| 1 | /* |
| 2 | * Copyright (c) 2007 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Joints/b2PulleyJoint.h> |
| 20 | #include <Box2D/Dynamics/b2Body.h> |
| 21 | #include <Box2D/Dynamics/b2TimeStep.h> |
| 22 | |
| 23 | // Pulley: |
| 24 | // length1 = norm(p1 - s1) |
| 25 | // length2 = norm(p2 - s2) |
| 26 | // C0 = (length1 + ratio * length2)_initial |
| 27 | // C = C0 - (length1 + ratio * length2) |
| 28 | // u1 = (p1 - s1) / norm(p1 - s1) |
| 29 | // u2 = (p2 - s2) / norm(p2 - s2) |
| 30 | // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2)) |
| 31 | // J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)] |
| 32 | // K = J * invM * JT |
| 33 | // = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2) |
| 34 | |
| 35 | void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB, |
| 36 | const b2Vec2& groundA, const b2Vec2& groundB, |
| 37 | const b2Vec2& anchorA, const b2Vec2& anchorB, |
| 38 | float32 r) |
| 39 | { |
| 40 | bodyA = bA; |
| 41 | bodyB = bB; |
| 42 | groundAnchorA = groundA; |
| 43 | groundAnchorB = groundB; |
| 44 | localAnchorA = bodyA->GetLocalPoint(anchorA); |
| 45 | localAnchorB = bodyB->GetLocalPoint(anchorB); |
| 46 | b2Vec2 dA = anchorA - groundA; |
| 47 | lengthA = dA.Length(); |
| 48 | b2Vec2 dB = anchorB - groundB; |
| 49 | lengthB = dB.Length(); |
| 50 | ratio = r; |
| 51 | b2Assert(ratio > b2_epsilon); |
| 52 | } |
| 53 | |
| 54 | b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def) |
| 55 | : b2Joint(def) |
| 56 | { |
| 57 | m_groundAnchorA = def->groundAnchorA; |
| 58 | m_groundAnchorB = def->groundAnchorB; |
| 59 | m_localAnchorA = def->localAnchorA; |
| 60 | m_localAnchorB = def->localAnchorB; |
| 61 | |
| 62 | m_lengthA = def->lengthA; |
| 63 | m_lengthB = def->lengthB; |
| 64 | |
| 65 | b2Assert(def->ratio != 0.0f); |
| 66 | m_ratio = def->ratio; |
| 67 | |
| 68 | m_constant = def->lengthA + m_ratio * def->lengthB; |
| 69 | |
| 70 | m_impulse = 0.0f; |
| 71 | } |
| 72 | |
| 73 | void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data) |
| 74 | { |
| 75 | m_indexA = m_bodyA->m_islandIndex; |
| 76 | m_indexB = m_bodyB->m_islandIndex; |
| 77 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
| 78 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
| 79 | m_invMassA = m_bodyA->m_invMass; |
| 80 | m_invMassB = m_bodyB->m_invMass; |
| 81 | m_invIA = m_bodyA->m_invI; |
| 82 | m_invIB = m_bodyB->m_invI; |
| 83 | |
| 84 | b2Vec2 cA = data.positions[m_indexA].c; |
| 85 | float32 aA = data.positions[m_indexA].a; |
| 86 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 87 | float32 wA = data.velocities[m_indexA].w; |
| 88 | |
| 89 | b2Vec2 cB = data.positions[m_indexB].c; |
| 90 | float32 aB = data.positions[m_indexB].a; |
| 91 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 92 | float32 wB = data.velocities[m_indexB].w; |
| 93 | |
| 94 | b2Rot qA(aA), qB(aB); |
| 95 | |
| 96 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 97 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 98 | |
| 99 | // Get the pulley axes. |
| 100 | m_uA = cA + m_rA - m_groundAnchorA; |
| 101 | m_uB = cB + m_rB - m_groundAnchorB; |
| 102 | |
| 103 | float32 lengthA = m_uA.Length(); |
| 104 | float32 lengthB = m_uB.Length(); |
| 105 | |
| 106 | if (lengthA > 10.0f * b2_linearSlop) |
| 107 | { |
| 108 | m_uA *= 1.0f / lengthA; |
| 109 | } |
| 110 | else |
| 111 | { |
| 112 | m_uA.SetZero(); |
| 113 | } |
| 114 | |
| 115 | if (lengthB > 10.0f * b2_linearSlop) |
| 116 | { |
| 117 | m_uB *= 1.0f / lengthB; |
| 118 | } |
| 119 | else |
| 120 | { |
| 121 | m_uB.SetZero(); |
| 122 | } |
