1 | /* |
2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Dynamics/Joints/b2WeldJoint.h> |
20 | #include <Box2D/Dynamics/b2Body.h> |
21 | #include <Box2D/Dynamics/b2TimeStep.h> |
22 | |
23 | // Point-to-point constraint |
24 | // C = p2 - p1 |
25 | // Cdot = v2 - v1 |
26 | // = v2 + cross(w2, r2) - v1 - cross(w1, r1) |
27 | // J = [-I -r1_skew I r2_skew ] |
28 | // Identity used: |
29 | // w k % (rx i + ry j) = w * (-ry i + rx j) |
30 | |
31 | // Angle constraint |
32 | // C = angle2 - angle1 - referenceAngle |
33 | // Cdot = w2 - w1 |
34 | // J = [0 0 -1 0 0 1] |
35 | // K = invI1 + invI2 |
36 | |
37 | void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) |
38 | { |
39 | bodyA = bA; |
40 | bodyB = bB; |
41 | localAnchorA = bodyA->GetLocalPoint(anchor); |
42 | localAnchorB = bodyB->GetLocalPoint(anchor); |
43 | referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); |
44 | } |
45 | |
46 | b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def) |
47 | : b2Joint(def) |
48 | { |
49 | m_localAnchorA = def->localAnchorA; |
50 | m_localAnchorB = def->localAnchorB; |
51 | m_referenceAngle = def->referenceAngle; |
52 | m_frequencyHz = def->frequencyHz; |
53 | m_dampingRatio = def->dampingRatio; |
54 | |
55 | m_impulse.SetZero(); |
56 | } |
57 | |
58 | void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) |
59 | { |
60 | m_indexA = m_bodyA->m_islandIndex; |
61 | m_indexB = m_bodyB->m_islandIndex; |
62 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
63 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
64 | m_invMassA = m_bodyA->m_invMass; |
65 | m_invMassB = m_bodyB->m_invMass; |
66 | m_invIA = m_bodyA->m_invI; |
67 | m_invIB = m_bodyB->m_invI; |
68 | |
69 | float32 aA = data.positions[m_indexA].a; |
70 | b2Vec2 vA = data.velocities[m_indexA].v; |
71 | float32 wA = data.velocities[m_indexA].w; |
72 | |
73 | float32 aB = data.positions[m_indexB].a; |
74 | b2Vec2 vB = data.velocities[m_indexB].v; |
75 | float32 wB = data.velocities[m_indexB].w; |
76 | |
77 | b2Rot qA(aA), qB(aB); |
78 | |
79 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
80 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
81 | |
82 | // J = [-I -r1_skew I r2_skew] |
83 | // [ 0 -1 0 1] |
84 | // r_skew = [-ry; rx] |
85 | |
86 | // Matlab |
87 | // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] |
88 | // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] |
89 | // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] |
90 | |
91 | float32 mA = m_invMassA, mB = m_invMassB; |
92 | float32 iA = m_invIA, iB = m_invIB; |
93 | |
94 | b2Mat33 K; |
95 | K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; |
96 | K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; |
97 | K.ez.x = -m_rA.y * iA - m_rB.y * iB; |
98 | K.ex.y = K.ey.x; |
99 | K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; |
100 | K.ez.y = m_rA.x * iA + m_rB.x * iB; |
101 | K.ex.z = K.ez.x; |
102 | K.ey.z = K.ez.y; |
103 | K.ez.z = iA + iB; |
104 | |
105 | if (m_frequencyHz > 0.0f) |
106 | { |
107 | K.GetInverse22(&m_mass); |
108 | |
109 | float32 invM = iA + iB; |
110 | float32 m = invM > 0.0f ? 1.0f / invM : 0.0f; |
111 | |
112 | float32 C = aB - aA - m_referenceAngle; |
113 | |
114 | // Frequency |
115 | float32 omega = 2.0f * b2_pi * m_frequencyHz; |
116 | |
117 | // Damping coefficient |
