| 1 | /* |
| 2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Joints/b2WeldJoint.h> |
| 20 | #include <Box2D/Dynamics/b2Body.h> |
| 21 | #include <Box2D/Dynamics/b2TimeStep.h> |
| 22 | |
| 23 | // Point-to-point constraint |
| 24 | // C = p2 - p1 |
| 25 | // Cdot = v2 - v1 |
| 26 | // = v2 + cross(w2, r2) - v1 - cross(w1, r1) |
| 27 | // J = [-I -r1_skew I r2_skew ] |
| 28 | // Identity used: |
| 29 | // w k % (rx i + ry j) = w * (-ry i + rx j) |
| 30 | |
| 31 | // Angle constraint |
| 32 | // C = angle2 - angle1 - referenceAngle |
| 33 | // Cdot = w2 - w1 |
| 34 | // J = [0 0 -1 0 0 1] |
| 35 | // K = invI1 + invI2 |
| 36 | |
| 37 | void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) |
| 38 | { |
| 39 | bodyA = bA; |
| 40 | bodyB = bB; |
| 41 | localAnchorA = bodyA->GetLocalPoint(anchor); |
| 42 | localAnchorB = bodyB->GetLocalPoint(anchor); |
| 43 | referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); |
| 44 | } |
| 45 | |
| 46 | b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def) |
| 47 | : b2Joint(def) |
| 48 | { |
| 49 | m_localAnchorA = def->localAnchorA; |
| 50 | m_localAnchorB = def->localAnchorB; |
| 51 | m_referenceAngle = def->referenceAngle; |
| 52 | m_frequencyHz = def->frequencyHz; |
| 53 | m_dampingRatio = def->dampingRatio; |
| 54 | |
| 55 | m_impulse.SetZero(); |
| 56 | } |
| 57 | |
| 58 | void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) |
| 59 | { |
| 60 | m_indexA = m_bodyA->m_islandIndex; |
| 61 | m_indexB = m_bodyB->m_islandIndex; |
| 62 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
| 63 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
| 64 | m_invMassA = m_bodyA->m_invMass; |
| 65 | m_invMassB = m_bodyB->m_invMass; |
| 66 | m_invIA = m_bodyA->m_invI; |
| 67 | m_invIB = m_bodyB->m_invI; |
| 68 | |
| 69 | float32 aA = data.positions[m_indexA].a; |
| 70 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 71 | float32 wA = data.velocities[m_indexA].w; |
| 72 | |
| 73 | float32 aB = data.positions[m_indexB].a; |
| 74 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 75 | float32 wB = data.velocities[m_indexB].w; |
| 76 | |
| 77 | b2Rot qA(aA), qB(aB); |
| 78 | |
| 79 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 80 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 81 | |
| 82 | // J = [-I -r1_skew I r2_skew] |
| 83 | // [ 0 -1 0 1] |
| 84 | // r_skew = [-ry; rx] |
| 85 | |
| 86 | // Matlab |
| 87 | // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] |
| 88 | // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] |
| 89 | // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] |
| 90 | |
| 91 | float32 mA = m_invMassA, mB = m_invMassB; |
| 92 | float32 iA = m_invIA, iB = m_invIB; |
| 93 | |
| 94 | b2Mat33 K; |
| 95 | K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; |
| 96 | K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; |
| 97 | K.ez.x = -m_rA.y * iA - m_rB.y * iB; |
| 98 | K.ex.y = K.ey.x; |
| 99 | K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; |
| 100 | K.ez.y = m_rA.x * iA + m_rB.x * iB; |
| 101 | K.ex.z = K.ez.x; |
| 102 | K.ey.z = K.ez.y; |
| 103 | K.ez.z = iA + iB; |
| 104 | |
| 105 | if (m_frequencyHz > 0.0f) |
| 106 | { |
| 107 | K.GetInverse22(&m_mass); |
| 108 | |
| 109 | float32 invM = iA + iB; |
| 110 | float32 m = invM > 0.0f ? 1.0f / invM : 0.0f; |
| 111 | |
| 112 | float32 C = aB - aA - m_referenceAngle; |
| 113 | |
| 114 | // Frequency |
| 115 | float32 omega = 2.0f * b2_pi * m_frequencyHz; |
| 116 | |
| 117 | // Damping coefficient |
