| 1 | /* |
| 2 | * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Joints/b2GearJoint.h> |
| 20 | #include <Box2D/Dynamics/Joints/b2RevoluteJoint.h> |
| 21 | #include <Box2D/Dynamics/Joints/b2PrismaticJoint.h> |
| 22 | #include <Box2D/Dynamics/b2Body.h> |
| 23 | #include <Box2D/Dynamics/b2TimeStep.h> |
| 24 | |
| 25 | // Gear Joint: |
| 26 | // C0 = (coordinate1 + ratio * coordinate2)_initial |
| 27 | // C = (coordinate1 + ratio * coordinate2) - C0 = 0 |
| 28 | // J = [J1 ratio * J2] |
| 29 | // K = J * invM * JT |
| 30 | // = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T |
| 31 | // |
| 32 | // Revolute: |
| 33 | // coordinate = rotation |
| 34 | // Cdot = angularVelocity |
| 35 | // J = [0 0 1] |
| 36 | // K = J * invM * JT = invI |
| 37 | // |
| 38 | // Prismatic: |
| 39 | // coordinate = dot(p - pg, ug) |
| 40 | // Cdot = dot(v + cross(w, r), ug) |
| 41 | // J = [ug cross(r, ug)] |
| 42 | // K = J * invM * JT = invMass + invI * cross(r, ug)^2 |
| 43 | |
| 44 | b2GearJoint::b2GearJoint(const b2GearJointDef* def) |
| 45 | : b2Joint(def) |
| 46 | { |
| 47 | m_joint1 = def->joint1; |
| 48 | m_joint2 = def->joint2; |
| 49 | |
| 50 | m_typeA = m_joint1->GetType(); |
| 51 | m_typeB = m_joint2->GetType(); |
| 52 | |
| 53 | b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint); |
| 54 | b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint); |
| 55 | |
| 56 | float32 coordinateA, coordinateB; |
| 57 | |
| 58 | // TODO_ERIN there might be some problem with the joint edges in b2Joint. |
| 59 | |
| 60 | m_bodyC = m_joint1->GetBodyA(); |
| 61 | m_bodyA = m_joint1->GetBodyB(); |
| 62 | |
| 63 | // Get geometry of joint1 |
| 64 | b2Transform xfA = m_bodyA->m_xf; |
| 65 | float32 aA = m_bodyA->m_sweep.a; |
| 66 | b2Transform xfC = m_bodyC->m_xf; |
| 67 | float32 aC = m_bodyC->m_sweep.a; |
| 68 | |
| 69 | if (m_typeA == e_revoluteJoint) |
| 70 | { |
| 71 | b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1; |
| 72 | m_localAnchorC = revolute->m_localAnchorA; |
| 73 | m_localAnchorA = revolute->m_localAnchorB; |
| 74 | m_referenceAngleA = revolute->m_referenceAngle; |
| 75 | m_localAxisC.SetZero(); |
| 76 | |
| 77 | coordinateA = aA - aC - m_referenceAngleA; |
| 78 | } |
| 79 | else |
| 80 | { |
| 81 | b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1; |
| 82 | m_localAnchorC = prismatic->m_localAnchorA; |
| 83 | m_localAnchorA = prismatic->m_localAnchorB; |
| 84 | m_referenceAngleA = prismatic->m_referenceAngle; |
| 85 | m_localAxisC = prismatic->m_localXAxisA; |
| 86 | |
| 87 | b2Vec2 pC = m_localAnchorC; |
| 88 | b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p)); |
| 89 | coordinateA = b2Dot(pA - pC, m_localAxisC); |
| 90 | } |
| 91 | |
| 92 | m_bodyD = m_joint2->GetBodyA(); |
| 93 | m_bodyB = m_joint2->GetBodyB(); |
| 94 | |
| 95 | // Get geometry of joint2 |
| 96 | b2Transform xfB = m_bodyB->m_xf; |
| 97 | float32 aB = m_bodyB->m_sweep.a; |
| 98 | b2Transform xfD = m_bodyD->m_xf; |
| 99 | float32 aD = m_bodyD->m_sweep.a; |
| 100 | |
| 101 | if (m_typeB == e_revoluteJoint) |
| 102 | { |
| 103 | b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2; |
| 104 | m_localAnchorD = revolute->m_localAnchorA; |
| 105 | m_localAnchorB = revolute->m_localAnchorB; |
| 106 | m_referenceAngleB = revolute->m_referenceAngle; |
| 107 | m_localAxisD.SetZero(); |
| 108 | |
| 109 | coordinateB = aB - aD - m_referenceAngleB; |
| 110 | } |
| 111 | else |
| 112 | { |
| 113 | b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2; |
| 114 | m_localAnchorD = prismatic->m_localAnchorA; |