| 123 | |
| 124 | // Compute effective mass. |
| 125 | float32 ruA = b2Cross(m_rA, m_uA); |
| 126 | float32 ruB = b2Cross(m_rB, m_uB); |
| 127 | |
| 128 | float32 mA = m_invMassA + m_invIA * ruA * ruA; |
| 129 | float32 mB = m_invMassB + m_invIB * ruB * ruB; |
| 130 | |
| 131 | m_mass = mA + m_ratio * m_ratio * mB; |
| 132 | |
| 133 | if (m_mass > 0.0f) |
| 134 | { |
| 135 | m_mass = 1.0f / m_mass; |
| 136 | } |
| 137 | |
| 138 | if (data.step.warmStarting) |
| 139 | { |
| 140 | // Scale impulses to support variable time steps. |
| 141 | m_impulse *= data.step.dtRatio; |
| 142 | |
| 143 | // Warm starting. |
| 144 | b2Vec2 PA = -(m_impulse) * m_uA; |
| 145 | b2Vec2 PB = (-m_ratio * m_impulse) * m_uB; |
| 146 | |
| 147 | vA += m_invMassA * PA; |
| 148 | wA += m_invIA * b2Cross(m_rA, PA); |
| 149 | vB += m_invMassB * PB; |
| 150 | wB += m_invIB * b2Cross(m_rB, PB); |
| 151 | } |
| 152 | else |
| 153 | { |
| 154 | m_impulse = 0.0f; |
| 155 | } |
| 156 | |
| 157 | data.velocities[m_indexA].v = vA; |
| 158 | data.velocities[m_indexA].w = wA; |
| 159 | data.velocities[m_indexB].v = vB; |
| 160 | data.velocities[m_indexB].w = wB; |
| 161 | } |
| 162 | |
| 163 | void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data) |
| 164 | { |
| 165 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 166 | float32 wA = data.velocities[m_indexA].w; |
| 167 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 168 | float32 wB = data.velocities[m_indexB].w; |
| 169 | |
| 170 | b2Vec2 vpA = vA + b2Cross(wA, m_rA); |
| 171 | b2Vec2 vpB = vB + b2Cross(wB, m_rB); |
| 172 | |
| 173 | float32 Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB); |
| 174 | float32 impulse = -m_mass * Cdot; |
| 175 | m_impulse += impulse; |
| 176 | |
| 177 | b2Vec2 PA = -impulse * m_uA; |
| 178 | b2Vec2 PB = -m_ratio * impulse * m_uB; |
| 179 | vA += m_invMassA * PA; |
| 180 | wA += m_invIA * b2Cross(m_rA, PA); |
| 181 | vB += m_invMassB * PB; |
| 182 | wB += m_invIB * b2Cross(m_rB, PB); |
| 183 | |
| 184 | data.velocities[m_indexA].v = vA; |
| 185 | data.velocities[m_indexA].w = wA; |
| 186 | data.velocities[m_indexB].v = vB; |
| 187 | data.velocities[m_indexB].w = wB; |
| 188 | } |
| 189 | |
| 190 | bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data) |
| 191 | { |
| 192 | b2Vec2 cA = data.positions[m_indexA].c; |
| 193 | float32 aA = data.positions[m_indexA].a; |
| 194 | b2Vec2 cB = data.positions[m_indexB].c; |
| 195 | float32 aB = data.positions[m_indexB].a; |
| 196 | |
| 197 | b2Rot qA(aA), qB(aB); |
| 198 | |
| 199 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 200 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 201 | |
| 202 | // Get the pulley axes. |
| 203 | b2Vec2 uA = cA + rA - m_groundAnchorA; |
| 204 | b2Vec2 uB = cB + rB - m_groundAnchorB; |
| 205 | |
| 206 | float32 lengthA = uA.Length(); |
| 207 | float32 lengthB = uB.Length(); |
| 208 | |
| 209 | if (lengthA > 10.0f * b2_linearSlop) |
| 210 | { |
| 211 | uA *= 1.0f / lengthA; |
| 212 | } |
| 213 | else |
| 214 | { |
| 215 | uA.SetZero(); |
| 216 | } |
| 217 | |
| 218 | if (lengthB > 10.0f * b2_linearSlop) |
| 219 | { |
| 220 | uB *= 1.0f / lengthB; |
| 221 | } |
| 222 | else |
| 223 | { |
| 224 | uB.SetZero(); |
| 225 | } |
| 226 | |
| 227 | // Compute effective mass. |
| 228 | float32 ruA = b2Cross(rA, uA); |
| 229 | float32 ruB = b2Cross(rB, uB); |
| 230 | |
| 231 | float32 mA = m_invMassA + m_invIA * ruA * ruA; |
| 232 | float32 mB = m_invMassB + m_invIB * ruB * ruB; |
| 233 | |
| 234 | float32 mass = mA + m_ratio * m_ratio * mB; |
| 235 | |
| 236 | if (mass > 0.0f) |
