1 | /* |
2 | * Copyright (c) 2009 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Collision/b2DynamicTree.h> |
20 | #include <string.h> |
21 | |
22 | b2DynamicTree::b2DynamicTree() |
23 | { |
24 | m_root = b2_nullNode; |
25 | |
26 | m_nodeCapacity = 16; |
27 | m_nodeCount = 0; |
28 | m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); |
29 | memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode)); |
30 | |
31 | // Build a linked list for the free list. |
32 | for (int32 i = 0; i < m_nodeCapacity - 1; ++i) |
33 | { |
34 | m_nodes[i].next = i + 1; |
35 | m_nodes[i].height = -1; |
36 | } |
37 | m_nodes[m_nodeCapacity-1].next = b2_nullNode; |
38 | m_nodes[m_nodeCapacity-1].height = -1; |
39 | m_freeList = 0; |
40 | |
41 | m_path = 0; |
42 | |
43 | m_insertionCount = 0; |
44 | } |
45 | |
46 | b2DynamicTree::~b2DynamicTree() |
47 | { |
48 | // This frees the entire tree in one shot. |
49 | b2Free(m_nodes); |
50 | } |
51 | |
52 | // Allocate a node from the pool. Grow the pool if necessary. |
53 | int32 b2DynamicTree::AllocateNode() |
54 | { |
55 | // Expand the node pool as needed. |
56 | if (m_freeList == b2_nullNode) |
57 | { |
58 | b2Assert(m_nodeCount == m_nodeCapacity); |
59 | |
60 | // The free list is empty. Rebuild a bigger pool. |
61 | b2TreeNode* oldNodes = m_nodes; |
62 | m_nodeCapacity *= 2; |
63 | m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); |
64 | memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode)); |
65 | b2Free(oldNodes); |
66 | |
67 | // Build a linked list for the free list. The parent |
68 | // pointer becomes the "next" pointer. |
69 | for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) |
70 | { |
71 | m_nodes[i].next = i + 1; |
72 | m_nodes[i].height = -1; |
73 | } |
74 | m_nodes[m_nodeCapacity-1].next = b2_nullNode; |
75 | m_nodes[m_nodeCapacity-1].height = -1; |
76 | m_freeList = m_nodeCount; |
77 | } |
78 | |
79 | // Peel a node off the free list. |
80 | int32 nodeId = m_freeList; |
81 | m_freeList = m_nodes[nodeId].next; |
82 | m_nodes[nodeId].parent = b2_nullNode; |
83 | m_nodes[nodeId].child1 = b2_nullNode; |
84 | m_nodes[nodeId].child2 = b2_nullNode; |
85 | m_nodes[nodeId].height = 0; |
86 | m_nodes[nodeId].userData = NULL; |
87 | ++m_nodeCount; |
88 | return nodeId; |
89 | } |
90 | |
91 | // Return a node to the pool. |
92 | void b2DynamicTree::FreeNode(int32 nodeId) |
93 | { |
94 | b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); |
95 | b2Assert(0 < m_nodeCount); |
96 | m_nodes[nodeId].next = m_freeList; |
97 | m_nodes[nodeId].height = -1; |
98 | m_freeList = nodeId; |
99 | --m_nodeCount; |
100 | } |
101 | |
102 | // Create a proxy in the tree as a leaf node. We return the index |
103 | // of the node instead of a pointer so that we can grow |
104 | // the node pool. |
105 | int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) |
106 | { |
107 | int32 proxyId = AllocateNode(); |
108 | |
109 | // Fatten the aabb. |
110 | b2Vec2 r(b2_aabbExtension, b2_aabbExtension); |
111 | m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r; |
112 | m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r; |
113 | m_nodes[proxyId].userData = userData; |
114 | m_nodes[proxyId].height = 0; |
115 | |
116 | InsertLeaf(proxyId); |
117 | |
118 | return proxyId; |
119 | } |
120 | |
121 | void b2DynamicTree::DestroyProxy(int32 proxyId) |
122 | { |
123 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
124 | b2Assert(m_nodes[proxyId].IsLeaf()); |
