1 | /* |
2 | * Copyright (c) 2007 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Dynamics/Joints/b2PulleyJoint.h> |
20 | #include <Box2D/Dynamics/b2Body.h> |
21 | #include <Box2D/Dynamics/b2TimeStep.h> |
22 | |
23 | // Pulley: |
24 | // length1 = norm(p1 - s1) |
25 | // length2 = norm(p2 - s2) |
26 | // C0 = (length1 + ratio * length2)_initial |
27 | // C = C0 - (length1 + ratio * length2) |
28 | // u1 = (p1 - s1) / norm(p1 - s1) |
29 | // u2 = (p2 - s2) / norm(p2 - s2) |
30 | // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2)) |
31 | // J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)] |
32 | // K = J * invM * JT |
33 | // = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2) |
34 | |
35 | void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB, |
36 | const b2Vec2& groundA, const b2Vec2& groundB, |
37 | const b2Vec2& anchorA, const b2Vec2& anchorB, |
38 | float32 r) |
39 | { |
40 | bodyA = bA; |
41 | bodyB = bB; |
42 | groundAnchorA = groundA; |
43 | groundAnchorB = groundB; |
44 | localAnchorA = bodyA->GetLocalPoint(anchorA); |
45 | localAnchorB = bodyB->GetLocalPoint(anchorB); |
46 | b2Vec2 dA = anchorA - groundA; |
47 | lengthA = dA.Length(); |
48 | b2Vec2 dB = anchorB - groundB; |
49 | lengthB = dB.Length(); |
50 | ratio = r; |
51 | b2Assert(ratio > b2_epsilon); |
52 | } |
53 | |
54 | b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def) |
55 | : b2Joint(def) |
56 | { |
57 | m_groundAnchorA = def->groundAnchorA; |
58 | m_groundAnchorB = def->groundAnchorB; |
59 | m_localAnchorA = def->localAnchorA; |
60 | m_localAnchorB = def->localAnchorB; |
61 | |
62 | m_lengthA = def->lengthA; |
63 | m_lengthB = def->lengthB; |
64 | |
65 | b2Assert(def->ratio != 0.0f); |
66 | m_ratio = def->ratio; |
67 | |
68 | m_constant = def->lengthA + m_ratio * def->lengthB; |
69 | |
70 | m_impulse = 0.0f; |
71 | } |
72 | |
73 | void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data) |
74 | { |
75 | m_indexA = m_bodyA->m_islandIndex; |
76 | m_indexB = m_bodyB->m_islandIndex; |
77 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
78 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
79 | m_invMassA = m_bodyA->m_invMass; |
80 | m_invMassB = m_bodyB->m_invMass; |
81 | m_invIA = m_bodyA->m_invI; |
82 | m_invIB = m_bodyB->m_invI; |
83 | |
84 | b2Vec2 cA = data.positions[m_indexA].c; |
85 | float32 aA = data.positions[m_indexA].a; |
86 | b2Vec2 vA = data.velocities[m_indexA].v; |
87 | float32 wA = data.velocities[m_indexA].w; |
88 | |
89 | b2Vec2 cB = data.positions[m_indexB].c; |
90 | float32 aB = data.positions[m_indexB].a; |
91 | b2Vec2 vB = data.velocities[m_indexB].v; |
92 | float32 wB = data.velocities[m_indexB].w; |
93 | |
94 | b2Rot qA(aA), qB(aB); |
95 | |
96 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
97 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
98 | |
99 | // Get the pulley axes. |
100 | m_uA = cA + m_rA - m_groundAnchorA; |
101 | m_uB = cB + m_rB - m_groundAnchorB; |
102 | |
103 | float32 lengthA = m_uA.Length(); |
104 | float32 lengthB = m_uB.Length(); |
105 | |
106 | if (lengthA > 10.0f * b2_linearSlop) |
107 | { |
108 | m_uA *= 1.0f / lengthA; |
109 | } |
110 | else |
111 | { |
112 | m_uA.SetZero(); |
113 | } |
114 | |
115 | if (lengthB > 10.0f * b2_linearSlop) |
116 | { |
117 | m_uB *= 1.0f / lengthB; |
118 | } |
119 | else |
120 | { |
121 | m_uB.SetZero(); |
