1 | /* |
2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Dynamics/Joints/b2FrictionJoint.h> |
20 | #include <Box2D/Dynamics/b2Body.h> |
21 | #include <Box2D/Dynamics/b2TimeStep.h> |
22 | |
23 | // Point-to-point constraint |
24 | // Cdot = v2 - v1 |
25 | // = v2 + cross(w2, r2) - v1 - cross(w1, r1) |
26 | // J = [-I -r1_skew I r2_skew ] |
27 | // Identity used: |
28 | // w k % (rx i + ry j) = w * (-ry i + rx j) |
29 | |
30 | // Angle constraint |
31 | // Cdot = w2 - w1 |
32 | // J = [0 0 -1 0 0 1] |
33 | // K = invI1 + invI2 |
34 | |
35 | void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) |
36 | { |
37 | bodyA = bA; |
38 | bodyB = bB; |
39 | localAnchorA = bodyA->GetLocalPoint(anchor); |
40 | localAnchorB = bodyB->GetLocalPoint(anchor); |
41 | } |
42 | |
43 | b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def) |
44 | : b2Joint(def) |
45 | { |
46 | m_localAnchorA = def->localAnchorA; |
47 | m_localAnchorB = def->localAnchorB; |
48 | |
49 | m_linearImpulse.SetZero(); |
50 | m_angularImpulse = 0.0f; |
51 | |
52 | m_maxForce = def->maxForce; |
53 | m_maxTorque = def->maxTorque; |
54 | } |
55 | |
56 | void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data) |
57 | { |
58 | m_indexA = m_bodyA->m_islandIndex; |
59 | m_indexB = m_bodyB->m_islandIndex; |
60 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
61 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
62 | m_invMassA = m_bodyA->m_invMass; |
63 | m_invMassB = m_bodyB->m_invMass; |
64 | m_invIA = m_bodyA->m_invI; |
65 | m_invIB = m_bodyB->m_invI; |
66 | |
67 | float32 aA = data.positions[m_indexA].a; |
68 | b2Vec2 vA = data.velocities[m_indexA].v; |
69 | float32 wA = data.velocities[m_indexA].w; |
70 | |
71 | float32 aB = data.positions[m_indexB].a; |
72 | b2Vec2 vB = data.velocities[m_indexB].v; |
73 | float32 wB = data.velocities[m_indexB].w; |
74 | |
75 | b2Rot qA(aA), qB(aB); |
76 | |
77 | // Compute the effective mass matrix. |
78 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
79 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
80 | |
81 | // J = [-I -r1_skew I r2_skew] |
82 | // [ 0 -1 0 1] |
83 | // r_skew = [-ry; rx] |
84 | |
85 | // Matlab |
86 | // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] |
87 | // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] |
88 | // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] |
89 | |
90 | float32 mA = m_invMassA, mB = m_invMassB; |
91 | float32 iA = m_invIA, iB = m_invIB; |
92 | |
93 | b2Mat22 K; |
94 | K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; |
95 | K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; |
96 | K.ey.x = K.ex.y; |
97 | K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; |
98 | |
99 | m_linearMass = K.GetInverse(); |
100 | |
101 | m_angularMass = iA + iB; |
102 | if (m_angularMass > 0.0f) |
103 | { |
104 | m_angularMass = 1.0f / m_angularMass; |
105 | } |
106 | |
107 | if (data.step.warmStarting) |
108 | { |
109 | // Scale impulses to support a variable time step. |
110 | m_linearImpulse *= data.step.dtRatio; |
111 | m_angularImpulse *= data.step.dtRatio; |
112 | |
113 | b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); |
114 | vA -= mA * P; |
115 | wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); |
116 | vB += mB * P; |
117 | wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); |
118 | } |
119 | else |
120 | { |
121 | m_linearImpulse.SetZero(); |
122 | m_angularImpulse = 0.0f; |
123 | } |
124 | |
125 | data.velocities[m_indexA].v = vA; |
126 | data.velocities[m_indexA].w = wA; |
127 | data.velocities[m_indexB].v = vB; |
128 | data.velocities[m_indexB].w = wB; |
129 | } |
130 | |