125 | |
126 | RemoveLeaf(proxyId); |
127 | FreeNode(proxyId); |
128 | } |
129 | |
130 | bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) |
131 | { |
132 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
133 | |
134 | b2Assert(m_nodes[proxyId].IsLeaf()); |
135 | |
136 | if (m_nodes[proxyId].aabb.Contains(aabb)) |
137 | { |
138 | return false; |
139 | } |
140 | |
141 | RemoveLeaf(proxyId); |
142 | |
143 | // Extend AABB. |
144 | b2AABB b = aabb; |
145 | b2Vec2 r(b2_aabbExtension, b2_aabbExtension); |
146 | b.lowerBound = b.lowerBound - r; |
147 | b.upperBound = b.upperBound + r; |
148 | |
149 | // Predict AABB displacement. |
150 | b2Vec2 d = b2_aabbMultiplier * displacement; |
151 | |
152 | if (d.x < 0.0f) |
153 | { |
154 | b.lowerBound.x += d.x; |
155 | } |
156 | else |
157 | { |
158 | b.upperBound.x += d.x; |
159 | } |
160 | |
161 | if (d.y < 0.0f) |
162 | { |
163 | b.lowerBound.y += d.y; |
164 | } |
165 | else |
166 | { |
167 | b.upperBound.y += d.y; |
168 | } |
169 | |
170 | m_nodes[proxyId].aabb = b; |
171 | |
172 | InsertLeaf(proxyId); |
173 | return true; |
174 | } |
175 | |
176 | void b2DynamicTree::InsertLeaf(int32 leaf) |
177 | { |
178 | ++m_insertionCount; |
179 | |
180 | if (m_root == b2_nullNode) |
181 | { |
182 | m_root = leaf; |
183 | m_nodes[m_root].parent = b2_nullNode; |
184 | return; |
185 | } |
186 | |
187 | // Find the best sibling for this node |
188 | b2AABB leafAABB = m_nodes[leaf].aabb; |
189 | int32 index = m_root; |
190 | while (m_nodes[index].IsLeaf() == false) |
191 | { |
192 | int32 child1 = m_nodes[index].child1; |
193 | int32 child2 = m_nodes[index].child2; |
194 | |
195 | float32 area = m_nodes[index].aabb.GetPerimeter(); |
196 | |
197 | b2AABB combinedAABB; |
198 | combinedAABB.Combine(m_nodes[index].aabb, leafAABB); |
199 | float32 combinedArea = combinedAABB.GetPerimeter(); |
200 | |
201 | // Cost of creating a new parent for this node and the new leaf |
202 | float32 cost = 2.0f * combinedArea; |
203 | |
204 | // Minimum cost of pushing the leaf further down the tree |
205 | float32 inheritanceCost = 2.0f * (combinedArea - area); |
206 | |
207 | // Cost of descending into child1 |
208 | float32 cost1; |
209 | if (m_nodes[child1].IsLeaf()) |
210 | { |
211 | b2AABB aabb; |
212 | aabb.Combine(leafAABB, m_nodes[child1].aabb); |
213 | cost1 = aabb.GetPerimeter() + inheritanceCost; |
214 | } |
215 | else |
216 | { |
217 | b2AABB aabb; |
218 | aabb.Combine(leafAABB, m_nodes[child1].aabb); |
219 | float32 oldArea = m_nodes[child1].aabb.GetPerimeter(); |
220 | float32 newArea = aabb.GetPerimeter(); |
221 | cost1 = (newArea - oldArea) + inheritanceCost; |
222 | } |
223 | |
224 | // Cost of descending into child2 |
225 | float32 cost2; |
226 | if (m_nodes[child2].IsLeaf()) |
227 | { |
228 | b2AABB aabb; |
229 | aabb.Combine(leafAABB, m_nodes[child2].aabb); |
230 | cost2 = aabb.GetPerimeter() + inheritanceCost; |
231 | } |
232 | else |
233 | { |
234 | b2AABB aabb; |
235 | aabb.Combine(leafAABB, m_nodes[child2].aabb); |
236 | float32 oldArea = m_nodes[child2].aabb.GetPerimeter(); |
237 | float32 newArea = aabb.GetPerimeter(); |
238 | cost2 = newArea - oldArea + inheritanceCost; |
239 | } |
240 | |
241 | // Descend according to the minimum cost. |
242 | if (cost < cost1 && cost < cost2) |
243 | { |
244 | break; |
245 | } |
246 | |
247 | // Descend |
248 | if (cost1 < cost2) |
249 | { |
250 | index = child1; |
251 | } |
252 | else |
253 | { |
254 | index = child2; |