118 | float32 d = 2.0f * m * m_dampingRatio * omega; |
119 | |
120 | // Spring stiffness |
121 | float32 k = m * omega * omega; |
122 | |
123 | // magic formulas |
124 | float32 h = data.step.dt; |
125 | m_gamma = h * (d + h * k); |
126 | m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; |
127 | m_bias = C * h * k * m_gamma; |
128 | |
129 | invM += m_gamma; |
130 | m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f; |
131 | } |
132 | else if (K.ez.z == 0.0f) |
133 | { |
134 | K.GetInverse22(&m_mass); |
135 | m_gamma = 0.0f; |
136 | m_bias = 0.0f; |
137 | } |
138 | else |
139 | { |
140 | K.GetSymInverse33(&m_mass); |
141 | m_gamma = 0.0f; |
142 | m_bias = 0.0f; |
143 | } |
144 | |
145 | if (data.step.warmStarting) |
146 | { |
147 | // Scale impulses to support a variable time step. |
148 | m_impulse *= data.step.dtRatio; |
149 | |
150 | b2Vec2 P(m_impulse.x, m_impulse.y); |
151 | |
152 | vA -= mA * P; |
153 | wA -= iA * (b2Cross(m_rA, P) + m_impulse.z); |
154 | |
155 | vB += mB * P; |
156 | wB += iB * (b2Cross(m_rB, P) + m_impulse.z); |
157 | } |
158 | else |
159 | { |
160 | m_impulse.SetZero(); |
161 | } |
162 | |
163 | data.velocities[m_indexA].v = vA; |
164 | data.velocities[m_indexA].w = wA; |
165 | data.velocities[m_indexB].v = vB; |
166 | data.velocities[m_indexB].w = wB; |
167 | } |
168 | |
169 | void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) |
170 | { |
171 | b2Vec2 vA = data.velocities[m_indexA].v; |
172 | float32 wA = data.velocities[m_indexA].w; |
173 | b2Vec2 vB = data.velocities[m_indexB].v; |
174 | float32 wB = data.velocities[m_indexB].w; |
175 | |
176 | float32 mA = m_invMassA, mB = m_invMassB; |
177 | float32 iA = m_invIA, iB = m_invIB; |
178 | |
179 | if (m_frequencyHz > 0.0f) |
180 | { |
181 | float32 Cdot2 = wB - wA; |
182 | |
183 | float32 impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z); |
184 | m_impulse.z += impulse2; |
185 | |
186 | wA -= iA * impulse2; |
187 | wB += iB * impulse2; |
188 | |
189 | b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
190 | |
191 | b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1); |
192 | m_impulse.x += impulse1.x; |
193 | m_impulse.y += impulse1.y; |
194 | |
195 | b2Vec2 P = impulse1; |
196 | |
197 | vA -= mA * P; |
198 | wA -= iA * b2Cross(m_rA, P); |
199 | |
200 | vB += mB * P; |
201 | wB += iB * b2Cross(m_rB, P); |
202 | } |
203 | else |
204 | { |
205 | b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
206 | float32 Cdot2 = wB - wA; |
207 | b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); |
208 | |
209 | b2Vec3 impulse = -b2Mul(m_mass, Cdot); |
210 | m_impulse += impulse; |
211 | |
212 | b2Vec2 P(impulse.x, impulse.y); |
213 | |
214 | vA -= mA * P; |
215 | wA -= iA * (b2Cross(m_rA, P) + impulse.z); |
216 | |
217 | vB += mB * P; |
218 | wB += iB * (b2Cross(m_rB, P) + impulse.z); |
219 | } |
220 | |
221 | data.velocities[m_indexA].v = vA; |
222 | data.velocities[m_indexA].w = wA; |
223 | data.velocities[m_indexB].v = vB; |
224 | data.velocities[m_indexB].w = wB; |
225 | } |
226 | |
227 | bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) |
228 | { |
229 | b2Vec2 cA = data.positions[m_indexA].c; |
230 | float32 aA = data.positions[m_indexA].a; |
231 | b2Vec2 cB = data.positions[m_indexB].c; |
232 | float32 aB = data.positions[m_indexB].a; |
233 | |