| 118 | float32 d = 2.0f * m * m_dampingRatio * omega; |
| 119 | |
| 120 | // Spring stiffness |
| 121 | float32 k = m * omega * omega; |
| 122 | |
| 123 | // magic formulas |
| 124 | float32 h = data.step.dt; |
| 125 | m_gamma = h * (d + h * k); |
| 126 | m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; |
| 127 | m_bias = C * h * k * m_gamma; |
| 128 | |
| 129 | invM += m_gamma; |
| 130 | m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f; |
| 131 | } |
| 132 | else if (K.ez.z == 0.0f) |
| 133 | { |
| 134 | K.GetInverse22(&m_mass); |
| 135 | m_gamma = 0.0f; |
| 136 | m_bias = 0.0f; |
| 137 | } |
| 138 | else |
| 139 | { |
| 140 | K.GetSymInverse33(&m_mass); |
| 141 | m_gamma = 0.0f; |
| 142 | m_bias = 0.0f; |
| 143 | } |
| 144 | |
| 145 | if (data.step.warmStarting) |
| 146 | { |
| 147 | // Scale impulses to support a variable time step. |
| 148 | m_impulse *= data.step.dtRatio; |
| 149 | |
| 150 | b2Vec2 P(m_impulse.x, m_impulse.y); |
| 151 | |
| 152 | vA -= mA * P; |
| 153 | wA -= iA * (b2Cross(m_rA, P) + m_impulse.z); |
| 154 | |
| 155 | vB += mB * P; |
| 156 | wB += iB * (b2Cross(m_rB, P) + m_impulse.z); |
| 157 | } |
| 158 | else |
| 159 | { |
| 160 | m_impulse.SetZero(); |
| 161 | } |
| 162 | |
| 163 | data.velocities[m_indexA].v = vA; |
| 164 | data.velocities[m_indexA].w = wA; |
| 165 | data.velocities[m_indexB].v = vB; |
| 166 | data.velocities[m_indexB].w = wB; |
| 167 | } |
| 168 | |
| 169 | void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) |
| 170 | { |
| 171 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 172 | float32 wA = data.velocities[m_indexA].w; |
| 173 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 174 | float32 wB = data.velocities[m_indexB].w; |
| 175 | |
| 176 | float32 mA = m_invMassA, mB = m_invMassB; |
| 177 | float32 iA = m_invIA, iB = m_invIB; |
| 178 | |
| 179 | if (m_frequencyHz > 0.0f) |
| 180 | { |
| 181 | float32 Cdot2 = wB - wA; |
| 182 | |
| 183 | float32 impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z); |
| 184 | m_impulse.z += impulse2; |
| 185 | |
| 186 | wA -= iA * impulse2; |
| 187 | wB += iB * impulse2; |
| 188 | |
| 189 | b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
| 190 | |
| 191 | b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1); |
| 192 | m_impulse.x += impulse1.x; |
| 193 | m_impulse.y += impulse1.y; |
| 194 | |
| 195 | b2Vec2 P = impulse1; |
| 196 | |
| 197 | vA -= mA * P; |
| 198 | wA -= iA * b2Cross(m_rA, P); |
| 199 | |
| 200 | vB += mB * P; |
| 201 | wB += iB * b2Cross(m_rB, P); |
| 202 | } |
| 203 | else |
| 204 | { |
| 205 | b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
| 206 | float32 Cdot2 = wB - wA; |
| 207 | b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); |
| 208 | |
| 209 | b2Vec3 impulse = -b2Mul(m_mass, Cdot); |
| 210 | m_impulse += impulse; |
| 211 | |
| 212 | b2Vec2 P(impulse.x, impulse.y); |
| 213 | |
| 214 | vA -= mA * P; |
| 215 | wA -= iA * (b2Cross(m_rA, P) + impulse.z); |
| 216 | |
| 217 | vB += mB * P; |
| 218 | wB += iB * (b2Cross(m_rB, P) + impulse.z); |
| 219 | } |
| 220 | |
| 221 | data.velocities[m_indexA].v = vA; |
| 222 | data.velocities[m_indexA].w = wA; |
| 223 | data.velocities[m_indexB].v = vB; |
| 224 | data.velocities[m_indexB].w = wB; |
| 225 | } |
| 226 | |
| 227 | bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) |
| 228 | { |
| 229 | b2Vec2 cA = data.positions[m_indexA].c; |
| 230 | float32 aA = data.positions[m_indexA].a; |
| 231 | b2Vec2 cB = data.positions[m_indexB].c; |
| 232 | float32 aB = data.positions[m_indexB].a; |
| 233 | |