| 237 | { |
| 238 | mass = 1.0f / mass; |
| 239 | } |
| 240 | |
| 241 | float32 C = m_constant - lengthA - m_ratio * lengthB; |
| 242 | float32 linearError = b2Abs(C); |
| 243 | |
| 244 | float32 impulse = -mass * C; |
| 245 | |
| 246 | b2Vec2 PA = -impulse * uA; |
| 247 | b2Vec2 PB = -m_ratio * impulse * uB; |
| 248 | |
| 249 | cA += m_invMassA * PA; |
| 250 | aA += m_invIA * b2Cross(rA, PA); |
| 251 | cB += m_invMassB * PB; |
| 252 | aB += m_invIB * b2Cross(rB, PB); |
| 253 | |
| 254 | data.positions[m_indexA].c = cA; |
| 255 | data.positions[m_indexA].a = aA; |
| 256 | data.positions[m_indexB].c = cB; |
| 257 | data.positions[m_indexB].a = aB; |
| 258 | |
| 259 | return linearError < b2_linearSlop; |
| 260 | } |
| 261 | |
| 262 | b2Vec2 b2PulleyJoint::GetAnchorA() const |
| 263 | { |
| 264 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
| 265 | } |
| 266 | |
| 267 | b2Vec2 b2PulleyJoint::GetAnchorB() const |
| 268 | { |
| 269 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
| 270 | } |
| 271 | |
| 272 | b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const |
| 273 | { |
| 274 | b2Vec2 P = m_impulse * m_uB; |
| 275 | return inv_dt * P; |
| 276 | } |
| 277 | |
| 278 | float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const |
| 279 | { |
| 280 | B2_NOT_USED(inv_dt); |
| 281 | return 0.0f; |
| 282 | } |
| 283 | |
| 284 | b2Vec2 b2PulleyJoint::GetGroundAnchorA() const |
| 285 | { |
| 286 | return m_groundAnchorA; |
| 287 | } |
| 288 | |
| 289 | b2Vec2 b2PulleyJoint::GetGroundAnchorB() const |
| 290 | { |
| 291 | return m_groundAnchorB; |
| 292 | } |
| 293 | |
| 294 | float32 b2PulleyJoint::GetLengthA() const |
| 295 | { |
| 296 | return m_lengthA; |
| 297 | } |
| 298 | |
| 299 | float32 b2PulleyJoint::GetLengthB() const |
| 300 | { |
| 301 | return m_lengthB; |
| 302 | } |
| 303 | |
| 304 | float32 b2PulleyJoint::GetRatio() const |
| 305 | { |
| 306 | return m_ratio; |
| 307 | } |
| 308 | |
| 309 | float32 b2PulleyJoint::GetCurrentLengthA() const |
| 310 | { |
| 311 | b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA); |
| 312 | b2Vec2 s = m_groundAnchorA; |
| 313 | b2Vec2 d = p - s; |
| 314 | return d.Length(); |
| 315 | } |
| 316 | |
| 317 | float32 b2PulleyJoint::GetCurrentLengthB() const |
| 318 | { |
| 319 | b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB); |
| 320 | b2Vec2 s = m_groundAnchorB; |
| 321 | b2Vec2 d = p - s; |
| 322 | return d.Length(); |
| 323 | } |
| 324 | |
| 325 | void b2PulleyJoint::Dump() |
| 326 | { |
| 327 | int32 indexA = m_bodyA->m_islandIndex; |
| 328 | int32 indexB = m_bodyB->m_islandIndex; |
| 329 | |
| 330 | b2Log(" b2PulleyJointDef jd;\n" ); |
| 331 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
| 332 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
| 333 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
| 334 | b2Log(" jd.groundAnchorA.Set(%.15lef, %.15lef);\n" , m_groundAnchorA.x, m_groundAnchorA.y); |
| 335 | b2Log(" jd.groundAnchorB.Set(%.15lef, %.15lef);\n" , m_groundAnchorB.x, m_groundAnchorB.y); |
| 336 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
| 337 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
| 338 | b2Log(" jd.lengthA = %.15lef;\n" , m_lengthA); |
| 339 | b2Log(" jd.lengthB = %.15lef;\n" , m_lengthB); |
| 340 | b2Log(" jd.ratio = %.15lef;\n" , m_ratio); |
| 341 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
| 342 | } |
| 343 | |
| 344 | void b2PulleyJoint::ShiftOrigin(const b2Vec2& newOrigin) |
| 345 | { |
| 346 | m_groundAnchorA -= newOrigin; |
| 347 | m_groundAnchorB -= newOrigin; |
| 348 | } |
| 349 | |