234 | b2Rot qA(aA), qB(aB); |
235 | |
236 | float32 mA = m_invMassA, mB = m_invMassB; |
237 | float32 iA = m_invIA, iB = m_invIB; |
238 | |
239 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
240 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
241 | |
242 | float32 positionError, angularError; |
243 | |
244 | b2Mat33 K; |
245 | K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; |
246 | K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; |
247 | K.ez.x = -rA.y * iA - rB.y * iB; |
248 | K.ex.y = K.ey.x; |
249 | K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; |
250 | K.ez.y = rA.x * iA + rB.x * iB; |
251 | K.ex.z = K.ez.x; |
252 | K.ey.z = K.ez.y; |
253 | K.ez.z = iA + iB; |
254 | |
255 | if (m_frequencyHz > 0.0f) |
256 | { |
257 | b2Vec2 C1 = cB + rB - cA - rA; |
258 | |
259 | positionError = C1.Length(); |
260 | angularError = 0.0f; |
261 | |
262 | b2Vec2 P = -K.Solve22(C1); |
263 | |
264 | cA -= mA * P; |
265 | aA -= iA * b2Cross(rA, P); |
266 | |
267 | cB += mB * P; |
268 | aB += iB * b2Cross(rB, P); |
269 | } |
270 | else |
271 | { |
272 | b2Vec2 C1 = cB + rB - cA - rA; |
273 | float32 C2 = aB - aA - m_referenceAngle; |
274 | |
275 | positionError = C1.Length(); |
276 | angularError = b2Abs(C2); |
277 | |
278 | b2Vec3 C(C1.x, C1.y, C2); |
279 | |
280 | b2Vec3 impulse; |
281 | if (K.ez.z > 0.0f) |
282 | { |
283 | impulse = -K.Solve33(C); |
284 | } |
285 | else |
286 | { |
287 | b2Vec2 impulse2 = -K.Solve22(C1); |
288 | impulse.Set(impulse2.x, impulse2.y, 0.0f); |
289 | } |
290 | |
291 | b2Vec2 P(impulse.x, impulse.y); |
292 | |
293 | cA -= mA * P; |
294 | aA -= iA * (b2Cross(rA, P) + impulse.z); |
295 | |
296 | cB += mB * P; |
297 | aB += iB * (b2Cross(rB, P) + impulse.z); |
298 | } |
299 | |
300 | data.positions[m_indexA].c = cA; |
301 | data.positions[m_indexA].a = aA; |
302 | data.positions[m_indexB].c = cB; |
303 | data.positions[m_indexB].a = aB; |
304 | |
305 | return positionError <= b2_linearSlop && angularError <= b2_angularSlop; |
306 | } |
307 | |
308 | b2Vec2 b2WeldJoint::GetAnchorA() const |
309 | { |
310 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
311 | } |
312 | |
313 | b2Vec2 b2WeldJoint::GetAnchorB() const |
314 | { |
315 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
316 | } |
317 | |
318 | b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const |
319 | { |
320 | b2Vec2 P(m_impulse.x, m_impulse.y); |
321 | return inv_dt * P; |
322 | } |
323 | |
324 | float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const |
325 | { |
326 | return inv_dt * m_impulse.z; |
327 | } |
328 | |
329 | void b2WeldJoint::Dump() |
330 | { |
331 | int32 indexA = m_bodyA->m_islandIndex; |
332 | int32 indexB = m_bodyB->m_islandIndex; |
333 | |
334 | b2Log(" b2WeldJointDef jd;\n" ); |
335 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
336 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
337 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
338 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
339 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
340 | b2Log(" jd.referenceAngle = %.15lef;\n" , m_referenceAngle); |
341 | b2Log(" jd.frequencyHz = %.15lef;\n" , m_frequencyHz); |
342 | b2Log(" jd.dampingRatio = %.15lef;\n" , m_dampingRatio); |
343 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
344 | } |
345 | |