| 234 | b2Rot qA(aA), qB(aB); |
| 235 | |
| 236 | float32 mA = m_invMassA, mB = m_invMassB; |
| 237 | float32 iA = m_invIA, iB = m_invIB; |
| 238 | |
| 239 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 240 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 241 | |
| 242 | float32 positionError, angularError; |
| 243 | |
| 244 | b2Mat33 K; |
| 245 | K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; |
| 246 | K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; |
| 247 | K.ez.x = -rA.y * iA - rB.y * iB; |
| 248 | K.ex.y = K.ey.x; |
| 249 | K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; |
| 250 | K.ez.y = rA.x * iA + rB.x * iB; |
| 251 | K.ex.z = K.ez.x; |
| 252 | K.ey.z = K.ez.y; |
| 253 | K.ez.z = iA + iB; |
| 254 | |
| 255 | if (m_frequencyHz > 0.0f) |
| 256 | { |
| 257 | b2Vec2 C1 = cB + rB - cA - rA; |
| 258 | |
| 259 | positionError = C1.Length(); |
| 260 | angularError = 0.0f; |
| 261 | |
| 262 | b2Vec2 P = -K.Solve22(C1); |
| 263 | |
| 264 | cA -= mA * P; |
| 265 | aA -= iA * b2Cross(rA, P); |
| 266 | |
| 267 | cB += mB * P; |
| 268 | aB += iB * b2Cross(rB, P); |
| 269 | } |
| 270 | else |
| 271 | { |
| 272 | b2Vec2 C1 = cB + rB - cA - rA; |
| 273 | float32 C2 = aB - aA - m_referenceAngle; |
| 274 | |
| 275 | positionError = C1.Length(); |
| 276 | angularError = b2Abs(C2); |
| 277 | |
| 278 | b2Vec3 C(C1.x, C1.y, C2); |
| 279 | |
| 280 | b2Vec3 impulse; |
| 281 | if (K.ez.z > 0.0f) |
| 282 | { |
| 283 | impulse = -K.Solve33(C); |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | b2Vec2 impulse2 = -K.Solve22(C1); |
| 288 | impulse.Set(impulse2.x, impulse2.y, 0.0f); |
| 289 | } |
| 290 | |
| 291 | b2Vec2 P(impulse.x, impulse.y); |
| 292 | |
| 293 | cA -= mA * P; |
| 294 | aA -= iA * (b2Cross(rA, P) + impulse.z); |
| 295 | |
| 296 | cB += mB * P; |
| 297 | aB += iB * (b2Cross(rB, P) + impulse.z); |
| 298 | } |
| 299 | |
| 300 | data.positions[m_indexA].c = cA; |
| 301 | data.positions[m_indexA].a = aA; |
| 302 | data.positions[m_indexB].c = cB; |
| 303 | data.positions[m_indexB].a = aB; |
| 304 | |
| 305 | return positionError <= b2_linearSlop && angularError <= b2_angularSlop; |
| 306 | } |
| 307 | |
| 308 | b2Vec2 b2WeldJoint::GetAnchorA() const |
| 309 | { |
| 310 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
| 311 | } |
| 312 | |
| 313 | b2Vec2 b2WeldJoint::GetAnchorB() const |
| 314 | { |
| 315 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
| 316 | } |
| 317 | |
| 318 | b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const |
| 319 | { |
| 320 | b2Vec2 P(m_impulse.x, m_impulse.y); |
| 321 | return inv_dt * P; |
| 322 | } |
| 323 | |
| 324 | float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const |
| 325 | { |
| 326 | return inv_dt * m_impulse.z; |
| 327 | } |
| 328 | |
| 329 | void b2WeldJoint::Dump() |
| 330 | { |
| 331 | int32 indexA = m_bodyA->m_islandIndex; |
| 332 | int32 indexB = m_bodyB->m_islandIndex; |
| 333 | |
| 334 | b2Log(" b2WeldJointDef jd;\n" ); |
| 335 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
| 336 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
| 337 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
| 338 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
| 339 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
| 340 | b2Log(" jd.referenceAngle = %.15lef;\n" , m_referenceAngle); |
| 341 | b2Log(" jd.frequencyHz = %.15lef;\n" , m_frequencyHz); |
| 342 | b2Log(" jd.dampingRatio = %.15lef;\n" , m_dampingRatio); |
| 343 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
| 344 | } |
| 345 | |