122 | } |
123 | |
124 | // Compute effective mass. |
125 | float32 ruA = b2Cross(m_rA, m_uA); |
126 | float32 ruB = b2Cross(m_rB, m_uB); |
127 | |
128 | float32 mA = m_invMassA + m_invIA * ruA * ruA; |
129 | float32 mB = m_invMassB + m_invIB * ruB * ruB; |
130 | |
131 | m_mass = mA + m_ratio * m_ratio * mB; |
132 | |
133 | if (m_mass > 0.0f) |
134 | { |
135 | m_mass = 1.0f / m_mass; |
136 | } |
137 | |
138 | if (data.step.warmStarting) |
139 | { |
140 | // Scale impulses to support variable time steps. |
141 | m_impulse *= data.step.dtRatio; |
142 | |
143 | // Warm starting. |
144 | b2Vec2 PA = -(m_impulse) * m_uA; |
145 | b2Vec2 PB = (-m_ratio * m_impulse) * m_uB; |
146 | |
147 | vA += m_invMassA * PA; |
148 | wA += m_invIA * b2Cross(m_rA, PA); |
149 | vB += m_invMassB * PB; |
150 | wB += m_invIB * b2Cross(m_rB, PB); |
151 | } |
152 | else |
153 | { |
154 | m_impulse = 0.0f; |
155 | } |
156 | |
157 | data.velocities[m_indexA].v = vA; |
158 | data.velocities[m_indexA].w = wA; |
159 | data.velocities[m_indexB].v = vB; |
160 | data.velocities[m_indexB].w = wB; |
161 | } |
162 | |
163 | void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data) |
164 | { |
165 | b2Vec2 vA = data.velocities[m_indexA].v; |
166 | float32 wA = data.velocities[m_indexA].w; |
167 | b2Vec2 vB = data.velocities[m_indexB].v; |
168 | float32 wB = data.velocities[m_indexB].w; |
169 | |
170 | b2Vec2 vpA = vA + b2Cross(wA, m_rA); |
171 | b2Vec2 vpB = vB + b2Cross(wB, m_rB); |
172 | |
173 | float32 Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB); |
174 | float32 impulse = -m_mass * Cdot; |
175 | m_impulse += impulse; |
176 | |
177 | b2Vec2 PA = -impulse * m_uA; |
178 | b2Vec2 PB = -m_ratio * impulse * m_uB; |
179 | vA += m_invMassA * PA; |
180 | wA += m_invIA * b2Cross(m_rA, PA); |
181 | vB += m_invMassB * PB; |
182 | wB += m_invIB * b2Cross(m_rB, PB); |
183 | |
184 | data.velocities[m_indexA].v = vA; |
185 | data.velocities[m_indexA].w = wA; |
186 | data.velocities[m_indexB].v = vB; |
187 | data.velocities[m_indexB].w = wB; |
188 | } |
189 | |
190 | bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data) |
191 | { |
192 | b2Vec2 cA = data.positions[m_indexA].c; |
193 | float32 aA = data.positions[m_indexA].a; |
194 | b2Vec2 cB = data.positions[m_indexB].c; |
195 | float32 aB = data.positions[m_indexB].a; |
196 | |
197 | b2Rot qA(aA), qB(aB); |
198 | |
199 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
200 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
201 | |
202 | // Get the pulley axes. |
203 | b2Vec2 uA = cA + rA - m_groundAnchorA; |
204 | b2Vec2 uB = cB + rB - m_groundAnchorB; |
205 | |
206 | float32 lengthA = uA.Length(); |
207 | float32 lengthB = uB.Length(); |
208 | |
209 | if (lengthA > 10.0f * b2_linearSlop) |
210 | { |
211 | uA *= 1.0f / lengthA; |
212 | } |
213 | else |
214 | { |
215 | uA.SetZero(); |
216 | } |
217 | |
218 | if (lengthB > 10.0f * b2_linearSlop) |
219 | { |
220 | uB *= 1.0f / lengthB; |
221 | } |
222 | else |
223 | { |
224 | uB.SetZero(); |
225 | } |
226 | |
227 | // Compute effective mass. |
228 | float32 ruA = b2Cross(rA, uA); |
229 | float32 ruB = b2Cross(rB, uB); |
230 | |
231 | float32 mA = m_invMassA + m_invIA * ruA * ruA; |
232 | float32 mB = m_invMassB + m_invIB * ruB * ruB; |
233 | |
234 | float32 mass = mA + m_ratio * m_ratio * mB; |
235 | |
236 | if (mass > 0.0f) |
