // The sibling was not the root. |
| 271 | if (m_nodes[oldParent].child1 == sibling) |
| 272 | { |
| 273 | m_nodes[oldParent].child1 = newParent; |
| 274 | } |
| 275 | else |
| 276 | { |
| 277 | m_nodes[oldParent].child2 = newParent; |
| 278 | } |
| 279 | |
| 280 | m_nodes[newParent].child1 = sibling; |
| 281 | m_nodes[newParent].child2 = leaf; |
| 282 | m_nodes[sibling].parent = newParent; |
| 283 | m_nodes[leaf].parent = newParent; |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | // The sibling was the root. |
| 288 | m_nodes[newParent].child1 = sibling; |
| 289 | m_nodes[newParent].child2 = leaf; |
| 290 | m_nodes[sibling].parent = newParent; |
| 291 | m_nodes[leaf].parent = newParent; |
| 292 | m_root = newParent; |
| 293 | } |
| 294 | |
| 295 | // Walk back up the tree fixing heights and AABBs |
| 296 | index = m_nodes[leaf].parent; |
| 297 | while (index != b2_nullNode) |
| 298 | { |
| 299 | index = Balance(index); |
| 300 | |
| 301 | int32 child1 = m_nodes[index].child1; |
| 302 | int32 child2 = m_nodes[index].child2; |
| 303 | |
| 304 | b2Assert(child1 != b2_nullNode); |
| 305 | b2Assert(child2 != b2_nullNode); |
| 306 | |
| 307 | m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); |
| 308 | m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); |
| 309 | |
| 310 | index = m_nodes[index].parent; |
| 311 | } |
| 312 | |
| 313 | //Validate(); |
| 314 | } |
| 315 | |
| 316 | void b2DynamicTree::RemoveLeaf(int32 leaf) |
| 317 | { |
| 318 | if (leaf == m_root) |
| 319 | { |
| 320 | m_root = b2_nullNode; |
| 321 | return; |
| 322 | } |
| 323 | |
| 324 | int32 parent = m_nodes[leaf].parent; |
| 325 | int32 grandParent = m_nodes[parent].parent; |
| 326 | int32 sibling; |
| 327 | if (m_nodes[parent].child1 == leaf) |
| 328 | { |
| 329 | sibling = m_nodes[parent].child2; |
| 330 | } |
| 331 | else |
| 332 | { |
| 333 | sibling = m_nodes[parent].child1; |
| 334 | } |
| 335 | |
| 336 | if (grandParent != b2_nullNode) |
| 337 | { |
| 338 | // Destroy parent and connect sibling to grandParent. |
| 339 | if (m_nodes[grandParent].child1 == parent) |
| 340 | { |
| 341 | m_nodes[grandParent].child1 = sibling; |
| 342 | } |
| 343 | else |
| 344 | { |
| 345 | m_nodes[grandParent].child2 = sibling; |
| 346 | } |
| 347 | m_nodes[sibling].parent = grandParent; |
| 348 | FreeNode(parent); |
| 349 | |
| 350 | // Adjust ancestor bounds. |
| 351 | int32 index = grandParent; |
| 352 | while (index != b2_nullNode) |
| 353 | { |
| 354 | index = Balance(index); |
| 355 | |
| 356 | int32 child1 = m_nodes[index].child1; |
| 357 | int32 child2 = m_nodes[index].child2; |
| 358 | |
| 359 | m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); |
| 360 | m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); |
| 361 | |
| 362 | index = m_nodes[index].parent; |
| 363 | } |
| 364 | } |
| 365 | else |
| 366 | { |
| 367 | m_root = sibling; |
| 368 | m_nodes[sibling].parent = b2_nullNode; |
| 369 | FreeNode(parent); |
| 370 | } |
| 371 | |
| 372 | //Validate(); |
| 373 | } |
| 374 | |
| 375 | // Perform a left or right rotation if node A is imbalanced. |
| 376 | // Returns the new root index. |
| 377 | int32 b2DynamicTree::Balance(int32 iA) |
| 378 | { |
| 379 | b2Assert(iA != b2_nullNode); |
| 380 | |
| 381 | b2TreeNode* A = m_nodes + iA; |
| 382 | if (A->IsLeaf() || A->height < 2) |
| 383 | { |
| 384 | return iA; |
| 385 | } |
| 386 | |
| 387 | int32 iB = A->child1; |
| 388 | int32 iC = A->child2; |
| 389 | b2Assert(0 <= iB && iB < m_nodeCapacity); |
| 390 | b2Assert(0 <= iC && iC < m_nodeCapacity); |
| 391 | |
| 392 | b2TreeNode* B = m_nodes + iB; |