255 | } |
256 | } |
257 | |
258 | int32 sibling = index; |
259 | |
260 | // Create a new parent. |
261 | int32 oldParent = m_nodes[sibling].parent; |
262 | int32 newParent = AllocateNode(); |
263 | m_nodes[newParent].parent = oldParent; |
264 | m_nodes[newParent].userData = NULL; |
265 | m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb); |
266 | m_nodes[newParent].height = m_nodes[sibling].height + 1; |
267 | |
268 | if (oldParent != b2_nullNode) |
269 | { |
270 | // The sibling was not the root. |
271 | if (m_nodes[oldParent].child1 == sibling) |
272 | { |
273 | m_nodes[oldParent].child1 = newParent; |
274 | } |
275 | else |
276 | { |
277 | m_nodes[oldParent].child2 = newParent; |
278 | } |
279 | |
280 | m_nodes[newParent].child1 = sibling; |
281 | m_nodes[newParent].child2 = leaf; |
282 | m_nodes[sibling].parent = newParent; |
283 | m_nodes[leaf].parent = newParent; |
284 | } |
285 | else |
286 | { |
287 | // The sibling was the root. |
288 | m_nodes[newParent].child1 = sibling; |
289 | m_nodes[newParent].child2 = leaf; |
290 | m_nodes[sibling].parent = newParent; |
291 | m_nodes[leaf].parent = newParent; |
292 | m_root = newParent; |
293 | } |
294 | |
295 | // Walk back up the tree fixing heights and AABBs |
296 | index = m_nodes[leaf].parent; |
297 | while (index != b2_nullNode) |
298 | { |
299 | index = Balance(index); |
300 | |
301 | int32 child1 = m_nodes[index].child1; |
302 | int32 child2 = m_nodes[index].child2; |
303 | |
304 | b2Assert(child1 != b2_nullNode); |
305 | b2Assert(child2 != b2_nullNode); |
306 | |
307 | m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); |
308 | m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); |
309 | |
310 | index = m_nodes[index].parent; |
311 | } |
312 | |
313 | //Validate(); |
314 | } |
315 | |
316 | void b2DynamicTree::RemoveLeaf(int32 leaf) |
317 | { |
318 | if (leaf == m_root) |
319 | { |
320 | m_root = b2_nullNode; |
321 | return; |
322 | } |
323 | |
324 | int32 parent = m_nodes[leaf].parent; |
325 | int32 grandParent = m_nodes[parent].parent; |
326 | int32 sibling; |
327 | if (m_nodes[parent].child1 == leaf) |
328 | { |
329 | sibling = m_nodes[parent].child2; |
330 | } |
331 | else |
332 | { |
333 | sibling = m_nodes[parent].child1; |
334 | } |
335 | |
336 | if (grandParent != b2_nullNode) |
337 | { |
338 | // Destroy parent and connect sibling to grandParent. |
339 | if (m_nodes[grandParent].child1 == parent) |
340 | { |
341 | m_nodes[grandParent].child1 = sibling; |
342 | } |
343 | else |
344 | { |
345 | m_nodes[grandParent].child2 = sibling; |
346 | } |
347 | m_nodes[sibling].parent = grandParent; |
348 | FreeNode(parent); |
349 | |
350 | // Adjust ancestor bounds. |
351 | int32 index = grandParent; |
352 | while (index != b2_nullNode) |
353 | { |
354 | index = Balance(index); |
355 | |
356 | int32 child1 = m_nodes[index].child1; |
357 | int32 child2 = m_nodes[index].child2; |
358 | |
359 | m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); |
360 | m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); |
361 | |
362 | index = m_nodes[index].parent; |
363 | } |
364 | } |
365 | else |
366 | { |
367 | m_root = sibling; |
368 | m_nodes[sibling].parent = b2_nullNode; |
369 | FreeNode(parent); |
370 | } |
371 | |
372 | //Validate(); |
373 | } |
374 | |
375 | // Perform a left or right rotation if node A is imbalanced. |
376 | // Returns the new root index. |
377 | int32 b2DynamicTree::Balance(int32 iA) |
378 | { |