237 | { |
238 | mass = 1.0f / mass; |
239 | } |
240 | |
241 | float32 C = m_constant - lengthA - m_ratio * lengthB; |
242 | float32 linearError = b2Abs(C); |
243 | |
244 | float32 impulse = -mass * C; |
245 | |
246 | b2Vec2 PA = -impulse * uA; |
247 | b2Vec2 PB = -m_ratio * impulse * uB; |
248 | |
249 | cA += m_invMassA * PA; |
250 | aA += m_invIA * b2Cross(rA, PA); |
251 | cB += m_invMassB * PB; |
252 | aB += m_invIB * b2Cross(rB, PB); |
253 | |
254 | data.positions[m_indexA].c = cA; |
255 | data.positions[m_indexA].a = aA; |
256 | data.positions[m_indexB].c = cB; |
257 | data.positions[m_indexB].a = aB; |
258 | |
259 | return linearError < b2_linearSlop; |
260 | } |
261 | |
262 | b2Vec2 b2PulleyJoint::GetAnchorA() const |
263 | { |
264 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
265 | } |
266 | |
267 | b2Vec2 b2PulleyJoint::GetAnchorB() const |
268 | { |
269 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
270 | } |
271 | |
272 | b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const |
273 | { |
274 | b2Vec2 P = m_impulse * m_uB; |
275 | return inv_dt * P; |
276 | } |
277 | |
278 | float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const |
279 | { |
280 | B2_NOT_USED(inv_dt); |
281 | return 0.0f; |
282 | } |
283 | |
284 | b2Vec2 b2PulleyJoint::GetGroundAnchorA() const |
285 | { |
286 | return m_groundAnchorA; |
287 | } |
288 | |
289 | b2Vec2 b2PulleyJoint::GetGroundAnchorB() const |
290 | { |
291 | return m_groundAnchorB; |
292 | } |
293 | |
294 | float32 b2PulleyJoint::GetLengthA() const |
295 | { |
296 | return m_lengthA; |
297 | } |
298 | |
299 | float32 b2PulleyJoint::GetLengthB() const |
300 | { |
301 | return m_lengthB; |
302 | } |
303 | |
304 | float32 b2PulleyJoint::GetRatio() const |
305 | { |
306 | return m_ratio; |
307 | } |
308 | |
309 | float32 b2PulleyJoint::GetCurrentLengthA() const |
310 | { |
311 | b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA); |
312 | b2Vec2 s = m_groundAnchorA; |
313 | b2Vec2 d = p - s; |
314 | return d.Length(); |
315 | } |
316 | |
317 | float32 b2PulleyJoint::GetCurrentLengthB() const |
318 | { |
319 | b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB); |
320 | b2Vec2 s = m_groundAnchorB; |
321 | b2Vec2 d = p - s; |
322 | return d.Length(); |
323 | } |
324 | |
325 | void b2PulleyJoint::Dump() |
326 | { |
327 | int32 indexA = m_bodyA->m_islandIndex; |
328 | int32 indexB = m_bodyB->m_islandIndex; |
329 | |
330 | b2Log(" b2PulleyJointDef jd;\n" ); |
331 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
332 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
333 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
334 | b2Log(" jd.groundAnchorA.Set(%.15lef, %.15lef);\n" , m_groundAnchorA.x, m_groundAnchorA.y); |
335 | b2Log(" jd.groundAnchorB.Set(%.15lef, %.15lef);\n" , m_groundAnchorB.x, m_groundAnchorB.y); |
336 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
337 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
338 | b2Log(" jd.lengthA = %.15lef;\n" , m_lengthA); |
339 | b2Log(" jd.lengthB = %.15lef;\n" , m_lengthB); |
340 | b2Log(" jd.ratio = %.15lef;\n" , m_ratio); |
341 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
342 | } |
343 | |
344 | void b2PulleyJoint::ShiftOrigin(const b2Vec2& newOrigin) |
345 | { |
346 | m_groundAnchorA -= newOrigin; |
347 | m_groundAnchorB -= newOrigin; |
348 | } |
349 | |