131 | void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data) |
132 | { |
133 | b2Vec2 vA = data.velocities[m_indexA].v; |
134 | float32 wA = data.velocities[m_indexA].w; |
135 | b2Vec2 vB = data.velocities[m_indexB].v; |
136 | float32 wB = data.velocities[m_indexB].w; |
137 | |
138 | float32 mA = m_invMassA, mB = m_invMassB; |
139 | float32 iA = m_invIA, iB = m_invIB; |
140 | |
141 | float32 h = data.step.dt; |
142 | |
143 | // Solve angular friction |
144 | { |
145 | float32 Cdot = wB - wA; |
146 | float32 impulse = -m_angularMass * Cdot; |
147 | |
148 | float32 oldImpulse = m_angularImpulse; |
149 | float32 maxImpulse = h * m_maxTorque; |
150 | m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); |
151 | impulse = m_angularImpulse - oldImpulse; |
152 | |
153 | wA -= iA * impulse; |
154 | wB += iB * impulse; |
155 | } |
156 | |
157 | // Solve linear friction |
158 | { |
159 | b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
160 | |
161 | b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); |
162 | b2Vec2 oldImpulse = m_linearImpulse; |
163 | m_linearImpulse += impulse; |
164 | |
165 | float32 maxImpulse = h * m_maxForce; |
166 | |
167 | if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) |
168 | { |
169 | m_linearImpulse.Normalize(); |
170 | m_linearImpulse *= maxImpulse; |
171 | } |
172 | |
173 | impulse = m_linearImpulse - oldImpulse; |
174 | |
175 | vA -= mA * impulse; |
176 | wA -= iA * b2Cross(m_rA, impulse); |
177 | |
178 | vB += mB * impulse; |
179 | wB += iB * b2Cross(m_rB, impulse); |
180 | } |
181 | |
182 | data.velocities[m_indexA].v = vA; |
183 | data.velocities[m_indexA].w = wA; |
184 | data.velocities[m_indexB].v = vB; |
185 | data.velocities[m_indexB].w = wB; |
186 | } |
187 | |
188 | bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data) |
189 | { |
190 | B2_NOT_USED(data); |
191 | |
192 | return true; |
193 | } |
194 | |
195 | b2Vec2 b2FrictionJoint::GetAnchorA() const |
196 | { |
197 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
198 | } |
199 | |
200 | b2Vec2 b2FrictionJoint::GetAnchorB() const |
201 | { |
202 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
203 | } |
204 | |
205 | b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const |
206 | { |
207 | return inv_dt * m_linearImpulse; |
208 | } |
209 | |
210 | float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const |
211 | { |
212 | return inv_dt * m_angularImpulse; |
213 | } |
214 | |
215 | void b2FrictionJoint::SetMaxForce(float32 force) |
216 | { |
217 | b2Assert(b2IsValid(force) && force >= 0.0f); |
218 | m_maxForce = force; |
219 | } |
220 | |
221 | float32 b2FrictionJoint::GetMaxForce() const |
222 | { |
223 | return m_maxForce; |
224 | } |
225 | |
226 | void b2FrictionJoint::SetMaxTorque(float32 torque) |
227 | { |
228 | b2Assert(b2IsValid(torque) && torque >= 0.0f); |
229 | m_maxTorque = torque; |
230 | } |
231 | |
232 | float32 b2FrictionJoint::GetMaxTorque() const |
233 | { |
234 | return m_maxTorque; |
235 | } |
236 | |
237 | void b2FrictionJoint::Dump() |
238 | { |
239 | int32 indexA = m_bodyA->m_islandIndex; |
240 | int32 indexB = m_bodyB->m_islandIndex; |
241 | |
242 | b2Log(" b2FrictionJointDef jd;\n" ); |
243 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
244 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
245 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
246 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
247 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
248 | b2Log(" jd.maxForce = %.15lef;\n" , m_maxForce); |
249 | b2Log(" jd.maxTorque = %.15lef;\n" , m_maxTorque); |
250 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
251 | } |
252 | |