379 | b2Assert(iA != b2_nullNode); |
380 | |
381 | b2TreeNode* A = m_nodes + iA; |
382 | if (A->IsLeaf() || A->height < 2) |
383 | { |
384 | return iA; |
385 | } |
386 | |
387 | int32 iB = A->child1; |
388 | int32 iC = A->child2; |
389 | b2Assert(0 <= iB && iB < m_nodeCapacity); |
390 | b2Assert(0 <= iC && iC < m_nodeCapacity); |
391 | |
392 | b2TreeNode* B = m_nodes + iB; |
393 | b2TreeNode* C = m_nodes + iC; |
394 | |
395 | int32 balance = C->height - B->height; |
396 | |
397 | // Rotate C up |
398 | if (balance > 1) |
399 | { |
400 | int32 iF = C->child1; |
401 | int32 iG = C->child2; |
402 | b2TreeNode* F = m_nodes + iF; |
403 | b2TreeNode* G = m_nodes + iG; |
404 | b2Assert(0 <= iF && iF < m_nodeCapacity); |
405 | b2Assert(0 <= iG && iG < m_nodeCapacity); |
406 | |
407 | // Swap A and C |
408 | C->child1 = iA; |
409 | C->parent = A->parent; |
410 | A->parent = iC; |
411 | |
412 | // A's old parent should point to C |
413 | if (C->parent != b2_nullNode) |
414 | { |
415 | if (m_nodes[C->parent].child1 == iA) |
416 | { |
417 | m_nodes[C->parent].child1 = iC; |
418 | } |
419 | else |
420 | { |
421 | b2Assert(m_nodes[C->parent].child2 == iA); |
422 | m_nodes[C->parent].child2 = iC; |
423 | } |
424 | } |
425 | else |
426 | { |
427 | m_root = iC; |
428 | } |
429 | |
430 | // Rotate |
431 | if (F->height > G->height) |
432 | { |
433 | C->child2 = iF; |
434 | A->child2 = iG; |
435 | G->parent = iA; |
436 | A->aabb.Combine(B->aabb, G->aabb); |
437 | C->aabb.Combine(A->aabb, F->aabb); |
438 | |
439 | A->height = 1 + b2Max(B->height, G->height); |
440 | C->height = 1 + b2Max(A->height, F->height); |
441 | } |
442 | else |
443 | { |
444 | C->child2 = iG; |
445 | A->child2 = iF; |
446 | F->parent = iA; |
447 | A->aabb.Combine(B->aabb, F->aabb); |
448 | C->aabb.Combine(A->aabb, G->aabb); |
449 | |
450 | A->height = 1 + b2Max(B->height, F->height); |
451 | C->height = 1 + b2Max(A->height, G->height); |
452 | } |
453 | |
454 | return iC; |
455 | } |
456 | |
457 | // Rotate B up |
458 | if (balance < -1) |
459 | { |
460 | int32 iD = B->child1; |
461 | int32 iE = B->child2; |
462 | b2TreeNode* D = m_nodes + iD; |
463 | b2TreeNode* E = m_nodes + iE; |
464 | b2Assert(0 <= iD && iD < m_nodeCapacity); |
465 | b2Assert(0 <= iE && iE < m_nodeCapacity); |
466 | |
467 | // Swap A and B |
468 | B->child1 = iA; |
469 | B->parent = A->parent; |
470 | A->parent = iB; |
471 | |
472 | // A's old parent should point to B |
473 | if (B->parent != b2_nullNode) |
474 | { |
475 | if (m_nodes[B->parent].child1 == iA) |
476 | { |
477 | m_nodes[B->parent].child1 = iB; |
478 | } |
479 | else |
480 | { |
481 | b2Assert(m_nodes[B->parent].child2 == iA); |
482 | m_nodes[B->parent].child2 = iB; |
483 | } |
484 | } |
485 | else |
486 | { |
487 | m_root = iB; |
488 | } |
489 | |
490 | // Rotate |
491 | if (D->height > E->height) |
492 | { |
493 | B->child2 = iD; |
494 | A->child1 = iE; |
495 | E->parent = iA; |
496 | A->aabb.Combine(C->aabb, E->aabb); |
497 | B->aabb.Combine(A->aabb, D->aabb); |
498 | |
499 | A->height = 1 + b2Max(C->height, E->height); |
500 | B->height = 1 + b2Max(A->height, D->height); |
501 | } |
502 | else |
503 | { |
504 | B->child2 = iE; |
505 | A->child1 = iD; |
506 | D->parent = iA; |
507 | A->aabb.Combine(C->aabb, D->aabb); |
508 | B->aabb.Combine(A->aabb, E->aabb); |
509 | |
510 | A->height = 1 + b2Max(C->height, D->height); |
511 | B->height = 1 + b2Max(A->height, E->height); |
512 | } |
513 | |
514 | return iB; |
515 | } |
516 | |