| 115 | m_localAnchorB = prismatic->m_localAnchorB; |
| 116 | m_referenceAngleB = prismatic->m_referenceAngle; |
| 117 | m_localAxisD = prismatic->m_localXAxisA; |
| 118 | |
| 119 | b2Vec2 pD = m_localAnchorD; |
| 120 | b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p)); |
| 121 | coordinateB = b2Dot(pB - pD, m_localAxisD); |
| 122 | } |
| 123 | |
| 124 | m_ratio = def->ratio; |
| 125 | |
| 126 | m_constant = coordinateA + m_ratio * coordinateB; |
| 127 | |
| 128 | m_impulse = 0.0f; |
| 129 | } |
| 130 | |
| 131 | void b2GearJoint::InitVelocityConstraints(const b2SolverData& data) |
| 132 | { |
| 133 | m_indexA = m_bodyA->m_islandIndex; |
| 134 | m_indexB = m_bodyB->m_islandIndex; |
| 135 | m_indexC = m_bodyC->m_islandIndex; |
| 136 | m_indexD = m_bodyD->m_islandIndex; |
| 137 | m_lcA = m_bodyA->m_sweep.localCenter; |
| 138 | m_lcB = m_bodyB->m_sweep.localCenter; |
| 139 | m_lcC = m_bodyC->m_sweep.localCenter; |
| 140 | m_lcD = m_bodyD->m_sweep.localCenter; |
| 141 | m_mA = m_bodyA->m_invMass; |
| 142 | m_mB = m_bodyB->m_invMass; |
| 143 | m_mC = m_bodyC->m_invMass; |
| 144 | m_mD = m_bodyD->m_invMass; |
| 145 | m_iA = m_bodyA->m_invI; |
| 146 | m_iB = m_bodyB->m_invI; |
| 147 | m_iC = m_bodyC->m_invI; |
| 148 | m_iD = m_bodyD->m_invI; |
| 149 | |
| 150 | float32 aA = data.positions[m_indexA].a; |
| 151 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 152 | float32 wA = data.velocities[m_indexA].w; |
| 153 | |
| 154 | float32 aB = data.positions[m_indexB].a; |
| 155 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 156 | float32 wB = data.velocities[m_indexB].w; |
| 157 | |
| 158 | float32 aC = data.positions[m_indexC].a; |
| 159 | b2Vec2 vC = data.velocities[m_indexC].v; |
| 160 | float32 wC = data.velocities[m_indexC].w; |
| 161 | |
| 162 | float32 aD = data.positions[m_indexD].a; |
| 163 | b2Vec2 vD = data.velocities[m_indexD].v; |
| 164 | float32 wD = data.velocities[m_indexD].w; |
| 165 | |
| 166 | b2Rot qA(aA), qB(aB), qC(aC), qD(aD); |
| 167 | |
| 168 | m_mass = 0.0f; |
| 169 | |
| 170 | if (m_typeA == e_revoluteJoint) |
| 171 | { |
| 172 | m_JvAC.SetZero(); |
| 173 | m_JwA = 1.0f; |
| 174 | m_JwC = 1.0f; |
| 175 | m_mass += m_iA + m_iC; |
| 176 | } |
| 177 | else |
| 178 | { |
| 179 | b2Vec2 u = b2Mul(qC, m_localAxisC); |
| 180 | b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); |
| 181 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); |
| 182 | m_JvAC = u; |
| 183 | m_JwC = b2Cross(rC, u); |
| 184 | m_JwA = b2Cross(rA, u); |
| 185 | m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA; |
| 186 | } |
| 187 | |
| 188 | if (m_typeB == e_revoluteJoint) |
| 189 | { |
| 190 | m_JvBD.SetZero(); |
| 191 | m_JwB = m_ratio; |
| 192 | m_JwD = m_ratio; |
| 193 | m_mass += m_ratio * m_ratio * (m_iB + m_iD); |
| 194 | } |
| 195 | else |
| 196 | { |
| 197 | b2Vec2 u = b2Mul(qD, m_localAxisD); |
| 198 | b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); |
| 199 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); |
| 200 | m_JvBD = m_ratio * u; |
| 201 | m_JwD = m_ratio * b2Cross(rD, u); |
| 202 | m_JwB = m_ratio * b2Cross(rB, u); |
| 203 | m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB; |
| 204 | } |
| 205 | |
| 206 | // Compute effective mass. |
| 207 | m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f; |
| 208 | |
| 209 | if (data.step.warmStarting) |
| 210 | { |
| 211 | vA += (m_mA * m_impulse) * m_JvAC; |
| 212 | wA += m_iA * m_impulse * m_JwA; |
| 213 | vB += (m_mB * m_impulse) * m_JvBD; |
| 214 | wB += m_iB * m_impulse * m_JwB; |