| 393 | b2TreeNode* C = m_nodes + iC; |
| 394 | |
| 395 | int32 balance = C->height - B->height; |
| 396 | |
| 397 | // Rotate C up |
| 398 | if (balance > 1) |
| 399 | { |
| 400 | int32 iF = C->child1; |
| 401 | int32 iG = C->child2; |
| 402 | b2TreeNode* F = m_nodes + iF; |
| 403 | b2TreeNode* G = m_nodes + iG; |
| 404 | b2Assert(0 <= iF && iF < m_nodeCapacity); |
| 405 | b2Assert(0 <= iG && iG < m_nodeCapacity); |
| 406 | |
| 407 | // Swap A and C |
| 408 | C->child1 = iA; |
| 409 | C->parent = A->parent; |
| 410 | A->parent = iC; |
| 411 | |
| 412 | // A's old parent should point to C |
| 413 | if (C->parent != b2_nullNode) |
| 414 | { |
| 415 | if (m_nodes[C->parent].child1 == iA) |
| 416 | { |
| 417 | m_nodes[C->parent].child1 = iC; |
| 418 | } |
| 419 | else |
| 420 | { |
| 421 | b2Assert(m_nodes[C->parent].child2 == iA); |
| 422 | m_nodes[C->parent].child2 = iC; |
| 423 | } |
| 424 | } |
| 425 | else |
| 426 | { |
| 427 | m_root = iC; |
| 428 | } |
| 429 | |
| 430 | // Rotate |
| 431 | if (F->height > G->height) |
| 432 | { |
| 433 | C->child2 = iF; |
| 434 | A->child2 = iG; |
| 435 | G->parent = iA; |
| 436 | A->aabb.Combine(B->aabb, G->aabb); |
| 437 | C->aabb.Combine(A->aabb, F->aabb); |
| 438 | |
| 439 | A->height = 1 + b2Max(B->height, G->height); |
| 440 | C->height = 1 + b2Max(A->height, F->height); |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | C->child2 = iG; |
| 445 | A->child2 = iF; |
| 446 | F->parent = iA; |
| 447 | A->aabb.Combine(B->aabb, F->aabb); |
| 448 | C->aabb.Combine(A->aabb, G->aabb); |
| 449 | |
| 450 | A->height = 1 + b2Max(B->height, F->height); |
| 451 | C->height = 1 + b2Max(A->height, G->height); |
| 452 | } |
| 453 | |
| 454 | return iC; |
| 455 | } |
| 456 | |
| 457 | // Rotate B up |
| 458 | if (balance < -1) |
| 459 | { |
| 460 | int32 iD = B->child1; |
| 461 | int32 iE = B->child2; |
| 462 | b2TreeNode* D = m_nodes + iD; |
| 463 | b2TreeNode* E = m_nodes + iE; |
| 464 | b2Assert(0 <= iD && iD < m_nodeCapacity); |
| 465 | b2Assert(0 <= iE && iE < m_nodeCapacity); |
| 466 | |
| 467 | // Swap A and B |
| 468 | B->child1 = iA; |
| 469 | B->parent = A->parent; |
| 470 | A->parent = iB; |
| 471 | |
| 472 | // A's old parent should point to B |
| 473 | if (B->parent != b2_nullNode) |
| 474 | { |
| 475 | if (m_nodes[B->parent].child1 == iA) |
| 476 | { |
| 477 | m_nodes[B->parent].child1 = iB; |
| 478 | } |
| 479 | else |
| 480 | { |
| 481 | b2Assert(m_nodes[B->parent].child2 == iA); |
| 482 | m_nodes[B->parent].child2 = iB; |
| 483 | } |
| 484 | } |
| 485 | else |
| 486 | { |
| 487 | m_root = iB; |
| 488 | } |
| 489 | |
| 490 | // Rotate |
| 491 | if (D->height > E->height) |
| 492 | { |
| 493 | B->child2 = iD; |
| 494 | A->child1 = iE; |
| 495 | E->parent = iA; |
| 496 | A->aabb.Combine(C->aabb, E->aabb); |
| 497 | B->aabb.Combine(A->aabb, D->aabb); |
| 498 | |
| 499 | A->height = 1 + b2Max(C->height, E->height); |
| 500 | B->height = 1 + b2Max(A->height, D->height); |
| 501 | } |
| 502 | else |
| 503 | { |
| 504 | B->child2 = iE; |
| 505 | A->child1 = iD; |
| 506 | D->parent = iA; |
| 507 | A->aabb.Combine(C->aabb, D->aabb); |
| 508 | B->aabb.Combine(A->aabb, E->aabb); |
| 509 | |
| 510 | A->height = 1 + b2Max(C->height, D->height); |
| 511 | B->height = 1 + b2Max(A->height, E->height); |
| 512 | } |
| 513 | |
| 514 | return iB; |
| 515 | } |
| 516 | |
| 517 | return iA; |
| 518 | } |
| 519 | |
| 520 | int32 b2DynamicTree::GetHeight() const |
| 521 | { |
| 522 | if (m_root == b2_nullNode) |
| 523 | { |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | return m_nodes[m_root].height; |
| 528 | } |