517 | return iA; |
518 | } |
519 | |
520 | int32 b2DynamicTree::GetHeight() const |
521 | { |
522 | if (m_root == b2_nullNode) |
523 | { |
524 | return 0; |
525 | } |
526 | |
527 | return m_nodes[m_root].height; |
528 | } |
529 | |
530 | // |
531 | float32 b2DynamicTree::GetAreaRatio() const |
532 | { |
533 | if (m_root == b2_nullNode) |
534 | { |
535 | return 0.0f; |
536 | } |
537 | |
538 | const b2TreeNode* root = m_nodes + m_root; |
539 | float32 rootArea = root->aabb.GetPerimeter(); |
540 | |
541 | float32 totalArea = 0.0f; |
542 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
543 | { |
544 | const b2TreeNode* node = m_nodes + i; |
545 | if (node->height < 0) |
546 | { |
547 | // Free node in pool |
548 | continue; |
549 | } |
550 | |
551 | totalArea += node->aabb.GetPerimeter(); |
552 | } |
553 | |
554 | return totalArea / rootArea; |
555 | } |
556 | |
557 | // Compute the height of a sub-tree. |
558 | int32 b2DynamicTree::ComputeHeight(int32 nodeId) const |
559 | { |
560 | b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); |
561 | b2TreeNode* node = m_nodes + nodeId; |
562 | |
563 | if (node->IsLeaf()) |
564 | { |
565 | return 0; |
566 | } |
567 | |
568 | int32 height1 = ComputeHeight(node->child1); |
569 | int32 height2 = ComputeHeight(node->child2); |
570 | return 1 + b2Max(height1, height2); |
571 | } |
572 | |
573 | int32 b2DynamicTree::ComputeHeight() const |
574 | { |
575 | int32 height = ComputeHeight(m_root); |
576 | return height; |
577 | } |
578 | |
579 | void b2DynamicTree::ValidateStructure(int32 index) const |
580 | { |
581 | if (index == b2_nullNode) |
582 | { |
583 | return; |
584 | } |
585 | |
586 | if (index == m_root) |
587 | { |
588 | b2Assert(m_nodes[index].parent == b2_nullNode); |
589 | } |
590 | |
591 | const b2TreeNode* node = m_nodes + index; |
592 | |
593 | int32 child1 = node->child1; |
594 | int32 child2 = node->child2; |
595 | |
596 | if (node->IsLeaf()) |
597 | { |
598 | b2Assert(child1 == b2_nullNode); |
599 | b2Assert(child2 == b2_nullNode); |
600 | b2Assert(node->height == 0); |
601 | return; |
602 | } |
603 | |
604 | b2Assert(0 <= child1 && child1 < m_nodeCapacity); |
605 | b2Assert(0 <= child2 && child2 < m_nodeCapacity); |
606 | |
607 | b2Assert(m_nodes[child1].parent == index); |
608 | b2Assert(m_nodes[child2].parent == index); |
609 | |
610 | ValidateStructure(child1); |
611 | ValidateStructure(child2); |
612 | } |
613 | |
614 | void b2DynamicTree::ValidateMetrics(int32 index) const |
615 | { |
616 | if (index == b2_nullNode) |
617 | { |
618 | return; |
619 | } |
620 | |
621 | const b2TreeNode* node = m_nodes + index; |
622 | |
623 | int32 child1 = node->child1; |
624 | int32 child2 = node->child2; |
625 | |
626 | if (node->IsLeaf()) |
627 | { |
628 | b2Assert(child1 == b2_nullNode); |
629 | b2Assert(child2 == b2_nullNode); |
630 | b2Assert(node->height == 0); |
631 | return; |
632 | } |
633 | |
634 | b2Assert(0 <= child1 && child1 < m_nodeCapacity); |
635 | b2Assert(0 <= child2 && child2 < m_nodeCapacity); |
636 | |
637 | int32 height1 = m_nodes[child1].height; |
638 | int32 height2 = m_nodes[child2].height; |
639 | int32 height; |
640 | height = 1 + b2Max(height1, height2); |
641 | b2Assert(node->height == height); |
642 | |
643 | b2AABB aabb; |
644 | aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); |
645 | |
646 | b2Assert(aabb.lowerBound == node->aabb.lowerBound); |
647 | b2Assert(aabb.upperBound == node->aabb.upperBound); |
648 | |