| 215 | vC -= (m_mC * m_impulse) * m_JvAC; |
| 216 | wC -= m_iC * m_impulse * m_JwC; |
| 217 | vD -= (m_mD * m_impulse) * m_JvBD; |
| 218 | wD -= m_iD * m_impulse * m_JwD; |
| 219 | } |
| 220 | else |
| 221 | { |
| 222 | m_impulse = 0.0f; |
| 223 | } |
| 224 | |
| 225 | data.velocities[m_indexA].v = vA; |
| 226 | data.velocities[m_indexA].w = wA; |
| 227 | data.velocities[m_indexB].v = vB; |
| 228 | data.velocities[m_indexB].w = wB; |
| 229 | data.velocities[m_indexC].v = vC; |
| 230 | data.velocities[m_indexC].w = wC; |
| 231 | data.velocities[m_indexD].v = vD; |
| 232 | data.velocities[m_indexD].w = wD; |
| 233 | } |
| 234 | |
| 235 | void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data) |
| 236 | { |
| 237 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 238 | float32 wA = data.velocities[m_indexA].w; |
| 239 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 240 | float32 wB = data.velocities[m_indexB].w; |
| 241 | b2Vec2 vC = data.velocities[m_indexC].v; |
| 242 | float32 wC = data.velocities[m_indexC].w; |
| 243 | b2Vec2 vD = data.velocities[m_indexD].v; |
| 244 | float32 wD = data.velocities[m_indexD].w; |
| 245 | |
| 246 | float32 Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD); |
| 247 | Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD); |
| 248 | |
| 249 | float32 impulse = -m_mass * Cdot; |
| 250 | m_impulse += impulse; |
| 251 | |
| 252 | vA += (m_mA * impulse) * m_JvAC; |
| 253 | wA += m_iA * impulse * m_JwA; |
| 254 | vB += (m_mB * impulse) * m_JvBD; |
| 255 | wB += m_iB * impulse * m_JwB; |
| 256 | vC -= (m_mC * impulse) * m_JvAC; |
| 257 | wC -= m_iC * impulse * m_JwC; |
| 258 | vD -= (m_mD * impulse) * m_JvBD; |
| 259 | wD -= m_iD * impulse * m_JwD; |
| 260 | |
| 261 | data.velocities[m_indexA].v = vA; |
| 262 | data.velocities[m_indexA].w = wA; |
| 263 | data.velocities[m_indexB].v = vB; |
| 264 | data.velocities[m_indexB].w = wB; |
| 265 | data.velocities[m_indexC].v = vC; |
| 266 | data.velocities[m_indexC].w = wC; |
| 267 | data.velocities[m_indexD].v = vD; |
| 268 | data.velocities[m_indexD].w = wD; |
| 269 | } |
| 270 | |
| 271 | bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data) |
| 272 | { |
| 273 | b2Vec2 cA = data.positions[m_indexA].c; |
| 274 | float32 aA = data.positions[m_indexA].a; |
| 275 | b2Vec2 cB = data.positions[m_indexB].c; |
| 276 | float32 aB = data.positions[m_indexB].a; |
| 277 | b2Vec2 cC = data.positions[m_indexC].c; |
| 278 | float32 aC = data.positions[m_indexC].a; |
| 279 | b2Vec2 cD = data.positions[m_indexD].c; |
| 280 | float32 aD = data.positions[m_indexD].a; |
| 281 | |
| 282 | b2Rot qA(aA), qB(aB), qC(aC), qD(aD); |
| 283 | |
| 284 | float32 linearError = 0.0f; |
| 285 | |
| 286 | float32 coordinateA, coordinateB; |
| 287 | |
| 288 | b2Vec2 JvAC, JvBD; |
| 289 | float32 JwA, JwB, JwC, JwD; |
| 290 | float32 mass = 0.0f; |
| 291 | |
| 292 | if (m_typeA == e_revoluteJoint) |
| 293 | { |
| 294 | JvAC.SetZero(); |
| 295 | JwA = 1.0f; |
| 296 | JwC = 1.0f; |
| 297 | mass += m_iA + m_iC; |
| 298 | |
| 299 | coordinateA = aA - aC - m_referenceAngleA; |
| 300 | } |
| 301 | else |
| 302 | { |
| 303 | b2Vec2 u = b2Mul(qC, m_localAxisC); |
| 304 | b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); |
| 305 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); |
| 306 | JvAC = u; |
| 307 | JwC = b2Cross(rC, u); |
| 308 | JwA = b2Cross(rA, u); |
| 309 | mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA; |
| 310 | |
| 311 | b2Vec2 pC = m_localAnchorC - m_lcC; |