| 529 | |
| 530 | // |
| 531 | float32 b2DynamicTree::GetAreaRatio() const |
| 532 | { |
| 533 | if (m_root == b2_nullNode) |
| 534 | { |
| 535 | return 0.0f; |
| 536 | } |
| 537 | |
| 538 | const b2TreeNode* root = m_nodes + m_root; |
| 539 | float32 rootArea = root->aabb.GetPerimeter(); |
| 540 | |
| 541 | float32 totalArea = 0.0f; |
| 542 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
| 543 | { |
| 544 | const b2TreeNode* node = m_nodes + i; |
| 545 | if (node->height < 0) |
| 546 | { |
| 547 | // Free node in pool |
| 548 | continue; |
| 549 | } |
| 550 | |
| 551 | totalArea += node->aabb.GetPerimeter(); |
| 552 | } |
| 553 | |
| 554 | return totalArea / rootArea; |
| 555 | } |
| 556 | |
| 557 | // Compute the height of a sub-tree. |
| 558 | int32 b2DynamicTree::ComputeHeight(int32 nodeId) const |
| 559 | { |
| 560 | b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); |
| 561 | b2TreeNode* node = m_nodes + nodeId; |
| 562 | |
| 563 | if (node->IsLeaf()) |
| 564 | { |
| 565 | return 0; |
| 566 | } |
| 567 | |
| 568 | int32 height1 = ComputeHeight(node->child1); |
| 569 | int32 height2 = ComputeHeight(node->child2); |
| 570 | return 1 + b2Max(height1, height2); |
| 571 | } |
| 572 | |
| 573 | int32 b2DynamicTree::ComputeHeight() const |
| 574 | { |
| 575 | int32 height = ComputeHeight(m_root); |
| 576 | return height; |
| 577 | } |
| 578 | |
| 579 | void b2DynamicTree::ValidateStructure(int32 index) const |
| 580 | { |
| 581 | if (index == b2_nullNode) |
| 582 | { |
| 583 | return; |
| 584 | } |
| 585 | |
| 586 | if (index == m_root) |
| 587 | { |
| 588 | b2Assert(m_nodes[index].parent == b2_nullNode); |
| 589 | } |
| 590 | |
| 591 | const b2TreeNode* node = m_nodes + index; |
| 592 | |
| 593 | int32 child1 = node->child1; |
| 594 | int32 child2 = node->child2; |
| 595 | |
| 596 | if (node->IsLeaf()) |
| 597 | { |
| 598 | b2Assert(child1 == b2_nullNode); |
| 599 | b2Assert(child2 == b2_nullNode); |
| 600 | b2Assert(node->height == 0); |
| 601 | return; |
| 602 | } |
| 603 | |
| 604 | b2Assert(0 <= child1 && child1 < m_nodeCapacity); |
| 605 | b2Assert(0 <= child2 && child2 < m_nodeCapacity); |
| 606 | |
| 607 | b2Assert(m_nodes[child1].parent == index); |
| 608 | b2Assert(m_nodes[child2].parent == index); |
| 609 | |
| 610 | ValidateStructure(child1); |
| 611 | ValidateStructure(child2); |
| 612 | } |
| 613 | |
| 614 | void b2DynamicTree::ValidateMetrics(int32 index) const |
| 615 | { |
| 616 | if (index == b2_nullNode) |
| 617 | { |
| 618 | return; |
| 619 | } |
| 620 | |
| 621 | const b2TreeNode* node = m_nodes + index; |
| 622 | |
| 623 | int32 child1 = node->child1; |
| 624 | int32 child2 = node->child2; |
| 625 | |
| 626 | if (node->IsLeaf()) |
| 627 | { |
| 628 | b2Assert(child1 == b2_nullNode); |
| 629 | b2Assert(child2 == b2_nullNode); |
| 630 | b2Assert(node->height == 0); |
| 631 | return; |
| 632 | } |
| 633 | |
| 634 | b2Assert(0 <= child1 && child1 < m_nodeCapacity); |
| 635 | b2Assert(0 <= child2 && child2 < m_nodeCapacity); |
| 636 | |
| 637 | int32 height1 = m_nodes[child1].height; |
| 638 | int32 height2 = m_nodes[child2].height; |
| 639 | int32 height; |
| 640 | height = 1 + b2Max(height1, height2); |
| 641 | b2Assert(node->height == height); |
| 642 | |
| 643 | b2AABB aabb; |
| 644 | aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); |
| 645 | |
| 646 | b2Assert(aabb.lowerBound == node->aabb.lowerBound); |
| 647 | b2Assert(aabb.upperBound == node->aabb.upperBound); |
| 648 | |
| 649 | ValidateMetrics(child1); |
| 650 | ValidateMetrics(child2); |
| 651 | } |
| 652 | |
| 653 | void b2DynamicTree::Validate() const |