649 | ValidateMetrics(child1); |
650 | ValidateMetrics(child2); |
651 | } |
652 | |
653 | void b2DynamicTree::Validate() const |
654 | { |
655 | ValidateStructure(m_root); |
656 | ValidateMetrics(m_root); |
657 | |
658 | int32 freeCount = 0; |
659 | int32 freeIndex = m_freeList; |
660 | while (freeIndex != b2_nullNode) |
661 | { |
662 | b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity); |
663 | freeIndex = m_nodes[freeIndex].next; |
664 | ++freeCount; |
665 | } |
666 | |
667 | b2Assert(GetHeight() == ComputeHeight()); |
668 | |
669 | b2Assert(m_nodeCount + freeCount == m_nodeCapacity); |
670 | } |
671 | |
672 | int32 b2DynamicTree::GetMaxBalance() const |
673 | { |
674 | int32 maxBalance = 0; |
675 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
676 | { |
677 | const b2TreeNode* node = m_nodes + i; |
678 | if (node->height <= 1) |
679 | { |
680 | continue; |
681 | } |
682 | |
683 | b2Assert(node->IsLeaf() == false); |
684 | |
685 | int32 child1 = node->child1; |
686 | int32 child2 = node->child2; |
687 | int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height); |
688 | maxBalance = b2Max(maxBalance, balance); |
689 | } |
690 | |
691 | return maxBalance; |
692 | } |
693 | |
694 | void b2DynamicTree::RebuildBottomUp() |
695 | { |
696 | int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32)); |
697 | int32 count = 0; |
698 | |
699 | // Build array of leaves. Free the rest. |
700 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
701 | { |
702 | if (m_nodes[i].height < 0) |
703 | { |
704 | // free node in pool |
705 | continue; |
706 | } |
707 | |
708 | if (m_nodes[i].IsLeaf()) |
709 | { |
710 | m_nodes[i].parent = b2_nullNode; |
711 | nodes[count] = i; |
712 | ++count; |
713 | } |
714 | else |
715 | { |
716 | FreeNode(i); |
717 | } |
718 | } |
719 | |
720 | while (count > 1) |
721 | { |
722 | float32 minCost = b2_maxFloat; |
723 | int32 iMin = -1, jMin = -1; |
724 | for (int32 i = 0; i < count; ++i) |
725 | { |
726 | b2AABB aabbi = m_nodes[nodes[i]].aabb; |
727 | |
728 | for (int32 j = i + 1; j < count; ++j) |
729 | { |
730 | b2AABB aabbj = m_nodes[nodes[j]].aabb; |
731 | b2AABB b; |
732 | b.Combine(aabbi, aabbj); |
733 | float32 cost = b.GetPerimeter(); |
734 | if (cost < minCost) |
735 | { |
736 | iMin = i; |
737 | jMin = j; |
738 | minCost = cost; |
739 | } |
740 | } |
741 | } |
742 | |
743 | int32 index1 = nodes[iMin]; |
744 | int32 index2 = nodes[jMin]; |
745 | b2TreeNode* child1 = m_nodes + index1; |
746 | b2TreeNode* child2 = m_nodes + index2; |
747 | |
748 | int32 parentIndex = AllocateNode(); |
749 | b2TreeNode* parent = m_nodes + parentIndex; |
750 | parent->child1 = index1; |
751 | parent->child2 = index2; |
752 | parent->height = 1 + b2Max(child1->height, child2->height); |
753 | parent->aabb.Combine(child1->aabb, child2->aabb); |
754 | parent->parent = b2_nullNode; |
755 | |
756 | child1->parent = parentIndex; |
757 | child2->parent = parentIndex; |
758 | |
759 | nodes[jMin] = nodes[count-1]; |
760 | nodes[iMin] = parentIndex; |
761 | --count; |
762 | } |
763 | |
764 | m_root = nodes[0]; |
765 | b2Free(nodes); |
766 | |
767 | Validate(); |
768 | } |
769 | |
770 | void b2DynamicTree::ShiftOrigin(const b2Vec2& newOrigin) |
771 | { |
772 | // Build array of leaves. Free the rest. |
773 | for (int32 i = 0; i < m_nodeCapacity; ++i) |
774 | { |
775 | m_nodes[i].aabb.lowerBound -= newOrigin; |
776 | m_nodes[i].aabb.upperBound -= newOrigin; |
777 | } |
778 | } |
779 | |