| 312 | b2Vec2 pA = b2MulT(qC, rA + (cA - cC)); |
| 313 | coordinateA = b2Dot(pA - pC, m_localAxisC); |
| 314 | } |
| 315 | |
| 316 | if (m_typeB == e_revoluteJoint) |
| 317 | { |
| 318 | JvBD.SetZero(); |
| 319 | JwB = m_ratio; |
| 320 | JwD = m_ratio; |
| 321 | mass += m_ratio * m_ratio * (m_iB + m_iD); |
| 322 | |
| 323 | coordinateB = aB - aD - m_referenceAngleB; |
| 324 | } |
| 325 | else |
| 326 | { |
| 327 | b2Vec2 u = b2Mul(qD, m_localAxisD); |
| 328 | b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); |
| 329 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); |
| 330 | JvBD = m_ratio * u; |
| 331 | JwD = m_ratio * b2Cross(rD, u); |
| 332 | JwB = m_ratio * b2Cross(rB, u); |
| 333 | mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB; |
| 334 | |
| 335 | b2Vec2 pD = m_localAnchorD - m_lcD; |
| 336 | b2Vec2 pB = b2MulT(qD, rB + (cB - cD)); |
| 337 | coordinateB = b2Dot(pB - pD, m_localAxisD); |
| 338 | } |
| 339 | |
| 340 | float32 C = (coordinateA + m_ratio * coordinateB) - m_constant; |
| 341 | |
| 342 | float32 impulse = 0.0f; |
| 343 | if (mass > 0.0f) |
| 344 | { |
| 345 | impulse = -C / mass; |
| 346 | } |
| 347 | |
| 348 | cA += m_mA * impulse * JvAC; |
| 349 | aA += m_iA * impulse * JwA; |
| 350 | cB += m_mB * impulse * JvBD; |
| 351 | aB += m_iB * impulse * JwB; |
| 352 | cC -= m_mC * impulse * JvAC; |
| 353 | aC -= m_iC * impulse * JwC; |
| 354 | cD -= m_mD * impulse * JvBD; |
| 355 | aD -= m_iD * impulse * JwD; |
| 356 | |
| 357 | data.positions[m_indexA].c = cA; |
| 358 | data.positions[m_indexA].a = aA; |
| 359 | data.positions[m_indexB].c = cB; |
| 360 | data.positions[m_indexB].a = aB; |
| 361 | data.positions[m_indexC].c = cC; |
| 362 | data.positions[m_indexC].a = aC; |
| 363 | data.positions[m_indexD].c = cD; |
| 364 | data.positions[m_indexD].a = aD; |
| 365 | |
| 366 | // TODO_ERIN not implemented |
| 367 | return linearError < b2_linearSlop; |
| 368 | } |
| 369 | |
| 370 | b2Vec2 b2GearJoint::GetAnchorA() const |
| 371 | { |
| 372 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
| 373 | } |
| 374 | |
| 375 | b2Vec2 b2GearJoint::GetAnchorB() const |
| 376 | { |
| 377 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
| 378 | } |
| 379 | |
| 380 | b2Vec2 b2GearJoint::GetReactionForce(float32 inv_dt) const |
| 381 | { |
| 382 | b2Vec2 P = m_impulse * m_JvAC; |
| 383 | return inv_dt * P; |
| 384 | } |
| 385 | |
| 386 | float32 b2GearJoint::GetReactionTorque(float32 inv_dt) const |
| 387 | { |
| 388 | float32 L = m_impulse * m_JwA; |
| 389 | return inv_dt * L; |
| 390 | } |
| 391 | |
| 392 | void b2GearJoint::SetRatio(float32 ratio) |
| 393 | { |
| 394 | b2Assert(b2IsValid(ratio)); |
| 395 | m_ratio = ratio; |
| 396 | } |
| 397 | |
| 398 | float32 b2GearJoint::GetRatio() const |
| 399 | { |
| 400 | return m_ratio; |
| 401 | } |
| 402 | |
| 403 | void b2GearJoint::Dump() |
| 404 | { |
| 405 | int32 indexA = m_bodyA->m_islandIndex; |
| 406 | int32 indexB = m_bodyB->m_islandIndex; |
| 407 | |
| 408 | int32 index1 = m_joint1->m_index; |
| 409 | int32 index2 = m_joint2->m_index; |
| 410 | |
| 411 | b2Log(" b2GearJointDef jd;\n" ); |
| 412 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
| 413 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
| 414 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
| 415 | b2Log(" jd.joint1 = joints[%d];\n" , index1); |
| 416 | b2Log(" jd.joint2 = joints[%d];\n" , index2); |
| 417 | b2Log(" jd.ratio = %.15lef;\n" , m_ratio); |
| 418 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
| 419 | } |
| 420 | |