| 654 | { |
| 655 | ValidateStructure(m_root); |
| 656 | ValidateMetrics(m_root); |
| 657 | |
| 658 | int32 freeCount = 0; |
| 659 | int32 freeIndex = m_freeList; |
| 660 | while (freeIndex != b2_nullNode) |
| 661 | { |
| 662 | b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity); |
| 663 | freeIndex = m_nodes[freeIndex].next; |
| 664 | ++freeCount; |
| 665 | } |
| 666 | |
| 667 | b2Assert(GetHeight() == ComputeHeight()); |
| 668 | |
| 669 | b2Assert(m_nodeCount + freeCount == m_nodeCapacity); |
| 670 | } |
| 671 | |
| 672 | int32 b2DynamicTree::GetMaxBalance() const |
| 673 | { |
| 674 | int32 maxBalance = 0; |
| 675 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
| 676 | { |
| 677 | const b2TreeNode* node = m_nodes + i; |
| 678 | if (node->height <= 1) |
| 679 | { |
| 680 | continue; |
| 681 | } |
| 682 | |
| 683 | b2Assert(node->IsLeaf() == false); |
| 684 | |
| 685 | int32 child1 = node->child1; |
| 686 | int32 child2 = node->child2; |
| 687 | int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height); |
| 688 | maxBalance = b2Max(maxBalance, balance); |
| 689 | } |
| 690 | |
| 691 | return maxBalance; |
| 692 | } |
| 693 | |
| 694 | void b2DynamicTree::RebuildBottomUp() |
| 695 | { |
| 696 | int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32)); |
| 697 | int32 count = 0; |
| 698 | |
| 699 | // Build array of leaves. Free the rest. |
| 700 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
| 701 | { |
| 702 | if (m_nodes[i].height < 0) |
| 703 | { |
| 704 | // free node in pool |
| 705 | continue; |
| 706 | } |
| 707 | |
| 708 | if (m_nodes[i].IsLeaf()) |
| 709 | { |
| 710 | m_nodes[i].parent = b2_nullNode; |
| 711 | nodes[count] = i; |
| 712 | ++count; |
| 713 | } |
| 714 | else |
| 715 | { |
| 716 | FreeNode(i); |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | while (count > 1) |
| 721 | { |
| 722 | float32 minCost = b2_maxFloat; |
| 723 | int32 iMin = -1, jMin = -1; |
| 724 | for (int32 i = 0; i < count; ++i) |
| 725 | { |
| 726 | b2AABB aabbi = m_nodes[nodes[i]].aabb; |
| 727 | |
| 728 | for (int32 j = i + 1; j < count; ++j) |
| 729 | { |
| 730 | b2AABB aabbj = m_nodes[nodes[j]].aabb; |
| 731 | b2AABB b; |
| 732 | b.Combine(aabbi, aabbj); |
| 733 | float32 cost = b.GetPerimeter(); |
| 734 | if (cost < minCost) |
| 735 | { |
| 736 | iMin = i; |
| 737 | jMin = j; |
| 738 | minCost = cost; |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | int32 index1 = nodes[iMin]; |
| 744 | int32 index2 = nodes[jMin]; |
| 745 | b2TreeNode* child1 = m_nodes + index1; |
| 746 | b2TreeNode* child2 = m_nodes + index2; |
| 747 | |
| 748 | int32 parentIndex = AllocateNode(); |
| 749 | b2TreeNode* parent = m_nodes + parentIndex; |
| 750 | parent->child1 = index1; |
| 751 | parent->child2 = index2; |
| 752 | parent->height = 1 + b2Max(child1->height, child2->height); |
| 753 | parent->aabb.Combine(child1->aabb, child2->aabb); |
| 754 | parent->parent = b2_nullNode; |
| 755 | |
| 756 | child1->parent = parentIndex; |
| 757 | child2->parent = parentIndex; |
| 758 | |
| 759 | nodes[jMin] = nodes[count-1]; |
| 760 | nodes[iMin] = parentIndex; |
| 761 | --count; |
| 762 | } |
| 763 | |
| 764 | m_root = nodes[0]; |
| 765 | b2Free(nodes); |
| 766 | |
| 767 | Validate(); |
| 768 | } |
| 769 | |
| 770 | void b2DynamicTree::ShiftOrigin(const b2Vec2& newOrigin) |
| 771 | { |
| 772 | // Build array of leaves. Free the rest. |
| 773 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
| 774 | { |
| 775 | m_nodes[i].aabb.lowerBound -= newOrigin; |
| 776 | m_nodes[i].aabb.upperBound -= newOrigin; |
| 777 | } |
| 778 | } |
| 779 | |